1
|
Sá-Pessoa J, Calderón-González R, Lee A, Bengoechea JA. Klebsiella pneumoniae emerging anti-immunology paradigms: from stealth to evasion. Trends Microbiol 2025; 33:533-545. [PMID: 39884872 DOI: 10.1016/j.tim.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Klebsiella pneumoniae (KP) is a global threat to human health due to the isolation of multidrug-resistant strains. Despite advancements in understanding KP's population structure, antibiotic resistance mechanisms, and transmission patterns, a gap remains in how KP evades defenses, allowing the pathogen to flourish in tissues despite an activated immune system. KP infection biology has been shaped by the notion that the pathogen has evolved to shield from defenses more than actively suppress them. This review describes new paradigms of how KP exploits the coevolution with the innate immune system to hijack immune effectors and receptors to ablate signaling pathways and to counteract cell-intrinsic immunity, making apparent that KP can no longer be considered only as a stealth pathogen.
Collapse
Affiliation(s)
- Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alix Lee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK.
| |
Collapse
|
2
|
Hajra D, Yadav V, Singh A, Chakravortty D. SIRT1 and SIRT3 Impact Host Mitochondrial Function and Host Salmonella pH Balance during Infection. ACS Infect Dis 2025; 11:827-843. [PMID: 40168249 DOI: 10.1021/acsinfecdis.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Mitochondria are important organelles that regulate energy homeostasis. Mitochondrial health and dynamics are crucial determinants of the outcome of several bacterial infections. SIRT3, a major mitochondrial sirtuin, along with SIRT1 regulates key mitochondrial functions. This led to considerable interest in understanding the role of SIRT1 and SIRT3 in governing mitochondrial functions during Salmonella infection. Here, we show that loss of SIRT1 and SIRT3 function either by shRNA-mediated knockdown or by inhibitor treatment led to increased mitochondrial dysfunction with alteration in mitochondrial bioenergetics alongside increased mitochondrial superoxide generation in Salmonella-infected macrophages. Consistent with dysfunctional mitochondria, mitophagy was induced along with altered mitochondrial fusion-fission dynamics in S. typhimurium-infected macrophages. Additionally, the mitochondrial bioenergetic alteration promotes acidification of the infected macrophage cytosolic pH. This host cytosolic pH imbalance skewed the intraphagosomal and intrabacterial pH in the absence of SIRT1 and SIRT3, resulting in decreased SPI-2 gene expression. Our results suggest a novel role for SIRT1 and SIRT3 in maintaining the intracellular Salmonella niche by modulating the mitochondrial bioenergetics and dynamics in the infected macrophages.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Yadav
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Amit Singh
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
3
|
Roy Chowdhury A, Hajra D, Mukherjee D, Nair AV, Chakravortty D. Functional OmpA of Salmonella Typhimurium Provides Protection From Lysosomal Degradation and Inhibits Autophagic Processes in Macrophages. J Infect Dis 2025; 231:716-728. [PMID: 39078938 DOI: 10.1093/infdis/jiae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 03/18/2025] Open
Abstract
Our previous study showed that OmpA-deficient Salmonella Typhimurium failed to retain LAMP-1 around the Salmonella-containing vacuoles (SCV), and escaped in to the host cell cytosol. Here we show that the cytosolic population of S. Typhimurium ΔompA sequestered autophagic markers, syntaxin17 and LC3B, in a sseL-dependent manner and initiated lysosomal fusion. Moreover, inhibition of autophagy using bafilomycinA1 restored its intracellular proliferation. Ectopic overexpression of OmpA in S. Typhimurium ΔsifA restored its vacuolar niche and increased its interaction with LAMP-1, suggesting a sifA-independent role of OmpA in maintaining an intact SCV. Mutations in the OmpA extracellular loops impaired the LAMP-1 recruitment to SCV and caused bacterial release into the cytosol of macrophages, but unlike S. Typhimurium ΔompA, they retained their outer membrane stability and did not activate the lysosomal degradation pathway, aiding in their intramacrophage survival. Finally, OmpA extracellular loop mutations protected cytosolic S. Typhimurium ΔsifA from lysosomal surveillance, revealing a unique OmpA-dependent strategy of S. Typhimurium for its intracellular survival.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipasree Hajra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
5
|
Yang Z, Wang H, Keebler R, Lovelace A, Chen HC, Kvitko B, Swingle B. Environmental alkalization suppresses deployment of virulence strategies in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2024; 206:e0008624. [PMID: 39445803 PMCID: PMC11580431 DOI: 10.1128/jb.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Plant pathogenic bacteria encounter a drastic increase in apoplastic pH during the early stages of plant immunity. The effects of alkalization on pathogen-host interactions have not been comprehensively characterized. Here, we used a global transcriptomic approach to assess the impact of environmental alkalization on Pseudomonas syringae pv. tomato DC3000 in vitro. In addition to the Type 3 Secretion System, we found expression of genes encoding other virulence factors such as iron uptake and coronatine biosynthesis to be strongly affected by environmental alkalization. We also found that the activity of AlgU, an important regulator of virulence gene expression, was induced at pH 5.5 and suppressed at pH 7.8, which are pH levels that this pathogen would likely experience before and during pattern-triggered immunity, respectively. This pH-dependent control requires the presence of periplasmic proteases, AlgW and MucP, that function as part of the environmental sensing system that activates AlgU in specific conditions. This is the first example of pH-dependency of AlgU activity, suggesting a regulatory pathway model where pH affects the proteolysis-dependent activation of AlgU. These results contribute to deeper understanding of the role apoplastic pH has on host-pathogen interactions.IMPORTANCEPlant pathogenic bacteria, like Pseudomonas syringae, encounter many environmental changes including oxidative stress and alkalization during plant immunity, but the ecological effects of the individual responses are not well understood. In this study, we found that transcription of many previously characterized virulence factors in P. syringae pv. tomato DC3000 is downregulated by the level of environmental alkalization these bacteria encounter during the early stages of plant immune activation. We also report for the first time the sigma factor AlgU is post-translationally activated by low environmental pH through its natural activation pathway, which partially accounts for the expression Type 3 Secretion System virulence genes at acidic pH. The results of this study demonstrate the importance of extracellular pH on global regulation of virulence-related gene transcription in plant pathogenic bacteria.
Collapse
Affiliation(s)
- Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Haibi Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Robert Keebler
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Amelia Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Brian Kvitko
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
- The Plant Center, University of Georgia, Athens, Georgia, USA
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- United States Department of Agriculture-Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, Ithaca, New York, USA
| |
Collapse
|
6
|
Jiang Y, Zhang XY, Li S, Xie YC, Luo XM, Yang Y, Pu Z, Zhang L, Lu JB, Huang HJ, Zhang CX, He SY. Rapid intracellular acidification is a plant defense response countered by the brown planthopper. Curr Biol 2024; 34:5017-5027.e4. [PMID: 39406243 DOI: 10.1016/j.cub.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The brown planthopper (BPH) is the most destructive insect pest in rice. Through a stylet, BPH secretes a plethora of salivary proteins into rice phloem cells as a crucial step of infestation. However, how various salivary proteins function in rice cells to promote insect infestation is poorly understood. Among them, one of the salivary proteins is predicted to be a carbonic anhydrase (Nilaparvata lugens carbonic anhydrase [NlCA]). The survival rate of the NlCA-RNA interference (RNAi) BPH insects was extremely low on rice, indicating a vital role of this salivary protein in BPH infestation. We generated NlCA transgenic rice plants and found that NlCA expressed in rice plants could restore the ability of NlCA-RNAi BPH to survive on rice. Next, we produced rice plants expressing the ratiometric pH sensor pHusion and found that NlCA-RNAi BPH induced rapid intracellular acidification of rice cells during feeding. Further analysis revealed that both NlCA-RNAi BPH feeding and artificial lowering of intracellular pH activated plant defense responses and that NlCA-mediated intracellular pH stabilization is linked to diminished defense responses, including reduced callose deposition at the phloem sieve plates and suppressed defense gene expression. Given the importance of pH homeostasis across the kingdoms of life, discovery of NlCA-mediated intracellular pH modulation uncovered a new dimension in the interaction between plants and piercing/sucking insect pests. The crucial role of NlCA for BPH infestation of rice suggests that NlCA is a promising target for chemical or trans-kingdom RNAi-based inactivation for BPH control strategies in plants.
