1
|
Strate A, Paschek D, Ludwig R. Hydrogen-Bonding Motifs in Hydroxy-Functionalized Ionic Liquids. Annu Rev Phys Chem 2025; 76:589-614. [PMID: 40258243 DOI: 10.1146/annurev-physchem-082423-020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The unique properties of ionic liquids (ILs) result from the tunable mélange of Coulomb interactions, hydrogen bonding, and dispersion interactions among the constituent ions. In hydroxy-functionalized ILs, local and directional hydrogen bonds (H-bonds) lead to the anticipated formation of ion pairs but also to the elusive formation of cationic clusters. Here, we review how hydrogen-bonding motifs in the bulk liquid and gas phase of hydroxy-functionalized ILs shed light on the general nature of hydrogen bonding. Infrared spectroscopy, nuclear magnetic resonance, neutron diffraction, and molecular dynamics simulations provide information about the structure, strength, and dynamics of cationic clusters in the bulk liquid ILs. Cryogenic ion vibrational predissociation (CIVP) spectroscopy along with density functional theory calculations has established a clear picture about the specific contacts within isolated H-bonded cationic clusters formed in the gas phase. This information from experiment, simulation, and theory provides a fundamental understanding of hydrogen bonding between the ions in ILs.
Collapse
Affiliation(s)
- Anne Strate
- Institute of Chemistry, University of Rostock, Rostock, Germany;
| | - Dietmar Paschek
- Institute of Chemistry, University of Rostock, Rostock, Germany;
- Department of Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Ralf Ludwig
- Institute of Chemistry, University of Rostock, Rostock, Germany;
- Department of Life, Light & Matter, University of Rostock, Rostock, Germany
- Leibniz Institute for Catalysis e.V., Rostock, Germany
| |
Collapse
|
2
|
Meyer P, Jäger S, Khatri J, Henkel S, Schwaab G, Havenith M. Mixed H 2S and H 2O Clusters─New Insights into Dispersion-Dominated Hydrogen Bonding. J Phys Chem A 2024; 128:9627-9633. [PMID: 39446033 DOI: 10.1021/acs.jpca.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Here, we report the results of an IR spectroscopy study on heteroclusters of H2S and H2O and several of their isotopomers using mass-selective IR spectroscopy in superfluid helium nanodroplets in the range of 2560-2800 cm-1. Based on DFT calculations on the B3LYP-D3/6-311++G(d,p) level of theory, we were able to assign the experimentally observed O-D stretching bands to heterodimer and heterotrimer clusters. Since no bands of the S-H-bound conformer HSH···OH2 could be observed, we were able to determine the O-H-bound conformer HOH···SH2 to be the global minimum structure. A trapping of the local minima in helium nanodroplets was not observed. This is in line with the weaker hydrogen bond expected for H2S complexes. In these clusters, the interaction energy is expected to be more dominated by dispersion and less dictated by highly directional electrostatic forces.
Collapse
Affiliation(s)
- Philipp Meyer
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Svenja Jäger
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jai Khatri
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Stefan Henkel
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gerhard Schwaab
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
3
|
Pinillos P, Torres-Hernández F, Usabiaga I, Pinacho P, Fernández JA. Exploration of carvacrol aggregation by laser spectroscopy. Phys Chem Chem Phys 2024; 26:24533-24541. [PMID: 39282817 DOI: 10.1039/d4cp02945c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Carvacrol is an aromatic monoterpenoid found in thyme oil. Due to its implications for human health, it is important to elucidate its structure and its intramolecular interactions. We have characterised the carvacrol monomer, its complex with water, its dimer, and even its trimer in a supersonic expansion using mass-resolved laser spectroscopy techniques complemented by quantum-chemical computations. The resonance-enhanced multiphoton ionisation spectrum of the monomer features several transitions, which were assigned to the same conformer, confirmed by ion-dip infrared spectroscopy. However, a conclusive assignment of the infrared bands to one of the four conformations of carvacrol remains elusive. The experimental spectra for the monohydrated, the homodimer, and the homotrimer point to the detection of the lowest energy isomer in each case. Their structures are governed by a balance of intramolecular interactions, specifically hydrogen bonding and dispersion forces. Comparison with other similar systems demonstrates that dispersion interactions are key to the stabilisation of the aggregates, being present in all the structures. However, the hydrogen bonding is the dominant force as observed in the lowest-energy conformations.
Collapse
Affiliation(s)
- Paúl Pinillos
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| | - Fernando Torres-Hernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| | - Imanol Usabiaga
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| | - Pablo Pinacho
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain.
| |
Collapse
|
4
|
Li M, Tian X, Du W, Wang X, Lei J, Gao T, Zou S, Xu X, Wang H, Chen J, Gou Q. Decrypting the critical point of internal rotation of formaldehyde: A rotational study of the acrolein-formaldehyde complex. J Chem Phys 2024; 160:234303. [PMID: 38884398 DOI: 10.1063/5.0211674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
The rotational spectrum of an acrolein-formaldehyde complex has been characterized using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. One isomer has been observed in pulsed jets, which is stabilized by a dominant O=C⋯O tetrel bond (n → π* interaction) and a secondary C-H⋯O hydrogen bond. Splittings arising from the internal rotation of formaldehyde around its C2v axis were also observed, from which its V2 barrier was evaluated. It seems that when V2 equals or exceeds 4.61 kJ mol-1, no splitting of the spectral lines of the rotational spectrum was observed. The nature of the non-covalent interactions of the target complex is elucidated through natural bond orbital analysis. These findings contribute to a deeper understanding on the non-covalent interactions within the dimeric complex formed by two aldehydes.
