1
|
Silvera MC, Prieto D. 1950s-1990s: The pioneering era of insect neuroscience in Uruguay. Neuroscience 2025; 568:265-272. [PMID: 39827938 DOI: 10.1016/j.neuroscience.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Insect research has significantly advanced neuroscience by addressing fundamental questions, with groundbreaking discoveries emerging from research carried out in Uruguay. Powered by technological advances, the field has seen milestones in ultrastructure, neuronal and synaptic structure, and complex behavioral findings. Key contributions include the first formal description of chemical synapses, the identification of synaptic vesicle origins in the endoplasmic reticulum, and pioneering work on eye induction and development. Uruguay's research has also provided critical insights into neural degeneration and repair mechanisms, the functional microanatomy of the visual pathway, and mechanoreception. This review highlights four decades of Uruguayan legacy in insect neuroscience, underscoring how a small, yet vibrant, community of researchers has embraced interdisciplinary collaborations and innovative methodologies. Additionally, this review addresses the evolving role of women in the field and the collaborative spirit that has propelled scientific discovery, marking a critical juncture in the development of insect neuroscience. Despite limited resources, Uruguay has played a pivotal role in advancing our understanding of brain organization, neuronal-glial interactions, and connectomics, making lasting contributions to both local and global neuroscience.
Collapse
Affiliation(s)
- María Constanza Silvera
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Daniel Prieto
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
2
|
Akbergenova Y, Matthias J, Littleton JT. Active zone maturation state controls synaptic output and release mode and is differentially regulated by neuronal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636302. [PMID: 39975213 PMCID: PMC11838553 DOI: 10.1101/2025.02.03.636302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Synapse formation requires the gradual accumulation of cytomatrix proteins and voltage-gated Ca2+ channels (VDCCs) at presynaptic active zones (AZs) to support neurotransmitter release. To correlate AZ maturation with synaptic output, quantal imaging was performed at serially imaged time-stamped Drosophila synapses. Evoked release strength correlated strongly with AZ age and accumulation of late AZ scaffolds, while immature sites lacking VDCC accumulation supported spontaneous release. To examine how neuronal activity regulates AZ maturation and protein accumulation, the effects of disruptions to SV fusion or action potential generation were analyzed. Decreasing neuronal activity reduced AZ seeding and caused hyperaccumulation of presynaptic material at existing AZs. Although enlarged AZs are also observed in rab3 mutants, activity reduction acted through an independent mechanism that required postsynaptic glutamate receptor-dependent signaling. Together, these data indicate AZ maturation state sets distinct presynaptic release modes and output strength, with neuronal activity shaping both AZ number and size across development.
Collapse
Affiliation(s)
- Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
3
|
Stavrovskaya I, Morin BK, Madamba S, Alexander C, Romano A, Alam S, Pavlov L, Mitaishvili E, Peixoto PM. Mitochondrial ROS modulate presynaptic plasticity in the drosophila neuromuscular junction. Redox Biol 2025; 79:103474. [PMID: 39721493 PMCID: PMC11732232 DOI: 10.1016/j.redox.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The elevated emission of reactive oxygen species (ROS) from presynaptic mitochondria is well-documented in several inflammatory and neurodegenerative diseases. However, the potential role of mitochondrial ROS in presynaptic function and plasticity remains largely understudied beyond the context of disease. Here, we investigated this potential ROS role in presynaptic function and short-term plasticity by combining optogenetics, whole cell electrophysiological recordings, and live confocal imaging using a well-established protocol for induction and measurement of synaptic potentiation in Drosophila melanogaster neuromuscular junctions (NMJ). Optogenetic induction of ROS emission from presynaptic motorneuron mitochondria expressing mitokiller red (mK) resulted in synaptic potentiation, evidenced by an increase in the frequency of spontaneous mini excitatory junction potentials. Notably, this effect was not observed in flies co-expressing catalase, a cytosolic hydrogen peroxide (H2O2) scavenging enzyme. Moreover, the increase in electrical activity did not coincide with synaptic structural changes. The absence of Wnt1/Wg release from synaptic boutons suggested involvement of alternative or non-canonical signaling pathway(s). However, in existing boutons we observed an increase in the active zone (AZ) marker Brp/Erc1, which serves as docking site for the neurotransmitter vesicle release pool. We propose the involvement of putative redox switches in AZ components as the molecular target of mitochondrial H2O2. These findings establish a novel framework for understanding the signaling role of mROS in presynaptic structural and functional plasticity, providing insights into redox-based mechanisms of neuronal communication.
Collapse
Affiliation(s)
- Irina Stavrovskaya
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | | | - Stephen Madamba
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | | | - Alexis Romano
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Samia Alam
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Lucas Pavlov
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Erna Mitaishvili
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Pablo M Peixoto
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA.
| |
Collapse
|
4
|
Meissner-Bernard C, Zenke F, Friedrich RW. Geometry and dynamics of representations in a precisely balanced memory network related to olfactory cortex. eLife 2025; 13:RP96303. [PMID: 39804831 PMCID: PMC11733691 DOI: 10.7554/elife.96303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that 'focused' activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual's experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.
Collapse
Affiliation(s)
| | - Friedemann Zenke
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
5
|
Lützkendorf J, Matkovic-Rachid T, Liu S, Götz T, Gao L, Turrel O, Maglione M, Grieger M, Putignano S, Ramesh N, Ghelani T, Neumann A, Gimber N, Schmoranzer J, Stawrakakis A, Brence B, Baum D, Ludwig K, Heine M, Mielke T, Liu F, Walter AM, Wahl MC, Sigrist SJ. Blobby is a synaptic active zone assembly protein required for memory in Drosophila. Nat Commun 2025; 16:271. [PMID: 39747038 PMCID: PMC11696761 DOI: 10.1038/s41467-024-55382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
At presynaptic active zones (AZs), scaffold proteins are critical for coordinating synaptic vesicle release and forming essential nanoarchitectures. However, regulatory principles steering AZ scaffold assembly, function, and plasticity remain insufficiently understood. We here identify an additional Drosophila AZ protein, "Blobby", essential for proper AZ nano-organization. Blobby biochemically associates with the ELKS family AZ scaffold protein Bruchpilot (BRP) and integrates into newly forming AZs. Loss of Blobby results in fewer AZs forming, ectopic AZ scaffold protein accumulations ("blobs") and disrupts nanoscale architecture of the BRP-AZ scaffold. Functionally, blobby mutants show diminished evoked synaptic currents due to reduced synaptic vesicle release probability and fewer functional release sites. Blobby is also present in adult brain synapses, and post-developmental knockdown of Blobby in the mushroom body impairs olfactory aversive memory consolidation. Thus, our analysis identifies an additional layer of AZ regulation critical for developmental AZ assembly but also for AZ-mediated plasticity controlling behavior.
Collapse
Affiliation(s)
- J Lützkendorf
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - T Matkovic-Rachid
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - S Liu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry, Berlin, Germany
| | - T Götz
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - L Gao
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - O Turrel
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - M Maglione
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, SupraFAB, Berlin, Germany
| | - M Grieger
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - S Putignano
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - N Ramesh
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - T Ghelani
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, Berlin, Germany
| | - A Neumann
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - N Gimber
- Charité- Universitätsmedizin, Advanced Medical Bioimaging Core Facility, Berlin, Germany
| | - J Schmoranzer
- Charité- Universitätsmedizin, Advanced Medical Bioimaging Core Facility, Berlin, Germany
| | - A Stawrakakis
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - B Brence
- Zuse Institute Berlin, Department of Visual and Data-Centric Computing, Berlin, Germany
| | - D Baum
- Zuse Institute Berlin, Department of Visual and Data-Centric Computing, Berlin, Germany
| | - Kai Ludwig
- Freie Universität Berlin, Institut für Chemie and Biochemie, Forschungszentrum für Elektronenmikroskopie, Berlin, Germany
| | - M Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - T Mielke
- Max Planck Institute for Molecular Genetics, Berlin, Microscopy and Cryo-Electron Microscopy Service Group, Berlin, Germany
| | - F Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, Berlin, Germany
| | - A M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, Berlin, Germany
- University of Copenhagen, Department of Neuroscience, Copenhagen, Denmark
| | - M C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry, Berlin, Germany
| | - S J Sigrist
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany.