Collapse
Affiliation(s)
- Yanjuan Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyan Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Li Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Sheng Yang He
- DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
7
|
Waller AA, Ribardo DA, Hendrixson DR. FlaG competes with FliS-flagellin complexes for access to FlhA in the flagellar T3SS to control Campylobacter jejuni filament length. Proc Natl Acad Sci U S A 2024; 121:e2414393121. [PMID: 39441631 PMCID: PMC11536152 DOI: 10.1073/pnas.2414393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Bacteria power rotation of an extracellular flagellar filament for swimming motility. Thousands of flagellin subunits compose the flagellar filament, which extends several microns from the bacterial surface. It is unclear whether bacteria actively control filament length. Many polarly flagellated bacteria produce shorter flagellar filaments than peritrichous bacteria, and FlaG has been reported to limit flagellar filament length in polar flagellates. However, a mechanism for how FlaG may function is unknown. We observed that deletion of flaG in the polarly flagellated pathogens Vibrio cholerae, Pseudomonas aeruginosa, and Campylobacter jejuni caused extension of flagellar filaments to lengths comparable to peritrichous bacteria. Using C. jejuni as a model to understand how FlaG controls flagellar filament length, we found that FlaG and FliS chaperone-flagellin complexes antagonize each other for interactions with FlhA in the flagellar type III secretion system (fT3SS) export gate. FlaG interacted with an understudied region of FlhA, and this interaction appeared to be enhanced in ΔfliS and FlhA FliS-binding mutants. Our data support that FlaG evolved in polarly flagellated bacteria as an antagonist to interfere with the ability of FliS to interact with and deliver flagellins to FlhA in the fT3SS export gate to control flagellar filament length so that these bacteria produce relatively shorter flagella than peritrichous counterparts. This mechanism is similar to how some gatekeepers in injectisome T3SSs prevent chaperones from delivering effector proteins until completion of the T3SS and host contact occurs. Thus, flagellar and injectisome T3SSs have convergently evolved protein antagonists to negatively impact respective T3SSs to secrete their major terminal substrates.
Collapse
Affiliation(s)
- Alexis A. Waller
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| | - Deborah A. Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| |
Collapse
|
8
|
Roberts CG, Kaur S, Ogden AJ, Divine ME, Warren GD, Kang D, Kirienko NV, Geurink PP, Mulder MP, Nakayasu ES, McDermott JE, Adkins JN, Aballay A, Pruneda JN. A functional screen for ubiquitin regulation identifies an E3 ligase secreted by Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613774. [PMID: 39345563 PMCID: PMC11430079 DOI: 10.1101/2024.09.18.613774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Ubiquitin signaling controls many aspects of eukaryotic biology, including targeted protein degradation and immune defense. Remarkably, invading bacterial pathogens have adapted secreted effector proteins that hijack host ubiquitination to gain control over host responses. These ubiquitin-targeted effectors can exhibit, for example, E3 ligase or deubiquitinase activities, often without any sequence or structural homology to eukaryotic ubiquitin regulators. Such convergence in function poses a challenge to the discovery of additional bacterial virulence factors that target ubiquitin. To overcome this, we have developed a workflow to harvest natively secreted bacterial effectors and functionally screen them for ubiquitin regulatory activities. After benchmarking this approach on diverse ligase and deubiquitinase activities from Salmonella Typhimurium, Enteropathogenic Escherichia coli, and Shigella flexneri, we applied it to the identification of a cryptic E3 ligase activity secreted by Pseudomonas aeruginosa. We identified an unreported P. aeruginosa E3 ligase, which we have termed Pseudomonas Ub ligase 1 (PUL-1), that resembles none of the other E3 ligases previously established in or outside of the eukaryotic system. Importantly, in an animal model of P. aeruginosa infection, PUL-1 ligase activity plays an important role in regulating virulence. Thus, our workflow for the functional identification of ubiquitin-targeted effector proteins carries promise for expanding our appreciation of how host ubiquitin regulation contributes to bacterial pathogenesis.
Collapse
Affiliation(s)
- Cameron G. Roberts
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Supender Kaur
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aaron J. Ogden
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Divine
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gus D. Warren
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Donghoon Kang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | | - Paul P. Geurink
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique P.C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jason E. McDermott
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
9
|
Barker SA, Bernard AR, Morales Y, Johnson SJ, Dickenson NE. Structural and functional characterization of the IpaD π-helix reveals critical roles in DOC interaction, T3SS apparatus maturation, and Shigella virulence. J Biol Chem 2024; 300:107613. [PMID: 39079629 PMCID: PMC11400957 DOI: 10.1016/j.jbc.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein invasion plasmid antigen D (IpaD). Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.
Collapse
Affiliation(s)
- Samuel A Barker
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abram R Bernard
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Nicholas E Dickenson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
10
|
Miki T, Uemura T, Kinoshita M, Ami Y, Ito M, Okada N, Furuchi T, Kurihara S, Haneda T, Minamino T, Kim YG. Salmonella Typhimurium exploits host polyamines for assembly of the type 3 secretion machinery. PLoS Biol 2024; 22:e3002731. [PMID: 39102375 DOI: 10.1371/journal.pbio.3002731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Bacterial pathogens utilize the factors of their hosts to infect them, but which factors they exploit remain poorly defined. Here, we show that a pathogenic Salmonella enterica serovar Typhimurium (STm) exploits host polyamines for the functional expression of virulence factors. An STm mutant strain lacking principal genes required for polyamine synthesis and transport exhibited impaired infectivity in mice. A polyamine uptake-impaired strain of STm was unable to inject effectors of the type 3 secretion system into host cells due to a failure of needle assembly. STm infection stimulated host polyamine production by increasing arginase expression. The decline in polyamine levels caused by difluoromethylornithine, which inhibits host polyamine production, attenuated STm colonization, whereas polyamine supplementation augmented STm pathogenesis. Our work reveals that host polyamines are a key factor promoting STm infection, and therefore a promising therapeutic target for bacterial infection.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takeshi Uemura
- Laboratory of Bio-analytical Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuta Ami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takemitsu Furuchi
- Laboratory of Bio-analytical Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
11
|
Yu XJ, Xie H, Li Y, Liu M, Hou R, Predeus AV, Perez Sepulveda BM, Hinton JCD, Holden DW, Thurston TLM. Modulation of Salmonella virulence by a novel SPI-2 injectisome effector that interacts with the dystrophin-associated protein complex. mBio 2024; 15:e0112824. [PMID: 38904384 PMCID: PMC11253597 DOI: 10.1128/mbio.01128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
The injectisome encoded by Salmonella pathogenicity island 2 (SPI-2) had been thought to translocate 28 effectors. Here, we used a proteomic approach to characterize the secretome of a clinical strain of invasive non-typhoidal Salmonella enterica serovar Enteritidis that had been mutated to cause hyper-secretion of the SPI-2 injectisome effectors. Along with many known effectors, we discovered the novel SseM protein. sseM is widely distributed among the five subspecies of Salmonella enterica, is found in many clinically relevant serovars, and is co-transcribed with pipB2, a SPI-2 effector gene. The translocation of SseM required a functional SPI-2 injectisome. Following expression in human cells, SseM interacted with five components of the dystrophin-associated protein complex (DAPC), namely, β-2-syntrophin, utrophin/dystrophin, α-catulin, α-dystrobrevin, and β-dystrobrevin. The interaction between SseM and β-2-syntrophin and α-dystrobrevin was verified in Salmonella Typhimurium-infected cells and relied on the postsynaptic density-95/discs large/zonula occludens-1 (PDZ) domain of β-2-syntrophin and a sequence corresponding to a PDZ-binding motif (PBM) in SseM. A ΔsseM mutant strain had a small competitive advantage over the wild-type strain in the S. Typhimurium/mouse model of systemic disease. This phenotype was complemented by a plasmid expressing wild-type SseM from S. Typhimurium or S. Enteritidis and was dependent on the PBM of SseM. Therefore, a PBM within a Salmonella effector mediates interactions with the DAPC and modulates the systemic growth of bacteria in mice. Furthermore, the ΔsseM mutant strain displayed enhanced replication in bone marrow-derived macrophages, demonstrating that SseM restrains intracellular bacterial growth to modulate Salmonella virulence. IMPORTANCE In Salmonella enterica, the injectisome machinery encoded by Salmonella pathogenicity island 2 (SPI-2) is conserved among the five subspecies and delivers proteins (effectors) into host cells, which are required for Salmonella virulence. The identification and functional characterization of SPI-2 injectisome effectors advance our understanding of the interplay between Salmonella and its host(s). Using an optimized method for preparing secreted proteins and a clinical isolate of the invasive non-typhoidal Salmonella enterica serovar Enteritidis strain D24359, we identified 22 known SPI-2 injectisome effectors and one new effector-SseM. SseM modulates bacterial growth during murine infection and has a sequence corresponding to a postsynaptic density-95/discs large/zonula occludens-1 (PDZ)-binding motif that is essential for interaction with the PDZ-containing host protein β-2-syntrophin and other components of the dystrophin-associated protein complex (DAPC). To our knowledge, SseM is unique among Salmonella effectors in containing a functional PDZ-binding motif and is the first bacterial protein to target the DAPC.
