1
|
Cha SE, Lee MN, Kim ES. Metabolic impacts of long-chain fatty acids on cardiomyocyte maturation in neonatal mammalian hearts. Methods 2025; 241:S1046-2023(25)00131-8. [PMID: 40449856 DOI: 10.1016/j.ymeth.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/23/2025] [Accepted: 05/25/2025] [Indexed: 06/03/2025] Open
Abstract
Cardiomyocytes are essential models for cardiac disease modeling, drug development, and regenerative therapies. Specifically, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as widely used cellular models with high reproducibility. However, cardiomyocytes generated in vitro tend to remain immature and insufficient in replicating the electrophysiological and mechanical functions of adult cardiomyocytes, limiting the clinical and experimental applications of these models. Thus, various biochemical and biophysical strategies have been explored to promote the maturation of cardiomyocytes, to address these limitations, and more accurately mimic the characteristics of mature cardiomyocytes. This review summarizes recent studies on multiple methodologies employed to induce cardiomyocyte maturation, with a particular emphasis on the role of long-chain fatty acids (LCFAs). The evidence summarized in this review is derived from studies utilizing cardiomyocytes from neonatal mice or rats and hiPSC-CMs. Meanwhile, immature cardiomyocytes have been demonstrated to predominantly rely on glycolysis, transitioning to oxidative phosphorylation through maturation, which enhances electrical stability, contractility, and structural organization. LCFAs play a key role in the cardiomyocyte maturation process by serving as key metabolic factors that generate ATP through mitochondrial β-oxidation, thereby improving metabolic efficiency. Additionally, LCFAs are involved in activating cytoskeletal components and signaling pathways integral to cardiomyocyte contractility. Importantly, studies suggest that when multiple biochemical and biophysical stimuli are simultaneously applied, various aspects of cardiomyocyte maturation are synergistically accelerated. Therefore, future studies focusing on the coordinated application of these regulatory factors are expected to enhance the maturation process, ultimately contributing to the generation of mature cardiomyocytes suitable for regenerative medicine and other advanced applications.
Collapse
Affiliation(s)
- Seong-Eung Cha
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mi Nam Lee
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Research Center of Ecomimetics, Institute of Sustainable Ecological Environment, Chonnam National University, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Hunt DR, Allen H, Martin TG, Feghali SN, Chuong EB, Leinwand LA. Genome Report: First whole genome assembly of Python regius (ball python), a model of extreme physiological and metabolic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.635752. [PMID: 39975114 PMCID: PMC11838433 DOI: 10.1101/2025.02.01.635752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The study of nontraditional model organisms, particularly those exhibiting extreme phenotypes, offers unique insights into adaptive mechanisms of stress response and survival. Snakes, with their remarkable physiological, metabolic, and morphological adaptations, serve as powerful models for investigating these processes. Pythons are a unique model organism that have been studied for their extreme metabolic and physiological plasticity. To date, the Burmese python (Python bivittatus) is the only member of the Pythonidae family to have been sequenced. The low contiguity of this genome and rising challenges in obtaining Burmese pythons for study prompted us to sequence, assemble, and annotate the genome of the closely related ball python (Python regius). Using a hybrid sequencing approach, we generated a 1.45 Gb genome assembly with a contig N50 greater than 18 Mb and a BUSCO score of 98%, representing the highest quality genome to date for a member of the Pythonidae family. This assembly provides a valuable resource for studying snake-specific traits and evolutionary biology. Furthermore, it enables exploration of the molecular mechanisms underlying the remarkable cardiac and muscular adaptations in pythons, such as their ability to rapidly remodel organs following feeding and resist muscular atrophy during prolonged fasting. These insights have potential applications in human health, particularly in the development of therapies targeting cardiac hypertrophy and muscular atrophy.
Collapse
Affiliation(s)
- Dakota R. Hunt
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303
| | - Holly Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Thomas G. Martin
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Sophia N. Feghali
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Edward B. Chuong
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
3
|
Allen RS, Seifert AW. Spiny mice (Acomys) have evolved cellular features to support regenerative healing. Ann N Y Acad Sci 2025; 1544:5-26. [PMID: 39805008 PMCID: PMC11830558 DOI: 10.1111/nyas.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals. First, we examine overall trends in healing Acomys tissues, including the cellular stress response, the ability to activate and maintain cell cycle progression, and the expression of certain features in reproductive adults that are normally associated with embryos. Second, we focus on specific cell types that exhibit precisely regulated proliferation to restore missing tissue. While Acomys utilize many of the same cell types involved in scar formation, these cells exhibit divergent activation profiles during regenerative healing. Considered together, current lines of evidence support sustained deployment of proregenerative pathways in conjunction with transient activation of fibrotic pathways to facilitate regeneration and improve tissue repair in Acomys.
Collapse
Affiliation(s)
- Robyn S. Allen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- The Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
4
|
Rindom E, Last KB, Svane A, Fammé A, Henriksen PG, Farup J, Jessen N, de Paoli FV, Wang T. Rapid stimulation of protein synthesis in digesting snakes: Unveiling a novel gut-pancreas-muscle axis. Acta Physiol (Oxf) 2025; 241:e70006. [PMID: 39854152 PMCID: PMC11760623 DOI: 10.1111/apha.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
AIM Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth. METHODS Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals. Pyloric ligation, pancreatectomy, and plasma transfusions were performed to explore the roles of gastrointestinal luminal signaling and pancreatic function across key tissues. RESULTS We observed profound and early stimulation of protein synthesis in gastrointestinal tissues and skeletal muscle already 3 h after ingestion, before any measurable rise in plasma amino acids from the meal. The gastrointestinal stimulation appears to be driven by luminal factors, while the stimulation of skeletal muscle protein synthesis is humoral with pancreatic insulin release as an integral mediator. The pre-absorptive anabolic activity is supported by the release of amino acids from the breakdown of endogenous proteins. CONCLUSIONS Our findings suggest that snakes initiate protein synthesis via distinct, tissue-specific pathways preceding nutrient absorption. This "pay before pumping" model shows how early protein synthesis prepares the digestive and muscular systems for later nutrient assimilation and growth. This intricate humoral regulation, involving a gut-pancreas-muscle axis, governs postprandial protein synthesis in snakes and provides insights into fundamental mechanisms driving metabolic adaptations and broader hyperplastic and hypertrophic responses.
Collapse
Affiliation(s)
- Emil Rindom
- Zoophysiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | | | - Anja Svane
- Zoophysiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Asger Fammé
- Zoophysiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Per G. Henriksen
- Zoophysiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Jean Farup
- Department of BiomedicineAarhus UniversityAarhus CDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhus NDenmark
| | - Niels Jessen
- Department of BiomedicineAarhus UniversityAarhus CDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhus NDenmark
| | | | - Tobias Wang
- Zoophysiology, Department of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
5
|
Joyce W, Shiels HA, Franklin CE. The integrative biology of the heart: mechanisms enabling cardiac plasticity. J Exp Biol 2024; 227:jeb249348. [PMID: 39422034 DOI: 10.1242/jeb.249348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cardiac phenotypic plasticity, the remodelling of heart structure and function, is a response to any sustained (or repeated) stimulus or stressor that results in a change in heart performance. Cardiac plasticity can be either adaptive (beneficial) or maladaptive (pathological), depending on the nature and intensity of the stimulus. Here, we draw on articles published in this Special Issue of Journal of Experimental Biology, and from the broader comparative physiology literature, to highlight the core components that enable cardiac plasticity, including structural remodelling, excitation-contraction coupling remodelling and metabolic rewiring. We discuss when and how these changes occur, with a focus on the underlying molecular mechanisms, from the regulation of gene transcription by epigenetic processes to post-translational modifications of cardiac proteins. Looking to the future, we anticipate that the growing use of -omics technologies in integration with traditional comparative physiology approaches will allow researchers to continue to uncover the vast scope for plasticity in cardiac function across animals.
Collapse
Affiliation(s)
- William Joyce
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Martin TG, Leinwand LA. Molecular regulation of reversible cardiac remodeling: lessons from species with extreme physiological adaptations. J Exp Biol 2024; 227:jeb247445. [PMID: 39344503 PMCID: PMC11463965 DOI: 10.1242/jeb.247445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Some vertebrates evolved to have a remarkable capacity for anatomical and physiological plasticity in response to environmental challenges. One example of such plasticity can be found in the ambush-hunting snakes of the genus Python, which exhibit reversible cardiac growth with feeding. The predation strategy employed by pythons is associated with months-long fasts that are arrested by ingestion of large prey. Consequently, digestion compels a dramatic increase in metabolic rate and hypertrophy of multiple organs, including the heart. In this Review, we summarize the post-prandial cardiac adaptations in pythons at the whole-heart, cellular and molecular scales. We highlight circulating factors and cellular signaling pathways that are altered during digestion to affect cardiac form and function and propose possible mechanisms that may drive the post-digestion regression of cardiac mass. Adaptive physiological cardiac hypertrophy has also been observed in other vertebrates, including in fish acclimated to cold water, birds flying at high altitudes and exercising mammals. To reveal potential evolutionarily conserved features, we summarize the molecular signatures of reversible cardiac remodeling identified in these species and compare them with those of pythons. Finally, we offer a perspective on the potential of biomimetics targeting the natural biology of pythons as therapeutics for human heart disease.
Collapse
Affiliation(s)
- Thomas G. Martin
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
7
|
Campos I, Richter B, Thomas SM, Czaya B, Yanucil C, Kentrup D, Fajol A, Li Q, Secor SM, Faul C. FGFR4 Is Required for Concentric Growth of Cardiac Myocytes during Physiologic Cardiac Hypertrophy. J Cardiovasc Dev Dis 2024; 11:320. [PMID: 39452290 PMCID: PMC11508992 DOI: 10.3390/jcdd11100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived hormone that promotes renal phosphate excretion. Serum FGF23 is increased in chronic kidney disease (CKD) and contributes to pathologic cardiac hypertrophy by activating FGF receptor (FGFR) 4 on cardiac myocytes, which might lead to the high cardiovascular mortality in CKD patients. Increases in serum FGF23 levels have also been observed following endurance exercise and in pregnancy, which are scenarios of physiologic cardiac hypertrophy as an adaptive response of the heart to increased demand. To determine whether FGF23/FGFR4 contributes to physiologic cardiac hypertrophy, we studied FGFR4 knockout mice (FGFR4-/-) during late pregnancy. In comparison to virgin littermates, pregnant wild-type and FGFR4-/- mice showed increases in serum FGF23 levels and heart weight; however, the elevation in myocyte area observed in pregnant wild-type mice was abrogated in pregnant FGFR4-/- mice. This outcome was supported by treatments of cultured cardiac myocytes with serum from fed Burmese pythons, another model of physiologic hypertrophy, where the co-treatment with an FGFR4-specific inhibitor abrogated the serum-induced increase in cell area. Interestingly, we found that in pregnant mice, the heart, and not the bone, shows elevated FGF23 expression, and that increases in serum FGF23 are not accompanied by changes in phosphate metabolism. Our study suggests that in physiologic cardiac hypertrophy, the heart produces FGF23 that contributes to hypertrophic growth of cardiac myocytes in a paracrine and FGFR4-dependent manner, and that the kidney does not respond to heart-derived FGF23.