- Charité Universitätsmedizin, NeuroCure Cluster of Excellence, Charitéplatz, Berlin, Germany.
| |
Collapse
|
6
|
Maglione M, Sigrist SJ. Imaging Synapse Ultrastructure and Organization with STED Microscopy. Methods Mol Biol 2025; 2910:135-144. [PMID: 40220098 DOI: 10.1007/978-1-0716-4446-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Determining the localization of proteins within a cell and their possible interactions is highly relevant to understand their functionality. Nevertheless, subcellular structures of interest in neurobiology, most importantly synapses with their pre- and postsynaptic compartments, are usually smaller than the resolution limit of conventional light microscopy. Indeed, diffraction of light limits to roughly half of the wavelength of light the resolution of a conventional light microscope. In this regard, super-resolution light microscopy (SRLM) techniques have emerged, achieving even more than ten times the resolution of conventional light microscopy, thus allowing to resolve subsynaptic structures also in situ. Importantly, stimulated emission depletion (STED) microscopy has been extensively used to image in situ the nanoscale organization of presynaptic compartments, such as the area of the presynaptic plasma membrane where synaptic vesicles fuse to release neurotransmitters, the so-called active zone. In this article, we outline a method to determine the localization of active zone scaffolding key players relative to voltage-gated calcium channels within the presynaptic active zone by time-gated STED (gSTED) microscopy in situ.
Collapse
Affiliation(s)
- Marta Maglione
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
- Institute for Chemistry and Biochemistry, SupraFAB, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology, Freie Universität Berlin, Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
7
|
Midorikawa M, Sakamoto H, Nakamura Y, Hirose K, Miyata M. Developmental refinement of the active zone nanotopography and axon wiring at the somatosensory thalamus. Cell Rep 2024; 43:114770. [PMID: 39321021 DOI: 10.1016/j.celrep.2024.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Functional refinement of neural circuits is a crucial developmental process in the brain. However, how synaptic maturation and axon wiring proceed cooperatively to establish reliable signal transmission is unclear. Here, we combined nanotopography of release machinery at the active zone (AZ), nanobiophysics of neurotransmitter release, and single-neuron reconstruction of axon arbors of lemniscal fibers (LFs) in the developing mouse somatosensory thalamus. With development, the cluster of Cav2.1 enlarges and translocates closer to vesicle release sites inside the bouton, and LFs drastically shrink their arbors and form larger boutons on the perisomatic region of target neurons. Experimentally constrained simulations show that the nanotopography of mature synapses enables not only rapid vesicular release but also reliable transmission following repetitive firing. Sensory deprivation impairs the developmental shift of molecular nanotopography and axon wiring. Thus, we uncovered the cooperative nanotopographical and morphological mechanisms underlying the developmental establishment of reliable synaptic transmission.
Collapse
Affiliation(s)
- Mitsuharu Midorikawa
- Division of Biofunction, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
8
|
Medeiros AT, Gratz SJ, Delgado A, Ritt JT, O'Connor-Giles KM. Ca 2+ channel and active zone protein abundance intersects with input-specific synapse organization to shape functional synaptic diversity. eLife 2024; 12:RP88412. [PMID: 39291956 PMCID: PMC11410372 DOI: 10.7554/elife.88412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ-3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.
Collapse
Affiliation(s)
- Audrey T Medeiros
- Neuroscience Graduate Training Program, Brown University, Providence, United States
| | - Scott J Gratz
- Department of Neuroscience, Brown University, Providence, United States
| | - Ambar Delgado
- Department of Neuroscience, Brown University, Providence, United States
| | - Jason T Ritt
- Department of Neuroscience, Brown University, Providence, United States
- Carney Institute for Brain Science, Brown University, Providence, United States
| | - Kate M O'Connor-Giles
- Neuroscience Graduate Training Program, Brown University, Providence, United States
- Department of Neuroscience, Brown University, Providence, United States
- Carney Institute for Brain Science, Brown University, Providence, United States
| |
Collapse
|
9
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Distinct active zone protein machineries mediate Ca 2+ channel clustering and vesicle priming at hippocampal synapses. Nat Neurosci 2024; 27:1680-1694. [PMID: 39160372 PMCID: PMC11682530 DOI: 10.1038/s41593-024-01720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Action potentials trigger neurotransmitter release at the presynaptic active zone with spatiotemporal precision. This is supported by protein machinery that mediates synaptic vesicle priming and clustering of CaV2 Ca2+ channels nearby. One model posits that scaffolding proteins directly tether vesicles to CaV2s; however, here we find that at mouse hippocampal synapses, CaV2 clustering and vesicle priming are executed by separate machineries. CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins but distinct interaction motifs independently execute these functions. In transfected cells, Liprin-α and RIM form co-assemblies that are separate from CaV2-organizing complexes. At synapses, Liprin-α1-Liprin-α4 knockout impairs vesicle priming but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering CaV2s. We conclude that active zones consist of distinct machineries to organize CaV2s and prime vesicles, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Jánosi B, Liewald JF, Seidenthal M, Yu SC, Umbach S, Redzovic J, Rentsch D, Alcantara IC, Bergs ACF, Schneider MW, Shao J, Gottschalk A. RIM and RIM-Binding Protein Localize Synaptic CaV2 Channels to Differentially Regulate Transmission in Neuronal Circuits. J Neurosci 2024; 44:e0535222024. [PMID: 38951038 PMCID: PMC11293454 DOI: 10.1523/jneurosci.0535-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 07/03/2024] Open
Abstract
At chemical synapses, voltage-gated Ca2+ channels (VGCCs) translate electrical signals into a trigger for synaptic vesicle (SV) fusion. VGCCs and the Ca2+ microdomains they elicit must be located precisely to primed SVs to evoke rapid transmitter release. Localization is mediated by Rab3-interacting molecule (RIM) and RIM-binding proteins, which interact and bind to the C terminus of the CaV2 VGCC α-subunit. We studied this machinery at the mixed cholinergic/GABAergic neuromuscular junction of Caenorhabditis elegans hermaphrodites. rimb-1 mutants had mild synaptic defects, through loosening the anchoring of UNC-2/CaV2 and delaying the onset of SV fusion. UNC-10/RIM deletion much more severely affected transmission. Although postsynaptic depolarization was reduced, rimb-1 mutants had increased cholinergic (but reduced GABAergic) transmission, to compensate for the delayed release. This did not occur when the excitation-inhibition (E-I) balance was altered by removing GABA transmission. Further analyses of GABA defective mutants and GABAA or GABAB receptor deletions, as well as cholinergic rescue of RIMB-1, emphasized that GABA neurons may be more affected than cholinergic neurons. Thus, RIMB-1 function differentially affects excitation-inhibition balance in the different motor neurons, and RIMB-1 thus may differentially regulate transmission within circuits. Untethering the UNC-2/CaV2 channel by removing its C-terminal PDZ ligand exacerbated the rimb-1 defects, and similar phenotypes resulted from acute degradation of the CaV2 β-subunit CCB-1. Therefore, untethering of the CaV2 complex is as severe as its elimination, yet it does not abolish transmission, likely due to compensation by CaV1. Thus, robustness and flexibility of synaptic transmission emerge from VGCC regulation.
Collapse
Affiliation(s)
- Barbara Jánosi
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Jana F Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Marius Seidenthal
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Szi-Chieh Yu
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Simon Umbach
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Jasmina Redzovic
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Dennis Rentsch
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Ivan C Alcantara
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Amelie C F Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Martin W Schneider
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Jiajie Shao
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt D-60438, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt D-60438, Germany
| |
Collapse
|
11
|
Vicidomini R, Choudhury SD, Han TH, Nguyen TH, Nguyen P, Opazo F, Serpe M. Versatile nanobody-based approach to image, track and reconstitute functional Neurexin-1 in vivo. Nat Commun 2024; 15:6068. [PMID: 39025931 PMCID: PMC11258300 DOI: 10.1038/s41467-024-50462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Neurexins are key adhesion proteins that coordinate extracellular and intracellular synaptic components. Nonetheless, the low abundance of these multidomain proteins has complicated any localization and structure-function studies. Here we combine an ALFA tag (AT)/nanobody (NbALFA) tool with classic genetics, cell biology and electrophysiology to examine the distribution and function of the Drosophila Nrx-1 in vivo. We generate full-length and ΔPDZ ALFA-tagged Nrx-1 variants and find that the PDZ binding motif is key to Nrx-1 surface expression. A PDZ binding motif provided in trans, via genetically encoded cytosolic NbALFA-PDZ chimera, fully restores the synaptic localization and function of NrxΔPDZ-AT. Using cytosolic NbALFA-mScarlet intrabody, we achieve compartment-specific detection of endogenous Nrx-1, track live Nrx-1 transport along the motor neuron axons, and demonstrate that Nrx-1 co-migrates with Rab2-positive vesicles. Our findings illustrate the versatility of the ALFA system and pave the way towards dissecting functional domains of complex proteins in vivo.