Collapse
Affiliation(s)
- Meiyue Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Weiping Du
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Xiujuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Juncheng Lei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Tianyue Gao
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Siyu Zou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Xuefang Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Hao Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Rd. 27, Taiyuan 030001, Shanxi, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| |
Collapse
|
5
|
Wen H, Shen M, Lai Z, Peng X, Ye YX, Xu J, Ouyang G. Noncovalent Tagging for Identifying Unknown Contaminants of Specific Bioactivity in Environmental Water. Anal Chem 2023; 95:15851-15855. [PMID: 37857307 DOI: 10.1021/acs.analchem.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Identifying contaminants of specific bioactivities from complicated environmental matrices remains costly and time-consuming, as it requires us to not only resolve their structures but also determine their bioactivities. Herein, a novel noncovalent tagging method is integrated in mass spectrometry for identifying unknown contaminants that target dopamine (DA) receptors. Via proteolysis of bovine serum albumin, a stereoselective hexapeptide (ACFAVE) is selected for noncovalently tagging the contaminants that possess the stereostructural characteristics of binding to DA receptors. The tagged contaminants can be readily distinguished from the coexisting species for subsequent structural analysis based on the tagging-induced shifts of the mass-to-charge ratios. Thus, both bioactivity evaluation and structure analysis are accomplished via mass spectrometry. By using this method, 1,3-diphenylguanidine (DPG), a widely used additive in rubber and plastics, is successfully identified out of 2495 features detected in the Pearl River water, with its concentration determined as only 9.8 μg L-1. Furthermore, DPG is confirmed as a potential disrupter to the DA receptors via a simulated docking experiment, which has not been reported before. The present noncovalent tagging method provides a cost-effective and time-efficient way of identifying bioactive molecules in complicated matrices. And proteolysis of proteins is promising for developing more taggants with other desired stereoselectivities in the future.
Collapse
Affiliation(s)
- Hongyu Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Minhui Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhisheng Lai
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiaoru Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| |
Collapse
|
6
|
Wang X, Li J, Lei J, Xu X, Zheng Y, Chen J, Tian X, Gou Q. Fluorination effects probed in 4-fluoroacetophenone and its monohydrate. Phys Chem Chem Phys 2023; 25:25450-25457. [PMID: 37712319 DOI: 10.1039/d3cp01578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Rotational spectra of the 4-fluoroacetophenone monomer and its monohydrate were investigated by Fourier transform microwave spectroscopy complemented with quantum chemical calculations. One conformer of 4-fluoroacetophenone and two isomers of 4-fluoroacetophenone-H2O have been observed in the pulsed jets. The observation of all mono-substituted 13C isotopologues in natural abundance allows an accurate structural determination of the 4-fluoroacetophenone monomer. Both detected isomers of 4-fluoroacetophenone-H2O are stabilized by a dominant O-H⋯O and a secondary C-H⋯O hydrogen bond. The fluorination effects on the geometries, intermolecular non-covalent interactions and V3 barrier of the methyl internal rotation were analysed. The relative population ratio of the two observed isomers for 4-fluoroacetophenone-H2O was also estimated to be NI/NII ≈ 7/1.
Collapse
Affiliation(s)
- Xiujuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Jiayi Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Juncheng Lei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xuefang Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yang Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
7
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
8
|
Śmiłowicz D, Eisenberg S, LaForest R, Whetter J, Hariharan A, Bordenca J, Johnson CJ, Boros E. Metal-Mediated, Autolytic Amide Bond Cleavage: A Strategy for the Selective, Metal Complexation-Catalyzed, Controlled Release of Metallodrugs. J Am Chem Soc 2023; 145:16261-16270. [PMID: 37434328 PMCID: PMC10530410 DOI: 10.1021/jacs.3c05492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Activation of metalloprodrugs or prodrug activation using transition metal catalysts represents emerging strategies for drug development; however, they are frequently hampered by poor spatiotemporal control and limited catalytic turnover. Here, we demonstrate that metal complex-mediated, autolytic release of active metallodrugs can be successfully employed to prepare clinical grade (radio-)pharmaceuticals. Optimization of the Lewis-acidic metal ion, chelate, amino acid linker, and biological targeting vector provides means to release peptide-based (radio-)metallopharmaceuticals in solution and from the solid phase using metal-mediated, autolytic amide bond cleavage (MMAAC). Our findings indicate that coordinative polarization of an amide bond by strong, trivalent Lewis acids such as Ga3+ and Sc3+ adjacent to serine results in the N, O acyl shift and hydrolysis of the corresponding ester without dissociation of the corresponding metal complex. Compound [68Ga]Ga-10, incorporating a cleavable and noncleavable functionalization, was used to demonstrate that only the amide bond-adjacent serine effectively triggered hydrolysis in solution and from the solid phase. The corresponding solid-phase released compound [68Ga]Ga-8 demonstrated superior in vivo performance in a mouse tumor model compared to [68Ga]Ga-8 produced using conventional, solution-phase radiolabeling. A second proof-of-concept system, [67Ga]Ga-17A (serine-linked) and [67Ga]Ga-17B (glycine-linked) binding to serum albumin via the incorporated ibuprofen moiety, was also synthesized. These constructs demonstrated that complete hydrolysis of the corresponding [68Ga]Ga-NOTA complex from [67Ga]Ga-17A can be achieved in naïve mice within 12 h, as traceable in urine and blood metabolites. The glycine-linked control [68Ga]Ga-17B remained intact. Conclusively, MMAAC provides an attractive tool for selective, thermal, and metal ion-mediated control of metallodrug activation compatible with biological conditions.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shawn Eisenberg
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Rochelle LaForest
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Jennifer Whetter
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Annapoorani Hariharan
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Jake Bordenca
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Tanabe S, Hirata K, Tsukiyama K, Lisy JM, Ishiuchi SI, Fujii M. Can Ag + Permeate through a Potassium Ion Channel? A Bottom-Up Approach by Infrared Spectroscopy of the Ag + Complex with the Partial Peptide of a Selectivity Filter. J Phys Chem Lett 2023; 14:2886-2890. [PMID: 36924459 PMCID: PMC10041629 DOI: 10.1021/acs.jpclett.2c03366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Silver and silver ions have a long history of antimicrobial activity and medical applications. Nevertheless, the activity of Ag+ against bacteria, how it enters a cell, has not yet been established. The K+ channel, a membrane protein, is a possible route. The addition of a channel inhibitor (4-aminopyridine) to modulate the Ag+ uptake could support this view. However, the inhibitor enhances the uptake of Ag+, the opposite result. We have applied cold ion trap infrared laser spectroscopy to complexes of Ag+ and Ac-Tyr-NHMe (a model for GYG) which is a portion of the selectivity filter in the K+ channel to consider the question of permeation. With support from quantum chemical calculations, we have determined the stable conformations of the complex. The conformations strongly suggest that Ag+ would not readily permeate the K+ channel. The mechanism of the unexpected enhancement by the inhibitor is discussed.
