1
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
2
|
Zhang M, Zhu C, Duan Y, Liu T, Liu H, Su C, Lu Y. The intrinsically disordered region from PP2C phosphatases functions as a conserved CO 2 sensor. Nat Cell Biol 2022; 24:1029-1037. [PMID: 35711061 DOI: 10.1038/s41556-022-00936-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/06/2022] [Indexed: 12/27/2022]
Abstract
Carbon dioxide not only plays a central role in the carbon cycle, but also acts as a crucial signal in living cells. Adaptation to changing CO2 concentrations is critical for all organisms. Conversion of CO2 to HCO3- by carbonic anhydrase and subsequent HCO3--triggered signalling are thought to be important for cellular responses to CO2 (refs. 1-3). However, carbonic anhydrases are suggested to transduce a change in CO2 rather than be a direct CO2 sensor4,5, the mechanism(s) by which organisms sense CO2 remain unknown. Here we demonstrate that a unique group of PP2C phosphatases from fungi and plants senses CO2, but not HCO3-, to control diverse cellular programmes. Different from other phosphatases, these PP2Cs all have an intrinsically disordered region (IDR). They formed reversible liquid-like droplets through phase separation both in cells and in vitro, and were activated in response to elevated environmental CO2 in an IDR-dependent manner. The IDRs in PP2Cs are characterized by a sequence of polar amino acids enriched in serine/threonine, which provides CO2 responsiveness. CO2-responsive activation of PP2Cs via the serine/threonine-rich IDR-mediated phase separation represents a direct CO2 sensing mechanism and is widely exploited.
Collapse
Affiliation(s)
- Mao Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yuanyuan Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tongbao Liu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Haoping Liu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Sun G, Xia M, Li J, Ma W, Li Q, Xie J, Bai S, Fang S, Sun T, Feng X, Guo G, Niu Y, Hou J, Ye W, Ma J, Guo S, Wang H, Long Y, Zhang X, Zhang J, Zhou H, Li B, Liu J, Zou C, Wang H, Huang J, Galbraith DW, Song CP. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. THE PLANT CELL 2022; 34:1890-1911. [PMID: 35166333 PMCID: PMC9048877 DOI: 10.1093/plcell/koac047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/28/2022] [Indexed: 05/26/2023]
Abstract
The unique morphology of grass stomata enables rapid responses to environmental changes. Deciphering the basis for these responses is critical for improving food security. We have developed a planta platform of single-nucleus RNA-sequencing by combined fluorescence-activated nuclei flow sorting, and used it to identify cell types in mature and developing stomata from 33,098 nuclei of the maize epidermis-enriched tissues. Guard cells (GCs) and subsidiary cells (SCs) displayed differential expression of genes, besides those encoding transporters, involved in the abscisic acid, CO2, Ca2+, starch metabolism, and blue light signaling pathways, implicating coordinated signal integration in speedy stomatal responses, and of genes affecting cell wall plasticity, implying a more sophisticated relationship between GCs and SCs in stomatal development and dumbbell-shaped guard cell formation. The trajectory of stomatal development identified in young tissues, and by comparison to the bulk RNA-seq data of the MUTE defective mutant in stomatal development, confirmed known features, and shed light on key participants in stomatal development. Our study provides a valuable, comprehensive, and fundamental foundation for further insights into grass stomatal function.
Collapse
Affiliation(s)
- Guiling Sun
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Mingzhang Xia
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jieping Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Wen Ma
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Qingzeng Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jinjin Xie
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Shenglong Bai
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Shanshan Fang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Ting Sun
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Xinlei Feng
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Guanghui Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Yanli Niu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jingyi Hou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Wenling Ye
- School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Henan University, Kaifeng 475004, China
| | - Jianchao Ma
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Siyi Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hongliang Wang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Yu Long
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hui Zhou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Baozhu Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jiong Liu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Changsong Zou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hai Wang
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinling Huang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | |
Collapse
|
4
|
Ma X, Bai L. Elevated CO 2 and Reactive Oxygen Species in Stomatal Closure. PLANTS 2021; 10:plants10020410. [PMID: 33672284 PMCID: PMC7926597 DOI: 10.3390/plants10020410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/25/2023]
Abstract
Plant guard cell is essential for photosynthesis and transpiration. The aperture of stomata is sensitive to various environment factors. Carbon dioxide (CO2) is an important regulator of stomatal movement, and its signaling includes the perception, transduction and gene expression. The intersections with many other signal transduction pathways make the regulation of CO2 more complex. High levels of CO2 trigger stomata closure, and reactive oxygen species (ROS) as the key component has been demonstrated function in this regulation. Additional research is required to understand the underlying molecular mechanisms, especially for the detailed signal factors related with ROS in this response. This review focuses on Arabidopsis stomatal closure induced by high-level CO2, and summarizes current knowledge of the role of ROS involved in this process.