Collapse
Affiliation(s)
- Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Saumitra Dey Choudhury
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
- Centralized Core Research Facility-Microscopy, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Tho Huu Nguyen
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Peter Nguyen
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Felipe Opazo
- Department of Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| |
Collapse
|
12
|
Michalska JM, Lyudchik J, Velicky P, Štefaničková H, Watson JF, Cenameri A, Sommer C, Amberg N, Venturino A, Roessler K, Czech T, Höftberger R, Siegert S, Novarino G, Jonas P, Danzl JG. Imaging brain tissue architecture across millimeter to nanometer scales. Nat Biotechnol 2024; 42:1051-1064. [PMID: 37653226 PMCID: PMC11252008 DOI: 10.1038/s41587-023-01911-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanometer synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS uses fixation-compatible extracellular labeling and optical imaging, including stimulated emission depletion or expansion microscopy, to comprehensively delineate cellular structures. It enables three-dimensional reconstruction of single synapses and mapping of synaptic connectivity by identification and analysis of putative synaptic cleft regions. Applying CATS to the mouse hippocampal mossy fiber circuitry, we reconstructed and quantified the synaptic input and output structure of identified neurons. We furthermore demonstrate applicability to clinically derived human tissue samples, including formalin-fixed paraffin-embedded routine diagnostic specimens, for visualizing the cellular architecture of brain tissue in health and disease.
Collapse
Affiliation(s)
- Julia M Michalska
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Lyudchik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philipp Velicky
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Hana Štefaničková
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jake F Watson
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alban Cenameri
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Nicole Amberg
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Karl Roessler
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Sandra Siegert
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
13
|
DePew AT, Bruckner JJ, O'Connor-Giles KM, Mosca TJ. Neuronal LRP4 directs the development, maturation and cytoskeletal organization of Drosophila peripheral synapses. Development 2024; 151:dev202517. [PMID: 38738619 PMCID: PMC11190576 DOI: 10.1242/dev.202517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Synaptic development requires multiple signaling pathways to ensure successful connections. Transmembrane receptors are optimally positioned to connect the synapse and the rest of the neuron, often acting as synaptic organizers to synchronize downstream events. One such organizer, the LDL receptor-related protein LRP4, is a cell surface receptor that has been most well-studied postsynaptically at mammalian neuromuscular junctions. Recent work, however, identified emerging roles, but how LRP4 acts as a presynaptic organizer and the downstream mechanisms of LRP4 are not well understood. Here, we show that LRP4 functions presynaptically at Drosophila neuromuscular synapses, acting in motoneurons to instruct pre- and postsynaptic development. Loss of presynaptic LRP4 results in multiple defects, impairing active zone organization, synapse growth, physiological function, microtubule organization, synaptic ultrastructure and synapse maturation. We further demonstrate that LRP4 promotes most aspects of presynaptic development via a downstream SR-protein kinase, SRPK79D. These data demonstrate a function for presynaptic LRP4 as a peripheral synaptic organizer, highlight a downstream mechanism conserved with its CNS function in Drosophila, and underscore previously unappreciated but important developmental roles for LRP4 in cytoskeletal organization, synapse maturation and active zone organization.
Collapse
Affiliation(s)
- Alison T. DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph J. Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kate M. O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Medeiros AT, Gratz S, Delgado A, Ritt J, O’Connor-Giles KM. Ca 2+ channel and active zone protein abundance intersects with input-specific synapse organization to shape functional synaptic diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535290. [PMID: 37034654 PMCID: PMC10081318 DOI: 10.1101/2023.04.02.535290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ-3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.
Collapse
Affiliation(s)
- A. T. Medeiros
- Neuroscience Graduate Training Program, Brown University, Providence, RI
| | - S.J. Gratz
- Department of Neuroscience, Brown University, Providence, RI
| | - A. Delgado
- Department of Neuroscience, Brown University, Providence, RI
| | - J.T. Ritt
- Department of Neuroscience, Brown University, Providence, RI
- Carney Institute for Brain Science, Brown University, Providence, RI
| | - Kate M. O’Connor-Giles
- Neuroscience Graduate Training Program, Brown University, Providence, RI
- Department of Neuroscience, Brown University, Providence, RI
- Carney Institute for Brain Science, Brown University, Providence, RI
| |
Collapse
|
15
|
Nguyen TH, Vicidomini R, Choudhury SD, Han TH, Maric D, Brody T, Serpe M. scRNA-seq data from the larval Drosophila ventral cord provides a resource for studying motor systems function and development. Dev Cell 2024; 59:1210-1230.e9. [PMID: 38569548 PMCID: PMC11078614 DOI: 10.1016/j.devcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.
Collapse
Affiliation(s)
| | | | | | | | - Dragan Maric
- Flow and Imaging Cytometry Core, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
16
|
Turrel O, Gao L, Sigrist SJ. Presynaptic regulators in memory formation. Learn Mem 2024; 31:a054013. [PMID: 38862173 PMCID: PMC11199941 DOI: 10.1101/lm.054013.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
The intricate molecular and structural sequences guiding the formation and consolidation of memories within neuronal circuits remain largely elusive. In this study, we investigate the roles of two pivotal presynaptic regulators, the small GTPase Rab3, enriched at synaptic vesicles, and the cell adhesion protein Neurexin-1, in the formation of distinct memory phases within the Drosophila mushroom body Kenyon cells. Our findings suggest that both proteins play crucial roles in memory-supporting processes within the presynaptic terminal, operating within distinct plasticity modules. These modules likely encompass remodeling and maturation of existing active zones (AZs), as well as the formation of new AZs.
Collapse
Affiliation(s)
- Oriane Turrel
- Institute for Biology, Genetics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Lili Gao
- Institute for Biology, Genetics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology, Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Cluster of Excellence NeuroCure, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
17
|
Davis BA, Chen HY, Ye Z, Ostlund I, Tippani M, Das D, Sripathy SR, Wang Y, Martin JM, Shim G, Panchwagh NM, Moses RL, Farinelli F, Bohlen JF, Li M, Luikart BW, Jaffe AE, Maher BJ. TCF4 Mutations Disrupt Synaptic Function Through Dysregulation of RIMBP2 in Patient-Derived Cortical Neurons. Biol Psychiatry 2024; 95:662-675. [PMID: 37573005 PMCID: PMC10858293 DOI: 10.1016/j.biopsych.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Genetic variation in the TCF4 (transcription factor 4) gene is associated with risk for a variety of developmental and psychiatric conditions, which includes a syndromic form of autism spectrum disorder called Pitt-Hopkins syndrome (PTHS). TCF4 encodes an activity-dependent transcription factor that is highly expressed during cortical development and in animal models has been shown to regulate various aspects of neuronal development and function. However, our understanding of how disease-causing mutations in TCF4 confer pathophysiology in a human context is lacking. METHODS To model PTHS, we differentiated human cortical neurons from human induced pluripotent stem cells that were derived from patients with PTHS and neurotypical individuals. To identify pathophysiology and disease mechanisms, we assayed cortical neurons with whole-cell electrophysiology, Ca2+ imaging, multielectrode arrays, immunocytochemistry, and RNA sequencing. RESULTS Cortical neurons derived from patients with TCF4 mutations showed deficits in spontaneous synaptic transmission, network excitability, and homeostatic plasticity. Transcriptomic analysis indicated that these phenotypes resulted in part from altered expression of genes involved in presynaptic neurotransmission and identified the presynaptic binding protein RIMBP2 as the most differentially expressed gene in PTHS neurons. Remarkably, TCF4-dependent deficits in spontaneous synaptic transmission and network excitability were rescued by increasing RIMBP2 expression in presynaptic neurons. CONCLUSIONS Taken together, these results identify TCF4 as a critical transcriptional regulator of human synaptic development and plasticity and specifically identifies dysregulation of presynaptic function as an early pathophysiology in PTHS.