Collapse
Affiliation(s)
- Satoru Tanabe
- Department
of Chemistry, School of Science, Tokyo University
of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
- Laboratory
for Chemistry and Life Science, Institute of innovative research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Keisuke Hirata
- Laboratory
for Chemistry and Life Science, Institute of innovative research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1
Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- International
Research Frontiers Initiative (IRFI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Koichi Tsukiyama
- Department
of Chemistry, School of Science, Tokyo University
of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
| | - James M. Lisy
- International
Research Frontiers Initiative (IRFI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Shun-ichi Ishiuchi
- Laboratory
for Chemistry and Life Science, Institute of innovative research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1
Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- International
Research Frontiers Initiative (IRFI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Laboratory
for Chemistry and Life Science, Institute of innovative research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- International
Research Frontiers Initiative (IRFI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of
Life Science and Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho,
Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
10
|
Akasaka K, Hirata K, Haddad F, Dopfer O, Ishiuchi SI, Fujii M. Hydration-induced protomer switching in p-aminobenzoic acid studied by cold double ion trap infrared spectroscopy. Phys Chem Chem Phys 2023; 25:4481-4488. [PMID: 36514975 DOI: 10.1039/d2cp04497h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Para-Aminobenzoic acid (PABA) is a benchmark molecule to study solvent-induced proton site switching. Protonation of the carboxy and amino groups of PABA generates O- and N-protomers of PABAH+, respectively. Ion mobility mass spectrometry (IMS) and infrared photodissociation (IRPD) studies have claimed that the O-protomer most stable in the gas phase is converted to the N-protomer most stable in solution upon hydration with six water molecules in the gas-phase cluster. However, the threshold size has remained ambiguous because the arrival time distributions in the IMS experiments exhibit multiple peaks. On the other hand, IRPD spectroscopy could not detect the N-protomer for smaller hydrated clusters because of broad background due to annealing required to reduce kinetic trapping. Herein, we report the threshold size for O → N protomer switching without ambiguity using IR spectroscopy in a double ion trap spectrometer from 1300 to 1800 cm-1. The pure O-protomer is prepared by electrospray, and size-specific hydrated clusters are formed in a reaction ion trap. The resulting clusters are transferred into a second cryogenic ion trap and the distribution of O- and N-protomers is determined by mid-IR spectroscopy without broadening. The threshold to promote O → N protomer switching is indeed five water molecules. It is smaller than the value reported previously, and as a result, its pentahydrated structure does not support the Grotthuss mechanism proposed previously. The extent of O → N proton transfer is evaluated by collision-assisted stripping IR spectroscopy, and the N-protomer population increases with the number of water molecules. This result is consistent with the dominant population of the N-protomer in aqueous solution.
Collapse
Affiliation(s)
- Kyota Akasaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Fuad Haddad
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Otto Dopfer
- International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.,International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
11
|
Hirata K, Sato E, Lisy JM, Ishiuchi SI, Fujii M. Cation-responsive cavity expansion of valinomycin revealed by cryogenic ion trap infrared spectroscopy. Phys Chem Chem Phys 2023; 25:1075-1080. [PMID: 36519454 DOI: 10.1039/d2cp04570b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Valinomycin (VM) is a natural K+-selective ionophore that transports K+ through the cell membrane. VM captures K+ in its central cavity with a C3-symmetric β-turn-like backbone. Although the binding affinity is drastically decreased for the VM-sodium (Na+VM) complex with respect to K+VM, VM holds relatively high affinity to Rb+ and Cs+. The high affinity for larger ions irrespective of ionic size seems to conflict with the expected optimal size matching model and raises questions on what factors determine ion selectivity. A combination of infrared spectroscopy with supporting computational calculations reveals that VM can accommodate larger Rb+ and Cs+ by flexibly changing its cavity size with the elongation of its folded β-turn-like backbone. The high affinity to Rb+ and Cs+ can be ascribed to a size-dependent cavity expansion. These findings provide a new perspective on molecular recognition and selectivity beyond the conventional size matching model.
Collapse
Affiliation(s)
- Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Eiko Sato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - James M Lisy
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
12
|
Lawler JT, Harrilal CP, DeBlase AF, Sibert EL, McLuckey SA, Zwier TS. Single-conformation spectroscopy of cold, protonated DPG-containing peptides: switching β-turn types and formation of a sequential type II/II' double β-turn. Phys Chem Chem Phys 2022; 24:2095-2109. [PMID: 35019911 DOI: 10.1039/d1cp04852j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
D-Proline (DPro, DP) is widely utilized to form β-hairpin loops in engineered peptides that would otherwise be unstructured, most often as part of a DPG sub-unit that forms a β-turn. To observe whether DPG facilitated this effect in short protonated peptides, conformation specific IR-UV double resonance photofragment spectra of the cold (∼10 K) protonated DP and LP diastereomers of the pentapeptide YAPGA was carried out in the hydride stretch (2800-3700 cm-1) and amide I/II (1400-1800 cm-1) regions. A model localized Hamiltonian was developed to better describe the 1600-1800 cm-1 region commonly associated with the amide I vibrations. The CO stretch fundamentals experience extensive mixing with the N-H bending fundamentals of the NH3+ group in these protonated peptides. The model Hamiltonian accounts for experiment in quantitative detail. In the DP diastereomer, all the population is funneled into a single conformer which presented as a type II β-turn with A and DP in the i + 1 and i + 2 positions, respectively. This structure was not the anticipated type II' β-turn across DPG that we had hypothesized based on solution-phase propensities. Analysis of the conformational energy landscape shows that both steric and charge-induced effects play a role in the preferred formation of the type II β-turn. In contrast, the LP isomer forms three conformations with very different structures, none of which were type II/II' β-turns, confirming that LPG is not a β-turn former. Finally, single-conformation spectroscopy was also carried out on the extended peptide [YAADPGAAA + H]+ to determine whether moving the protonated N-terminus further from DPG would lead to β-hairpin formation. Despite funneling its entire population into a single peptide backbone structure, the assigned structure is not a β-hairpin, but a concatenated type II/type II' double β-turn that displaces the peptide backbone laterally by about 7.5 Å, but leaves the backbone oriented in its original direction.