Collapse
Affiliation(s)
| | - Ling Bai
- Correspondence: ; Tel.: +86-13653782901
| |
Collapse
|
5
|
Sayama K, Yuki K, Sugata K, Fukagawa S, Yamamoto T, Ikeda S, Murase T. Carbon dioxide inhibits UVB-induced inflammatory response by activating the proton-sensing receptor, GPR65, in human keratinocytes. Sci Rep 2021; 11:379. [PMID: 33431967 PMCID: PMC7801444 DOI: 10.1038/s41598-020-79519-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Carbon dioxide (CO2) is the predominant gas molecule emitted during aerobic respiration. Although CO2 can improve blood circulation in the skin via its vasodilatory effects, its effects on skin inflammation remain unclear. The present study aimed to examine the anti-inflammatory effects of CO2 in human keratinocytes and skin. Keratinocytes were cultured under 15% CO2, irradiated with ultraviolet B (UVB), and their inflammatory cytokine production was analyzed. Using multiphoton laser microscopy, the effect of CO2 on pH was observed by loading a three-dimensional (3D)-cultured epidermis with a high-CO2 concentration formulation. Finally, the effect of CO2 on UVB-induced erythema was confirmed. CO2 suppressed the UVB-induced production of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in keratinocytes and the 3D epidermis. Correcting medium acidification with NaOH inhibited the CO2-induced suppression of TNFα and IL-6 expression in keratinocytes. Moreover, the knockdown of H+-sensing G protein-coupled receptor 65 inhibited the CO2-induced suppression of inflammatory cytokine expression and NF-κB activation and reduced CO2-induced cyclic adenosine monophosphate production. Furthermore, the high-CO2 concentration formulation suppressed UVB-induced erythema in human skin. Hence, CO2 suppresses skin inflammation and can be employed as a potential therapeutic agent in restoring skin immune homeostasis.
Collapse
Affiliation(s)
- Keimon Sayama
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.,Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Katsuyuki Yuki
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Keiichi Sugata
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Satoko Fukagawa
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Tetsuji Yamamoto
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takatoshi Murase
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| |
Collapse
|
6
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
7
|
Momayyezi M, McKown AD, Bell SCS, Guy RD. Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:831-844. [PMID: 31816145 DOI: 10.1111/tpj.14638] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 05/24/2023]
Abstract
Carbonic anhydrase (CA) is an abundant protein in most photosynthesizing organisms and higher plants. This review paper considers the physiological importance of the more abundant CA isoforms in photosynthesis, through their effects on CO2 diffusion and other processes in photosynthetic organisms. In plants, CA has multiple isoforms in three different families (α, β and γ) and is mainly known to catalyze the CO2↔HCO3- equilibrium. This reversible conversion has a clear role in photosynthesis, primarily through sustaining the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Despite showing the same major reaction mechanism, the three main CA families are evolutionarily distinct. For different CA isoforms, cellular localization and total gene expression as a function of developmental stage are predicted to determine the role of each family in relation to the net assimilation rate. Reaction-diffusion modeling and observational evidence support a role for CA activity in reducing resistance to CO2 diffusion inside mesophyll cells by facilitating CO2 transfer in both gas and liquid phases. In addition, physical and/or biochemical interactions between CAs and other membrane-bound compartments, for example aquaporins, are suggested to trigger a CO2 -sensing response by stomatal movement. In response to environmental stresses, changes in the expression level of CAs and/or stimulated deactivation of CAs may correspond with lower photosynthetic capacity. We suggest that further studies should focus on the dynamics of the relationship between the activity of CAs (with different subcellular localization, abundance and gene expression) and limitations due to CO2 diffusivity through the mesophyll and supply of CO2 to photosynthetic reactions.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shannon C S Bell
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
8
|
Feng CY, Chen ZF, Pei LL, Ma SX, Nie HM, Zheng SW, Sun S, Xing GM. Genome-wide identification, phylogeny, and expression analysis of the CA gene family in tomato. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1715832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Chao-Yang Feng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Zhi-Feng Chen
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Ling-Ling Pei