Collapse
Affiliation(s)
- Isaac Campos
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Beatrice Richter
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Sarah Madison Thomas
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Brian Czaya
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Christopher Yanucil
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Dominik Kentrup
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Abul Fajol
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Qing Li
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Stephen M. Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Christian Faul
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| |
Collapse
|
8
|
Martin TG, Hunt DR, Langer SJ, Tan Y, Ebmeier CC, Leinwand LA. Regression of postprandial cardiac hypertrophy in burmese pythons is mediated by FoxO1. Proc Natl Acad Sci U S A 2024; 121:e2408719121. [PMID: 39352930 PMCID: PMC11474088 DOI: 10.1073/pnas.2408719121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
As ambush-hunting predators that consume large prey after long intervals of fasting, Burmese pythons evolved with unique adaptations for modulating organ structure and function. Among these is cardiac hypertrophy that develops within three days following a meal (Andersen et al., 2005, Secor, 2008), which we previously showed was initiated by circulating growth factors (Riquelme et al., 2011). Postprandial cardiac hypertrophy in pythons also rapidly regresses with subsequent fasting (Secor, 2008); however, the molecular mechanisms that regulate the dynamic cardiac remodeling in pythons during digestion are largely unknown. In this study, we employed a multiomics approach coupled with targeted molecular analyses to examine remodeling of the python ventricular transcriptome and proteome throughout digestion. We found that forkhead box protein O1 (FoxO1) signaling was suppressed prior to hypertrophy development and then activated during regression, which coincided with decreased and then increased expression, respectively, of FoxO1 transcriptional targets involved in proteolysis. To define the molecular mechanistic role of FoxO1 in hypertrophy regression, we used cultured mammalian cardiomyocytes treated with postfed python plasma. Hypertrophy regression both in pythons and in vitro coincided with activation of FoxO1-dependent autophagy; however, the introduction of a FoxO1-specific inhibitor prevented both regression of cell size and autophagy activation. Finally, to determine whether FoxO1 activation could induce regression, we generated an adenovirus expressing a constitutively active FoxO1. FoxO1 activation was sufficient to prevent and reverse postfed plasma-induced hypertrophy, which was partially prevented by autophagy inhibition. Our results indicate that modulation of FoxO1 activity contributes to the dynamic ventricular remodeling in postprandial Burmese pythons.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
| | - Dakota R. Hunt
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80303
| | - Stephen J. Langer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
| | - Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
| | | | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
| |
Collapse
|
9
|
Zamani SK, Wei J, Hathorn B, Robuck E, Kwan AC, Pepine CJ, Handberg E, Cipher DJ, Dey D, Bairey Merz CN, Nelson MD. Impact of epicardial fat on coronary vascular function, cardiac morphology, and cardiac function in women with suspected INOCA. Eur Heart J Cardiovasc Imaging 2024; 25:1360-1366. [PMID: 39129200 PMCID: PMC11441030 DOI: 10.1093/ehjci/jeae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
AIMS Epicardial fat is a metabolically active adipose tissue depot situated between the myocardium and visceral pericardium that covers ∼80% of the heart surface. While epicardial fat has been associated with the development of atherosclerotic coronary artery disease, less is known about the relationship between epicardial fat and coronary vascular function. Moreover, the relations between excess epicardial fat and cardiac morphology and function remain incompletely understood. METHODS AND RESULTS To address these knowledge gaps, we retrospectively analysed data from 294 individuals from our database of women with suspected ischaemia with no obstructive coronary disease (INOCA) who underwent both invasive coronary function testing and cardiac magnetic resonance imaging. Epicardial fat area, biventricular morphology, and function, as well as left atrial function, were assessed from cine images, per established protocols. The major novel findings were two-fold: first, epicardial fat area was not associated with coronary vascular dysfunction. Secondly, epicardial fat was associated with increased left ventricular concentricity (β = 0.15, P = 0.01), increased septal thickness (β = 0.17, P = 0.002), and reduced left atrial conduit fraction (β = -0.15, P = 0.02), even after accounting for age, BMI, and history of hypertension. CONCLUSION Taken together, these data do not support a measurable relationship between epicardial fat and coronary vascular dysfunction but do suggest that epicardial fat may be related to concentric remodelling and diastolic dysfunction in women with suspected INOCA. Prospective studies are needed to elucidate the long-term impact of epicardial fat in this patient population.
Collapse
Affiliation(s)
- Sauyeh K Zamani
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
| | - Janet Wei
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brandon Hathorn
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
| | - Erica Robuck
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
| | - Alan C Kwan
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, USA
| | - Eileen Handberg
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, USA
| | - Daisha J Cipher
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
| | - Damini Dey
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Michael D Nelson
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Clinical Imaging Research Center, University of Texas at Arlington, 655 W. Mitchell St. Arlington, TX 76019, USA
- Center for Healthy Living and Longevity, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX 76019, USA
| |
Collapse
|
10
|
Crocini C, Woulfe KC, Ozeroff CD, Perni S, Cardiello J, Walker CJ, Wilson CE, Anseth K, Allen MA, Leinwand LA. Postprandial cardiac hypertrophy is sustained by mechanics, epigenetic, and metabolic reprogramming in pythons. Proc Natl Acad Sci U S A 2024; 121:e2322726121. [PMID: 39159386 PMCID: PMC11388396 DOI: 10.1073/pnas.2322726121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/18/2024] [Indexed: 08/21/2024] Open
Abstract
Constricting pythons, known for their ability to consume infrequent, massive meals, exhibit rapid and reversible cardiac hypertrophy following feeding. Our primary goal was to investigate how python hearts achieve this adaptive response after feeding. Isolated myofibrils increased force after feeding without changes in sarcomere ultrastructure and without increasing energy cost. Ca2+ transients were prolonged after feeding with no changes in myofibril Ca2+ sensitivity. Feeding reduced titin-based tension, resulting in decreased cardiac tissue stiffness. Feeding also reduced the activity of sirtuins, a metabolically linked class of histone deacetylases, and increased chromatin accessibility. Transcription factor enrichment analysis on transposase-accessible chromatin with sequencing revealed the prominent role of transcription factors Yin Yang1 and NRF1 in postfeeding cardiac adaptation. Gene expression also changed with the enrichment of translation and metabolism. Finally, metabolomics analysis and adenosine triphosphate production demonstrated that cardiac adaptation after feeding not only increased energy demand but also energy production. These findings have broad implications for our understanding of cardiac adaptation across species and hold promise for the development of innovative approaches to address cardiovascular diseases.
Collapse
Affiliation(s)
- Claudia Crocini
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité University Medicine Berlin, Berlin 10115, Germany
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Christopher D Ozeroff
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| | - Stefano Perni
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Joseph Cardiello
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Cierra J Walker
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Cortney E Wilson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristi Anseth
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Mary Ann Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| |
Collapse
|
11
|
Fulghum KL, Collins HE, Lorkiewicz PK, Cassel TA, Fan TWM, Hill BG. Exercise-induced changes in myocardial glucose utilization during periods of active cardiac growth. J Mol Cell Cardiol 2024; 191:50-62. [PMID: 38703412 PMCID: PMC11135805 DOI: 10.1016/j.yjmcc.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Exercise training can promote physiological cardiac growth, which has been suggested to involve changes in glucose metabolism to facilitate hypertrophy of cardiomyocytes. In this study, we used a dietary, in vivo isotope labeling approach to examine how exercise training influences the metabolic fate of carbon derived from dietary glucose in the heart during acute, active, and established phases of exercise-induced cardiac growth. Male and female FVB/NJ mice were subjected to treadmill running for up to 4 weeks and cardiac growth was assessed by gravimetry. Cardiac metabolic responses to exercise were assessed via in vivo tracing of [13C6]-glucose via mass spectrometry and nuclear magnetic resonance. We found that the half-maximal cardiac growth response was achieved by approximately 1 week of daily exercise training, with near maximal growth observed in male mice with 2 weeks of training; however, female mice were recalcitrant to exercise-induced cardiac growth and required a higher daily intensity of exercise training to achieve significant, albeit modest, increases in cardiac mass. We also found that increases in the energy charge of adenylate and guanylate nucleotide pools precede exercise-induced changes in cardiac size and were associated with higher glucose tracer enrichment in the TCA pool and in amino acids (aspartate, glutamate) sourced by TCA intermediates. Our data also indicate that the activity of collateral biosynthetic pathways of glucose metabolism may not be markedly altered by exercise. Overall, this study provides evidence that metabolic remodeling in the form of heightened energy charge and increased TCA cycle activity and cataplerosis precedes cardiac growth caused by exercise training in male mice.
Collapse
Affiliation(s)
- Kyle L Fulghum
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Pawel K Lorkiewicz
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Teresa W M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America.