Collapse
Affiliation(s)
- Brittany A Davis
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Huei-Ying Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Zengyou Ye
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Isaac Ostlund
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Debamitra Das
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Srinidhi Rao Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Yanhong Wang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Jacqueline M Martin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Neel M Panchwagh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Rebecca L Moses
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Federica Farinelli
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Joseph F Bohlen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Meijie Li
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
18
|
Miyano R, Sakamoto H, Hirose K, Sakaba T. RIM-BP2 regulates Ca 2+ channel abundance and neurotransmitter release at hippocampal mossy fiber terminals. eLife 2024; 12:RP90799. [PMID: 38329474 PMCID: PMC10945523 DOI: 10.7554/elife.90799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Synaptic vesicles dock and fuse at the presynaptic active zone (AZ), the specialized site for transmitter release. AZ proteins play multiple roles such as recruitment of Ca2+ channels as well as synaptic vesicle docking, priming, and fusion. However, the precise role of each AZ protein type remains unknown. In order to dissect the role of RIM-BP2 at mammalian cortical synapses having low release probability, we applied direct electrophysiological recording and super-resolution imaging to hippocampal mossy fiber terminals of RIM-BP2 knockout (KO) mice. By using direct presynaptic recording, we found the reduced Ca2+ currents. The measurements of excitatory postsynaptic currents (EPSCs) and presynaptic capacitance suggested that the initial release probability was lowered because of the reduced Ca2+ influx and impaired fusion competence in RIM-BP2 KO. Nevertheless, larger Ca2+ influx restored release partially. Consistent with presynaptic recording, STED microscopy suggested less abundance of P/Q-type Ca2+ channels at AZs deficient in RIM-BP2. Our results suggest that the RIM-BP2 regulates both Ca2+ channel abundance and transmitter release at mossy fiber synapses.
Collapse
Affiliation(s)
- Rinako Miyano
- Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of TokyoBunkyo-kuJapan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of TokyoBunkyo-kuJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoBunkyo-kuJapan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| |
Collapse
|
19
|
Dunn TW, Fan X, Lee J, Smith P, Gandhi R, Sossin WS. The role of specific isoforms of Ca V2 and the common C-terminal of Ca V2 in calcium channel function in sensory neurons of Aplysia. Sci Rep 2023; 13:20216. [PMID: 37980443 PMCID: PMC10657410 DOI: 10.1038/s41598-023-47573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
The presynaptic release apparatus can be specialized to enable specific synaptic functions. Habituation is the diminishing of a physiological response to a frequently repeated stimulus and in Aplysia, habituation to touch is mediated by a decrease in transmitter release from the sensory neurons that respond to touch even after modest rates of action potential firing. This synaptic depression is not common among Aplysia synaptic connections suggesting the presence of a release apparatus specialized for this depression. We found that specific splice forms of ApCaV2, the calcium channel required for transmitter release, are preferentially used in sensory neurons, consistent with a specialized release apparatus. However, we were not able to find a specific ApCaV2 splice uniquely required for synaptic depression. The C-terminus of ApCaV2 alpha1 subunit retains conserved binding to Aplysia rab-3 interacting molecule (ApRIM) and ApRIM-binding protein (ApRBP) and the C-terminus is required for full synaptic expression of ApCaV2. We also identified a splice form of ApRIM that did not interact with the ApCav2 alpha 1 subunit, but it was not preferentially used in sensory neurons.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Xiaotang Fan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jiwon Lee
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Petranea Smith
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Rushali Gandhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
20
|
Jetti SK, Crane AB, Akbergenova Y, Aponte-Santiago NA, Cunningham KL, Whittaker CA, Littleton JT. Molecular logic of synaptic diversity between Drosophila tonic and phasic motoneurons. Neuron 2023; 111:3554-3569.e7. [PMID: 37611584 DOI: 10.1016/j.neuron.2023.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Although neuronal subtypes display unique synaptic organization and function, the underlying transcriptional differences that establish these features are poorly understood. To identify molecular pathways that contribute to synaptic diversity, single-neuron Patch-seq RNA profiling was performed on Drosophila tonic and phasic glutamatergic motoneurons. Tonic motoneurons form weaker facilitating synapses onto single muscles, while phasic motoneurons form stronger depressing synapses onto multiple muscles. Super-resolution microscopy and in vivo imaging demonstrated that synaptic active zones in phasic motoneurons are more compact and display enhanced Ca2+ influx compared with their tonic counterparts. Genetic analysis identified unique synaptic properties that mapped onto gene expression differences for several cellular pathways, including distinct signaling ligands, post-translational modifications, and intracellular Ca2+ buffers. These findings provide insights into how unique transcriptomes drive functional and morphological differences between neuronal subtypes.
Collapse
Affiliation(s)
- Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Andrés B Crane
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
DePew AT, Bruckner JJ, O’Connor-Giles KM, Mosca TJ. Neuronal LRP4 directs the development, maturation, and cytoskeletal organization of peripheral synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.564481. [PMID: 37961323 PMCID: PMC10635100 DOI: 10.1101/2023.11.03.564481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synapse development requires multiple signaling pathways to accomplish the myriad of steps needed to ensure a successful connection. Transmembrane receptors on the cell surface are optimally positioned to facilitate communication between the synapse and the rest of the neuron and often function as synaptic organizers to synchronize downstream signaling events. One such organizer, the LDL receptor-related protein LRP4, is a cell surface receptor most well-studied postsynaptically at mammalian neuromuscular junctions. Recent work, however, has identified emerging roles for LRP4 as a presynaptic molecule, but how LRP4 acts as a presynaptic organizer, what roles LRP4 plays in organizing presynaptic biology, and the downstream mechanisms of LRP4 are not well understood. Here we show that LRP4 functions presynaptically at Drosophila neuromuscular synapses, acting in motor neurons to instruct multiple aspects of pre- and postsynaptic development. Loss of presynaptic LRP4 results in a range of developmental defects, impairing active zone organization, synapse growth, physiological function, microtubule organization, synaptic ultrastructure, and synapse maturation. We further demonstrate that LRP4 promotes most aspects of presynaptic development via a downstream SR-protein kinase, SRPK79D. SRPK79D overexpression suppresses synaptic defects associated with loss of lrp4. These data demonstrate a function for LRP4 as a peripheral synaptic organizer acting presynaptically, highlight a downstream mechanism conserved with its CNS function, and indicate previously unappreciated roles for LRP4 in cytoskeletal organization, synapse maturation, and active zone organization, underscoring its developmental importance.
Collapse
Affiliation(s)
- Alison T. DePew
- Dept. of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Joseph J. Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Timothy J. Mosca
- Dept. of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Lead Contact
| |
Collapse
|
22
|
Aimino MA, Humenik J, Parisi MJ, Duhart JC, Mosca TJ. SynLight: a bicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system. G3 (BETHESDA, MD.) 2023; 13:jkad221. [PMID: 37757863 PMCID: PMC10627267 DOI: 10.1093/g3journal/jkad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short-mStraw and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed the correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof of principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that the synaptic puncta number labeled by SynLight was comparable to the endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.
Collapse
Affiliation(s)
- Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Jesse Humenik
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Molecular definition of distinct active zone protein machineries for Ca 2+ channel clustering and synaptic vesicle priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564439. [PMID: 37961089 PMCID: PMC10634917 DOI: 10.1101/2023.10.27.564439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Action potentials trigger neurotransmitter release with minimal delay. Active zones mediate this temporal precision by co-organizing primed vesicles with CaV2 Ca2+ channels. The presumed model is that scaffolding proteins directly tether primed vesicles to CaV2s. We find that CaV2 clustering and vesicle priming are executed by separate machineries. At hippocampal synapses, CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins, but distinct interaction motifs independently execute these functions. In heterologous cells, Liprin-α and RIM from co-assemblies that are separate from CaV2-organizing complexes upon co-transfection. At synapses, Liprin-α1-4 knockout impairs vesicle priming, but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering of CaV2s. We conclude that active zones consist of distinct complexes to organize CaV2s and vesicle priming, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R. Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | |
Collapse
|
24
|
Raposo M, Hübener-Schmid J, Ferreira AF, Vieira Melo AR, Vasconcelos J, Pires P, Kay T, Garcia-Moreno H, Giunti P, Santana MM, Pereira de Almeida L, Infante J, van de Warrenburg BP, de Vries JJ, Faber J, Klockgether T, Casadei N, Admard J, Schöls L, Riess O, Lima M. Blood transcriptome sequencing identifies biomarkers able to track disease stages in spinocerebellar ataxia type 3. Brain 2023; 146:4132-4143. [PMID: 37071051 DOI: 10.1093/brain/awad128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Transcriptional dysregulation has been described in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), an autosomal dominant ataxia caused by a polyglutamine expansion in the ataxin-3 protein. As ataxin-3 is ubiquitously expressed, transcriptional alterations in blood may reflect early changes that start before clinical onset and might serve as peripheral biomarkers in clinical and research settings. Our goal was to describe enriched pathways and report dysregulated genes, which can track disease onset, severity or progression in carriers of the ATXN3 mutation (pre-ataxic subjects and patients). Global dysregulation patterns were identified by RNA sequencing of blood samples from 40 carriers of ATXN3 mutation and 20 controls and further compared with transcriptomic data from post-mortem cerebellum samples of MJD patients and controls. Ten genes-ABCA1, CEP72, PTGDS, SAFB2, SFSWAP, CCDC88C, SH2B1, LTBP4, MEG3 and TSPOAP1-whose expression in blood was altered in the pre-ataxic stage and simultaneously, correlated with ataxia severity in the overt disease stage, were analysed by quantitative real-time PCR in blood samples from an independent set of 170 SCA3/MJD subjects and 57 controls. Pathway enrichment analysis indicated the Gαi signalling and the oestrogen receptor signalling to be similarly affected in blood and cerebellum. SAFB2, SFSWAP and LTBP4 were consistently dysregulated in pre-ataxic subjects compared to controls, displaying a combined discriminatory ability of 79%. In patients, ataxia severity was associated with higher levels of MEG3 and TSPOAP1. We propose expression levels of SAFB2, SFSWAP and LTBP4 as well as MEG3 and TSPOAP1 as stratification markers of SCA3/MJD progression, deserving further validation in longitudinal studies and in independent cohorts.