Collapse
Affiliation(s)
- John T Lawler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | | | - Andrew F DeBlase
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Edwin L Sibert
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA. .,Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|
13
|
Peng X, Du M, Shen Y, Ye YX, Kong X, Xu J, Ouyang G. Identifying a selective oligopeptide clamp in the gas phase. Chem Commun (Camb) 2022; 58:11867-11870. [DOI: 10.1039/d2cc04868j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new experimental scheme that can both identify selective oligopeptides and resolve their folding conformations is reported, which reveals that a “V” type pentapeptide can provide binding sites that precisely clamp four β2-blockers.
Collapse
Affiliation(s)
- Xiaoru Peng
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Mengying Du
- State Key Laboratory of Elemento-organic Chemistry, Collage of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Shen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yu-Xin Ye
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Xianglei Kong
- State Key Laboratory of Elemento-organic Chemistry, Collage of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Jianqiao Xu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
14
|
Chen L, Dean JLS, Fournier JA. Time-Domain Vibrational Action Spectroscopy of Cryogenically Cooled, Messenger-Tagged Ions Using Ultrafast IR Pulses. J Phys Chem A 2021; 125:10235-10244. [PMID: 34788043 DOI: 10.1021/acs.jpca.1c01996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present the initial steps toward developing a framework that will enable the characterization of photoinitiated dynamics within large molecular ions in the gas phase with temporal and energy resolution. We combine the established techniques of tag-loss action spectroscopy on cryogenically trapped molecular ions with ultrafast vibrational spectroscopy by measuring the linear action spectrum of N2-tagged protonated diglycine (GlyGlyH+·N2) with an ultrafast infrared (IR) pulse pair. The presented time-domain data demonstrate that the excited-state vibrational populations in the tagged parent ions are modulated by the ultrafast IR pulse pair and encoded through the messenger tag-loss action response. The Fourier transform of the time-domain action interferograms yields the linear frequency-domain vibrational spectrum of the ion ensemble, and we show that this spectrum matches the linear spectrum collected in a traditional manner using a frequency-resolved IR laser. Time- and frequency-domain interpretations of the data are considered and discussed. Finally, we demonstrate the acquisition of nonlinear signals through cross-polarization pump-probe experiments. These results validate the prerequisite first steps of combining tag-loss action spectroscopy with two-dimensional IR spectroscopy for probing dynamics in gas-phase molecular ions.
Collapse
Affiliation(s)
- Liangyi Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Jessika L S Dean
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| |
Collapse
|
15
|
Shen M, Gong X, Huang S, Shen Y, Ye YX, Xu J, Ouyang G. Noncovalently Tagged Gas Phase Complex Ions for Screening Unknown Contaminant Metabolites in Plants. Anal Chem 2021; 93:14929-14933. [PMID: 34730331 DOI: 10.1021/acs.analchem.1c03145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Screening the metabolites of emerging organic contaminants (EOCs) from complicated biological matrices is an important but challenging task. Although stable isotope labeling (SIL) is frequently used to facilitate the identification of contaminant metabolites from redundant interfering components, the isotopically labeled reagents are expensive and difficult to synthesize, which greatly constrains the application of the SIL method. Herein, a new online noncovalent tagging method was developed for screening the metabolites of 1H-benzotriazol (BT) based on the characteristic structural moieties reserved in the metabolites. By selecting β-cyclodextrin (β-CD) as a macrocyclic tagging reagent, metabolites with the reserved moiety were expected to exhibit a characteristic shift of the mass-to-charge ratio (Δm/z = 1134.3698) after being noncovalently tagged by β-CD. Based on the characteristic mass shift, the suspected features were reduced by 1 order of magnitude, as numerous interfering species that could not be effectively tagged by β-CD were excluded. From these suspected features, two metabolites of BT that have not been reported before were successfully screened out. The significant characteristic mass shift caused by the noncovalent tagging method is easier to identify with more confidence than the previously reported SIL method. Besides, noncovalent tagging reagents can be much more accessible and less expensive than isotopically labeled reagents. Hence, this online noncovalent tagging method can be an intriguing alternative to the conventional SIL method.
Collapse
Affiliation(s)
- Minhui Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuyao Huang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Xin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.,College of Chemistry, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China.,Guangdong Provincial Key Laboratory of Emergency Testing for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
16
|
Negoro T, Hirata K, Lisy JM, Ishiuchi SI, Fujii M. Potassium and sodium ion complexes with a partial peptide of the selectivity filter in K + channels studied by cold ion trap infrared spectroscopy: the effect of hydration. Phys Chem Chem Phys 2021; 23:12045-12050. [PMID: 34075971 DOI: 10.1039/d1cp00936b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Potassium channels allow K+ to rapidly diffuse, while the selectivity filter (SF) actively blocks Na+. The presence of water in the SF during ion translocation remains under debate due to the experimental and computational challenges in characterizing the interactions between water, ions, and the SF. Our bottom-up approach has been applied to a system composed of a partial peptide of the SF (Ac-tyrosine-NHMe) with a metal ion and a single water molecule to probe these interactions. The IR photodissociation spectra of M+Ac-tyrosine-NHMe(H2O) (M = Na, K) combined with quantum chemical calculations revealed that the water molecule binding sites are ion-dependent. In addition, the ion-peptide distances are elongated significantly for the K+ complex in comparison to the Na+ complex by the addition of a single water molecule. This striking structural difference with the water molecule is discussed in relation to ion selectivity and translocation within the K+ channel.
Collapse
Affiliation(s)
- Takumi Negoro
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan. and School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan. and Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. and Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - James M Lisy
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan. and Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. and Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan. and School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan and Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
17
|
Guajardo S, Figueroa T, Borges J, Aguayo C, Fernández K. Graphene oxide-gelatin aerogels as wound dressings with improved hemostatic properties. MATERIALS TODAY CHEMISTRY 2021; 20:100418. [DOI: 10.1016/j.mtchem.2020.100418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
18
|
Affiliation(s)
- Martin Mayer
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig, Germany
| | - Knut R. Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Sato E, Hirata K, Lisy JM, Ishiuchi SI, Fujii M. Rethinking Ion Transport by Ionophores: Experimental and Computational Investigation of Single Water Hydration in Valinomycin-K + Complexes. J Phys Chem Lett 2021; 12:1754-1758. [PMID: 33570410 DOI: 10.1021/acs.jpclett.0c03372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Valinomycin is a macrocyclic ionophore that transports K+ across hydrophobic membranes. Its function depends on selectivity, capture, transport, and release of the ion. While thermodynamics clearly indicate that valinomycin binds K+ preferentially over all other alkali ions, characterizing the capture/transport/release of K+ by valinomycin at the molecular level remains a challenge. The bracelet-like structure of valinomycin-K+ (K+VM) has the ion completely enveloped, facilitating transport through the cell membrane. We report that hydration by a single water molecule, (K+VM)(H2O), produces three different conformers, identified by infrared spectroscopy and supporting computational studies. For two minor conformers, the water prevents the ionophore from closing, a conformation that would inhibit diffusion through the membrane. However, the dominant conformer encloses both the ion and the water, replicating the bracelet-like K+VM and arguably enhancing diffusion through the membrane. This potential for active participation of water in transport through the hydrophobic cellular membrane has never been previously considered.