Collapse
Affiliation(s)
- Xiu-Jun Yu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Haixia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Li
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mei Liu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ruhong Hou
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Blanca M. Perez Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David W. Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Teresa L. M. Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
13
|
Yao T, Liu X, Li D, Huang Y, Yang W, Liu R, Wang Q, Li X, Zhou J, Jin C, Liu Y, Yang B, Pang Y. Two-component system RstAB promotes the pathogenicity of adherent-invasive Escherichia coli in response to acidic conditions within macrophages. Gut Microbes 2024; 16:2356642. [PMID: 38769708 PMCID: PMC11135836 DOI: 10.1080/19490976.2024.2356642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.
Collapse
Affiliation(s)
- Ting Yao
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Xingmei Liu
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Dan Li
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Yu Huang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Wen Yang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Ruiying Liu
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Qian Wang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Xueping Li
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Jiarui Zhou
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Chen Jin
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Yutao Liu
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Bin Yang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Yu Pang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Li W, Ren Q, Ni T, Zhao Y, Sang Z, Luo R, Li Z, Li S. Strategies adopted by Salmonella to survive in host: a review. Arch Microbiol 2023; 205:362. [PMID: 37904066 DOI: 10.1007/s00203-023-03702-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.
Collapse
Affiliation(s)
- Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qili Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ting Ni
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yifei Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Renli Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
15
|
Liao XJ, He TT, Liu LY, Jiang XL, Sun SS, Deng YH, Zhang LQ, Xie HX, Nie P. Unraveling and characterization of novel T3SS effectors in Edwardsiella piscicida. mSphere 2023; 8:e0034623. [PMID: 37642418 PMCID: PMC10597406 DOI: 10.1128/msphere.00346-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 08/31/2023] Open
Abstract
Type III secretion system (T3SS) facilitates survival and replication of Edwardsiella piscicida in vivo. Identifying novel T3SS effectors and elucidating their functions are critical in understanding the pathogenesis of E. piscicida. E. piscicida T3SS effector EseG and EseJ was highly secreted when T3SS gatekeeper-containing protein complex EsaB-EsaL-EsaM was disrupted by EsaB deficiency. Based on this observation, concentrated secretomes of ΔesaB strain and ΔesaBΔesaN strain were purified by loading them into SDS-PAGE gel for a short electrophoresis to remove impurities prior to the in-the gel digestion and mass spectrometry. Four reported T3SS effectors and two novel T3SS effector candidates EseQ (ETAE_2009) and Trx2 (ETAE_0559) were unraveled by quantitative comparison of the identified peptides. EseQ and Trx2 were revealed to be secreted and translocated in a T3SS-dependent manner through CyaA-based translocation assay and immunofluorescent staining, demonstrating that EseQ and Trx2 are the novel T3SS effectors of E. piscicida. Trx2 was found to suppress macrophage apoptosis as revealed by TUNEL staining and cleaved caspase-3 of infected J774A.1 monolayers. Moreover, Trx2 has been shown to inhibit the p65 phosphorylation and p65 translocation into the nucleus, thus blocking the NF-κB pathway. Furthermore, depletion of Trx2 slightly but significantly attenuates E. piscicida virulence in a fish infection model. Taken together, an efficient method was established in unraveling T3SS effectors in E. piscicida, and Trx2, one of the novel T3SS effectors identified in this study, was demonstrated to suppress apoptosis and block NF- κB pathway during E. piscicida infection. IMPORTANCE Edwardsiella piscicida is an intracellular bacterial pathogen that causes intestinal inflammation and hemorrhagic sepsis in fish and human. Virulence depends on the Edwardsiella type III secretion system (T3SS). Identifying the bacterial effector proteins secreted by T3SS and defining their role is key to understanding Edwardsiella pathogenesis. EsaB depletion disrupts the T3SS gatekeeper-containing protein complex, resulting in increased secretion of T3SS effectors EseG and EseJ. EseQ and Trx2 were shown to be the novel T3SS effectors of E. piscicida by a secretome comparison between ∆esaB strain and ∆esaB∆esaN strain (T3SS mutant), together with CyaA-based translocation assay. In addition, Trx2 has been shown to suppress macrophage apoptosis and block the NF-κB pathway. Together, this work expands the known repertoire of T3SS effectors and sheds light on the pathogenic mechanism of E. piscicida.
Collapse
Affiliation(s)
- Xiao Jian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lu Yi Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xiu Long Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Hang Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Qiang Zhang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
16
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
17
|
Navarrete KM, Bumba L, Prudnikova T, Malcova I, Allsop TR, Sebo P, Kamanova J. BopN is a Gatekeeper of the Bordetella Type III Secretion System. Microbiol Spectr 2023; 11:e0411222. [PMID: 37036369 PMCID: PMC10269732 DOI: 10.1128/spectrum.04112-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
The classical Bordetella species infect the respiratory tract of mammals. While B. bronchiseptica causes rather chronic respiratory infections in a variety of mammals, the human-adapted species B. pertussis and B. parapertussisHU cause an acute respiratory disease known as whooping cough or pertussis. The virulence factors include a type III secretion system (T3SS) that translocates effectors BteA and BopN into host cells. However, the regulatory mechanisms underlying the secretion and translocation activity of T3SS in bordetellae are largely unknown. We have solved the crystal structure of BopN of B. pertussis and show that it is similar to the structures of gatekeepers that control access to the T3SS channel from the bacterial cytoplasm. We further found that BopN accumulates at the cell periphery at physiological concentrations of calcium ions (2 mM) that inhibit the secretion of BteA and BopN. Deletion of the bopN gene in B. bronchiseptica increased secretion of the BteA effector into calcium-rich medium but had no effect on secretion of the T3SS translocon components BopD and BopB. Moreover, the ΔbopN mutant secreted approximately 10-fold higher amounts of BteA into the medium of infected cells than the wild-type bacteria, but it translocated lower amounts of BteA into the host cell cytoplasm. These data demonstrate that BopN is a Bordetella T3SS gatekeeper required for regulated and targeted translocation of the BteA effector through the T3SS injectisome into host cells. IMPORTANCE The T3SS is utilized by many Gram-negative bacteria to deliver effector proteins from bacterial cytosol directly into infected host cell cytoplasm in a regulated and targeted manner. Pathogenic bordetellae use the T3SS to inject the BteA and BopN proteins into infected cells and upregulate the production of the anti-inflammatory cytokine interleukin-10 (IL-10) to evade host immunity. Previous studies proposed that BopN acted as an effector in host cells. In this study, we report that BopN is a T3SS gatekeeper that regulates the secretion and translocation activity of Bordetella T3SS.