Collapse
Affiliation(s)
- Mafalda Raposo
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72072 Tübingen, Germany
| | - Ana F Ferreira
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - João Vasconcelos
- Serviço de Neurologia, Hospital do Divino Espírito Santo, 9500-370 Ponta Delgada, Portugal
| | - Paula Pires
- Serviço de Neurologia, Hospital do Santo Espírito da Ilha Terceira, 9700-049 Angra do Heroísmo, Portugal
| | - Teresa Kay
- Serviço de Genética Clínica, Hospital D. Estefânia, 1169-045 Lisboa, Portugal
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Magda M Santana
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3000-075, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3000-075, Portugal
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Bart P van de Warrenburg
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, 6525 EN Nijmegen, The Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
| | - Jennifer Faber
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- NGS Competence Center Tübingen, 72016 Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- NGS Competence Center Tübingen, 72016 Tübingen, Germany
| | - Ludger Schöls
- Department for Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, 72016 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72016 Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72072 Tübingen, Germany
- NGS Competence Center Tübingen, 72016 Tübingen, Germany
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| |
Collapse
|
25
|
Aimino MA, Humenik J, Parisi MJ, Duhart JC, Mosca TJ. SynLight: a dicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549367. [PMID: 37502901 PMCID: PMC10370149 DOI: 10.1101/2023.07.17.549367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement behaviors and stimulus processing. The immense number and variety of neurons within the nervous system makes discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila , Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via expression of two independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Ensuring adequate expression of each transgene is essential to enable more complex experiments; as such, work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof-of-principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that synaptic puncta number labeled by SynLight was comparable to endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.
Collapse
Affiliation(s)
- Michael A. Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Jesse Humenik
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| |
Collapse
|
26
|
He K, Han Y, Li X, Hernandez RX, Riboul DV, Feghhi T, Justs KA, Mahneva O, Perry S, Macleod GT, Dickman D. Physiologic and Nanoscale Distinctions Define Glutamatergic Synapses in Tonic vs Phasic Neurons. J Neurosci 2023; 43:4598-4611. [PMID: 37221096 PMCID: PMC10286941 DOI: 10.1523/jneurosci.0046-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Neurons exhibit a striking degree of functional diversity, each one tuned to the needs of the circuitry in which it is embedded. A fundamental functional dichotomy occurs in activity patterns, with some neurons firing at a relatively constant "tonic" rate, while others fire in bursts, a "phasic" pattern. Synapses formed by tonic versus phasic neurons are also functionally differentiated, yet the bases of their distinctive properties remain enigmatic. A major challenge toward illuminating the synaptic differences between tonic and phasic neurons is the difficulty in isolating their physiological properties. At the Drosophila neuromuscular junction, most muscle fibers are coinnervated by two motor neurons: the tonic "MN-Ib" and phasic "MN-Is." Here, we used selective expression of a newly developed botulinum neurotoxin transgene to silence tonic or phasic motor neurons in Drosophila larvae of either sex. This approach highlighted major differences in their neurotransmitter release properties, including probability, short-term plasticity, and vesicle pools. Furthermore, Ca2+ imaging demonstrated ∼2-fold greater Ca2+ influx at phasic neuron release sites relative to tonic, along with an enhanced synaptic vesicle coupling. Finally, confocal and super-resolution imaging revealed that phasic neuron release sites are organized in a more compact arrangement, with enhanced stoichiometry of voltage-gated Ca2+ channels relative to other active zone scaffolds. These data suggest that distinctions in active zone nano-architecture and Ca2+ influx collaborate to differentially tune glutamate release at tonic versus phasic synaptic subtypes.SIGNIFICANCE STATEMENT "Tonic" and "phasic" neuronal subtypes, based on differential firing properties, are common across many nervous systems. Using a recently developed approach to selectively silence transmission from one of these two neurons, we reveal specialized synaptic functional and structural properties that distinguish these specialized neurons. This study provides important insights into how input-specific synaptic diversity is achieved, which could have implications for neurologic disorders that involve changes in synaptic function.
Collapse
Affiliation(s)
- Kaikai He
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Roberto X Hernandez
- Integrative Biology and Neuroscience Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
- International Max Planck Research School for Brain and Behavior, Jupiter, Florida 33458
| | - Danielle V Riboul
- Integrative Biology Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Touhid Feghhi
- Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431
| | - Karlis A Justs
- Integrative Biology and Neuroscience Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Olena Mahneva
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
| | - Gregory T Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, Florida 33458
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
27
|
Fukaya R, Hirai H, Sakamoto H, Hashimotodani Y, Hirose K, Sakaba T. Increased vesicle fusion competence underlies long-term potentiation at hippocampal mossy fiber synapses. SCIENCE ADVANCES 2023; 9:eadd3616. [PMID: 36812326 PMCID: PMC9946361 DOI: 10.1126/sciadv.add3616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Presynaptic long-term potentiation (LTP) is thought to play an important role in learning and memory. However, the underlying mechanism remains elusive because of the difficulty of direct recording during LTP. Hippocampal mossy fiber synapses exhibit pronounced LTP of transmitter release after tetanic stimulation and have been used as a model of presynaptic LTP. Here, we induced LTP by optogenetic tools and applied direct presynaptic patch-clamp recordings. The action potential waveform and evoked presynaptic Ca2+ currents remained unchanged after LTP induction. Membrane capacitance measurements suggested higher release probability of synaptic vesicles without changing the number of release-ready vesicles after LTP induction. Synaptic vesicle replenishment was also enhanced. Furthermore, stimulated emission depletion microscopy suggested an increase in the numbers of Munc13-1 and RIM1 molecules within active zones. We propose that dynamic changes in the active zone components may be relevant for the increased fusion competence and synaptic vesicle replenishment during LTP.
Collapse
Affiliation(s)
- Ryota Fukaya
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
- Institute of Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Hashimotodani
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
28
|
Ghelani T, Escher M, Thomas U, Esch K, Lützkendorf J, Depner H, Maglione M, Parutto P, Gratz S, Matkovic-Rachid T, Ryglewski S, Walter AM, Holcman D, O‘Connor Giles K, Heine M, Sigrist SJ. Interactive nanocluster compaction of the ELKS scaffold and Cacophony Ca 2+ channels drives sustained active zone potentiation. SCIENCE ADVANCES 2023; 9:eade7804. [PMID: 36800417 PMCID: PMC9937578 DOI: 10.1126/sciadv.ade7804] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/17/2023] [Indexed: 06/01/2023]
Abstract
At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.
Collapse
Affiliation(s)
- Tina Ghelani
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Marc Escher
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Ulrich Thomas
- Department of Cellular Neurobiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Klara Esch
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Janine Lützkendorf
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Harald Depner
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Marta Maglione
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
- Institute for Chemistry and Biochemistry, SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, 14195 Berlin, Germany
| | - Pierre Parutto
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Scott Gratz
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Tanja Matkovic-Rachid
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander M. Walter
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - David Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Kate O‘Connor Giles
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Stephan J. Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
29
|
Arizono M, Idziak A, Quici F, Nägerl UV. Getting sharper: the brain under the spotlight of super-resolution microscopy. Trends Cell Biol 2023; 33:148-161. [PMID: 35906123 DOI: 10.1016/j.tcb.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023]
Abstract
Brain cells such as neurons and astrocytes exhibit an extremely elaborate morphology, and their functional specializations like synapses and glial processes often fall below the resolution limit of conventional light microscopy. This is a huge obstacle for neurobiologists because the nanoarchitecture critically shapes fundamental functions like synaptic transmission and Ca2+ signaling. Super-resolution microscopy can overcome this problem, offering the chance to visualize the structural and molecular organization of brain cells in a living and dynamic tissue context, unlike traditional methods like electron microscopy or atomic force microscopy. This review covers the basic principles of the main super-resolution microscopy techniques in use today and explains how their specific strengths can illuminate the nanoscale mechanisms that govern brain physiology.