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Su-Xian Ma
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Hong-Mei Nie
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Shao-Wen Zheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Guo-Ming Xing
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| |
Collapse
|
9
|
β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis. PLoS One 2017; 12:e0181820. [PMID: 28753666 PMCID: PMC5533460 DOI: 10.1371/journal.pone.0181820] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/07/2017] [Indexed: 11/19/2022] Open
Abstract
The plant hormone salicylic acid (SA) is required for defense responses. NON EXPRESSER OFPATHOGENESISRELATED1 (NPR1) and NONRECOGNITION OFBTH-4 (NRB4) are required for the response to SA in Arabidopsis (Arabidopsis thaliana). Here, we isolated several interactors of NRB4 using yeast two-hybrid assays. Two of these interactors, βCA1 and βCA2, are β-carbonic anhydrase family proteins. Since double mutant βca1 βca2 plants did not show any obvious phenotype, we investigated other βCAs and found that NRB4 also interacts with βCA3 and βCA4. Moreover, several βCAs interacted with NPR1 in yeast, including one that interacted in a SA-dependent manner. This interaction was abolished in loss-of-function alleles of NPR1. Interactions between βCAs and both NRB4 and NPR1 were also detected in planta, with evidence for a triple interaction, NRB4-βCA1-NPR1. The quintuple mutant βca1 βca2 βca3 βca4 βca6 showed partial insensitivity to SA. These findings suggest that one of the functions of carbonic anhydrases is to modulate the perception of SA in plants.
Collapse
|
10
|
McElwain JC, Steinthorsdottir M. Paleoecology, Ploidy, Paleoatmospheric Composition, and Developmental Biology: A Review of the Multiple Uses of Fossil Stomata. PLANT PHYSIOLOGY 2017; 174:650-664. [PMID: 28495890 PMCID: PMC5462064 DOI: 10.1104/pp.17.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/10/2017] [Indexed: 05/05/2023]
Affiliation(s)
- Jennifer C McElwain
- Earth Institute, O'Brien Centre for Science, and School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland (J.C.M.);
- Department of Palaeobiology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden (M.S.); and
- Bolin Centre for Climate Research, Stockholm University, SE-104 05 Stockholm, Sweden (M.S.)
| | - Margret Steinthorsdottir
- Earth Institute, O'Brien Centre for Science, and School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland (J.C.M.)
- Department of Palaeobiology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden (M.S.); and
- Bolin Centre for Climate Research, Stockholm University, SE-104 05 Stockholm, Sweden (M.S.)
| |
Collapse
|
11
|
Dąbrowska-Bronk J, Komar DN, Rusaczonek A, Kozłowska-Makulska A, Szechyńska-Hebda M, Karpiński S. β-carbonic anhydrases and carbonic ions uptake positively influence Arabidopsis photosynthesis, oxidative stress tolerance and growth in light dependent manner. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:44-54. [PMID: 27316917 DOI: 10.1016/j.jplph.2016.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Carbonic anhydrases (CAs) catalyse reversible interconversion of CO2 and water into bicarbonate and protons and regulate concentration of CO2 around photosynthetic enzymes. In higher plants the CAs are divided into three distinct classes α, β and γ, with members off each of them being involved in CO2 uptake, fixation or recycling. The most abundant group is βCAs. In C4 plants they are localized in the cytosol of mesophyll cells and catalyse first step of carbon concentration pathway. C3 plants contain orthologues genes encoding βCAs's, however their functions are unknown. Given the importance of βCAs in the present study we analysed the effect of carbonic ions, selected orthologues βCAs's gene expression and βCAs enzymatic activity on Arabidopsis photosynthesis, growth and cell death in different light conditions. Plants fertilised with 0.5-3mM sodium bicarbonate had a significantly increased number of leaves, improved fresh and dry weight and reduced cell death (cellular ion leakage). This effect was dependent on provided photon flux density and photoperiod. Higher content of carbonic ions also stimulated photoprotective mechanisms such as non-photochemical quenching and foliar content of photoprotective pigments (neoxanthin, violaxanthin and carotenes). Function of various βCAs genes examined in null βcas mutants showed to be complementary and additive, and confirm results of fertilizing experiments. Taken together, regulation of βCAs gene expression and enzymatic activities are important for optimal plant growth and probably can be one of the factor influencing a switch between C3 and C4 photosynthesis mode in variable light conditions. Therefore, biotechnological amelioration of βCAs activity in economically important plants and their fertilisation with carbonic ions may lead to improved photosynthetic efficiency and further crop productivity.