| |
Collapse
|
12
|
Jensen B, Wang T. The Elusive Hypertrophy of the Python Heart. Physiology (Bethesda) 2024; 39:0. [PMID: 38085014 DOI: 10.1152/physiol.00025.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
The Burmese python, one of the world's largest snakes, has reached celebrity status for its dramatic physiological responses associated with digestion of enormous meals. The meals elicit a rapid gain of mass and function of most visceral organs, particularly the small intestine. There is also a manyfold elevation of oxygen consumption that demands the heart to deliver more oxygen. It therefore made intuitive sense when it was reported that the postprandial response entailed a 40% growth of heart mass that could accommodate a rise in stroke volume. Many studies, however, have not been able to reproduce the 40% growth of the heart. We collated published values on postprandial heart mass in pythons, which include several instances of no change in heart mass. On average, the heart mass is only 15% greater. The changes in heart mass did not correlate to the mass gain of the small intestine or peak oxygen consumption. Hemodynamic studies show that the rise in cardiac output does not require increased heart mass but can be fully explained by augmented cardiac filling and postprandial tachycardia. Under the assumption that hypertrophy is a contingent phenomenon, more recent experiments have employed two interventions such as feeding with a concomitant reduction in hematocrit. The results suggest that the postprandial response of the heart can be enhanced, but the 40% hypertrophy of the python heart remains elusive.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tobias Wang
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Martin TG, Hunt DR, Langer SJ, Tan Y, Ebmeier CC, Crocini C, Chung E, Leinwand LA. A Conserved Mechanism of Cardiac Hypertrophy Regression through FoxO1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577585. [PMID: 38328143 PMCID: PMC10849654 DOI: 10.1101/2024.01.27.577585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The heart is a highly plastic organ that responds to diverse stimuli to modify form and function. The molecular mechanisms of adaptive physiological cardiac hypertrophy are well-established; however, the regulation of hypertrophy regression is poorly understood. To identify molecular features of regression, we studied Burmese pythons which experience reversible cardiac hypertrophy following large, infrequent meals. Using multi-omics screens followed by targeted analyses, we found forkhead box protein O1 (FoxO1) transcription factor signaling, and downstream autophagy activity, were downregulated during hypertrophy, but re-activated with regression. To determine whether these events were mechanistically related to regression, we established an in vitro platform of cardiomyocyte hypertrophy and regression from treatment with fed python plasma. FoxO1 inhibition prevented regression in this system, while FoxO1 activation reversed fed python plasma-induced hypertrophy in an autophagy-dependent manner. We next examined whether FoxO1 was implicated in mammalian models of reversible hypertrophy from exercise and pregnancy and found that in both cases FoxO1 was activated during regression. In these models, as in pythons, activation of FoxO1 was associated with increased expression FoxO1 target genes involved in autophagy. Taken together, our findings suggest FoxO1-dependent autophagy is a conserved mechanism for regression of physiological cardiac hypertrophy across species.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Dakota R. Hunt
- Department of Biochemistry, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Stephen J. Langer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Christopher C. Ebmeier
- Department of Biochemistry, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Eunhee Chung
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| |
Collapse
|
14
|
Parchem JG, Fan H, Mann LK, Chen Q, Won JH, Gross SS, Zhao Z, Taegtmeyer H, Papanna R. Fetal metabolic adaptations to cardiovascular stress in twin-twin transfusion syndrome. iScience 2023; 26:107424. [PMID: 37575192 PMCID: PMC10415929 DOI: 10.1016/j.isci.2023.107424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Monochorionic-diamniotic twin pregnancies are susceptible to unique complications arising from a single placenta shared by two fetuses. Twin-twin transfusion syndrome (TTTS) is a constellation of disturbances caused by unequal blood flow within the shared placenta giving rise to a major hemodynamic imbalance between the twins. Here, we applied TTTS as a model to uncover fetal metabolic adaptations to cardiovascular stress. We compared untargeted metabolomic analyses of amniotic fluid samples from severe TTTS cases vs. singleton controls. Amniotic fluid metabolites demonstrated alterations in fatty acid, glucose, and steroid hormone metabolism in TTTS. Among TTTS cases, unsupervised principal component analysis revealed two distinct clusters of disease defined by levels of glucose metabolites, amino acids, urea, and redox status. Our results suggest that the human fetal heart can adapt to hemodynamic stress by modulating its glucose metabolism and identify potential differences in the ability of individual fetuses to respond to cardiovascular stress.
Collapse
Affiliation(s)
- Jacqueline G. Parchem
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lovepreet K. Mann
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children’s Memorial Hermann Hospital, Houston, TX, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jong H. Won
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ramesha Papanna
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children’s Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
15
|
Gotthardt M, Badillo-Lisakowski V, Parikh VN, Ashley E, Furtado M, Carmo-Fonseca M, Schudy S, Meder B, Grosch M, Steinmetz L, Crocini C, Leinwand L. Cardiac splicing as a diagnostic and therapeutic target. Nat Rev Cardiol 2023; 20:517-530. [PMID: 36653465 DOI: 10.1038/s41569-022-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Despite advances in therapeutics for heart failure and arrhythmias, a substantial proportion of patients with cardiomyopathy do not respond to interventions, indicating a need to identify novel modifiable myocardial pathobiology. Human genetic variation associated with severe forms of cardiomyopathy and arrhythmias has highlighted the crucial role of alternative splicing in myocardial health and disease, given that it determines which mature RNA transcripts drive the mechanical, structural, signalling and metabolic properties of the heart. In this Review, we discuss how the analysis of cardiac isoform expression has been facilitated by technical advances in multiomics and long-read and single-cell sequencing technologies. The resulting insights into the regulation of alternative splicing - including the identification of cardiac splice regulators as therapeutic targets and the development of a translational pipeline to evaluate splice modulators in human engineered heart tissue, animal models and clinical trials - provide a basis for improved diagnosis and therapy. Finally, we consider how the medical and scientific communities can benefit from facilitated acquisition and interpretation of splicing data towards improved clinical decision-making and patient care.
Collapse
Affiliation(s)
- Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany.
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Victor Badillo-Lisakowski
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany
| | - Victoria Nicole Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Euan Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marta Furtado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sarah Schudy
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Heidelberg-Mannheim), Heidelberg, Germany
| | - Markus Grosch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Leslie Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
16
|
Flam E, Arany Z. Metabolite signaling in the heart. NATURE CARDIOVASCULAR RESEARCH 2023; 2:504-516. [PMID: 39195876 DOI: 10.1038/s44161-023-00270-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/29/2023] [Indexed: 08/29/2024]
Abstract
The heart is the most metabolically active organ in the body, sustaining a continuous and high flux of nutrient catabolism via oxidative phosphorylation. The nature and relative contribution of these fuels have been studied extensively for decades. By contrast, less attention has been placed on how intermediate metabolites generated from this catabolism affect intracellular signaling. Numerous metabolites, including intermediates of glycolysis and the tricarboxylic acid (TCA) cycle, nucleotides, amino acids, fatty acids and ketones, are increasingly appreciated to affect signaling in the heart, via various mechanisms ranging from protein-metabolite interactions to modifying epigenetic marks. We review here the current state of knowledge of intermediate metabolite signaling in the heart.
Collapse
Affiliation(s)
- Emily Flam
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Tan Y, Martin TG, Harrison BC, Leinwand LA. Utility of the burmese Python as a model for studying plasticity of extreme physiological systems. J Muscle Res Cell Motil 2023; 44:95-106. [PMID: 36316565 PMCID: PMC10149580 DOI: 10.1007/s10974-022-09632-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/30/2022] [Indexed: 03/18/2023]
Abstract
Non-traditional animal models present an opportunity to discover novel biology that has evolved to allow such animals to survive in extreme environments. One striking example is the Burmese python (Python molurus bivittatus), which exhibits extreme physiological adaptation in various metabolic organs after consuming a large meal following long periods of fasting. The response to such a large meal in pythons involves a dramatic surge in metabolic rate, lipid overload in plasma, and massive but reversible organ growth through the course of digestion. Multiple studies have reported the physiological responses in post-prandial pythons, while the specific molecular control of these processes is less well-studied. Investigating the mechanisms that coordinate organ growth and adaptive responses offers the opportunity to gain novel insight that may be able to treat various pathologies in humans. Here, we summarize past research on the post-prandial physiological changes in the Burmese python with a focus on the gastrointestinal tract, heart, and liver. Specifically, we address our recent molecular discoveries in the post-prandial python liver which demonstrate transient adaptations that may reveal new therapeutic targets. Lastly, we explore new biology of the aquaporin 7 gene that is potently upregulated in mammalian cardiac myocytes by circulating factors in post-prandial python plasma.
Collapse
Affiliation(s)
- Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder. 3415 Colorado Ave, UCB 596, 80309, Boulder, CO, USA
| | - Thomas G Martin
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder. 3415 Colorado Ave, UCB 596, 80309, Boulder, CO, USA
| | - Brooke C Harrison
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder. 3415 Colorado Ave, UCB 596, 80309, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder. 3415 Colorado Ave, UCB 596, 80309, Boulder, CO, USA.
| |
Collapse
|
18
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
19
|
Oliveri M, Carnabuci C, Vignoli M, Feliciantonio SD, Feliciantonio MD, Salda LD, Knotek Z, Tommaso MD, Luciani A. Echocardiographic measurements and cardiac anatomy in healthy Western hognose snakes ( Heterodon nasicus). VET MED-CZECH 2023; 68:75-82. [PMID: 38332762 PMCID: PMC10847813 DOI: 10.17221/63/2022-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2024] Open
Abstract
This study aims to describe the most important cardiac structures in the Heterodon nasicus through echocardiography and anatomical dissection. Echocardiographic and echo-Doppler measurements were performed on twenty healthy adult Heterodon nasicus (10.10). The values of the ventricular length, aortic diameter, pulmonary trunk diameter, the mean thickness of the interventricular septum, and thicknesses of the wall of the cavum pulmonale (Cav. P) and cavum arteriosum (Cav. A), were measured. The aortic flow and pulmonary trunk flow were recorded. Two dead specimens (1.1) were dissected. The male's pulmonary trunk diameter was bigger compared to the female's in both the long and short axis. The reproductive ecology of Heterodon nasicus has yet to be fully elucidated upon, however, male territorialism and dispersal from the hibernacula, and multiple male courtships toward a single female were described, hence, the more active reproductive activity of the male and the consequent sexual selection toward a higher aerobic performance can be hypothesised. A moderate interventricular right to left shunt was noticed in the Cav. V of all the specimens, which is considered normal and should not confuse the clinician. Congenital defects, cardiomyopathies, valvulopathies, and pericardial diseases are known to occur in ophidians and other reptiles. Reliable data and profound knowledge of the anatomy and physiology of the ophidian heart are fundamental for the in vivo diagnosis of cardiac diseases in snakes.
Collapse
Affiliation(s)
- Matteo Oliveri
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, Teramo, Italy
| | - Cristina Carnabuci
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, Teramo, Italy
| | - Massimo Vignoli
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, Teramo, Italy
| | - Simone Di Feliciantonio
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, Teramo, Italy
| | - Marco Di Feliciantonio
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, Teramo, Italy
| | - Leonardo Della Salda
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, Teramo, Italy
| | - Zdenek Knotek
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Morena di Tommaso
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, Teramo, Italy
| | - Alessia Luciani
- Faculty of Veterinary Medicine, Teaching Veterinary Hospital, University of Teramo, Teramo, Italy
| |
Collapse
|
20
|
Lee LA, Barrick SK, Meller A, Walklate J, Lotthammer JM, Tay JW, Stump WT, Bowman G, Geeves MA, Greenberg MJ, Leinwand LA. Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles. J Biol Chem 2022; 299:102657. [PMID: 36334627 PMCID: PMC9800208 DOI: 10.1016/j.jbc.2022.102657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac β-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac β-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.
Collapse
Affiliation(s)
- Lindsey A. Lee
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Samantha K. Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Artur Meller
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jeffrey M. Lotthammer
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Gregory Bowman
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael A. Geeves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA,For correspondence: Leslie A. Leinwand
| |
Collapse
|
21
|
Abstract
It is important to understand how different human organs coordinate and interact with each other. Since obesity and cardiac disease frequently coincide, the crosstalk between adipose tissues and heart has drawn attention. We appreciate that specific peptides/proteins, lipids, nucleic acids, and even organelles shuttle between the adipose tissues and heart. These bioactive components can profoundly affect the metabolism of cells in distal organs, including heart. Importantly, this process can be dysregulated under pathophysiological conditions. This also opens the door to efforts targeting these mediators as potential therapeutic strategies to treat patients who manifest diabetes and cardiovascular disease. Here, we summarize the recent progress toward a better understanding of how the adipose tissues and heart interact with each other.