Collapse
Affiliation(s)
- Eiko Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Keisuke Hirata
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - James M Lisy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaaki Fujii
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| |
Collapse
|
20
|
Chiavarino B, Sinha RK, Crestoni ME, Corinti D, Filippi A, Fraschetti C, Scuderi D, Maitre P, Fornarini S. Binding Motifs in the Naked Complexes of Target Amino Acids with an Excerpt of Antitumor Active Biomolecule: An Ion Vibrational Spectroscopy Assay. Chemistry 2021; 27:2348-2360. [PMID: 33175428 DOI: 10.1002/chem.202003555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/30/2020] [Indexed: 11/06/2022]
Abstract
The structures of proton-bound complexes of 5,7-dimethoxy-4H-chromen-4-one (1) and basic amino acids (AAs), namely, histidine (His) and lysine (Lys), have been examined by means of mass spectrometry coupled with IR ion spectroscopy and quantum chemical calculations. This selection of systems is based on the fact that 1 represents a portion of glabrescione B, a natural small molecule of promising antitumor activity, while His and Lys are protein residues lining the cavity of the alleged receptor binding site. These species are thus a model of the bioactive adduct, although clearly the isolated state of the present study bears little resemblance to the complex biological environment. A common feature of [1+AA+H]+ complexes is the presence of a protonated AA bound to neutral 1, in spite of the fact that the gas-phase basicity of 1 is comparable to those of Lys and His. The carbonyl group of 1 acts as a powerful hydrogen-bond acceptor. Within [1+AA+H]+ the side-chain substituents (imidazole group for His and terminal amino group for Lys) present comparable basic properties to those of the α-amino group, taking part to a cooperative hydrogen-bond network. Structural assignment, relying on the comparative analysis of the infrared multiple photon dissociation (IRMPD) spectrum and calculated IR spectra for the candidate geometries, derives from an examination over two frequency ranges: 900-1800 and 2900-3700 cm-1 . Information gained from the latter one proved especially valuable, for example, pointing to the contribution of species characterized by an unperturbed carboxylic OH or imidazole NH stretching mode.
Collapse
Affiliation(s)
- Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Rajeev K Sinha
- Department of Atomic and Molecular Physics, Manipal University, Manipal, 576104, Karnataka, India
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Antonello Filippi
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Caterina Fraschetti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Debora Scuderi
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Philippe Maitre
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
21
|
Carrascosa E, Pellegrinelli RP, Rizzo TR, Muyskens MA. Cryogenic Infrared Action Spectroscopy Fingerprints the Hydrogen Bonding Network in Gas-Phase Coumarin Cations. J Phys Chem A 2020; 124:9942-9950. [DOI: 10.1021/acs.jpca.0c06430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eduardo Carrascosa
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCPM Station 6, CH-1015 Lausanne, Switzerland
| | - Robert P. Pellegrinelli
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCPM Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCPM Station 6, CH-1015 Lausanne, Switzerland
| | - Mark A. Muyskens
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan 49546, United States
| |
Collapse
|
22
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
23
|
Comparative Study of Graphene Oxide-Gelatin Aerogel Synthesis: Chemical Characterization, Morphologies and Functional Properties. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01770-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Daly S, Rosu F, Gabelica V. Mass-resolved electronic circular dichroism ion spectroscopy. Science 2020; 368:1465-1468. [PMID: 32587016 DOI: 10.1126/science.abb1822] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.
Collapse
Affiliation(s)
- Steven Daly
- Université de Bordeaux, Inserm & CNRS, Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 33607 Pessac, France
| | - Frédéric Rosu
- Université de Bordeaux, CNRS & Inserm, Institut Européen de Chimie et Biologie (IECB, UMS3033, US001), 33607 Pessac, France
| | - Valérie Gabelica
- Université de Bordeaux, Inserm & CNRS, Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 33607 Pessac, France.
| |
Collapse
|
25
|
Perez EH, Menges FS, Cattaneo M, Mayer JM, Johnson MA. Characterization of the non-covalent docking motif in the isolated reactant complex of a double proton-coupled electron transfer reaction with cryogenic ion spectroscopy. J Chem Phys 2020; 152:234309. [PMID: 32571036 PMCID: PMC7304996 DOI: 10.1063/5.0012176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 01/17/2023] Open
Abstract
The solution kinetics of a proton-coupled electron transfer reaction involving two-electron oxidation of a Ru compound with concomitant transfer of two protons to a quinone derivative have been interpreted to indicate the formation of a long-lived intermediate between the reactants. We characterize the ionic reactants, products, and an entrance channel reaction complex in the gas phase using high-resolution mass spectrometry augmented by cryogenic ion IR photodissociation spectroscopy. Collisional activation of this trapped entrance channel complex does not drive the reaction to products but rather yields dissociation back to reactants. Electronic structure calculations indicate that there are four low-lying isomeric forms of the non-covalently bound complex. Comparison of their predicted vibrational spectra with the observed band pattern indicates that the C=O groups of the ortho-quinone attach to protons on two different -NH2 groups of the reactant scaffold, exhibiting strong O-H-N contact motifs. Since collisional activation does not lead to the products observed in the liquid phase, these results indicate that the reaction most likely proceeds through reorientation of the H-atom donor ligand about the metal center.