Collapse
Affiliation(s)
- Kevin Munoz Navarrete
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Bumba
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tatyana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Ivana Malcova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tania Romero Allsop
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Kamanova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
Wang LK, Sun SS, Zhang SY, Nie P, Xie HX. Orf1B controls secretion of T3SS proteins and contributes to Edwardsiella piscicida adhesion to epithelial cells. Vet Res 2022; 53:40. [PMID: 35692056 PMCID: PMC9190107 DOI: 10.1186/s13567-022-01057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
Edwardsiella piscicida is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish. The type III secretion system (T3SS) is one of its two most important virulence islands. T3SS protein EseJ inhibits E. piscicida adhesion to epithelioma papillosum cyprini (EPC) cells by negatively regulating type 1 fimbria. Type 1 fimbria helps E. piscicida to adhere to fish epithelial cells. In this study, we characterized a functional unknown protein (Orf1B) encoded within the T3SS gene cluster of E. piscicida. This protein consists of 122 amino acids, sharing structural similarity with YscO in Vibrio parahaemolyticus. Orf1B controls secretion of T3SS translocon and effectors in E. piscicida. By immunoprecipitation, Orf1B was shown to interact with T3SS ATPase EsaN. This interaction may contribute to the assembly of the ATPase complex, which energizes the secretion of T3SS proteins. Moreover, disruption of Orf1B dramatically decreased E. piscicida adhesion to EPC cells due to the increased steady-state protein level of EseJ within E. piscicida. Taken together, this study partially unraveled the mechanisms through which Orf1B promotes secretion of T3SS proteins and contributes to E. piscicida adhesion. This study helps to improve our understanding on molecular mechanism of E. piscicida pathogenesis.
Collapse
Affiliation(s)
- Long Kun Wang
- Dalian Ocean University, Dalian, 116023, Liaoning, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shu Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
19
|
Fulde M, van Vorst K, Zhang K, Westermann AJ, Busche T, Huei YC, Welitschanski K, Froh I, Pägelow D, Plendl J, Pfarrer C, Kalinowski J, Vogel J, Valentin-Weigand P, Hensel M, Tedin K, Repnik U, Hornef MW. SPI2 T3SS effectors facilitate enterocyte apical to basolateral transmigration of Salmonella-containing vacuoles in vivo. Gut Microbes 2022; 13:1973836. [PMID: 34542008 PMCID: PMC8475570 DOI: 10.1080/19490976.2021.1973836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salmonella pathogenicity island (SPI) 2 type three secretion system (T3SS)-mediated effector molecules facilitate bacterial survival in phagocytes but their role in the intestinal epithelium in vivo remains ill-defined. Using our neonatal murine infection model in combination with SPI2 reporter technology and RNA-Seq of sorted primary enterocytes, we demonstrate expression of SPI2 effector molecules by intraepithelial Salmonella Typhimurium (S. Typhimurium). Contrary to expectation, immunostaining revealed that infection with SPI2 T3SS-mutants resulted in significantly enlarged intraepithelial Salmonella-containing vacuoles (SCV) with altered cellular positioning, suggesting impaired apical to basolateral transmigration. Also, infection with isogenic tagged S. Typhimurium strains revealed a reduced spread of intraepithelial SPI2 T3SS mutant S. Typhimurium to systemic body sites. These results suggest that SPI2 T3SS effector molecules contribute to enterocyte apical to basolateral transmigration of the SCV during the early stage of the infection.
Collapse
Affiliation(s)
- Marcus Fulde
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany,CONTACT Mathias Hornef Institute for Medical Microbiology; RWTH University Hospital; Pauwelsstr. 30, Aachen, D-52074, Germany
| | - Kira van Vorst
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany
| | - Kaiyi Zhang
- Institute of Medical Microbiology, Rwth University Hospital Aachen, Aachen, Germany
| | - Alexander J. Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology (Cebitec), Bielefeld University, Bielefeld, Germany
| | - Yong Chiun Huei
- Institute of Medical Microbiology, Rwth University Hospital Aachen, Aachen, Germany
| | - Katharina Welitschanski
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Isabell Froh
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Dennis Pägelow
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Veterinary Anatomy, Berlin, Germany
| | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jörn Kalinowski
- Technology Platform Genomics, Center for Biotechnology (Cebitec), Bielefeld University, Bielefeld, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Peter Valentin-Weigand
- Institute of Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Karsten Tedin
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mathias W. Hornef
- Institute of Medical Microbiology, Rwth University Hospital Aachen, Aachen, Germany
| |
Collapse
|
20
|
Abstract
In the last decades, the increasing rate of multidrug-resistant bacteria to classical antibiotics has driven research towards identification of other means to fight bacterial infections. In this context, intracellular and/or invasive facultative intracellular bacteria represent a particular problem as common antimicrobials are often not able to reach an effective intracellular concentration. In this regard, cell-penetrating peptides (CPP) can mediate the internalization of previously nonpermeable antimicrobial compounds into the cytoplasm of host cells where they efficiently kill intracellular pathogens. This chapter describes the conjugation of CPPs with antimicrobial agents for the delivery into infected cells. Furthermore, different antimicrobial activity assays will be described including the CPP-mediated delivery of an antimicrobial agent for the treatment of intracellular infections.
Collapse
Affiliation(s)
- Christian Rüter
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Infectiology, University of Muenster, Münster, Germany.
| |
Collapse
|
21
|
Xu J, Wang J, Liu A, Zhang Y, Gao X. Structural and Functional Analysis of SsaV Cytoplasmic Domain and Variable Linker States in the Context of the InvA-SsaV Chimeric Protein. Microbiol Spectr 2021; 9:e0125121. [PMID: 34851139 PMCID: PMC8635156 DOI: 10.1128/spectrum.01251-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
The type III secretion (T3S) injectisome is a syringe-like protein-delivery nanomachine widely utilized by Gram-negative bacteria. It can deliver effector proteins directly from bacteria into eukaryotic host cells, which is crucial for the bacterial-host interaction. Intracellular pathogen Salmonella enterica serovar Typhimurium encodes two sets of T3S injectisomes from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), which are critical for its host invasion and intracellular survival, respectively. The inner membrane export gate protein, SctV (InvA in SPI-1 and SsaV in SPI-2), is the largest component of the injectisome and is essential for assembly and function of T3SS. Here, we report the 2.11 Å cryo-EM structure of the SsaV cytoplasmic domain (SsaVC) in the context of a full-length SctV chimera consisting of the transmembrane region of InvA, the linker of SsaV (SsaVL) and SsaVC. The structural analysis shows that SsaVC exists in a semi-open state and SsaVL exhibits two major orientations, implying a highly dynamic process of SsaV for the substrate selection and secretion in a full-length context. A biochemical assay indicates that SsaVL plays an essential role in maintaining the nonameric state of SsaV. This study offers near atomic-level insights into how SsaVC and SsaVL facilitate the assembly and function of SsaV and may lead to the development of potential anti-virulence therapeutics against T3SS-mediated bacterial infection. IMPORTANCE Type III secretion system (T3SS) is a multicomponent nanomachine and a critical virulence factor for a wide range of Gram-negative bacterial pathogens. It can deliver numbers of effectors into the host cell to facilitate the bacterial host infection. Export gate protein SctV, as one of the engines of T3SS, is at the center of T3SS assembly and function. In this study, we show the high-resolution atomic structure of the cytosolic domain of SctV in the nonameric state with variable linker conformations. Our first observation of conformational changes of the linker region of SctV and the semi-open state of the cytosolic domain of SctV in the full-length context further support that the substrate selection and secretion process of SctV is highly dynamic. These findings have important implications for the development of therapeutic strategies targeting SctV to combat T3SS-mediated bacterial infection.
Collapse
Affiliation(s)
- Jinghua Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiuqing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aijun Liu
- Shanghai Fifth People's Hospital and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhang
- Shanghai Fifth People's Hospital and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
22
|
Rahmatelahi H, El-Matbouli M, Menanteau-Ledouble S. Delivering the pain: an overview of the type III secretion system with special consideration for aquatic pathogens. Vet Res 2021; 52:146. [PMID: 34924019 PMCID: PMC8684695 DOI: 10.1186/s13567-021-01015-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Gram-negative bacteria are known to subvert eukaryotic cell physiological mechanisms using a wide array of virulence factors, among which the type three-secretion system (T3SS) is often one of the most important. The T3SS constitutes a needle-like apparatus that the bacterium uses to inject a diverse set of effector proteins directly into the cytoplasm of the host cells where they can hamper the host cellular machinery for a variety of purposes. While the structure of the T3SS is somewhat conserved and well described, effector proteins are much more diverse and specific for each pathogen. The T3SS can remodel the cytoskeleton integrity to promote intracellular invasion, as well as silence specific eukaryotic cell signals, notably to hinder or elude the immune response and cause apoptosis. This is also the case in aquatic bacterial pathogens where the T3SS can often play a central role in the establishment of disease, although it remains understudied in several species of important fish pathogens, notably in Yersinia ruckeri. In the present review, we summarise what is known of the T3SS, with a special focus on aquatic pathogens and suggest some possible avenues for research including the potential to target the T3SS for the development of new anti-virulence drugs.