Collapse
Affiliation(s)
- Misa Arizono
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Agata Idziak
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France
| | - Federica Quici
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France.
| |
Collapse
|
30
|
Davis BA, Chen HY, Ye Z, Ostlund I, Tippani M, Das D, Sripathy SR, Wang Y, Martin JM, Shim G, Panchwagh NM, Moses RL, Farinelli F, Bohlen JF, Li M, Luikart BW, Jaffe AE, Maher BJ. TCF4 mutations disrupt synaptic function through dysregulation of RIMBP2 in patient-derived cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524788. [PMID: 36712024 PMCID: PMC9882330 DOI: 10.1101/2023.01.19.524788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genetic variation in the transcription factor 4 ( TCF4) gene is associated with risk for a variety of developmental and psychiatric conditions, which includes a syndromic form of ASD called Pitt Hopkins Syndrome (PTHS). TCF4 encodes an activity-dependent transcription factor that is highly expressed during cortical development and in animal models is shown to regulate various aspects of neuronal development and function. However, our understanding of how disease-causing mutations in TCF4 confer pathophysiology in a human context is lacking. Here we show that cortical neurons derived from patients with TCF4 mutations have deficits in spontaneous synaptic transmission, network excitability and homeostatic plasticity. Transcriptomic analysis indicates these phenotypes result from altered expression of genes involved in presynaptic neurotransmission and identifies the presynaptic binding protein, RIMBP2 as the most differentially expressed gene in PTHS neurons. Remarkably, TCF4-dependent deficits in spontaneous synaptic transmission and network excitability were rescued by increasing RIMBP2 expression in presynaptic neurons. Together, these results identify TCF4 as a critical transcriptional regulator of human synaptic development and plasticity and specifically identifies dysregulation of presynaptic function as an early pathophysiology in PTHS.
Collapse
Affiliation(s)
- Brittany A. Davis
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Huei-Ying Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Zengyou Ye
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Isaac Ostlund
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Debamitra Das
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Srinidhi Rao Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Jacqueline M. Martin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Neel M. Panchwagh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Rebecca L. Moses
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Federica Farinelli
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Joseph F. Bohlen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Meijie Li
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Brady J. Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Jetti SK, Crane AB, Akbergenova Y, Aponte-Santiago NA, Cunningham KL, Whittaker CA, Littleton JT. Molecular Logic of Synaptic Diversity Between Drosophila Tonic and Phasic Motoneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524447. [PMID: 36711745 PMCID: PMC9882338 DOI: 10.1101/2023.01.17.524447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although neuronal subtypes display unique synaptic organization and function, the underlying transcriptional differences that establish these features is poorly understood. To identify molecular pathways that contribute to synaptic diversity, single neuron PatchSeq RNA profiling was performed on Drosophila tonic and phasic glutamatergic motoneurons. Tonic motoneurons form weaker facilitating synapses onto single muscles, while phasic motoneurons form stronger depressing synapses onto multiple muscles. Super-resolution microscopy and in vivo imaging demonstrated synaptic active zones in phasic motoneurons are more compact and display enhanced Ca 2+ influx compared to their tonic counterparts. Genetic analysis identified unique synaptic properties that mapped onto gene expression differences for several cellular pathways, including distinct signaling ligands, post-translational modifications and intracellular Ca 2+ buffers. These findings provide insights into how unique transcriptomes drive functional and morphological differences between neuronal subtypes.
Collapse
Affiliation(s)
- Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Andrés B Crane
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
32
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
33
|
Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs. J Neurosci 2023; 43:28-55. [PMID: 36446587 PMCID: PMC9838713 DOI: 10.1523/jneurosci.0884-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Developing neurons must meet core molecular, cellular, and temporal requirements to ensure the correct formation of synapses, resulting in functional circuits. However, because of the vast diversity in neuronal class and function, it is unclear whether or not all neurons use the same organizational mechanisms to form synaptic connections and achieve functional and morphologic maturation. Moreover, it remains unknown whether neurons united in a common goal and comprising the same sensory circuit develop on similar timescales and use identical molecular approaches to ensure the formation of the correct number of synapses. To begin to answer these questions, we took advantage of the Drosophila antennal lobe (AL), a model olfactory circuit with remarkable genetic access and synapse-level resolution. Using tissue-specific genetic labeling of active zones, we performed a quantitative analysis of synapse formation in multiple classes of neurons of both sexes throughout development and adulthood. We found that olfactory receptor neurons (ORNs), projection neurons (PNs), and local interneurons (LNs) each have unique time courses of synaptic development, addition, and refinement, demonstrating that each class follows a distinct developmental program. This raised the possibility that these classes may also have distinct molecular requirements for synapse formation. We genetically altered neuronal activity in each neuronal subtype and observed differing effects on synapse number based on the neuronal class examined. Silencing neuronal activity in ORNs, PNs, and LNs impaired synaptic development but only in ORNs did enhancing neuronal activity influence synapse formation. ORNs and LNs demonstrated similar impairment of synaptic development with enhanced activity of a master kinase, GSK-3β, suggesting that neuronal activity and GSK-3β kinase activity function in a common pathway. ORNs also, however, demonstrated impaired synaptic development with GSK-3β loss-of-function, suggesting additional activity-independent roles in development. Ultimately, our results suggest that the requirements for synaptic development are not uniform across all neuronal classes with considerable diversity existing in both their developmental time frames and molecular requirements. These findings provide novel insights into the mechanisms of synaptic development and lay the foundation for future work determining their underlying etiologies.SIGNIFICANCE STATEMENT Distinct olfactory neuron classes in Drosophila develop a mature synaptic complement over unique timelines and using distinct activity-dependent and molecular programs, despite having the same generalized goal of olfactory sensation.
Collapse
|
34
|
Zhang W, Jiang HH, Luo F. Diverse organization of voltage-gated calcium channels at presynaptic active zones. Front Synaptic Neurosci 2022; 14:1023256. [PMID: 36544543 PMCID: PMC9760684 DOI: 10.3389/fnsyn.2022.1023256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Synapses are highly organized but are also highly diverse in their organization and properties to allow for optimizing the computing power of brain circuits. Along these lines, voltage-gated calcium (CaV) channels at the presynaptic active zone are heterogeneously organized, which creates a variety of calcium dynamics profiles that can shape neurotransmitter release properties of individual synapses. Extensive studies have revealed striking diversity in the subtype, number, and distribution of CaV channels, as well as the nanoscale topographic relationships to docked synaptic vesicles. Further, multi-protein complexes including RIMs, RIM-binding proteins, CAST/ELKS, and neurexins are required for coordinating the diverse organization of CaV channels at the presynaptic active zone. In this review, we highlight major advances in the studies of the functional organization of presynaptic CaV channels and discuss their physiological implications for synaptic transmission and short-term plasticity.
Collapse
Affiliation(s)
- Weijia Zhang
- Guangzhou Laboratory, Guangzhou, China,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - He-Hai Jiang
- Guangzhou Laboratory, Guangzhou, China,Bioland Laboratory, Guangzhou, China
| | - Fujun Luo
- Guangzhou Laboratory, Guangzhou, China,Bioland Laboratory, Guangzhou, China,*Correspondence: Fujun Luo
| |
Collapse
|
35
|
Turrel O, Ramesh N, Escher MJF, Pooryasin A, Sigrist SJ. Transient active zone remodeling in the Drosophila mushroom body supports memory. Curr Biol 2022; 32:4900-4913.e4. [PMID: 36327980 DOI: 10.1016/j.cub.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/15/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
Elucidating how the distinct components of synaptic plasticity dynamically orchestrate the distinct stages of memory acquisition and maintenance within neuronal networks remains a major challenge. Specifically, plasticity processes tuning the functional and also structural state of presynaptic active zone (AZ) release sites are widely observed in vertebrates and invertebrates, but their behavioral relevance remains mostly unclear. We here provide evidence that a transient upregulation of presynaptic AZ release site proteins supports aversive olfactory mid-term memory in the Drosophila mushroom body (MB). Upon paired aversive olfactory conditioning, AZ protein levels (ELKS-family BRP/(m)unc13-family release factor Unc13A) increased for a few hours with MB-lobe-specific dynamics. Kenyon cell (KC, intrinsic MB neurons)-specific knockdown (KD) of BRP did not affect aversive olfactory short-term memory (STM) but strongly suppressed aversive mid-term memory (MTM). Different proteins crucial for the transport of AZ biosynthetic precursors (transport adaptor Aplip1/Jip-1; kinesin motor IMAC/Unc104; small GTPase Arl8) were also specifically required for the formation of aversive olfactory MTM. Consistent with the merely transitory increase of AZ proteins, BRP KD did not interfere with the formation of aversive olfactory long-term memory (LTM; i.e., 1 day). Our data suggest that the remodeling of presynaptic AZ refines the MB circuitry after paired aversive conditioning, over a time window of a few hours, to display aversive olfactory memories.