Collapse
Affiliation(s)
- Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Dorota Natalia Komar
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Anna Kozłowska-Makulska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland.
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
12
|
Azoulay-Shemer T, Bagheri A, Wang C, Palomares A, Stephan AB, Kunz HH, Schroeder JI. Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing. PLANT PHYSIOLOGY 2016; 171:788-98. [PMID: 27208296 PMCID: PMC4902578 DOI: 10.1104/pp.15.01662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/19/2016] [Indexed: 05/29/2023]
Abstract
Starch metabolism is involved in stomatal movement regulation. However, it remains unknown whether starch-deficient mutants affect CO2-induced stomatal closing and whether starch biosynthesis in guard cells and/or mesophyll cells is rate limiting for high CO2-induced stomatal closing. Stomatal responses to [CO2] shifts and CO2 assimilation rates were compared in Arabidopsis (Arabidopsis thaliana) mutants that were either starch deficient in all plant tissues (ADP-Glc-pyrophosphorylase [ADGase]) or retain starch accumulation in guard cells but are starch deficient in mesophyll cells (plastidial phosphoglucose isomerase [pPGI]). ADGase mutants exhibited impaired CO2-induced stomatal closure, but pPGI mutants did not, showing that starch biosynthesis in guard cells but not mesophyll functions in CO2-induced stomatal closing. Nevertheless, starch-deficient ADGase mutant alleles exhibited partial CO2 responses, pointing toward a starch biosynthesis-independent component of the response that is likely mediated by anion channels. Furthermore, whole-leaf CO2 assimilation rates of both ADGase and pPGI mutants were lower upon shifts to high [CO2], but only ADGase mutants caused impairments in CO2-induced stomatal closing. These genetic analyses determine the roles of starch biosynthesis for high CO2-induced stomatal closing.
Collapse
Affiliation(s)
- Tamar Azoulay-Shemer
- Division of Biological Sciences, Section of Cell and Developmental Biology, Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116
| | - Andisheh Bagheri
- Division of Biological Sciences, Section of Cell and Developmental Biology, Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116
| | - Cun Wang
- Division of Biological Sciences, Section of Cell and Developmental Biology, Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116
| | - Axxell Palomares
- Division of Biological Sciences, Section of Cell and Developmental Biology, Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116
| | - Aaron B Stephan
- Division of Biological Sciences, Section of Cell and Developmental Biology, Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116
| | - Hans-Henning Kunz
- Division of Biological Sciences, Section of Cell and Developmental Biology, Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116
| | - Julian I Schroeder
- Division of Biological Sciences, Section of Cell and Developmental Biology, Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116
| |
Collapse
|
13
|
Wang C, Hu H, Qin X, Zeise B, Xu D, Rappel WJ, Boron WF, Schroeder JI. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor. THE PLANT CELL 2016; 28:568-82. [PMID: 26764375 PMCID: PMC4790870 DOI: 10.1105/tpc.15.00637] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3 (-) enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels.
Collapse
Affiliation(s)
- Cun Wang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Honghong Hu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116 College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University, Ohio 44106
| | - Brian Zeise
- Department of Physiology and Biophysics, Case Western Reserve University, Ohio 44106
| | - Danyun Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University, Ohio 44106
| | - Julian I Schroeder
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| |
Collapse
|
14
|
Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordström M, Azoulay-Shemer T, Rappel WJ, Iba K, Schroeder JI. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions. TRENDS IN PLANT SCIENCE 2016; 21:16-30. [PMID: 26482956 PMCID: PMC4707055 DOI: 10.1016/j.tplants.2015.08.014] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 05/18/2023]
Abstract
Guard cells form epidermal stomatal gas-exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration ([CO2]) in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense [CO2] changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in the CO2 regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars that perform better in a shifting climate.