Collapse
|
22
|
Thiele A, Luettges K, Ritter D, Beyhoff N, Smeir E, Grune J, Steinhoff JS, Schupp M, Klopfleisch R, Rothe M, Wilck N, Bartolomaeus H, Migglautsch AK, Breinbauer R, Kershaw EE, Grabner GF, Zechner R, Kintscher U, Foryst-Ludwig A. Pharmacological inhibition of adipose tissue adipose triglyceride lipase by Atglistatin prevents catecholamine-induced myocardial damage. Cardiovasc Res 2022; 118:2488-2505. [PMID: 34061169 PMCID: PMC9890462 DOI: 10.1093/cvr/cvab182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 02/05/2023] Open
Abstract
AIMS Heart failure (HF) is characterized by an overactivation of β-adrenergic signalling that directly contributes to impairment of myocardial function. Moreover, β-adrenergic overactivation induces adipose tissue lipolysis, which may further worsen the development of HF. Recently, we demonstrated that adipose tissue-specific deletion of adipose triglyceride lipase (ATGL) prevents pressure-mediated HF in mice. In this study, we investigated the cardioprotective effects of a new pharmacological inhibitor of ATGL, Atglistatin, predominantly targeting ATGL in adipose tissue, on catecholamine-induced cardiac damage. METHODS AND RESULTS Male 129/Sv mice received repeated injections of isoproterenol (ISO, 25 mg/kg BW) to induce cardiac damage. Five days prior to ISO application, oral Atglistatin (2 mmol/kg diet) or control treatment was started. Two and twelve days after the last ISO injection cardiac function was analysed by echocardiography. The myocardial deformation was evaluated using speckle-tracking-technique. Twelve days after the last ISO injection, echocardiographic analysis revealed a markedly impaired global longitudinal strain, which was significantly improved by the application of Atglistatin. No changes in ejection fraction were observed. Further studies included histological-, WB-, and RT-qPCR-based analysis of cardiac tissue, followed by cell culture experiments and mass spectrometry-based lipidome analysis. ISO application induced subendocardial fibrosis and a profound pro-apoptotic cardiac response, as demonstrated using an apoptosis-specific gene expression-array. Atglistatin treatment led to a dramatic reduction of these pro-fibrotic and pro-apoptotic processes. We then identified a specific set of fatty acids (FAs) liberated from adipocytes under ISO stimulation (palmitic acid, palmitoleic acid, and oleic acid), which induced pro-apoptotic effects in cardiomyocytes. Atglistatin significantly blocked this adipocytic FA secretion. CONCLUSION This study demonstrates cardioprotective effects of Atglistatin in a mouse model of catecholamine-induced cardiac damage/dysfunction, involving anti-apoptotic and anti-fibrotic actions. Notably, beneficial cardioprotective effects of Atglistatin are likely mediated by non-cardiac actions, supporting the concept that pharmacological targeting of adipose tissue may provide an effective way to treat cardiac dysfunction.
Collapse
Affiliation(s)
- Arne Thiele
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Katja Luettges
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Daniel Ritter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Niklas Beyhoff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Elia Smeir
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Physiology, 10115 Berlin, Germany
| | - Julia S Steinhoff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
| | - Michael Schupp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie
Universität, 14163 Berlin, Germany
| | | | - Nicola Wilck
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation of
Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin
Berlin, 13125 Berlin, Germany
- Division of Nephrology and Internal Intensive Care Medicine, Charité -
Universitätsmedizin Berlin, 10117 Berlin,
Germany
| | - Hendrik Bartolomaeus
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation of
Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin
Berlin, 13125 Berlin, Germany
| | - Anna K Migglautsch
- Institute of Organic Chemistry, Graz University of
Technology, 8010 Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of
Technology, 8010 Graz, Austria
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, University of
Pittsburgh, PA, USA
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz,
8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz,
8010 Graz, Austria
| | - Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| |
Collapse
|
23
|
Hastings MH, Herrera JJ, Guseh JS, Atlason B, Houstis NE, Abdul Kadir A, Li H, Sheffield C, Singh AP, Roh JD, Day SM, Rosenzweig A. Animal Models of Exercise From Rodents to Pythons. Circ Res 2022; 130:1994-2014. [PMID: 35679366 PMCID: PMC9202075 DOI: 10.1161/circresaha.122.320247] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute and chronic animal models of exercise are commonly used in research. Acute exercise testing is used, often in combination with genetic, pharmacological, or other manipulations, to study the impact of these manipulations on the cardiovascular response to exercise and to detect impairments or improvements in cardiovascular function that may not be evident at rest. Chronic exercise conditioning models are used to study the cardiac phenotypic response to regular exercise training and as a platform for discovery of novel pathways mediating cardiovascular benefits conferred by exercise conditioning that could be exploited therapeutically. The cardiovascular benefits of exercise are well established, and, frequently, molecular manipulations that mimic the pathway changes induced by exercise recapitulate at least some of its benefits. This review discusses approaches for assessing cardiovascular function during an acute exercise challenge in rodents, as well as practical and conceptual considerations in the use of common rodent exercise conditioning models. The case for studying feeding in the Burmese python as a model for exercise-like physiological adaptation is also explored.
Collapse
Affiliation(s)
- Margaret H Hastings
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jonathan J Herrera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor (J.J.H.)
| | - J Sawalla Guseh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Bjarni Atlason
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Nicholas E Houstis
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Azrul Abdul Kadir
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Haobo Li
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Cedric Sheffield
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Anand P Singh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jason D Roh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Sharlene M Day
- Cardiovascular Medicine, Perelman School of Medicine' University of Pennsylvania, Philadelphia (S.M.D.)
| | - Anthony Rosenzweig
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| |
Collapse
|
24
|
Magida JA, Tan Y, Wall CE, Harrison BC, Marr TG, Peter AK, Riquelme CA, Leinwand LA. Burmese pythons exhibit a transient adaptation to nutrient overload that prevents liver damage. J Gen Physiol 2022; 154:213093. [PMID: 35323838 PMCID: PMC8958269 DOI: 10.1085/jgp.202113008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023] Open
Abstract
As an opportunistic predator, the Burmese python (Python molurus bivittatus) consumes large and infrequent meals, fasting for up to a year. Upon consuming a large meal, the Burmese python exhibits extreme metabolic responses. To define the pathways that regulate these postprandial metabolic responses, we performed a comprehensive profile of plasma metabolites throughout the digestive process. Following ingestion of a meal equivalent to 25% of its body mass, plasma lipoproteins and metabolites, such as chylomicra and bile acids, reach levels observed only in mammalian models of extreme dyslipidemia. Here, we provide evidence for an adaptive response to postprandial nutrient overload by the python liver, a critical site of metabolic homeostasis. The python liver undergoes a substantial increase in mass through proliferative processes, exhibits hepatic steatosis, hyperlipidemia-induced insulin resistance indicated by PEPCK activation and pAKT deactivation, and de novo fatty acid synthesis via FASN activation. This postprandial state is completely reversible. We posit that Burmese pythons evade the permanent hepatic damage associated with these metabolic states in mammals using evolved protective measures to inactivate these pathways. These include a transient activation of hepatic nuclear receptors induced by fatty acids and bile acids, including PPAR and FXR, respectively. The stress-induced p38 MAPK pathway is also transiently activated during the early stages of digestion. Taken together, these data identify a reversible metabolic response to hyperlipidemia by the python liver, only achieved in mammals by pharmacologic intervention. The factors involved in these processes may be relevant to or leveraged for remediating human hepatic pathology.
Collapse
Affiliation(s)
- Jason A Magida
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO.,Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| | - Christopher E Wall
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO.,Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Brooke C Harrison
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| | | | - Angela K Peter
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| | - Cecilia A Riquelme
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO.,Department of Cell and Molecular Biology, Catholic University of Chile, Santiago, Chile
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| |
Collapse
|
25
|
Abstract
The venom glands of reptiles, particularly those of front-fanged advanced snakes, must satisfy conflicting biological demands: rapid synthesis of potentially labile and highly toxic proteins, storage in the gland lumen for long periods, stabilization of the stored secretions, immediate activation of toxins upon deployment and protection of the animal from the toxic effects of its own venom. This dynamic system could serve as a model for the study of a variety of different phenomena involving exocrine gland activation, protein synthesis, stabilization of protein products and secretory mechanisms. However, these studies have been hampered by a lack of a long-term model that can be propagated in the lab (as opposed to whole-animal studies). Numerous attempts have been made to extend the lifetime of venom gland secretory cells, but only recently has an organoid model been shown to have the requisite qualities of recapitulation of the native system, self-propagation and long-term viability (>1 year). A tractable model is now available for myriad cell- and molecular-level studies of venom glands, protein synthesis and secretion. However, venom glands of reptiles are not identical, and many differ very extensively in overall architecture, microanatomy and protein products produced. This Review summarizes the similarities among and differences between venom glands of helodermatid lizards and of rear-fanged and front-fanged snakes, highlighting those areas that are well understood and identifying areas where future studies can fill in significant gaps in knowledge of these ancient, yet fascinating systems.
Collapse
Affiliation(s)
- Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017, USA
| |
Collapse
|
26
|
Wang C, Cui R, Niu C, Zhong X, Zhu Q, Ji D, Li X, Zhang H, Liu C, Zhou L, Li Y, Xu G, Wei Y. Low-dose PCB126 exposure disrupts cardiac metabolism and causes hypertrophy and fibrosis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118079. [PMID: 34488161 DOI: 10.1016/j.envpol.2021.118079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The residue of polychlorinated biphenyls (PCBs) exists throughout the environment and humans are subject to long-term exposure. As such, the potential environmental and health risk caused by low-dose exposure to PCBs has attracted much attention. 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126), the highest toxicity compound among dioxin-like-PCBs, has been widely used and mass-produced. Cardiotoxicity is PCB126's crucial adverse effect. Maintaining proper metabolism underlies heart health, whereas the impact of PCB126 exposure on cardiac metabolic patterns has yet to be elucidated. In this study, we administered 0.5 and 50 μg/kg bw of PCB126 to adult male mice weekly by gavage for eight weeks. Pathological results showed that low-dose PCB126 exposure induced heart injury. Metabolomic analysis of the heart tissue exposed to low-dose PCB126 identified 59 differential metabolites that were involved in lipid metabolism, amino acid metabolism, and the tricarboxylic acid (TCA) cycle. Typical metabolomic characteristic of cardiac hypertrophy was reflected by accumulation of fatty acids (e.g. palmitic, palmitoleic, and linoleic acid), and disturbance of carbohydrates including D-glucose and intermediates in TCA cycle (fumaric, succinic, and citric acid). Low-dose PCB126 exposure increased glycine and threonine, the amino acids necessary for the productions of collagen and elastin. Besides, PCB126-exposed mice exhibited upregulation of collagen synthesis enzymes and extracellular matrix proteins, indicative of cardiac fibrosis. Moreover, the expression of genes related to TGFβ/PPARγ/MMP-2 signaling pathway was perturbed in the PCB126-treated hearts. Together, our results reveal that low-dose PCB126 exposure disrupts cardiac metabolism correlated with hypertrophy and fibrosis. This study sheds light on the underlying mechanism of PCBs' cardiotoxicity and identifies potential sensitive biomarkers for environmental monitoring.