Collapse
Affiliation(s)
- Hadis Rahmatelahi
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria.
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Ø, Denmark.
| |
Collapse
|
23
|
Kiarely Souza E, Pereira-Dutra FS, Rajão MA, Ferraro-Moreira F, Goltara-Gomes TC, Cunha-Fernandes T, Santos JDC, Prestes EB, Andrade WA, Zamboni DS, Bozza MT, Bozza PT. Lipid droplet accumulation occurs early following Salmonella infection and contributes to intracellular bacterial survival and replication. Mol Microbiol 2021; 117:293-306. [PMID: 34783412 DOI: 10.1111/mmi.14844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/20/2023]
Abstract
Salmonellosis is a public health problem caused by Salmonella sp., a highly adapted facultative intracellular pathogen. After internalization, Salmonella sp. Manipulates several host processes, mainly through the activation of the type III secretion system (T3SS), including modification of host lipid metabolism and lipid droplet (LD) accumulation. LDs are dynamic and complex lipid-rich organelles involved in several cellular processes. The present study investigated the mechanism involved in LD biogenesis in Salmonella-infected macrophages and its role in bacterial pathogenicity. Here, we reported that S. Typhimurium induced a rapid time-dependent increase of LD formation in macrophages. The LD biogenesis was demonstrated to depend on Salmonella's viability and SPI1-related T3SS activity, with the participation of Toll-Like Receptor (TLR) signaling. We also observed that LD accumulation occurs through TLR2-dependent signaling and is counter-regulated by TLR4. Last, the pharmacologic modulation of LD formation by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) and cytosolic phospholipase A2 (cPLA2) significantly reduced the intracellular bacterial proliferation and impaired the prostaglandin E2 (PGE2 ) synthesis. Collectively, our data suggest the role of LDs on S. typhimurium intracellular survival and replication in macrophages. This data set provides new perspectives for future investigations about LDs in host-pathogen interaction.
Collapse
Affiliation(s)
- Ellen Kiarely Souza
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Filipe S Pereira-Dutra
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Matheus A Rajão
- Program of Immunology and Tumor Biology, Instituto Nacional do Câncer, INCA, Rio de Janeiro, Brazil
| | - Felipe Ferraro-Moreira
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Taynná C Goltara-Gomes
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Julia da Cunha Santos
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Elisa B Prestes
- Laboratory of Inflammation and Immunity, Department of Immunity, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Warrison A Andrade
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Dario S Zamboni
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo T Bozza
- Laboratory of Inflammation and Immunity, Department of Immunity, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Lisowski C, Dias J, Costa S, Silva RJ, Mano M, Eulalio A. Dysregulated endolysosomal trafficking in cells arrested in the G 1 phase of the host cell cycle impairs Salmonella vacuolar replication. Autophagy 2021; 18:1785-1800. [PMID: 34781820 DOI: 10.1080/15548627.2021.1999561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Modulation of the host cell cycle has emerged as a common theme among the pathways regulated by bacterial pathogens, arguably to promote host cell colonization. However, in most cases the exact benefit ensuing from such interference to the infection process remains unclear. Previously, we have shown that Salmonella actively induces G2/M arrest of host cells, and that infection is severely inhibited in cells arrested in G1. In this study, we demonstrate that Salmonella vacuolar replication is inhibited in host cells blocked in G1, whereas the cytosolic replication of the closely related pathogen Shigella is not affected. Mechanistically, we show that cells arrested in G1, but not cells arrested in G2, present dysregulated endolysosomal trafficking, displaying an abnormal accumulation of vesicles positive for late endosomal and lysosomal markers. In addition, the macroautophagic/autophagic flux and degradative lysosomal function are strongly impaired. This endolysosomal trafficking dysregulation results in sustained activation of the SPI-1 type III secretion system and lack of vacuole repair by the autophagy pathway, ultimately compromising the maturation and integrity of the Salmonella-containing vacuole. As such, Salmonella is released in the host cytosol. Collectively, our findings demonstrate that the modulation of the host cell cycle occurring during Salmonella infection is related to a disparity in the permissivity of cells arrested in G1 and G2/M, due to their intrinsic characteristics.
Collapse
Affiliation(s)
- Clivia Lisowski
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jane Dias
- RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Susana Costa
- RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ricardo Jorge Silva
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Pourhassan N Z, Smits SHJ, Ahn JH, Schmitt L. Biotechnological applications of type 1 secretion systems. Biotechnol Adv 2021; 53:107864. [PMID: 34767962 DOI: 10.1016/j.biotechadv.2021.107864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Bacteria have evolved a diverse range of secretion systems to export different substrates across their cell envelope. Although secretion of proteins into the extracellular space could offer advantages for recombinant protein production, the low secretion titers of the secretion systems for some heterologous proteins remain a clear drawback of their utility at commercial scales. Therefore, a potential use of most of secretion systems as production platforms at large scales are still limited. To overcome this limitation, remarkable efforts have been made toward improving the secretion efficiency of different bacterial secretion systems in recent years. Here, we review the progress with respect to biotechnological applications of type I secretion system (T1SS) of Gram-negative bacteria. We will also focus on the applicability of T1SS for the secretion of heterologous proteins as well as vaccine development. Last but not least, we explore the employed engineering strategies that have enhanced the secretion efficiencies of T1SS. Attention is also paid to directed evolution approaches that may offer a more versatile approach to optimize secretion efficiency of T1SS.
Collapse
Affiliation(s)
- Zohreh Pourhassan N
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jung Hoon Ahn
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, South Korea
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
26
|
Lin IT, Tulman ER, Geary SJ, Zhou X. A gatekeeper protein contributes to T3SS2 function via interaction with an ATPase in Vibrio parahaemolyticus. Microbiol Res 2021; 252:126857. [PMID: 34481262 DOI: 10.1016/j.micres.2021.126857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 01/22/2023]
Abstract
Assembly of a functional type III secretion system (T3SS) requires intricate protein-protein interactions in many bacterial species. In Vibrio parahaemolyticus, the leading cause of seafood-associated diarrheal illnesses, the gatekeeper protein VgpA is essential for T3SS2 to secrete its substrates. However, it is unknown if VgpA interacts with other core elements of T3SS2 to mediate its substrate secretion. Through bacterial two-hybrid (BACTH) analysis, we now show that VgpA physically interacts with VscN2 (an ATPase essential for T3SS function) and six other hypothetical proteins. Mutation of isoleucine to alanine at residue 175 of VgpA (VgpAI175A) abolished its ability to interact with VscN2. Importantly, complementation of a VgpA nonsense mutant (vgpA') with VgpAI175A did not restore the ability of T3SS2 to secrete substrates, demonstrating that VgpA-VscN2 interaction is critical for the function of T3SS2. Bacterial cell fractionation and mass spectrometry analyses showed that vgpA' resulted in significant alterations of T3SS2 protein abundance in multiple bacterial cell fractions. Particularly, VscN2 abundance in the inner membrane fraction and VscC2 abundance in the outer membrane fraction are significantly reduced in vgpA' compared to those in WT. These results demonstrated that VgpA contributes to T3SS2 function via its interaction with VscN2 and possibly by affecting subcellular distribution of T3SS2 proteins.
Collapse
Affiliation(s)
- I-Ting Lin
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Edan R Tulman
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA; Center of Excellence for Vaccine Research, University of Connecticut, CT, 06269, USA
| | - Steve J Geary
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA; Center of Excellence for Vaccine Research, University of Connecticut, CT, 06269, USA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
27
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
28
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
29
|
CesL Regulates Type III Secretion Substrate Specificity of the Enteropathogenic E. coli Injectisome. Microorganisms 2021; 9:microorganisms9051047. [PMID: 34067942 PMCID: PMC8152094 DOI: 10.3390/microorganisms9051047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
The type III secretion system (T3SS) is a complex molecular device used by several pathogenic bacteria to translocate effector proteins directly into eukaryotic host cells. One remarkable feature of the T3SS is its ability to secrete different categories of proteins in a hierarchical manner, to ensure proper assembly and timely delivery of effectors into target cells. In enteropathogenic Escherichia coli, the substrate specificity switch from translocator to effector secretion is regulated by a gatekeeper complex composed of SepL, SepD, and CesL proteins. Here, we report a characterization of the CesL protein using biochemical and genetic approaches. We investigated discrepancies in the phenotype among different cesL deletion mutants and showed that CesL is indeed essential for translocator secretion and to prevent premature effector secretion. We also demonstrated that CesL engages in pairwise interactions with both SepL and SepD. Furthermore, while association of SepL to the membrane does not depended on CesL, the absence of any of the proteins forming the heterotrimeric complex compromised the intracellular stability of each component. In addition, we found that CesL interacts with the cytoplasmic domains of the export gate components EscU and EscV. We propose a mechanism for substrate secretion regulation governed by the SepL/SepD/CesL complex.