Collapse
Affiliation(s)
- Evan H. Perez
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Fabian S. Menges
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Mauricio Cattaneo
- INQUINOA-CONICET, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000INI San Miguel de Tucumán, Argentina
| | - James M. Mayer
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Mark A. Johnson
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| |
Collapse
|
26
|
Toward accurate prediction of amino acid derivatives structure and energetics from DFT: glycine conformers and their interconversions. J Mol Model 2020; 26:129. [DOI: 10.1007/s00894-020-4342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
|
27
|
Otsuka R, Hirata K, Sasaki Y, Lisy JM, Ishiuchi S, Fujii M. Alkali and Alkaline Earth Metal Ions Complexes with a Partial Peptide of the Selectivity Filter in K
+
Channels Studied by a Cold Ion Trap Infrared Spectroscopy. Chemphyschem 2020; 21:712-724. [DOI: 10.1002/cphc.202000033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/12/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Remina Otsuka
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama, Kanagawa 226-8503 Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama, Kanagawa 226-8503 Japan
| | - Yuta Sasaki
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama, Kanagawa 226-8503 Japan
| | - James M. Lisy
- Tokyo Tech World Research Hub Initiative (WRHI)Institute of Innovation Research, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Department of ChemistryUniversity of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Shun‐ichi Ishiuchi
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama, Kanagawa 226-8503 Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama, Kanagawa 226-8503 Japan
- Tokyo Tech World Research Hub Initiative (WRHI)Institute of Innovation Research, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
28
|
Roy TK, Mani D, Schwaab G, Havenith M. A close competition between O–H⋯O and O–H⋯π hydrogen bonding: IR spectroscopy of anisole–methanol complex in helium nanodroplets. Phys Chem Chem Phys 2020; 22:22408-22416. [DOI: 10.1039/d0cp02589e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anisole forms O–H⋯O as well O–H⋯π bound complexes with methanol.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität Bochum
- Bochum
- Germany
| | - Devendra Mani
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität Bochum
- Bochum
- Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität Bochum
- Bochum
- Germany
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität Bochum
- Bochum
- Germany
| |
Collapse
|
29
|
Kowalczuk D, Pitucha M. Application of FTIR Method for the Assessment of Immobilization of Active Substances in the Matrix of Biomedical Materials. MATERIALS 2019; 12:ma12182972. [PMID: 31540255 PMCID: PMC6766236 DOI: 10.3390/ma12182972] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/02/2022]
Abstract
Background: The purpose of the study was to demonstrate the usefulness of the Fourier transform infrared spectroscopy (FTIR) method for the evaluation of the modification process of biomaterials with the participation of active substances. Methods: Modified catheter samples were prepared by activating the matrix with an acid, iodine, or bromine, and then immobilizing the active molecules. To carry out the modification process, the Fourier transform infrared-attenuated total reflectance (FTIR-ATR) method was used. Results: FTIR analysis indicated the presence of the immobilized substances in the catheter matrix and site-specific reactions. Conclusion: We surmise that the infrared spectroscopic technique is an ideal tool for the assessment of the drug immobilization and the changes occurring in the course of the modification process.
Collapse
Affiliation(s)
- Dorota Kowalczuk
- Chair and Department of Medicinal Chemistry, Faculty of Pharmacy with Division of Medical Analytics, the Medical University of Lublin, 20-090 Lublin, Poland.
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy with Division of Medical Analytics, the Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
30
|
Ishiuchi SI, Wako H, Xantheas SS, Fujii M. Probing the selectivity of Li + and Na + cations on noradrenaline at the molecular level. Faraday Discuss 2019; 217:396-413. [PMID: 31115392 DOI: 10.1039/c8fd00186c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although several mechanisms concerning the biological function of lithium salts, drugs having tranquilizing abilities, have been proposed so far, the key mechanism for its selectivity and subsequent interaction with neurotransmitters has not been established yet. We report ultraviolet (UV) and infrared (IR) spectra under ultra-cold conditions of Li+ and Na+ complexes of noradrenaline (NAd, norepinephrine), a neurotransmitter responsible for the body's response to stress or danger, in an effort to provide a molecular level understanding of the conformational changes of NAd due to its interactions with these two cations. A detailed analysis of the IR spectra, aided by quantum chemical calculations, reveals that the Li+-noradrenaline (NAd-Li+) complex forms only an extended structure, while the NAd-Na+ and protonated (NAd-H+) complexes form both folded and extended structures. This conformational preference of the NAd-Li+ complex is further explained by considering specific conformational distributions in solution. Our results clearly discern the unique structural motifs that NAd adopts when interacting with Li+ compared with other abundant cations in the human body (Na+) and can form the basis of a molecular level understanding of the selectivity of Li+ in biological systems.
Collapse
Affiliation(s)
- Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Hiromichi Wako
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352, USA. and Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
31
|
Zeng HJ, Yang N, Johnson MA. Introductory lecture: advances in ion spectroscopy: from astrophysics to biology. Faraday Discuss 2019; 217:8-33. [PMID: 31094388 DOI: 10.1039/c9fd00030e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This introduction provides a historical context for the development of ion spectroscopy over the past half century by following the evolution of experimental methods to the present state-of-the-art. Rather than attempt a comprehensive review, we focus on how early work on small ions, carried out with fluorescence, direct absorption, and photoelectron spectroscopy, evolved into powerful technologies that can now address complex chemical problems ranging from catalysis to biophysics. One of these developments is the incorporation of cooling and temperature control to enable the general application of "messenger tagging" vibrational spectroscopy, first carried out using ionized supersonic jets and then with buffer gas cooling in radiofrequency ion traps. Some key advances in the application of time-resolved pump-probe techniques to follow ultrafast dynamics are also discussed, as are significant benchmarks in the refinement of ion mobility to allow spectroscopic investigation of large biopolymers with well-defined shapes. We close with a few remarks on challenges and opportunities to explore molecular level mechanics that drive macroscopic behavior.