Collapse
Affiliation(s)
- Oriane Turrel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Niraja Ramesh
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Marc J F Escher
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Atefeh Pooryasin
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
36
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [PMID: 36466804 PMCID: PMC9715400 DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sangyong Jung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Midorikawa M. Developmental and activity-dependent modulation of coupling distance between release site and Ca2+ channel. Front Cell Neurosci 2022; 16:1037721. [DOI: 10.3389/fncel.2022.1037721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Synapses are junctions between a presynaptic neuron and a postsynaptic cell specialized for fast and precise information transfer. The presynaptic terminal secretes neurotransmitters via exocytosis of synaptic vesicles. Exocytosis is a tightly regulated reaction that occurs within a millisecond of the arrival of an action potential. One crucial parameter in determining the characteristics of the transmitter release kinetics is the coupling distance between the release site and the Ca2+ channel. Still, the technical limitations have hindered detailed analysis from addressing how the coupling distance is regulated depending on the development or activity of the synapse. However, recent technical advances in electrophysiology and imaging are unveiling their different configurations in different conditions. Here, I will summarize developmental- and activity-dependent changes in the coupling distances revealed by recent studies.
Collapse
|
38
|
Elasticity regulates nanomaterial transport as delivery vehicles: Design, characterization, mechanisms and state of the art. Biomaterials 2022; 291:121879. [DOI: 10.1016/j.biomaterials.2022.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
|
39
|
Mazille M, Buczak K, Scheiffele P, Mauger O. Stimulus-specific remodeling of the neuronal transcriptome through nuclear intron-retaining transcripts. EMBO J 2022; 41:e110192. [PMID: 36149731 DOI: 10.15252/embj.2021110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein-coding mRNAs is more prevalent in the nucleus than in the cytosol, suggesting regulated mRNA trafficking to the cytosol, but the mechanisms underlying controlled nuclear mRNA retention remain unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature mouse cortical neurons, and reveal that transcripts retained in the nucleus comprise the majority of stable intron-retaining mRNAs. Systematically probing the fate of nuclear transcripts upon neuronal stimulation, we found opposite effects on sub-populations of transcripts: while some are targeted for degradation, others complete splicing to generate fully mature mRNAs that are exported to the cytosol and mediate rapid increases in protein levels. Finally, different forms of stimulation mobilize distinct groups of intron-retaining transcripts, with this selectivity arising from the activation of specific signaling pathways. Overall, our findings uncover a cue-specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome.
Collapse
Affiliation(s)
- Maxime Mazille
- Biozentrum of the University of Basel, Basel, Switzerland
| | | | | | - Oriane Mauger
- Biozentrum of the University of Basel, Basel, Switzerland
| |
Collapse
|
40
|
Cunningham KL, Sauvola CW, Tavana S, Littleton JT. Regulation of presynaptic Ca 2+ channel abundance at active zones through a balance of delivery and turnover. eLife 2022; 11:78648. [PMID: 35833625 PMCID: PMC9352347 DOI: 10.7554/elife.78648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr), a key presynaptic determinant of synaptic strength. Although biosynthesis, delivery, and recycling cooperate to establish AZ VGCC abundance, experimentally isolating these distinct regulatory processes has been difficult. Here, we describe how the AZ levels of cacophony (Cac), the sole VGCC-mediating synaptic transmission in Drosophila, are determined. We also analyzed the relationship between Cac, the conserved VGCC regulatory subunit α2δ, and the core AZ scaffold protein Bruchpilot (BRP) in establishing a functional AZ. We find that Cac and BRP are independently regulated at growing AZs, as Cac is dispensable for AZ formation and structural maturation, and BRP abundance is not limiting for Cac accumulation. Additionally, AZs stop accumulating Cac after an initial growth phase, whereas BRP levels continue to increase given extended developmental time. AZ Cac is also buffered against moderate increases or decreases in biosynthesis, whereas BRP lacks this buffering. To probe mechanisms that determine AZ Cac abundance, intravital FRAP and Cac photoconversion were used to separately measure delivery and turnover at individual AZs over a multi-day period. Cac delivery occurs broadly across the AZ population, correlates with AZ size, and is rate-limited by α2δ. Although Cac does not undergo significant lateral transfer between neighboring AZs over the course of development, Cac removal from AZs does occur and is promoted by new Cac delivery, generating a cap on Cac accumulation at mature AZs. Together, these findings reveal how Cac biosynthesis, synaptic delivery, and recycling set the abundance of VGCCs at individual AZs throughout synapse development and maintenance.
Collapse
Affiliation(s)
- Karen L Cunningham
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Chad W Sauvola
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Sara Tavana
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
41
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
42
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
43
|
Tan C, Wang SSH, de Nola G, Kaeser PS. Rebuilding essential active zone functions within a synapse. Neuron 2022; 110:1498-1515.e8. [PMID: 35176221 PMCID: PMC9081183 DOI: 10.1016/j.neuron.2022.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 01/15/2023]
Abstract
Presynaptic active zones are molecular machines that control neurotransmitter secretion. They form sites for vesicle docking and priming and couple vesicles to Ca2+ entry for release triggering. The complexity of active zone machinery has made it challenging to determine its mechanisms in release. Simultaneous knockout of the active zone proteins RIM and ELKS disrupts active zone assembly, abolishes vesicle docking, and impairs release. We here rebuild docking, priming, and Ca2+ secretion coupling in these mutants without reinstating active zone networks. Re-expression of RIM zinc fingers recruited Munc13 to undocked vesicles and rendered the vesicles release competent. Action potential triggering of release was reconstituted by docking these primed vesicles to Ca2+ channels through attaching RIM zinc fingers to CaVβ4-subunits. Our work identifies an 80-kDa β4-Zn protein that bypasses the need for megadalton-sized secretory machines, establishes that fusion competence and docking are mechanistically separable, and defines RIM zinc finger-Munc13 complexes as hubs for active zone function.
Collapse
Affiliation(s)
- Chao Tan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shan Shan H Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Knodel MM, Dutta Roy R, Wittum G. Influence of T-Bar on Calcium Concentration Impacting Release Probability. Front Comput Neurosci 2022; 16:855746. [PMID: 35586479 PMCID: PMC9108211 DOI: 10.3389/fncom.2022.855746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The relation of form and function, namely the impact of the synaptic anatomy on calcium dynamics in the presynaptic bouton, is a major challenge of present (computational) neuroscience at a cellular level. The Drosophila larval neuromuscular junction (NMJ) is a simple model system, which allows studying basic effects in a rather simple way. This synapse harbors several special structures. In particular, in opposite to standard vertebrate synapses, the presynaptic boutons are rather large, and they have several presynaptic zones. In these zones, different types of anatomical structures are present. Some of the zones bear a so-called T-bar, a particular anatomical structure. The geometric form of the T-bar resembles the shape of the letter “T” or a table with one leg. When an action potential arises, calcium influx is triggered. The probability of vesicle docking and neurotransmitter release is superlinearly proportional to the concentration of calcium close to the vesicular release site. It is tempting to assume that the T-bar causes some sort of calcium accumulation and hence triggers a higher release probability and thus enhances neurotransmitter exocytosis. In order to study this influence in a quantitative manner, we constructed a typical T-bar geometry and compared the calcium concentration close to the active zones (AZs). We compared the case of synapses with and without T-bars. Indeed, we found a substantial influence of the T-bar structure on the presynaptic calcium concentrations close to the AZs, indicating that this anatomical structure increases vesicle release probability. Therefore, our study reveals how the T-bar zone implies a strong relation between form and function. Our study answers the question of experimental studies (namely “Wichmann and Sigrist, Journal of neurogenetics 2010”) concerning the sense of the anatomical structure of the T-bar.