Collapse
|
30
|
Matthews-Palmer TRS, Gonzalez-Rodriguez N, Calcraft T, Lagercrantz S, Zachs T, Yu XJ, Grabe GJ, Holden DW, Nans A, Rosenthal PB, Rouse SL, Beeby M. Structure of the cytoplasmic domain of SctV (SsaV) from the Salmonella SPI-2 injectisome and implications for a pH sensing mechanism. J Struct Biol 2021; 213:107729. [PMID: 33774138 PMCID: PMC8223533 DOI: 10.1016/j.jsb.2021.107729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
CryoEM of a full-length type III secretion system SctV resolves cytoplasmic but not transmembrane domains. MD simulations show SctV protomers flexibly hinge. Acidification expands the SctV ring by altering interprotomer interactions.
Bacterial type III secretion systems assemble the axial structures of both injectisomes and flagella. Injectisome type III secretion systems subsequently secrete effector proteins through their hollow needle into a host, requiring co-ordination. In the Salmonella enterica serovar Typhimurium SPI-2 injectisome, this switch is triggered by sensing the neutral pH of the host cytoplasm. Central to specificity switching is a nonameric SctV protein with an N-terminal transmembrane domain and a toroidal C-terminal cytoplasmic domain. A ‘gatekeeper’ complex interacts with the SctV cytoplasmic domain in a pH dependent manner, facilitating translocon secretion while repressing effector secretion through a poorly understood mechanism. To better understand the role of SctV in SPI-2 translocon-effector specificity switching, we purified full-length SctV and determined its toroidal cytoplasmic region’s structure using cryo-EM. Structural comparisons and molecular dynamics simulations revealed that the cytoplasmic torus is stabilized by its core subdomain 3, about which subdomains 2 and 4 hinge, varying the flexible outside cleft implicated in gatekeeper and substrate binding. In light of patterns of surface conservation, deprotonation, and structural motion, the location of previously identified critical residues suggest that gatekeeper binds a cleft buried between neighboring subdomain 4s. Simulations suggest that a local pH change from 5 to 7.2 stabilizes the subdomain 3 hinge and narrows the central aperture of the nonameric torus. Our results are consistent with a model of local pH sensing at SctV, where pH-dependent dynamics of SctV cytoplasmic domain affect binding of gatekeeper complex.
Collapse
Affiliation(s)
| | | | - Thomas Calcraft
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom; Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Signe Lagercrantz
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tobias Zachs
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiu-Jun Yu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Grzegorz J Grabe
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andrea Nans
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
31
|
Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021; 89:IAI.00641-20. [PMID: 33526568 DOI: 10.1128/iai.00641-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host colonization by a pathogen requires proper sensing and response to local environmental cues, to ensure adaptation and continued survival within the host. The ionic milieu represents a critical potential source of environmental cues, and indeed, there has been extensive study of the interplay between host and pathogen in the context of metals such as iron, zinc, and manganese, vital ions that are actively sequestered by the host. The inherent non-uniformity of the ionic milieu also extends, however, to "abundant" ions such as chloride and potassium, whose concentrations vary greatly between tissue and cellular locations, and with the immune response. Despite this, the concept of abundant ions as environmental cues and key players in host-pathogen interactions is only just emerging. Focusing on chloride and potassium, this review brings together studies across multiple bacterial and parasitic species that have begun to define both how these abundant ions are exploited as cues during host infection, and how they can be actively manipulated by pathogens during host colonization. The close links between ion homeostasis and sensing/response to different ionic signals, and the importance of studying pathogen response to cues in combination, are also discussed, while considering the fundamental insight still to be uncovered from further studies in this nascent area of inquiry.
Collapse
|
32
|
Wimmi S, Balinovic A, Jeckel H, Selinger L, Lampaki D, Eisemann E, Meuskens I, Linke D, Drescher K, Endesfelder U, Diepold A. Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH. Nat Commun 2021; 12:1625. [PMID: 33712575 PMCID: PMC7954860 DOI: 10.1038/s41467-021-21863-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Many bacterial pathogens use a type III secretion system (T3SS) to manipulate host cells. Protein secretion by the T3SS injectisome is activated upon contact to any host cell, and it has been unclear how premature secretion is prevented during infection. Here we report that in the gastrointestinal pathogens Yersinia enterocolitica and Shigella flexneri, cytosolic injectisome components are temporarily released from the proximal interface of the injectisome at low external pH, preventing protein secretion in acidic environments, such as the stomach. We show that in Yersinia enterocolitica, low external pH is detected in the periplasm and leads to a partial dissociation of the inner membrane injectisome component SctD, which in turn causes the dissociation of the cytosolic T3SS components. This effect is reversed upon restoration of neutral pH, allowing a fast activation of the T3SS at the native target regions within the host. These findings indicate that the cytosolic components form an adaptive regulatory interface, which regulates T3SS activity in response to environmental conditions.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Balinovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Lisa Selinger
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dimitrios Lampaki
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Emma Eisemann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- James Madison University, Harrisonburg, VA, USA
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Ulrike Endesfelder
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
33
|
Tsai HH, Schmidt W. The enigma of environmental pH sensing in plants. NATURE PLANTS 2021; 7:106-115. [PMID: 33558755 DOI: 10.1038/s41477-020-00831-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Environmental pH is a critical parameter for innumerable chemical reactions, myriad biological processes and all forms of life. The mechanisms that underlie the perception of external pH (pHe) have been elucidated in detail for bacteria, fungi and mammalian cells; however, little information is available on whether and, if so, how pHe is perceived by plants. This is particularly surprising since hydrogen ion activity of the substrate is of paramount significance for plants, governing the availability of mineral nutrients, the structure of the soil microbiome and the composition of natural plant communities. Rapid changes in soil pH require constant readjustment of nutrient acquisition strategies, which is associated with dynamic alterations in gene expression. Referring to observations made in diverse experimental set-ups that unambiguously show that pHe per se affects gene expression, we hypothesize that sensing of pHe in plants is mandatory to prioritize responses to various simultaneously received environmental cues.
Collapse
Affiliation(s)
- Huei-Hsuan Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
35
|
Armentrout EI, Kundracik EC, Rietsch A. Cell-type-specific hypertranslocation of effectors by the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 2020; 115:305-319. [PMID: 33012037 DOI: 10.1111/mmi.14617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Many Gram-negative pathogens use a type III secretion system (T3SS) to promote disease by injecting effector proteins into host cells. Common to many T3SSs is that injection of effector proteins is feedback inhibited. The mechanism of feedback inhibition and its role in pathogenesis are unclear. In the case of P. aeruginosa, the effector protein ExoS is central to limiting effector injection. ExoS is bifunctional, with an amino-terminal RhoGAP and a carboxy-terminal ADP-ribosyltransferase domain. We demonstrate that both domains are required to fully feedback inhibit effector injection. The RhoGAP-, but not the ADP-ribosyltransferase domain of the related effector protein ExoT also participates. Feedback inhibition does not involve translocator insertion nor pore-formation. Instead, feedback inhibition is due, in part, to a loss of the activating trigger for effector injection, and likely also decreased translocon stability. Surprisingly, feedback inhibition is abrogated in phagocytic cells. The lack of feedback inhibition in these cells requires phagocytic uptake of the bacteria, but cannot be explained through acidification of the phagosome or calcium limitation. Given that phagocytes are crucial for controlling P. aeruginosa infections, our data suggest that feedback inhibition allows P. aeruginosa to direct its effector arsenal against the cell types most damaging to its survival.