Collapse
Affiliation(s)
- Cawas B Engineer
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Mimi Hashimoto-Sugimoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Maria Israelsson-Nordström
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Koh Iba
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
15
|
Azoulay-Shemer T, Palomares A, Bagheri A, Israelsson-Nordstrom M, Engineer CB, Bargmann BO, Stephan AB, Schroeder JI. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:567-81. [PMID: 26096271 PMCID: PMC4532624 DOI: 10.1111/tpj.12916] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 05/03/2023]
Abstract
Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.
Collapse
Affiliation(s)
- Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Axxell Palomares
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Andish Bagheri
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Maria Israelsson-Nordstrom
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S901 83 Umeå, Sweden
| | - Cawas B. Engineer
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Bastiaan O.R. Bargmann
- Biology Department, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Aaron B. Stephan
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
16
|
Zhou Y, Mokhtari RB, Pan J, Cutz E, Yeger H. Carbonic anhydrase II mediates malignant behavior of pulmonary neuroendocrine tumors. Am J Respir Cell Mol Biol 2015; 52:183-92. [PMID: 25019941 DOI: 10.1165/rcmb.2014-0054oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In normal lung, the predominant cytoplasmic carbonic anhydrase (CA) isozyme (CAII) is highly expressed in amine- and peptide-producing pulmonary neuroendocrine cells where its role involves CO2 sensing. Here, we report robust cytoplasmic expression of CAII by immunohistochemistry in the tumor cells of different native neuroendocrine tumor (NET) types, including typical and atypical carcinoids and small-cell lung carcinomas, and in NET and non-NET tumor cell lines. Because, in both pulmonary neuroendocrine cell and related NETs, the hypercapnia-induced secretion of bioactive serotonin (5-hydroxytryptamine) is mediated by CAII, we investigated the role of CAII in the biological behavior of carcinoid cell line H727 and the type II cell-derived A549 using both in vitro clonogenicity and in vivo xenograft model. We show that short hairpin RNA-mediated down-regulation of CAII resulted in significant reduction in clonogenicity of H727 and A549 cells in vitro, and marked suppression of tumor growth in vivo. CAII-short hairpin RNA cell-derived xenografts showed significantly reduced mitosis (phosphohistone H3 marker) and proliferation associated antigen Ki-67 (Ki67 marker), and significantly increased apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Using an apoptosis gene array, we found no association with caspases 3 and 8, but with a novel association of CAII-mediated apoptosis with specific mitochondrial apoptosis-associated proteins. Furthermore, these xenografts showed a significantly reduced vascularization (CD31 marker). Thus, CAII may play a critical role in NET lung tumor growth, angiogenesis, and survival, possibly via 5-hydroxytryptamine, known to drive autocrine tumor growth. As such, CAII is a potential therapeutic target for the difficult-to-treat lung NETs.
Collapse
Affiliation(s)
- Yuanxiang Zhou
- 1 Division of Pathology, Department of Paediatric Laboratory Medicine, and
| | | | | | | | | |
Collapse
|
17
|
Tian W, Hou C, Ren Z, Pan Y, Jia J, Zhang H, Bai F, Zhang P, Zhu H, He Y, Luo S, Li L, Luan S. A molecular pathway for CO2 response in Arabidopsis guard cells. Nat Commun 2015; 6:6057. [DOI: 10.1038/ncomms7057] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/08/2014] [Indexed: 11/09/2022] Open
|
18
|
Cummins EP, Selfridge AC, Sporn PH, Sznajder JI, Taylor CT. Carbon dioxide-sensing in organisms and its implications for human disease. Cell Mol Life Sci 2013; 71:831-45. [PMID: 24045706 DOI: 10.1007/s00018-013-1470-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/22/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022]
Abstract
The capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease.