Collapse
Affiliation(s)
- Can Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congying Niu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qicheng Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianjie Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanli Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Betz IR, Qaiyumi SJ, Goeritzer M, Thiele A, Brix S, Beyhoff N, Grune J, Klopfleisch R, Greulich F, Uhlenhaut NH, Kintscher U, Foryst-Ludwig A. Cardioprotective Effects of Palmitoleic Acid (C16:1n7) in a Mouse Model of Catecholamine-Induced Cardiac Damage Are Mediated by PPAR Activation. Int J Mol Sci 2021; 22:ijms222312695. [PMID: 34884498 PMCID: PMC8657733 DOI: 10.3390/ijms222312695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023] Open
Abstract
Palmitoleic acid (C16:1n7) has been identified as a regulator of physiological cardiac hypertrophy. In the present study, we aimed to investigate the molecular pathways involved in C16:1n7 responses in primary murine cardiomyocytes (PCM) and a mouse model of isoproterenol (ISO)-induced cardiac damage. PCMs were stimulated with C16:1n7 or a vehicle. Afterwards, RNA sequencing was performed using an Illumina HiSeq sequencer. Confirmatory analysis was performed in PCMs and HL-1 cardiomyocytes. For an in vivo study, 129 sv mice were orally treated with a vehicle or C16:1n7 for 22 days. After 5 days of pre-treatment, the mice were injected with ISO (25 mg/kg/d s. c.) for 4 consecutive days. Cardiac phenotyping was performed using echocardiography. In total, 129 genes were differentially expressed in PCMs stimulated with C16:1n7, including Angiopoietin-like factor 4 (Angptl4) and Pyruvate Dehydrogenase Kinase 4 (Pdk4). Both Angptl4 and Pdk4 are proxisome proliferator-activated receptor α/δ (PPARα/δ) target genes. Our in vivo results indicated cardioprotective and anti-fibrotic effects of C16:1n7 application in mice. This was associated with the C16:1n7-dependent regulation of the cardiac PPAR-specific signaling pathways. In conclusion, our experiments demonstrated that C16:1n7 might have protective effects on cardiac fibrosis and inflammation. Our study may help to develop future lipid-based therapies for catecholamine-induced cardiac damage.
Collapse
Affiliation(s)
- Iris Rosa Betz
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- Berlin Institute of Health, Emergency Department Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Sarah Julia Qaiyumi
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
| | - Madeleine Goeritzer
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Arne Thiele
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Sarah Brix
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Niklas Beyhoff
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Jana Grune
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Franziska Greulich
- German Center for Environmental Health GmbH, Institute for Diabetes and Cancer (IDC), 85764 Munich, Germany; (F.G.); (N.H.U.)
- Metabolic Programming, School of Life Sciences Weihenstephan, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, 13125 Berlin, Germany
| | - Nina Henriette Uhlenhaut
- German Center for Environmental Health GmbH, Institute for Diabetes and Cancer (IDC), 85764 Munich, Germany; (F.G.); (N.H.U.)
- Metabolic Programming, School of Life Sciences Weihenstephan, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, 13125 Berlin, Germany
| | - Ulrich Kintscher
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Anna Foryst-Ludwig
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (I.R.B.); (S.J.Q.); (M.G.); (A.T.); (S.B.); (N.B.); (J.G.); (U.K.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence:
| |
Collapse
|
28
|
Josimovich JM, Falk BG, Grajal-Puche A, Hanslowe EB, Bartoszek IA, Reed RN, Currylow AF. Clutch may predict growth of hatchling Burmese pythons better than food availability or sex. Biol Open 2021; 10:273482. [PMID: 34796905 PMCID: PMC8609237 DOI: 10.1242/bio.058739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Identifying which environmental and genetic factors affect growth pattern phenotypes can help biologists predict how organisms distribute finite energy resources in response to varying environmental conditions and physiological states. This information may be useful for monitoring and managing populations of cryptic, endangered, and invasive species. Consequently, we assessed the effects of food availability, clutch, and sex on the growth of invasive Burmese pythons (Python bivittatus Kuhl) from the Greater Everglades Ecosystem in Florida, USA. Though little is known from the wild, Burmese pythons have been physiological model organisms for decades, with most experimental research sourcing individuals from the pet trade. Here, we used 60 hatchlings collected as eggs from the nests of two wild pythons, assigned them to High or Low feeding treatments, and monitored growth and meal consumption for 12 weeks, a period when pythons are thought to grow very rapidly. None of the 30 hatchlings that were offered food prior to their fourth week post-hatching consumed it, presumably because they were relying on internal yolk stores. Although only two clutches were used in the experiment, we found that nearly all phenotypic variation was explained by clutch rather than feeding treatment or sex. Hatchlings from clutch 1 (C1) grew faster and were longer, heavier, in better body condition, ate more frequently, and were bolder than hatchlings from clutch 2 (C2), regardless of food availability. On average, C1 and C2 hatchling snout-vent length (SVL) and weight grew 0.15 cm d−1 and 0.10 cm d−1, and 0.20 g d−1 and 0.03 g d−1, respectively. Additional research may be warranted to determine whether these effects remain with larger clutch sample sizes and to identify the underlying mechanisms and fitness implications of this variation to help inform risk assessments and management. This article has an associated First Person interview with the first author of the paper. Summary: Hatchling pythons from an invasive population displayed substantial phenotypic variation in morphometrics, growth rates, and behaviors. This information may be useful for managing populations of cryptic, endangered, and invasive species.
Collapse
Affiliation(s)
- Jillian M Josimovich
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | - Bryan G Falk
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | - Alejandro Grajal-Puche
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | - Emma B Hanslowe
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | | | - Robert N Reed
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Andrea F Currylow
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| |
Collapse
|
29
|
Patterns of energetic substrate modifications in response to feeding in boas, Boa constrictor (Serpentes, Boidae). Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111073. [PMID: 34562624 DOI: 10.1016/j.cbpa.2021.111073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022]
Abstract
Ambush-foraging snakes that ingest large meals might undergo several months without eating when they use the internal reserves to support the energetic costs of living. Then, morphological and physiological processes might be orchestrated during the transition from fasting to the postprandial period to rapidly use the energetic stores while the metabolic rate is elevated in response to food intake. To understand the patterns of substrates deposition after feeding, we accessed the morphological and biochemical response in Boa constrictor snakes after two months of fasting and six days after feeding. We followed the plasma levels of glucose, total proteins, and total lipids, and we performed the stereological ultrastructural analysis of the liver and the proximal region of the intestine to quantify glycogen granules and lipid droplets. In the same tissues and stomach, we measured the activity of the enzyme fructose-1,6-biphosphatase (FBPase1) involved in the gluconeogenic pathway, and we measured pyruvate kinase (PK) and lactate dehydrogenase (LDH) enzymatic activities involved in the anaerobic pathway in the liver. Briefly, our results indicated an increase in boas' plasma glucose one day after meal intake compared to unfed snakes. The hepatic glycogen reserves were continuously restored within days after feeding. Also, the enzymes involved in the energetic pathways increased activity six days after feeding in the liver. These findings suggest a quick restoring pattern of energetic stores during the postprandial period.
Collapse
|
30
|
Smythe J, Colebourn C, Prisco L, Petrinic T, Leeson P. Cardiac abnormalities identified with echocardiography in anorexia nervosa: systematic review and meta-analysis. Br J Psychiatry 2021; 219:477-486. [PMID: 32026793 DOI: 10.1192/bjp.2020.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Anorexia nervosa affects most organ systems, with 80% suffering from cardiovascular complications. AIMS To define echocardiographic abnormalities in anorexia nervosa through systematic review and meta-analysis. METHOD Two reviewers independently assessed eligibility of publications from Medline, EMBASE and Cochrane Database of Systematic Reviews registries. Studies were included if anorexia nervosa was the primary eating disorder and the main clinical association in described cardiac abnormalities. Data was extracted in duplicate and quality-assessed with a modified Newcastle-Ottawa scale. For continuous outcomes we calculated mean and standardised mean difference (SMD), and corresponding 95% confidence interval. For dichotomous outcomes we calculated proportion and corresponding 95% confidence interval. For qualitative data we summarised the studies. RESULTS We identified 23 eligible studies totalling 960 patients, with a mean age of 17 years and mean body mass index of 15.2 kg/m2. Fourteen studies (469 participants) reported data suitable for meta-analysis. Cardiac abnormalities seen in anorexia nervosa compared with healthy controls were reduced left ventricular mass (SMD 1.82, 95% CI 1.32-2.31, P < 0.001), reduced cardiac output (SMD 1.92, 95% CI 1.38-2.45, P < 0.001), increased E/A ratio (SMD -1.10, 95% CI -1.67 to -0.54, P < 0.001), and increased incidence of pericardial effusions (25% of patients, P < 0.01, 95% CI 17-34%, I2 = 80%). Trends toward improvement were seen with weight restoration. CONCLUSIONS Patients with anorexia nervosa have structural and functional cardiac changes, identifiable with echocardiography. Further work should determine whether echocardiography can help stratify severity and guide safe patient location, management and effectiveness of nutritional rehabilitation.