Collapse
Affiliation(s)
- Erin I Armentrout
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Emma C Kundracik
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol 2020; 10:466. [PMID: 33014891 PMCID: PMC7498569 DOI: 10.3389/fcimb.2020.00466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussis HU. The ovine-adapted lineage of B. parapertussis OV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
Collapse
Affiliation(s)
- Jana Kamanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
37
|
Liu Y, Jia Y, Yang K, Wang Z. Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens. Front Microbiol 2020; 11:563. [PMID: 32390959 PMCID: PMC7192003 DOI: 10.3389/fmicb.2020.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic tolerance in bacterial pathogens that are genetically susceptible, but phenotypically tolerant to treatment, represents a growing crisis for public health. In particular, the intracellular bacteria-mediated antibiotic tolerance by acting as “Trojan horses” play a critical and underappreciated role in the disease burden of bacterial infections. Thus, more intense efforts are required to tackle this problem. In this review, we firstly provide a brief overview of modes of action of bacteria invasion and survival in macrophage or non-professional phagocytic cells. Furthermore, we summarize our current knowledge about promising strategies to eliminate these intracellular bacterial pathogens, including direct bactericidal agents, antibiotic delivery to infection sites by various carriers, and activation of host immune functions. Finally, we succinctly discuss the challenges faced by bringing them into clinical trials and our constructive perspectives.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
38
|
Zhi Y, Lin SM, Ahn KB, Ji HJ, Guo HC, Ryu S, Seo HS, Lim S. ptsI gene in the phosphotransfer system is a potential target for developing a live attenuated Salmonella vaccine. Int J Mol Med 2020; 45:1327-1340. [PMID: 32323733 PMCID: PMC7138283 DOI: 10.3892/ijmm.2020.4505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/07/2020] [Indexed: 11/15/2022] Open
Abstract
Salmonella enterica serovar Typhimurium causes invasive non-typhoidal Salmonella diseases in animals and humans, resulting in a high mortality rate and huge economic losses globally. As the prevalence of antibiotic-resistant Salmonella has been increasing, vaccination is thought to be the most effective and economical strategy to manage salmonellosis. The present study aimed to investigate whether dysfunction in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), which is critical for carbon uptake and survival in macrophages, may be adequate to generate Salmonella-attenuated vaccine strains. A Salmonella strain (KST0555) was generated by deleting the ptsI gene from the PTS and it was revealed that this auxotrophic mutant was unable to efficiently utilize predominant carbon sources during infection (glucose and glycerol), reduced its invasion and replication capacity in macrophages, and significantly (P=0.0065) lowered its virulence in the setting of a mouse colitis model, along with a substantially decreased intestinal colonization and invasiveness compared with its parent strain. The reverse transcription-quantitative PCR results demonstrated that the virulence genes in Salmonella pathogenicity island-1 (SPI-1) and -2 (SPI-2) and the motility of KST0555 were all downregulated compared with its parent strain. Finally, it was revealed that when mice were immunized orally with live KST0555, Salmonella-specific humoral and cellular immune responses were effectively elicited, providing protection against Salmonella infection. Thus, the present promising data provides a strong rationale for the advancement of KST0555 as a live Salmonella vaccine candidate and ptsI as a potential target for developing a live attenuated bacterial vaccine strain.
Collapse
Affiliation(s)
- Yong Zhi
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Shun Mei Lin
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Ki Bum Ahn
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Hyun Jung Ji
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730049, P.R. China
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Seong Seo
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Sangyong Lim
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| |
Collapse
|
39
|
Matsuda S, Hiyoshi H, Tandhavanant S, Kodama T. Advances on
Vibrio parahaemolyticus
research in the postgenomic era. Microbiol Immunol 2020; 64:167-181. [DOI: 10.1111/1348-0421.12767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/08/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| | - Hirotaka Hiyoshi
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Medical Microbiology and Immunology, School of MedicineUniversity of California Davis California, USA
| | - Sarunporn Tandhavanant
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Microbiology and Immunology, Faculty of Tropical MedicineMahidol University Bangkok Thailand
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| |
Collapse
|
40
|
Cunrath O, Bumann D. Host resistance factor SLC11A1 restrictsSalmonellagrowth through magnesium deprivation. Science 2019; 366:995-999. [DOI: 10.1126/science.aax7898] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/12/2019] [Accepted: 10/25/2019] [Indexed: 12/30/2022]
Abstract
The pleiotropic host resistance factor SLC11A1 (NRAMP1) defends against diverse intracellular pathogens in mammals by yet-unknown mechanisms. We comparedSalmonellainfection of coisogenic mice with differentSLC11A1alleles. SLC11A1 reducedSalmonellareplication and triggered up-regulation of uptake systems for divalent metal cations but no other stress responses. SLC11A1 modestly diminished iron availability and acutely restrictedSalmonellaaccess to magnesium. Growth ofSalmonellacells in the presence of SLC11A1 was highly heterogeneous and inversely correlated with expression of the crucial magnesium transporter genemgtB. We observed superimposable single-cell patterns in mice lacking SLC11A1 when we restrictedSalmonellaaccess to magnesium by impairing its uptake. Together, these findings identify deprivation of the main group metal magnesium as the main resistance mechanism of SLC11A1 againstSalmonella.
Collapse
|
41
|
Russo BC, Duncan JK, Wiscovitch AL, Hachey AC, Goldberg MB. Activation of Shigella flexneri type 3 secretion requires a host-induced conformational change to the translocon pore. PLoS Pathog 2019; 15:e1007928. [PMID: 31725799 PMCID: PMC6879154 DOI: 10.1371/journal.ppat.1007928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/26/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Type 3 secretion systems (T3SSs) are conserved bacterial nanomachines that inject virulence proteins (effectors) into eukaryotic cells during infection. Due to their ability to inject heterologous proteins into human cells, these systems are being developed as therapeutic delivery devices. The T3SS assembles a translocon pore in the plasma membrane and then docks onto the pore. Docking activates effector secretion through the pore and into the host cytosol. Here, using Shigella flexneri, a model pathogen for the study of type 3 secretion, we determined the molecular mechanisms by which host intermediate filaments trigger docking and enable effector secretion. We show that the interaction of intermediate filaments with the translocon pore protein IpaC changed the pore's conformation in a manner that was required for docking. Intermediate filaments repositioned residues of the Shigella pore protein IpaC that are located on the surface of the pore and in the pore channel. Restricting these conformational changes blocked docking in an intermediate filament-dependent manner. These data demonstrate that a host-induced conformational change to the pore enables T3SS docking and effector secretion, providing new mechanistic insight into the regulation of type 3 secretion.
Collapse
Affiliation(s)
- Brian C. Russo
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeffrey K. Duncan
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alexandra L. Wiscovitch
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Research Scholar Initiative, The Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Austin C. Hachey
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Marcia B. Goldberg
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Wang Y, Cai Y, Zhang J, Liu D, Gong X, Pan Z, Geng S, Jiao X. Controversy Surrounding the Function of SpiC Protein in Salmonella: An Overview. Front Microbiol 2019; 10:1784. [PMID: 31440219 PMCID: PMC6693482 DOI: 10.3389/fmicb.2019.01784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/18/2019] [Indexed: 01/19/2023] Open
Abstract
Salmonella is an important pathogenic microorganism that can infect humans and animals and has been studied globally as a model microorganism for its pathogenesis. The SpiC protein of T3SS2 is a significant factor that has been studied for almost 20 years, but to date, the function/effect of SpiC in the pathogenesis of Salmonella has not been completely understood. There is controversy over the functions of SpiC protein in the literature. Thus, an overview of the literature on SpiC protein is provided here which highlights expression features of SpiC protein and its various functions and effect.
Collapse
Affiliation(s)
- Yaonan Wang
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuan Cai
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jian Zhang
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dong Liu
- Research and Development Center, State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, China
| | - Xiao Gong
- Research and Development Center, State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, China
| | - Zhiming Pan
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shizhong Geng
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- College of Bioscience and Biotechnology and College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
Dual pH/Activity Probes Expand the Cathepsin Toolkit. Cell Chem Biol 2019; 23:891-2. [PMID: 27541194 DOI: 10.1016/j.chembiol.2016.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a recent issue of Cell Chemical Biology, Sanman et al. (2016) describe novel activity-based probes that simultaneously report cathepsin activity and pH. Using these bifunctional probes, the authors find that the intracellular bacterial pathogen Salmonella typhimurium induces dynamic alterations in the pH of cathepsin-containing organelles in both infected and bystander cells.