Collapse
Affiliation(s)
- Eoin P Cummins
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
19
|
Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO2 sequestration application. Bioprocess Biosyst Eng 2012; 36:375-81. [DOI: 10.1007/s00449-012-0788-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
20
|
Kanth BK, Min K, Kumari S, Jeon H, Jin ES, Lee J, Pack SP. Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO(2) sequestration application. Appl Biochem Biotechnol 2012; 167:2341-56. [PMID: 22715026 DOI: 10.1007/s12010-012-9729-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/03/2012] [Indexed: 11/26/2022]
Abstract
Carbonic anhydrases (CAs) have been given much attention as biocatalysts for CO(2) sequestration process because of their ability to convert CO(2) to bicarbonate. Here, we expressed codon-optimized sequence of α-type CA cloned from Dunaliella species (Dsp-aCAopt) and characterized its catalyzing properties to apply for CO(2) to calcite formation. The expressed amount of Dsp-aCAopt in Escherichia coli is about 50 mg/L via induction of 1.0 mM isopropyl-β-D-thiogalactopyranoside at 20 °C (for the case of intact Dsp-aCA, negligible). Dsp-aCAopt enzyme shows 47 °C of half-denaturation temperature and show wide pH stability (optimum pH 7.6/10.0). Apparent values of K (m) and V (max) for p-nitrophenylacetate substrate are 0.91 mM and 3.303 × 10(-5) μM min(-1). The effects of metal ions and anions were investigated to find out which factors enhance or inhibit Dsp-aCAopt activity. Finally, we demonstrated that Dsp-aCAopt enzyme can catalyze well the conversion of CO(2) to CaCO(3), as the calcite form, in the Ca(2+) solution [8.9 mg/100 μg (172 U/mg enzyme) with 10 mM of Ca(2+)]. The obtained expression and characterization results of Dsp-aCAopt would be usefully employed for the development of efficient CA-based system for CO(2)-converting/capturing processes.
Collapse
Affiliation(s)
- Bashistha Kumar Kanth
- Department of Biotechnology and Bioinformatics, Korea University, Jochiwon, Chungnam 339-700, South Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Stimler K, Berry JA, Yakir D. Effects of carbonyl sulfide and carbonic anhydrase on stomatal conductance. PLANT PHYSIOLOGY 2012; 158:524-30. [PMID: 22106096 PMCID: PMC3252075 DOI: 10.1104/pp.111.185926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The potential use of carbonyl sulfide (COS) as tracer of CO(2) flux into the land biosphere stimulated research on COS interactions with leaves during gas exchange. We carried out leaf gas-exchange measurements of COS and CO(2) in 22 plant species representing deciduous and evergreen trees, grasses, and shrubs, under a range of light intensities, using mid-infrared laser spectroscopy. A narrow range in the normalized ratio of the net uptake rates of COS (A(s)) and CO(2) (A(c)), leaf relative uptake (A(s)/A(c) × [CO(2)]/[COS]), was observed, with a mean value of 1.61 ± 0.26, which is advantageous to the use of COS in photosynthesis research. Notably, increasing COS concentrations between 250 and 2,800 pmol mol(-1) (enveloping atmospheric levels) enhanced stomatal conductance (g(s)) to a variable extent in most plants examined (up to a normalized enhancement factor [ f(e) = (g(s-max) - g(s-min))/g(s-min)] of 1). This enhancement was completely abolished in carbonic anhydrase (CA)-deficient antisense lines of both C3 and C4 plants. We suggest that the stomatal response is mediated by CA and may involve hydrogen sulfide formed in the reaction of COS and water with CA. In all species examined, the uptake rates of COS and CO(2) were highly correlated, but there was no relationship between the sensitivity of stomata to COS and the rate of COS uptake (or, by inference, hydrogen sulfide production). The basis for the observed stomatal sensitivity and its variations is still to be determined.
Collapse
|
22
|
Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2. Colloids Surf B Biointerfaces 2011; 90:91-6. [PMID: 22024402 DOI: 10.1016/j.colsurfb.2011.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 11/22/2022]
Abstract
Bovine carbonic anhydrase (BCA) was immobilized on spherical SBA-15 through various approaches, including covalent attachment (BCA-CA), adsorption (BCA-ADS), and cross-linked enzyme aggregation (BCA-CLEA). The spherical SBA-15 was characterized by XRD, BET, and FE-SEM analysis. (29)Si CP-MAS NMR was used to confirm the 3-aminopropyltriethoxysilane grafting (an intermediate step in the immobilization technique), and the immobilization of BCA was confirmed by FT-IR spectrum. The catalytic activities for hydration of CO(2) were calculated for free and immobilized BCA with and without buffer. The K(cat) values for free BCA, BCA-CLEA, BCA-CA and BCA-ADS were 0.79, 0.78, 0.58 and 0.36 s(-1), respectively, indicating that BCA-CLEA showed a comparatively higher hydration of CO(2) than BCA-CA and BCA-ADS, which was nearly the same as free BCA. The amount of CaCO(3) precipitated over free BCA, BCA-CLEA, BCA-CA and BCA-ADS were 140, 138, 135 and 130 mg, respectively. Performance studies, including assays on reusability, thermal stability and storage stability, were also carried out for BCA-CLEA. The results confirmed that BCA-CLEA is reusable, thermally stable and, withstands storage, and is thus a suitable candidate for use in hydration and sequestration of CO(2).