Collapse
Affiliation(s)
- Jodie Smythe
- Consultant Intensivist and Anaesthetist, Intensive Care Unit, Royal Berkshire NHS Foundation Trust, UK
| | - Claire Colebourn
- Consultant Medical Intensivist, Adult Intensive Care Unit, Oxford University Hospitals NHS Foundation Trust, UK
| | - Lara Prisco
- Consultant Intensivist and Anaesthetist and Senior Clinical Research Fellow, Neuroanaesthesia and Neurointensive Care, Oxford University Hospitals NHS Foundation Trust; and Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Tatjana Petrinic
- Outreach Librarian, Bodleian Healthcare Libraries, University of Oxford, Oxford University Hospitals NHS Foundation Trust, UK
| | - Paul Leeson
- Professor of Cardiovascular Medicine, Cardiovascular Clinical Research Facility, Oxford University Hospitals NHS Foundation Trust, UK
| |
Collapse
|
31
|
Alaasam VJ, Liu X, Niu Y, Habibian JS, Pieraut S, Ferguson BS, Zhang Y, Ouyang JQ. Effects of dim artificial light at night on locomotor activity, cardiovascular physiology, and circadian clock genes in a diurnal songbird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117036. [PMID: 33838441 PMCID: PMC8184626 DOI: 10.1016/j.envpol.2021.117036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/28/2021] [Indexed: 05/17/2023]
Abstract
Artificial light is transforming the nighttime environment and quickly becoming one of the most pervasive pollutants on earth. Across taxa, light entrains endogenous circadian clocks that function to synchronize behavioral and physiological rhythms with natural photoperiod. Artificial light at night (ALAN) disrupts these photoperiodic cues and has consequences for humans and wildlife including sleep disruption, physiological stress and increased risk of cardiovascular disease. However, the mechanisms underlying organismal responses to dim ALAN, resembling light pollution, remain elusive. Light pollution exists in the environment at lower levels (<5 lux) than tested in many laboratory studies that link ALAN to circadian rhythm disruption. Few studies have linked dim ALAN to both the upstream regulators of circadian rhythms and downstream behavioral and physiological consequences. We exposed zebra finches (Taeniopygia gutatta) to dim ALAN (1.5 lux) and measured circadian expression of five pacemaker genes in central and peripheral tissues, plasma melatonin, locomotor activity, and biomarkers of cardiovascular health. ALAN caused an increase in nighttime activity and, for males, cardiac hypertrophy. Moreover, downstream effects were detectable after just short duration exposure (10 days) and at dim levels that mimic the intensity of environmental light pollution. However, ALAN did not affect circulating melatonin nor oscillations of circadian gene expression in the central clock (brain) or liver. These findings suggest that dim ALAN can alter behavior and physiology without strong shifts in the rhythmic expression of molecular circadian pacemakers. Approaches that focus on ecologically-relevant ALAN and link complex biological pathways are necessary to understand the mechanisms underlying vertebrate responses to light pollution.
Collapse
Affiliation(s)
- Valentina J Alaasam
- Department of Biology, University of Nevada, Reno, Reno, NV, USA; Program of Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Xu Liu
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Ye Niu
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Justine S Habibian
- Department of Nutrition, University of Nevada, Reno, Reno, NV, USA; Program of Cellular and Molecular Biology, University of Nevada, Reno, Reno, NV, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Brad S Ferguson
- Department of Nutrition, University of Nevada, Reno, Reno, NV, USA; Center for Biomedical Research Excellence in Molecular and Cellular Signal Transduction in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
32
|
Stenvinkel P, Avesani CM, Gordon LJ, Schalling M, Shiels PG. Biomimetics provides lessons from nature for contemporary ways to improve human health. J Clin Transl Sci 2021; 5:e128. [PMID: 34367673 PMCID: PMC8327543 DOI: 10.1017/cts.2021.790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Homo sapiens is currently living in serious disharmony with the rest of the natural world. For our species to survive, and for our well-being, we must gather knowledge from multiple perspectives and actively engage in studies of planetary health. The enormous diversity of species, one of the most striking aspects of life on our planet, provides a source of solutions that have been developed through evolution by natural selection by animals living in extreme environments. The food system is central to finding solutions; our current global eating patterns have a negative impact on human health, driven climate change and loss of biodiversity. We propose that the use of solutions derived from nature, an approach termed biomimetics, could mitigate the effects of a changing climate on planetary health as well as human health. For example, activation of the transcription factor Nrf2 may play a role in protecting animals living in extreme environments, or animals exposed to heat stress, pollution and pesticides. In order to meet these challenges, we call for the creation of novel interdisciplinary planetary health research teams.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Carla M. Avesani
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Line J. Gordon
- Stockholm Resilience Centre Stockholm University, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
33
|
Kolpakov AR, Knyazev RA. Endogenous Cardiotonics: Search And Problems. Cardiovasc Hematol Disord Drug Targets 2021; 21:95-103. [PMID: 33874876 DOI: 10.2174/1871529x21666210419121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
Medicinal preparations currently used for the treatment of patients with chronic cardiac failure involve those that reduce the heart load (vasodilators, diuretics, beta-blockers, and angiotensin-converting enzyme (ACE) inhibitors). Cardiotonic drugs with the cAMP-dependent mechanism are unsuitable for long-term administration due to the intensification of metabolic processes and an increase in the oxygen demand of the myocardium and all tissues of the body. For many years, digoxin has remained the only preparation enhancing the efficiency of myocardial performance. The detection of digoxin and ouabain in intact animals has initiated a search for other compounds with cardiotonic activity. The review summarizes current data on the effect exerted on the heart performance by endogenous compounds, from simple, such as NO and CO, to steroids, fatty acids, polypeptides, and proteins. Controversial questions and problems with the introduction of scientific achievements into clinical practice are discussed. The results obtained by the authors and their colleagues after many years of studies on the cardiotropic properties of serum lipoproteins are also reported. The experimentally established cardiotonic activity of apoprotein A-1, which is accompanied by a decrease in the relative consumption of oxygen, maybe of great interest.
Collapse
Affiliation(s)
- Arkady R Kolpakov
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| | - Roman A Knyazev
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| |
Collapse
|
34
|
de Figueiredo AC, de Carvalho JE. Do prolonged fasting periods influence the postprandial metabolic responses in turtles? What can Trachemys scripta elegans teach us about this? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:644-651. [PMID: 32996720 DOI: 10.1002/jez.2416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022]
Abstract
The postprandial period is characterized by a modification of the gastrointestinal activity after food intake, accompanied by an increase in metabolic rate, secretion of acids, and absorption of nutrients. For ectothermic vertebrates, those changes are particularly prominent given the relatively low metabolic cost and the low frequency of food uptake. However, prolonged fasting periods decrease energy reserves and may compromise the upregulation of costly processes, such as the increase in metabolic rate after resuming the meal intake. Assuming that the main source of energy needed to support such events is provided from the animal's own body reserves, our aim with this study is to test the hypothesis that the longer the period of fasting, the smaller the metabolic rate increase during the postprandial period, since lesser energy reserves trigger these increases. For this, we measured the oxygen consumption rates (V̇O2 ) of red-eared slider turtles, Trachemys scripta elegans, submitted to different periods of fasting (47 and 102 days), before and after the ingestion of meals equivalent to 5% of their body masses. Despite the longer fasting period, which led to a reduction of 10.77% in the body mass of the turtles, there were no differences between the two experimental groups regarding maximum V̇O2 values after food intake (V̇O2 peak), postprandial metabolic scope, mean time to V̇O2 peak, and postprandial duration. Results indicate that 102 fasting days does not compromise aerobic metabolic increase during postprandial period and does not impair digestive process of the turtles, even with a loss of body mass.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Programa de Pós-Graduação em Ecologia e Evolução, Laboratório de Ecologia, Zoologia e Fisiologia Comparada, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, campus Diadema, Diadema, São Paulo, Brazil
| | - José E de Carvalho
- Programa de Pós-Graduação em Ecologia e Evolução, Laboratório de Ecologia, Zoologia e Fisiologia Comparada, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, campus Diadema, Diadema, São Paulo, Brazil.,Departamento de Ecologia e Biologia Evolutiva, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, campus Diadema, Diadema, São Paulo, Brazil
| |
Collapse
|
35
|
Jensen B, Christoffels VM. Reptiles as a Model System to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037226. [PMID: 31712265 DOI: 10.1101/cshperspect.a037226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A chambered heart is common to all vertebrates, but reptiles show unparalleled variation in ventricular septation, ranging from almost absent in tuataras to full in crocodilians. Because mammals and birds evolved independently from reptile lineages, studies on reptile development may yield insight into the evolution and development of the full ventricular septum. Compared with reptiles, mammals and birds have evolved several other adaptations, including compact chamber walls and a specialized conduction system. These adaptations appear to have evolved from precursor structures that can be studied in present-day reptiles. The increase in the number of studies on reptile heart development has been greatly facilitated by sequencing of several genomes and the availability of good staging systems. Here, we place reptiles in their phylogenetic context with a focus on features that are primitive when compared with the homologous features of mammals. Further, an outline of major developmental events is given, and variation between reptile species is discussed.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC 1105AZ, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Stenvinkel P, Painer J, Johnson RJ, Natterson-Horowitz B. Biomimetics - Nature's roadmap to insights and solutions for burden of lifestyle diseases. J Intern Med 2020; 287:238-251. [PMID: 31639885 PMCID: PMC7035180 DOI: 10.1111/joim.12982] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are over 8 million species in this world that live in widely varying environments, from hot thermal fissures to cold arctic settings. These species have evolved over millions of years and vary markedly in how they have adapted to their environments. In the last decades, studies of how species have succeeded in surviving in different environments and with different resources have been recognized to provide not only insights into disease but also novel means for developing treatments. Here, we provide an overview of two related and overlapping approaches (biomimetics and zoobiquity), which are turning to the natural world for insights to better understand, treat and prevent human 'burden of lifestyle' pathologies from heart disease and cancer to degeneration and premature ageing. We suggest that expanding biomedical investigation beyond its decades old conventional practices to new approaches based on a broad awareness of the diversity of animal life and comparative physiology can accelerate innovations in health care under the motto 'Nature knows best'.
Collapse
Affiliation(s)
- P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - J Painer
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| | - R J Johnson
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - B Natterson-Horowitz
- Department of Human Evolutionary Biology, UCLA Division of Cardiology, Harvard University, Cambridge, MA, USA.,Evolutionary Medicine Program at UCLA, Los Angeles, CA, USA
| |
Collapse
|
37
|
Kovilakath A, Cowart LA. Sphingolipid Mediators of Myocardial Pathology. J Lipid Atheroscler 2020; 9:23-49. [PMID: 32821720 PMCID: PMC7379069 DOI: 10.12997/jla.2020.9.1.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathy is the leading cause of mortality worldwide. While the causes of cardiomyopathy continue to be elucidated, current evidence suggests that aberrant bioactive lipid signaling plays a crucial role as a component of cardiac pathophysiology. Sphingolipids have been implicated in the pathophysiology of cardiovascular disease, as they regulate numerous cellular processes that occur in primary and secondary cardiomyopathies. Experimental evidence gathered over the last few decades from both in vitro and in vivo model systems indicates that inhibitors of sphingolipid synthesis attenuate a variety of cardiomyopathic symptoms. In this review, we focus on various cardiomyopathies in which sphingolipids have been implicated and the potential therapeutic benefits that could be gained by targeting sphingolipid metabolism.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
38
|
Talman V, Teppo J, Pöhö P, Movahedi P, Vaikkinen A, Karhu ST, Trošt K, Suvitaival T, Heikkonen J, Pahikkala T, Kotiaho T, Kostiainen R, Varjosalo M, Ruskoaho H. Molecular Atlas of Postnatal Mouse Heart Development. J Am Heart Assoc 2019; 7:e010378. [PMID: 30371266 PMCID: PMC6474944 DOI: 10.1161/jaha.118.010378] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background The molecular mechanisms mediating postnatal loss of cardiac regeneration in mammals are not fully understood. We aimed to provide an integrated resource of mRNA, protein, and metabolite changes in the neonatal heart for identification of metabolism‐related mechanisms associated with cardiac regeneration. Methods and Results Mouse ventricular tissue samples taken on postnatal day 1 (P01), P04, P09, and P23 were analyzed with RNA sequencing and global proteomics and metabolomics. Gene ontology analysis, KEGG pathway analysis, and fuzzy c‐means clustering were used to identify up‐ or downregulated biological processes and metabolic pathways on all 3 levels, and Ingenuity pathway analysis (Qiagen) was used to identify upstream regulators. Differential expression was observed for 8547 mRNAs and for 1199 of 2285 quantified proteins. Furthermore, 151 metabolites with significant changes were identified. Differentially regulated metabolic pathways include branched chain amino acid degradation (upregulated at P23), fatty acid metabolism (upregulated at P04 and P09; downregulated at P23) as well as the HMGCS (HMG‐CoA [hydroxymethylglutaryl‐coenzyme A] synthase)–mediated mevalonate pathway and ketogenesis (transiently activated). Pharmacological inhibition of HMGCS in primary neonatal cardiomyocytes reduced the percentage of BrdU‐positive cardiomyocytes, providing evidence that the mevalonate and ketogenesis routes may participate in regulating the cardiomyocyte cell cycle. Conclusions This study is the first systems‐level resource combining data from genomewide transcriptomics with global quantitative proteomics and untargeted metabolomics analyses in the mouse heart throughout the early postnatal period. These integrated data of molecular changes associated with the loss of cardiac regeneration may open up new possibilities for the development of regenerative therapies.