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
32
|
Chopra N, Chopra G, Kaur D. Exploring the Role of Consecutive Addition of Nitrogen Atoms on Stability and Reactivity of Hydrogen-Bonded Azine-Water Complexes. ACS OMEGA 2019; 4:8112-8121. [PMID: 31459902 PMCID: PMC6648882 DOI: 10.1021/acsomega.8b03496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/09/2019] [Indexed: 06/10/2023]
Abstract
The second-order Møller-Plesset perturbation theory (MP2) and density functional theory with dispersion function calculations have been applied to investigate the hydrogen-bonding interaction between azines and water. The study suggests that the ability of nitrogen present in azine to act as a hydrogen-bond acceptor decreases in the order of pyridine (PY) > diazine (DZ) > triazine (TZ) > tetrazine (TTZ) > pentazine (PZ) > hexazine (HZ). Natural bond orbital (NBO) analysis, atoms in molecules, symmetry-adapted perturbation theory (SAPT), and molecular electrostatic potential studies reflect the factors important for hydrogen-bond strength as well as for the structural, electronic, and vibrational changes occurring during complexation. NBO analysis reflects that upon gradual addition of nitrogen atoms, hyperconjugation leads to an increase in the population of antibonding O-H bond, thus causing elongation and weakening of O-H bond in complexes incorporating N···H-OW interaction, whereas rehybridization leads to an increase in the s character of the carbon hybrid orbital in C-H bond, thus causing contraction and shortening of C-H bond in complexes having C-H···OW interactions. From the topological analysis, an excellent linear correlation is found to exist between stabilization energy (ΔE BSSE), electron density (ρc), and its Laplacian (∇2ρc) at the bond critical points.
Collapse
|
33
|
Tamura M, Sekiguchi T, Ishiuchi SI, Zehnacker-Rentien A, Fujii M. Can the Partial Peptide SIVSF of the β 2-Adrenergic Receptor Recognize Chirality of the Epinephrine Neurotransmitter? J Phys Chem Lett 2019; 10:2470-2474. [PMID: 30840461 DOI: 10.1021/acs.jpclett.9b00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chirality plays an essential role in biological molecular recognition, such as neurotransmission. Here, we applied electrospray-cold ion trap spectroscopy to complexes of a partial binding motif SIVSF of a β2-adrenergic receptor pocket with L- and D-epinephrine AdH+. The ultraviolet spectrum of the SIVSF-AdH+ complex changed drastically when L-AdH+ was replaced by its enantiomer. The isomer-selected infrared spectra revealed that D-AdH+ was bound to SIVSF by its protonated amino-group or a single catechol OH and induced nonhelical secondary structures of SIVSF. This is in sharp contrast to the helical SIVSF complex with L-AdH+, which is close to the natural binding structure with two catechol OHs binding in the receptor. This shows that a short pentapeptide SIVSF can distinguish the chirality of the ligand AdH+ as well as the receptor. This stereoselectivity is suggested to arise from an additional interaction involving the hydroxyl group on the chiral carbon.
Collapse
Affiliation(s)
- Masato Tamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , 226-8503 , Japan
- School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Kanagawa 226-8501 , Japan
| | - Tsubasa Sekiguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , 226-8503 , Japan
- School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Kanagawa 226-8501 , Japan
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , 226-8503 , Japan
- School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Kanagawa 226-8501 , Japan
| | - Anne Zehnacker-Rentien
- Institut des Sciences Moléculaires d'Orsay (ISMO) , CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay , France
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , 226-8503 , Japan
- School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Kanagawa 226-8501 , Japan
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Japan
| |
Collapse
|
34
|
Schwarz H, Asmis KR. Identification of Active Sites and Structural Characterization of Reactive Ionic Intermediates by Cryogenic Ion Trap Vibrational Spectroscopy. Chemistry 2019; 25:2112-2126. [PMID: 30623993 DOI: 10.1002/chem.201805836] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/07/2019] [Indexed: 01/02/2023]
Abstract
Cryogenic ion trap vibrational spectroscopy paired with quantum chemistry currently represents the most generally applicable approach for the structural investigation of gaseous cluster ions that are not amenable to direct absorption spectroscopy. Here, we give an overview of the most popular variants of infrared action spectroscopy and describe the advantages of using cryogenic ion traps in combination with messenger tagging and vibrational predissociation spectroscopy. We then highlight a few recent studies that apply this technique to identify highly reactive ionic intermediates and to characterize their reactive sites. We conclude by commenting on future challenges and potential developments in the field.
Collapse
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany
| |
Collapse
|
35
|
Metrano AJ, Miller SJ. Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity. Acc Chem Res 2019; 52:199-215. [PMID: 30525436 PMCID: PMC6335614 DOI: 10.1021/acs.accounts.8b00473] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Nature’s catalytic machinery has provided
endless inspiration
for chemists. While the enzymatic ideal has yet to be fully realized,
the field has made tremendous strides toward synthetic, small-molecule
catalysts for a wide array of transformations, often drawing upon
biological concepts in their design. One strategy that has been particularly
influenced by enzymology is peptide catalysis, wherein oligopeptides
are implemented as chiral catalysts in synthetically relevant reactions.
The fundamental goal has been to mimic enzymatic active sites by taking
advantage of secondary structures that allow for multifunctional activation
of substrates within a framework of significantly reduced molecular
complexity. Our group has now been studying peptide-based catalysis
for over
two decades. At the outset, there were many reasons to be concerned
that general contributions might not be possible. Precedents existed,
including the Juliá–Colonna epoxidations mediated by
helical oligopeptides, among others. However, we sought to explore
whether peptide catalysts could find broad applications in organic
synthesis despite what was expected to be their principal liability:
conformational flexibility. Over time, we have been able to identify
peptidic catalysts for a variety of site- and enantioselective transformations
ranging from hydroxyl group and arene functionalizations to redox
and C–C bond forming reactions. The peptides often exhibited
excellent catalytic activities, in many cases enabling never-before-seen
patterns of selectivity. Recent studies even suggest that, in certain
situations, the conformational flexibility of these catalysts may
be advantageous for asymmetric induction. In the course of our
studies, opportunities to employ peptide-based
catalysis to solve long-standing and stereochemically intriguing problems
in asymmetric synthesis presented themselves. For example, we have
found that peptides provide exceptional enantiotopic group differentiation
in catalytic desymmetrization reactions. Early results with symmetrical
polyol substrates, such as myo-inositols and glycerols,
eventually spurred the development of remote desymmetrizations of
diarylmethanes, in which the enantiotopic groups are separated from
the prochiral center by ∼6 Å and from one another by nearly
1 nm. Various hydroxyl group functionalizations and electrophilic
brominations, as well as C–C, C–O, and C–N cross-coupling
reactions using peptidic ligands on copper(I) have now been developed
within this reaction archetype. Additionally, the preponderance of
axially chiral, atropisomeric compounds as ligands, organocatalysts,
and pharmacophores encouraged us to employ peptides as atroposelective
catalysts. We have developed peptide-catalyzed brominations of pharmaceutically
relevant biaryl, non-biaryl, and hetero-biaryl atropisomers that take
advantage of dynamic kinetic resolution schemes. These projects have
vastly expanded the reach of our original hypotheses and raised new
questions about peptide-based catalysts and the extent to which they
might mimic enzymes. Herein, we recount the development and
optimization of these stereochemically
complex reactions, with a particular focus on structural and mechanistic
aspects of the peptide-based catalysts that make them well-suited
for their respective functions. The ability of these peptides to address
important yet fundamentally challenging issues in asymmetric catalysis,
combined with their modularity and ease-of-synthesis, make them primed
for future use in organic synthesis.