Collapse
|
44
|
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43:123-144. [PMID: 30452654 PMCID: PMC6435446 DOI: 10.1093/femsre/fuy043] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Collapse
Affiliation(s)
- José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Joana Sa Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
45
|
Kenney LJ. The role of acid stress in Salmonella pathogenesis. Curr Opin Microbiol 2019; 47:45-51. [DOI: 10.1016/j.mib.2018.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022]
|
46
|
Potts AH, Guo Y, Ahmer BMM, Romeo T. Role of CsrA in stress responses and metabolism important for Salmonella virulence revealed by integrated transcriptomics. PLoS One 2019; 14:e0211430. [PMID: 30682134 PMCID: PMC6347204 DOI: 10.1371/journal.pone.0211430] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
To cause infection, Salmonella must survive and replicate in host niches that present dramatically different environmental conditions. This requires a flexible metabolism and physiology, responsive to conditions of the local milieu. The sequence specific RNA binding protein CsrA serves as a global regulator that governs gene expression required for pathogenicity, metabolism, biofilm formation, and motility in response to nutritional conditions. Its activity is determined by two noncoding small RNAs (sRNA), CsrB and CsrC, which sequester and antagonize this protein. Here, we used ribosome profiling and RNA-seq analysis to comprehensively examine the effects of CsrA on mRNA occupancy with ribosomes, a measure of translation, transcript stability, and the steady state levels of transcripts under in vitro SPI-1 inducing conditions, to simulate growth in the intestinal lumen, and under in vitro SPI-2-inducing conditions, to simulate growth in the Salmonella containing vacuole (SCV) of the macrophage. Our findings uncovered new roles for CsrA in controlling the expression of structural and regulatory genes involved in stress responses, metabolism, and virulence systems required for infection. We observed substantial variation in the CsrA regulon under the two growth conditions. In addition, CsrB/C sRNA levels were greatly reduced under the simulated intracellular conditions and were responsive to nutritional factors that distinguish the intracellular and luminal environments. Altogether, our results reveal CsrA to be a flexible regulator, which is inferred to be intimately involved in maintaining the distinct gene expression patterns associated with growth in the intestine and the macrophage.
Collapse
Affiliation(s)
- Anastasia H Potts
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Yinping Guo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
47
|
Takaya A, Takeda H, Tashiro S, Kawashima H, Yamamoto T. Chaperone-mediated secretion switching from early to middle substrates in the type III secretion system encoded by Salmonella pathogenicity island 2. J Biol Chem 2019; 294:3783-3793. [PMID: 30651351 DOI: 10.1074/jbc.ra118.005072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/07/2019] [Indexed: 11/06/2022] Open
Abstract
The bacterial type III secretion system (T3SS) delivers virulence proteins, called effectors, into eukaryotic cells. T3SS comprises a transmembrane secretion apparatus and a complex network of specialized chaperones that target protein substrates to this secretion apparatus. However, the regulation of secretion switching from early (needle and inner rod) to middle (tip/filament and translocators) substrates is incompletely understood. Here, we investigated chaperone-mediated secretion switching from early to middle substrates in the T3SS encoded by Salmonella pathogenicity island 2 (SPI2), essential for systemic infection. Our findings revealed that the protein encoded by ssaH regulates the secretion of an inner rod and early substrate, SsaI. Structural modeling revealed that SsaH is structurally similar to class III chaperones, known to associate with proteins in various pathogenic bacteria. The SPI2 protein SsaE was identified as a class V chaperone homolog and partner of SsaH. A pulldown analysis disclosed that SsaH and SsaE form a heterodimer, which interacted with another early substrate, the needle protein SsaG. Moreover, SsaE also helped stabilize SsaH and a middle substrate, SseB. We also found that SsaE regulates cellular SsaH levels to translocate the early substrates SsaG and SsaI and then promotes the translocation of SseB by stabilizing it. In summary, our results indicate that the class III chaperone SsaH facilitates SsaI secretion, and a heterodimer of SsaH and the type V chaperone SsaE then switches secretion to SsaG. This is the first report of a chaperone system that regulates both early and middle substrates during substrate switching for T3SS assembly.
Collapse
Affiliation(s)
- Akiko Takaya
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Hikari Takeda
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Shogo Tashiro
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Hiroto Kawashima
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Tomoko Yamamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
48
|
Chandirasekar S, You JG, Xue JH, Tseng WL. Synthesis of gold nanocluster-loaded lysozyme nanoparticles for label-free ratiometric fluorescent pH sensing: applications to enzyme–substrate systems and cellular imaging. J Mater Chem B 2019. [DOI: 10.1039/c9tb00640k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have demonstrated the synthesis of gold nanocluster-loaded lysozyme nanoparticles as a dual-emission probe for ratiometric sensing of pH changes in enzyme–substrate systems and live cells.
Collapse
Affiliation(s)
| | - Jyun-Guo You
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung 80424
- Taiwan
| | - Jhe-Hong Xue
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung 80424
- Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung 80424
- Taiwan
- School of Pharmacy
| |
Collapse
|
49
|
Godiee C, Cerny O, Durkin CH, Hoiden DW. SrcA is a chaperone for the Salmonella SPI-2 type three secretion system effector SteD. MICROBIOLOGY (READING, ENGLAND) 2019; 165:15-25. [PMID: 30457515 PMCID: PMC7614968 DOI: 10.1099/mic.0.000732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Effector proteins of type three secretion systems (T3SS) often require cytosolic chaperones for their stabilization, to interact with the secretion machinery and to enable effector delivery into host cells. We found that deletion of srcA, previously shown to encode a chaperone for the Salmonella pathogenicity island 2 (SPI-2) T3SS effectors SseL and PipB2, prevented the reduction of mature Major Histocompatibility Complex class II (mMHCII) from the surface of antigen-presenting cells during Salmonella infection. This activity was shown previously to be caused by the SPI-2 T3SS effector SteD. Since srcA and steD are located in the same operon on the Salmonella chromosome, this suggested that the srcA phenotype might be due to an indirect effect on SteD. We found that SrcA is not translocated by the SPI-2 T3SS but interacts directly and forms a stable complex with SteD in bacteria with a 2 : 1 stoichiometry. We found that SrcA was not required for SPI-2 T3SS-dependent, neutral pH-induced secretion of either SseL or PipB2 but was essential for secretion of SteD. SrcA therefore functions as a chaperone for SteD, explaining its requirement for the reduction in surface levels of mMHCII.
Collapse
Affiliation(s)
- Camilla Godiee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Ondrej Cerny
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Charlotte H. Durkin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - David W. Hoiden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
50
|
Hedin C, Rioux JD, D'Amato M. Inflammatory Bowel Disease at the Intersection of Autophagy and Immunity: Insights from Human Genetics. MOLECULAR GENETICS OF INFLAMMATORY BOWEL DISEASE 2019. [PMCID: PMC7120249 DOI: 10.1007/978-3-030-28703-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies using human genetics have identified more than 160 loci that affect the risk of developing inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC). Several of these genes have been found to play key roles in the process of autophagy, a lysosome-based degradation pathway. Although historically considered to be a relatively nonselective process of degradation of cytosolic contents, autophagy has recently been revealed to have several selective and immune-specific functions that are relevant to the maintenance of intestinal homeostasis, including xenophagy, mitophagy, antigen presentation, secretion, and inflammasome regulation. In this chapter, we review the evidence that links autophagy-related genes, their immune-specific functions, and possible mechanisms of IBD pathogenesis. We summarize the basic molecular events underlying general and selective autophagy, and present evidence suggesting possible pathogenic mechanisms revealed by studies of IBD-associated risk alleles of ATG16L1 and IRGM. Finally, we review chemical biology-based experimental approaches for identifying autophagy regulatory pathways that may have implications for the development of therapeutics.
Collapse
Affiliation(s)
- Charlotte Hedin
- Gastroenterology unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - John D. Rioux
- Montreal Heart Institute and Université de Montréal, Montréal, QC Canada
| | - Mauro D'Amato
- School of Biological Sciences, Monash University, Clayton, VIC Australia
| |
Collapse
|