Collapse
Affiliation(s)
- Virpi Talman
- 1 Drug Research Program and Division of Pharmacology and Pharmacotherapy Faculty of Pharmacy University of Helsinki Finland
| | - Jaakko Teppo
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland.,3 Institute of Biotechnology and HiLIFE Helsinki Institute of Life Science University of Helsinki Finland
| | - Päivi Pöhö
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland
| | - Parisa Movahedi
- 4 Department of Future Technologies Faculty of Mathematics and Natural Sciences University of Turku Finland
| | - Anu Vaikkinen
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland
| | - S Tuuli Karhu
- 1 Drug Research Program and Division of Pharmacology and Pharmacotherapy Faculty of Pharmacy University of Helsinki Finland
| | | | | | - Jukka Heikkonen
- 4 Department of Future Technologies Faculty of Mathematics and Natural Sciences University of Turku Finland
| | - Tapio Pahikkala
- 4 Department of Future Technologies Faculty of Mathematics and Natural Sciences University of Turku Finland
| | - Tapio Kotiaho
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland.,6 Department of Chemistry Faculty of Science University of Helsinki Finland
| | - Risto Kostiainen
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland
| | - Markku Varjosalo
- 3 Institute of Biotechnology and HiLIFE Helsinki Institute of Life Science University of Helsinki Finland
| | - Heikki Ruskoaho
- 1 Drug Research Program and Division of Pharmacology and Pharmacotherapy Faculty of Pharmacy University of Helsinki Finland
| |
Collapse
|
39
|
da Silva Vasconcelos E, Kalinin AL, Cipriano RC, Dos Santos Beserra S, Lopes AG, da Costa Leite CA, Monteiro DA. Effects of feeding and digestion on myocardial contractility and expression of calcium-handling proteins in Burmese pythons (Python molurus). Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110371. [PMID: 31676333 DOI: 10.1016/j.cbpb.2019.110371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
Pythons are important models of studies on postprandial metabolism because their physiological responses are exacerbated when digesting large prey. Prior studies of these animals have shown hypertrophy of the cardiac tissue 2 to 3 days after feeding, coinciding with the peak of the specific dynamic action (SDA), but the consequences of this remodeling in myocardial contractility have not been studied, which is the purpose of this work. Specimens of Python molurus were divided into two groups: a Digesting group (2 days after feeding, at the peak of SDA), and a Fasting group (28 days after feeding). When compared to the Fasting group, the Digesting group showed higher relative ventricular mass and calcium-handling protein expression such as sarcoplasmic reticulum Ca2+-ATPase (SERCA), phospholamban (PLB), and the Na+/Ca2+ exchanger (NCX). Digesting pythons also exhibited significant increases in the cardiac contraction force (Fc), rates of force development and relaxation, and cardiac pumping capacity. Therefore, the higher SERCA, PLB and NCX expression levels increased cytosolic Ca2+ transient amplitude, improving myofilament force. These changes are crucial to maintain cardiac output and a relatively high and continuous blood flow required by metabolic expenditure that occurs in postprandial animals.
Collapse
Affiliation(s)
- Eliton da Silva Vasconcelos
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Ana Lúcia Kalinin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Rafael Correa Cipriano
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | | | - André Guelli Lopes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | | | - Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil.
| |
Collapse
|
40
|
Liao Z, Li D, Chen Y, Li Y, Huang R, Zhu K, Chen H, Yuan Z, Zheng X, Zhao H, Pu Q, Qi X, Cai D. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. J Cell Mol Med 2019; 23:8328-8342. [PMID: 31612566 PMCID: PMC6850916 DOI: 10.1111/jcmm.14710] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/16/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Thus far, the cellular and molecular mechanisms related to early (especially within 24 hours after acute myocardial infarct (MI)) exercise‐mediated beneficial effects on MI have not yet been thoroughly established. In the present study, we demonstrated that acute MI rats that underwent early moderate exercise training beginning one day after MI showed no increase in mortality and displayed significant improvements in MI healing and ventricular remodelling, including an improvement in cardiac function, a decrease in infarct size, cardiomyocyte apoptosis, cardiac fibrosis and cardiomyocyte hypertrophy, and an increase in myocardial angiogenesis, left ventricular wall thickness and the number of cardiac telocytes in the border zone. Integrated miRNA‐mRNA profiling analysis performed by the ingenuity pathway analysis system revealed that the inhibition of the TGFB1 regulatory network, activation of leucocytes and migration of leucocytes into the infarct zone comprise the molecular mechanism underlying early moderate exercise‐mediated improvements in cardiac fibrosis and the pathological inflammatory response. The findings of the present study demonstrate that early moderate exercise training beginning one day after MI is safe and leads to significantly enhanced MI healing and ventricular remodelling. Understanding the mechanism behind the positive effects of this early training protocol will help us to further tailor suitable cardiac rehabilitation programmes for humans.
Collapse
Affiliation(s)
- Zhaofu Liao
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China.,Department of Developmental & Regenerative Biology, Jinan University Guangzhou, Guangzhou, China
| | - Dan Li
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China.,Department of Developmental & Regenerative Biology, Jinan University Guangzhou, Guangzhou, China
| | - Yilin Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China.,Department of Developmental & Regenerative Biology, Jinan University Guangzhou, Guangzhou, China
| | - Yunjian Li
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China.,Department of Developmental & Regenerative Biology, Jinan University Guangzhou, Guangzhou, China
| | - Ruijin Huang
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany.,Department of Anatomy and Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Kuikui Zhu
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China.,Department of Developmental & Regenerative Biology, Jinan University Guangzhou, Guangzhou, China
| | - Hongyi Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China.,Department of Developmental & Regenerative Biology, Jinan University Guangzhou, Guangzhou, China
| | - Ziqiang Yuan
- Department of Medical Oncology, Cancer Institute of New Jersey, Robert Wood Johnson of Medical School, New Brunswick, NJ, USA
| | - Xin Zheng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China.,Department of Developmental & Regenerative Biology, Jinan University Guangzhou, Guangzhou, China
| | - Hui Zhao
- Stem cell and Regeneration TRP, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Qin Pu
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China.,Department of Developmental & Regenerative Biology, Jinan University Guangzhou, Guangzhou, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology & Guangdong Province, Guangzhou, China.,Department of Developmental & Regenerative Biology, Jinan University Guangzhou, Guangzhou, China
| |
Collapse
|
41
|
Yang X, Rodriguez ML, Leonard A, Sun L, Fischer KA, Wang Y, Ritterhoff J, Zhao L, Kolwicz SC, Pabon L, Reinecke H, Sniadecki NJ, Tian R, Ruohola-Baker H, Xu H, Murry CE. Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2019; 13:657-668. [PMID: 31564645 PMCID: PMC6829750 DOI: 10.1016/j.stemcr.2019.08.013] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Although human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a novel platform for heart regeneration, disease modeling, and drug screening, their immaturity significantly hinders their application. A hallmark of postnatal cardiomyocyte maturation is the metabolic substrate switch from glucose to fatty acids. We hypothesized that fatty acid supplementation would enhance hPSC-CM maturation. Fatty acid treatment induces cardiomyocyte hypertrophy and significantly increases cardiomyocyte force production. The improvement in force generation is accompanied by enhanced calcium transient peak height and kinetics, and by increased action potential upstroke velocity and membrane capacitance. Fatty acids also enhance mitochondrial respiratory reserve capacity. RNA sequencing showed that fatty acid treatment upregulates genes involved in fatty acid β-oxidation and downregulates genes in lipid synthesis. Signal pathway analyses reveal that fatty acid treatment results in phosphorylation and activation of multiple intracellular kinases. Thus, fatty acids increase human cardiomyocyte hypertrophy, force generation, calcium dynamics, action potential upstroke velocity, and oxidative capacity. This enhanced maturation should facilitate hPSC-CM usage for cell therapy, disease modeling, and drug/toxicity screens.
Collapse
Affiliation(s)
- Xiulan Yang
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Marita L Rodriguez
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Lihua Sun
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Karin A Fischer
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98109, USA
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Limei Zhao
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Lil Pabon
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Haodong Xu
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA.
| |
Collapse
|
42
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
43
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
44
|
Deisl C, Fine M, Moe OW, Hilgemann DW. Hypertrophy of human embryonic stem cell-derived cardiomyocytes supported by positive feedback between Ca 2+ and diacylglycerol signals. Pflugers Arch 2019; 471:1143-1157. [PMID: 31250095 PMCID: PMC6614165 DOI: 10.1007/s00424-019-02293-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cell-derived cardiomyocytes develop pronounced hypertrophy in response to angiotensin-2, endothelin-1, and a selected mix of three fatty acids. All three of these responses are accompanied by increases in both basal cytoplasmic Ca2+ and diacylglycerol, quantified with the Ca2+ sensor Fluo-4 and a FRET-based diacylglycerol sensor expressed in these cardiomyocytes. The heart glycoside, ouabain (30 nM), and a recently developed inhibitor of diacylglycerol lipases, DO34 (1 μM), cause similar hypertrophy responses, and both responses are accompanied by equivalent increases of basal Ca2+ and diacylglycerol. These results together suggest that basal Ca2+ and diacylglycerol form a positive feedback signaling loop that promotes execution of cardiac growth programs in these human myocytes. Given that basal Ca2+ in myocytes depends strongly on the Na+ gradient, we also tested whether nanomolar ouabain concentrations might stimulate Na+/K+ pumps, as described by others, and thereby prevent hypertrophy. However, stimulatory effects of nanomolar ouabain (1.5 nM) were not verified on Na+/K+ pump currents in stem cell-derived myocytes, nor did nanomolar ouabain block hypertrophy induced by endothelin-1. Thus, low-dose ouabain is not a "protective" intervention under the conditions of these experiments in this human myocyte model. To summarize, the major aim of this study has been to characterize the progression of hypertrophy in human embryonic stem cell-derived cardiac myocytes in dependence on diacylglycerol and Na+ gradient changes, developing a case that positive feedback coupling between these mechanisms plays an important role in the initiation of hypertrophy programs.