Collapse
Affiliation(s)
- Markus M. Knodel
- Goethe Center for Scientific Computing (GCSC), Goethe Universität Frankfurt, Frankfurt, Germany
- *Correspondence: Markus M. Knodel ; orcid.org/0000-0001-8739-0803
| | | | - Gabriel Wittum
- Goethe Center for Scientific Computing (GCSC), Goethe Universität Frankfurt, Frankfurt, Germany
- Applied Mathematics and Computational Science, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
45
|
Banerjee A, Imig C, Balakrishnan K, Kershberg L, Lipstein N, Uronen RL, Wang J, Cai X, Benseler F, Rhee JS, Cooper BH, Liu C, Wojcik SM, Brose N, Kaeser PS. Molecular and functional architecture of striatal dopamine release sites. Neuron 2022; 110:248-265.e9. [PMID: 34767769 PMCID: PMC8859508 DOI: 10.1016/j.neuron.2021.10.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023]
Abstract
Despite the importance of dopamine for striatal circuit function, mechanistic understanding of dopamine transmission remains incomplete. We recently showed that dopamine secretion relies on the presynaptic scaffolding protein RIM, indicating that it occurs at active zone-like sites similar to classical synaptic vesicle exocytosis. Here, we establish using a systematic gene knockout approach that Munc13 and Liprin-α, active zone proteins for vesicle priming and release site organization, are important for dopamine secretion. Furthermore, RIM zinc finger and C2B domains, which bind to Munc13 and Liprin-α, respectively, are needed to restore dopamine release after RIM ablation. In contrast, and different from typical synapses, the active zone scaffolds RIM-BP and ELKS, and RIM domains that bind to them, are expendable. Hence, dopamine release necessitates priming and release site scaffolding by RIM, Munc13, and Liprin-α, but other active zone proteins are dispensable. Our work establishes that efficient release site architecture mediates fast dopamine exocytosis.
Collapse
Affiliation(s)
- Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | | - Lauren Kershberg
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Riikka-Liisa Uronen
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xintong Cai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Newman ZL, Bakshinskaya D, Schultz R, Kenny SJ, Moon S, Aghi K, Stanley C, Marnani N, Li R, Bleier J, Xu K, Isacoff EY. Determinants of synapse diversity revealed by super-resolution quantal transmission and active zone imaging. Nat Commun 2022; 13:229. [PMID: 35017509 PMCID: PMC8752601 DOI: 10.1038/s41467-021-27815-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/06/2021] [Indexed: 01/23/2023] Open
Abstract
Neural circuit function depends on the pattern of synaptic connections between neurons and the strength of those connections. Synaptic strength is determined by both postsynaptic sensitivity to neurotransmitter and the presynaptic probability of action potential evoked transmitter release (Pr). Whereas morphology and neurotransmitter receptor number indicate postsynaptic sensitivity, presynaptic indicators and the mechanism that sets Pr remain to be defined. To address this, we developed QuaSOR, a super-resolution method for determining Pr from quantal synaptic transmission imaging at hundreds of glutamatergic synapses at a time. We mapped the Pr onto super-resolution 3D molecular reconstructions of the presynaptic active zones (AZs) of the same synapses at the Drosophila larval neuromuscular junction (NMJ). We find that Pr varies greatly between synapses made by a single axon, quantify the contribution of key AZ proteins to Pr diversity and find that one of these, Complexin, suppresses spontaneous and evoked transmission differentially, thereby generating a spatial and quantitative mismatch between release modes. Transmission is thus regulated by the balance and nanoscale distribution of release-enhancing and suppressing presynaptic proteins to generate high signal-to-noise evoked transmission.
Collapse
Affiliation(s)
- Zachary L Newman
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dariya Bakshinskaya
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ryan Schultz
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Seonah Moon
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Krisha Aghi
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Cherise Stanley
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nadia Marnani
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rachel Li
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Julia Bleier
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ke Xu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated BioImaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated BioImaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Weill Neurohub, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
47
|
Mochida S. Stable and Flexible Synaptic Transmission Controlled by the Active Zone Protein Interactions. Int J Mol Sci 2021; 22:ijms222111775. [PMID: 34769208 PMCID: PMC8583982 DOI: 10.3390/ijms222111775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
An action potential triggers neurotransmitter release from synaptic vesicles docking to a specialized release site of the presynaptic plasma membrane, the active zone. The active zone is a highly organized structure with proteins that serves as a platform for synaptic vesicle exocytosis, mediated by SNAREs complex and Ca2+ sensor proteins, within a sub-millisecond opening of nearby Ca2+ channels with the membrane depolarization. In response to incoming neuronal signals, each active zone protein plays a role in the release-ready site replenishment with synaptic vesicles for sustainable synaptic transmission. The active zone release apparatus provides a possible link between neuronal activity and plasticity. This review summarizes the mostly physiological role of active zone protein interactions that control synaptic strength, presynaptic short-term plasticity, and homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
48
|
Mrestani A, Pauli M, Kollmannsberger P, Repp F, Kittel RJ, Eilers J, Doose S, Sauer M, Sirén AL, Heckmann M, Paul MM. Active zone compaction correlates with presynaptic homeostatic potentiation. Cell Rep 2021; 37:109770. [PMID: 34610300 DOI: 10.1016/j.celrep.2021.109770] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/14/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.
Collapse
Affiliation(s)
- Achmed Mrestani
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Martin Pauli
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Felix Repp
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Center for Computational and Theoretical Biology, Julius Maximilians University Würzburg, 97074 Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Robert J Kittel
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Institute of Biology, Department of Animal Physiology, Leipzig University, 04103 Leipzig, Germany; Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Anna-Leena Sirén
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Manfred Heckmann
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany.
| | - Mila M Paul
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
49
|
Rapid Ca 2+ channel accumulation contributes to cAMP-mediated increase in transmission at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 2021; 118:2016754118. [PMID: 33622791 DOI: 10.1073/pnas.2016754118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-dependent potentiation of neurotransmitter release is important for higher brain functions such as learning and memory. To reveal the underlying mechanisms, we applied paired pre- and postsynaptic recordings from hippocampal mossy fiber-CA3 synapses. Ca2+ uncaging experiments did not reveal changes in the intracellular Ca2+ sensitivity for transmitter release by cAMP, but suggested an increase in the local Ca2+ concentration at the release site, which was much lower than that of other synapses before potentiation. Total internal reflection fluorescence (TIRF) microscopy indicated a clear increase in the local Ca2+ concentration at the release site within 5 to 10 min, suggesting that the increase in local Ca2+ is explained by the simple mechanism of rapid Ca2+ channel accumulation. Consistently, two-dimensional time-gated stimulated emission depletion microscopy (gSTED) microscopy showed an increase in the P/Q-type Ca2+ channel cluster size near the release sites. Taken together, this study suggests a potential mechanism for the cAMP-dependent increase in transmission at hippocampal mossy fiber-CA3 synapses, namely an accumulation of active zone Ca2+ channels.
Collapse
|
50
|
Wang J, Beecher K. TSPO: an emerging role in appetite for a therapeutically promising biomarker. Open Biol 2021; 11:210173. [PMID: 34343461 PMCID: PMC8331234 DOI: 10.1098/rsob.210173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that an obesogenic Western diet causes neuroinflammatory damage to the brain, which then promotes further appetitive behaviour. Neuroinflammation has been extensively studied by analysing the translocator protein of 18 kDa (TSPO), a protein that is upregulated in the inflamed brain following a damaging stimulus. As a result, there is a rich supply of TSPO-specific agonists, antagonists and positron emission tomography ligands. One TSPO ligand, etifoxine, is also currently used clinically for the treatment of anxiety with a minimal side-effect profile. Despite the neuroinflammatory pathogenesis of diet-induced obesity, and the translational potential of targeting TSPO, there is sparse literature characterizing the effect of TSPO on appetite. Therefore, in this review, the influence of TSPO on appetite is discussed. Three putative mechanisms for TSPO's appetite-modulatory effect are then characterized: the TSPO–allopregnanolone–GABAAR signalling axis, glucosensing in tanycytes and association with the synaptic protein RIM-BP1. We highlight that, in addition to its plethora of functions, TSPO is a regulator of appetite. This review ultimately suggests that the appetite-modulating function of TSPO should be further explored due to its potential therapeutic promise.
Collapse
Affiliation(s)
- Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|