Collapse
|
23
|
Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J 2011; 30:1645-58. [PMID: 21423149 PMCID: PMC3102275 DOI: 10.1038/emboj.2011.68] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 02/16/2011] [Indexed: 12/18/2022] Open
Abstract
Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.
Collapse
|
24
|
Abstract
Carbon dioxide (CO(2)) is a physiological gas found at low levels in the atmosphere and produced in cells during the process of aerobic respiration. Consequently, the levels of CO(2) within tissues are usually significantly higher than those found externally. Shifts in tissue levels of CO(2) (leading to either hypercapnia or hypocapnia) are associated with a number of pathophysiological conditions in humans and can occur naturally in niche habitats such as those of burrowing animals. Clinical studies have indicated that such altered CO(2) levels can impact upon disease progression. Recent advances in our understanding of the biology of CO(2) has shown that like other physiological gases such as molecular oxygen (O(2)) and nitric oxide (NO), CO(2) levels can be sensed by cells resulting in the initiation of physiological and pathophysiological responses. Acute CO(2) sensing in neurons and peripheral and central chemoreceptors is important in rapidly activated responses including olfactory signalling, taste sensation and cardiorespiratory control. Furthermore, a role for CO(2) in the regulation of gene transcription has recently been identified with exposure of cells and model organisms to high CO(2) leading to suppression of genes involved in the regulation of innate immunity and inflammation. This latter, transcriptional regulatory role for CO(2), has been largely attributed to altered activity of the NF-B family of transcription factors. Here, we review our evolving understanding of how CO(2) impacts upon gene transcription.
Collapse
Affiliation(s)
- Cormac T Taylor
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
25
|
Affiliation(s)
- Radhika Desikan
- Division of Biology, Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
26
|
Cummins EP, Oliver KM, Lenihan CR, Fitzpatrick SF, Bruning U, Scholz CC, Slattery C, Leonard MO, McLoughlin P, Taylor CT. NF-κB Links CO2 Sensing to Innate Immunity and Inflammation in Mammalian Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4439-45. [DOI: 10.4049/jimmunol.1000701] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci U S A 2010; 107:12168-73. [PMID: 20566863 DOI: 10.1073/pnas.1003379107] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
Collapse
|
28
|
Frommer WB. Grand opportunities in physiology to address the grand challenges facing the planet. Front Physiol 2010; 1:11. [PMID: 21423354 PMCID: PMC3059944 DOI: 10.3389/fphys.2010.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science Stanford, CA, USA.
| |
Collapse
|
29
|
Reed DR, Knaapila A. Genetics of taste and smell: poisons and pleasures. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 94:213-40. [PMID: 21036327 PMCID: PMC3342754 DOI: 10.1016/b978-0-12-375003-7.00008-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eating is dangerous. While food contains nutrients and calories that animals need to produce heat and energy, it may also contain harmful parasites, bacteria, or chemicals. To guide food selection, the senses of taste and smell have evolved to alert us to the bitter taste of poisons and the sour taste and off-putting smell of spoiled foods. These sensory systems help people and animals to eat defensively, and they provide the brake that helps them avoid ingesting foods that are harmful. But choices about which foods to eat are motivated by more than avoiding the bad; they are also motivated by seeking the good, such as fat and sugar. However, just as not everyone is equally capable of sensing toxins in food, not everyone is equally enthusiastic about consuming high-fat, high-sugar foods. Genetic studies in humans and experimental animals strongly suggest that the liking of sugar and fat is influenced by genotype; likewise, the abilities to detect bitterness and the malodors of rotting food are highly variable among individuals. Understanding the exact genes and genetic differences that affect food intake may provide important clues in obesity treatment by allowing caregivers to tailor dietary recommendations to the chemosensory landscape of each person.
Collapse
|
30
|
Frommer WB. Grand opportunities in plant science to address the grand challenges facing the planet. FRONTIERS IN PLANT SCIENCE 2010; 1:11. [PMID: 22645524 PMCID: PMC3355803 DOI: 10.3389/fpls.2010.00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 05/15/2023]
Affiliation(s)
- Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
- *Correspondence:
| |
Collapse
|