Collapse
Affiliation(s)
- Christine Deisl
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| | - Michael Fine
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Orson W Moe
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Donald W Hilgemann
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| |
Collapse
|
45
|
Lind AL, Lai YYY, Mostovoy Y, Holloway AK, Iannucci A, Mak ACY, Fondi M, Orlandini V, Eckalbar WL, Milan M, Rovatsos M, Kichigin IG, Makunin AI, Johnson Pokorná M, Altmanová M, Trifonov VA, Schijlen E, Kratochvíl L, Fani R, Velenský P, Rehák I, Patarnello T, Jessop TS, Hicks JW, Ryder OA, Mendelson JR, Ciofi C, Kwok PY, Pollard KS, Bruneau BG. Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nat Ecol Evol 2019; 3:1241-1252. [PMID: 31358948 PMCID: PMC6668926 DOI: 10.1038/s41559-019-0945-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 01/24/2023]
Abstract
Monitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping. Comparing the genome of V. komodoensis with those of related species, we find evidence of positive selection in pathways related to energy metabolism, cardiovascular homoeostasis, and haemostasis. We also show species-specific expansions of a chemoreceptor gene family related to pheromone and kairomone sensing in V. komodoensis and other lizard lineages. Together, these evolutionary signatures of adaptation reveal the genetic underpinnings of the unique Komodo dragon sensory and cardiovascular systems, and suggest that selective pressure altered haemostasis genes to help Komodo dragons evade the anticoagulant effects of their own saliva. The Komodo dragon genome is an important resource for understanding the biology of monitor lizards and reptiles worldwide.
Collapse
Affiliation(s)
| | - Yvonne Y Y Lai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Yulia Mostovoy
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | | | - Alessio Iannucci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Angel C Y Mak
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Valerio Orlandini
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Walter L Eckalbar
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Michail Rovatsos
- Department of Ecology, Charles University, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, Czech Republic
| | - Ilya G Kichigin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Alex I Makunin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Martina Johnson Pokorná
- Department of Ecology, Charles University, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, Czech Republic
| | - Marie Altmanová
- Department of Ecology, Charles University, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, Czech Republic
| | | | - Elio Schijlen
- B.U. Bioscience, Wageningen University, Wageningen, The Netherlands
| | - Lukáš Kratochvíl
- Department of Ecology, Charles University, Prague, Czech Republic
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | | | - Ivan Rehák
- Prague Zoological Garden, Prague, Czech Republic
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Tim S Jessop
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, Australia
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, CA, USA
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo, Escondido, CA, USA
| | - Joseph R Mendelson
- Zoo Atlanta, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Claudio Ciofi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
- Institute for Computational Health Sciences, University of California, San Francisco, CA, USA.
- Chan-Zuckerberg BioHub, San Francisco, CA, USA.
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
46
|
Perry BW, Andrew AL, Mostafa Kamal AH, Card DC, Schield DR, Pasquesi GIM, Pellegrino MW, Mackessy SP, Chowdhury SM, Secor SM, Castoe TA. Multi-species comparisons of snakes identify coordinated signalling networks underlying post-feeding intestinal regeneration. Proc Biol Sci 2019; 286:20190910. [PMID: 31288694 DOI: 10.1098/rspb.2019.0910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several snake species that feed infrequently in nature have evolved the ability to massively upregulate intestinal form and function with each meal. While fasting, these snakes downregulate intestinal form and function, and upon feeding restore intestinal structure and function through major increases in cell growth and proliferation, metabolism and upregulation of digestive function. Previous studies have identified changes in gene expression that underlie this regenerative growth of the python intestine, but the unique features that differentiate this extreme regenerative growth from non-regenerative post-feeding responses exhibited by snakes that feed more frequently remain unclear. Here, we leveraged variation in regenerative capacity across three snake species-two distantly related lineages ( Crotalus and Python) that experience regenerative growth, and one ( Nerodia) that does not-to infer molecular mechanisms underlying intestinal regeneration using transcriptomic and proteomic approaches. Using a comparative approach, we identify a suite of growth, stress response and DNA damage response signalling pathways with inferred activity specifically in regenerating species, and propose a hypothesis model of interactivity between these pathways that may drive regenerative intestinal growth in snakes.
Collapse
Affiliation(s)
- Blair W Perry
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Audra L Andrew
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Abu Hena Mostafa Kamal
- 2 Department of Chemistry and Biochemistry, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Daren C Card
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Drew R Schield
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Giulia I M Pasquesi
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Mark W Pellegrino
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Stephen P Mackessy
- 3 School of Biological Sciences, University of Northern Colorado , 501 20th Street, Greeley, CO 80639 , USA
| | - Saiful M Chowdhury
- 2 Department of Chemistry and Biochemistry, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| | - Stephen M Secor
- 4 Department of Biological Sciences, University of Alabama , Box 870344, Tuscaloosa, AL 35487 , USA
| | - Todd A Castoe
- 1 Department of Biology, The University of Texas Arlington , 501 South Nedderman Drive, Arlington, TX 76019 , USA
| |
Collapse
|
47
|
Abstract
Physiologic and pathologic stressors promote changes in metabolism that are associated with cardiac remodeling. Metabolic alterations in the heart are a summation of responses of several organs and organ systems, which transform the milieu of circulating substrates and stimuli and prompt cardiac adaptation or remodeling. Nevertheless, the mechanisms by which metabolism causes cardiac remodeling remain unclear. Difficulties in delineating metabolic mechanisms of tissue remodeling are in part due to technical issues as well as to the lack of conceptual clarity with regard to causal entailment of metabolic processes. This review discusses some metabolic mechanisms by which stressors such as exercise, pregnancy, and pressure overload promote metabolism-mediated cardiac remodeling. Adopting conceptual frameworks based in relational biology and delineating hierarchies of metabolic causation could lend new insight into how metabolism coordinates cardiac remodeling.
Collapse
Affiliation(s)
- Bradford G Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
48
|
Ferreira R, Nogueira-Ferreira R, Trindade F, Vitorino R, Powers SK, Moreira-Gonçalves D. Sugar or fat: The metabolic choice of the trained heart. Metabolism 2018; 87:98-104. [PMID: 30077622 DOI: 10.1016/j.metabol.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
Abstract
Mammals respond to muscular exercise by increasing cardiac output to meet the increased demand for oxygen in the working muscles and it is well-established that regular bouts of exercise results in myocardial remodeling. Depending on exercise type, intensity and duration, these cardiac adaptations lead to changes in the energetic substrates required to sustain cardiac contractility. In contrast to the failing heart, fatty acids are the preferred substrate in the trained heart, though glucose metabolism is also enhanced to support oxidative phosphorylation. The participation of AMPK/eNOS and PPARα/PGC-1α pathways in the regulation of cardiac metabolism is well known but other players also contribute including sirtuins and integrins-mediated outside-in activation of FAK and other kinases. These regulatory players act by up-regulating fatty acid uptake, transport to mitochondria and oxidation, and glucose uptake via GLUT4. This exercise-induced increase in mitochondria metabolic flexibility is important to sustain the energetic demand associated with cardiomyocyte hypertrophy and hyperplasia promoted by IGF-1 and neuregulin-1-induced PI3K/Akt signaling. So, the timeless advice of Hippocrates "walking is the best medicine" seems to be justified by the promotion of mitochondrial health and, consequently, the beneficial metabolic remodeling of the heart.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Rita Nogueira-Ferreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Fábio Trindade
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, United States
| | - Daniel Moreira-Gonçalves
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal.
| |
Collapse
|
49
|
Abstract
The experimental use of lipid emulsion for local anesthetic toxicity was originally identified in 1998. It was then translated to clinical practice in 2006 and expanded to drugs other than local anesthetics in 2008. Our understanding of lipid resuscitation therapy has progressed considerably since the previous update from the American Society of Regional Anesthesia and Pain Medicine, and the scientific evidence has coalesced around specific discrete mechanisms. Intravenous lipid emulsion therapy provides a multimodal resuscitation benefit that includes both scavenging (eg, the lipid shuttle) and nonscavenging components. The intravascular lipid compartment scavenges drug from organs susceptible to toxicity and accelerates redistribution to organs where drug (eg, bupivacaine) is stored, detoxified, and later excreted. In addition, lipid exerts nonscavenging effects that include postconditioning (via activation of prosurvival kinases) along with cardiotonic and vasoconstrictive benefits. These effects protect tissue from ischemic damage and increase tissue perfusion during recovery from toxicity. Other mechanisms have diminished in favor based on lack of evidence; these include direct effects on channel currents (eg, calcium) and mass-effect overpowering a block in mitochondrial metabolism. In this narrative review, we discuss these proposed mechanisms and address questions left to answer in the field. Further work is needed, but the field has made considerable strides towards understanding the mechanisms.
Collapse
|
50
|
Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front Cardiovasc Med 2018; 5:127. [PMID: 30255026 PMCID: PMC6141631 DOI: 10.3389/fcvm.2018.00127] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Exercise has a myriad of physiological benefits that derive in part from its ability to improve cardiometabolic health. The periodic metabolic stress imposed by regular exercise appears fundamental in driving cardiovascular tissue adaptation. However, different types, intensities, or durations of exercise elicit different levels of metabolic stress and may promote distinct types of tissue remodeling. In this review, we discuss how exercise affects cardiac structure and function and how exercise-induced changes in metabolism regulate cardiac adaptation. Current evidence suggests that exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise may increase the risk for pathological cardiac remodeling or sudden cardiac death. An emerging theme underpinning acute as well as chronic cardiac adaptations to exercise is metabolic periodicity, which appears important for regulating mitochondrial quality and function, for stimulating metabolism-mediated exercise gene programs and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In addition, circulating metabolites liberated during exercise trigger physiological cardiac growth. Further understanding of how exercise-mediated changes in metabolism orchestrate cell signaling and gene expression could facilitate therapeutic strategies to maximize the benefits of exercise and improve cardiac health.
Collapse
Affiliation(s)
- Kyle Fulghum
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| | - Bradford G. Hill
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
| |
Collapse
|