Collapse
Affiliation(s)
- Anthony J. Metrano
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
36
|
Yatsyna V, Mallat R, Gorn T, Schmitt M, Feifel R, Rijs AM, Zhaunerchyk V. Conformational Preferences of Isolated Glycylglycine (Gly-Gly) Investigated with IRMPD-VUV Action Spectroscopy and Advanced Computational Approaches. J Phys Chem A 2019; 123:862-872. [DOI: 10.1021/acs.jpca.8b10881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vasyl Yatsyna
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Ranim Mallat
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Tim Gorn
- Institut für Physikalische Chemie I, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Michael Schmitt
- Institut für Physikalische Chemie I, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Anouk M. Rijs
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Vitali Zhaunerchyk
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| |
Collapse
|
37
|
Yatsyna V, Mallat R, Gorn T, Schmitt M, Feifel R, Rijs AM, Zhaunerchyk V. Competition between folded and extended structures of alanylalanine (Ala-Ala) in a molecular beam. Phys Chem Chem Phys 2019; 21:14126-14132. [DOI: 10.1039/c9cp00140a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural analysis of the neutral dipeptide Ala-Ala by action spectroscopy using IRMPD-VUV spectroscopy reveals predominance of extended structure.
Collapse
Affiliation(s)
- Vasyl Yatsyna
- University of Gothenburg
- Department of Physics
- Sweden
- Radboud University
- Institute for Molecules and Materials
| | - Ranim Mallat
- University of Gothenburg
- Department of Physics
- Sweden
| | - Tim Gorn
- Heinrich-Heine-Universität
- Institut für Physikalische Chemie I
- D-40225 Düsseldorf
- Germany
| | - Michael Schmitt
- Heinrich-Heine-Universität
- Institut für Physikalische Chemie I
- D-40225 Düsseldorf
- Germany
| | | | - Anouk M. Rijs
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | | |
Collapse
|
38
|
Affiliation(s)
- Oleg V. Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Chopra N, Kaur D, Chopra G. Nature and Hierarchy of Hydrogen-Bonding Interactions in Binary Complexes of Azoles with Water and Hydrogen Peroxide. ACS OMEGA 2018; 3:12688-12702. [PMID: 31457996 PMCID: PMC6644459 DOI: 10.1021/acsomega.8b01523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/19/2018] [Indexed: 05/15/2023]
Abstract
In the present study, the hydrogen-bonded complexes of azole with water and hydrogen peroxide are systematically investigated by second-order Møller-Plesset perturbation theory and density functional theory with dispersion function calculations. This study suggests that the ability of pyrrolic nitrogen (NH) atom to function as hydrogen-bond donor increases with the introduction of nitrogen atoms in the ring, whereas the ability of pyridinic nitrogen (N) atom to act as hydrogen-bond acceptor reduces with successive aza substitution in the ring. With introduction of nitrogen atoms in the ring, the vibrational frequency, stabilization energy, and electron density in the σ antibonding orbitals of the X-H (X = N, C of azole) bond of the complexes all increase or decrease systematically. Decomposition analysis of total stabilization energy showed that the electrostatic energy term is a dominant attractive contribution in comparison to induction and dispersion terms in all of the complexes under study.
Collapse
|
40
|
Roy TK, Kopysov V, Pereverzev A, Šebek J, Gerber RB, Boyarkin OV. Intrinsic structure of pentapeptide Leu-enkephalin: geometry optimization and validation by comparison of VSCF-PT2 calculations with cold ion spectroscopy. Phys Chem Chem Phys 2018; 20:24894-24901. [PMID: 30234204 DOI: 10.1039/c8cp03989e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The intrinsic structure of an opioid peptide [Ala2, Leu5]-leucine enkephalin (ALE) has been investigated using first-principles based vibrational self-consistent field (VSCF) theory and cold ion spectroscopy. IR-UV double resonance spectroscopy revealed the presence of only one highly abundant conformer of the singly protonated ALE, isolated and cryogenically cooled in the gas phase. High-level quantum mechanical calculations of electronic structures in conjunction with a systematic conformational search allowed for finding a few low-energy candidate structures. In order to identify the observed structure, we computed vibrational spectra of the candidate structures and employed the theory at the semi-empirically scaled harmonic level and at the first-principles based anharmonic VSCF levels. The best match between the calculated "anharmonic" and the measured spectra appeared, indeed, for the most stable candidate. An average of two spectra calculated with different quantum mechanical potentials is proposed for the best match with experiment. The match thus validates the calculated intrinsic structure of ALE and demonstrates the predictive power of first-principles theory for solving structures of such large molecules.
Collapse
Affiliation(s)
- Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Jammu 181143, India
| | | | | | | | | | | |
Collapse
|
41
|
Garand E. Spectroscopy of Reactive Complexes and Solvated Clusters: A Bottom-Up Approach Using Cryogenic Ion Traps. J Phys Chem A 2018; 122:6479-6490. [DOI: 10.1021/acs.jpca.8b05712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Etienne Garand
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
León I, Usabiaga I, Arnaiz PF, Lesarri A, Fernández JA. Stepwise Nucleation of Aniline: Emergence of Spectroscopic Fingerprints of the Liquid Phase. Chemistry 2018; 24:10291-10295. [DOI: 10.1002/chem.201802015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/30/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Iker León
- Department Of Physical Chemistryt; University of the Basque Country (UPV/EHU); Barrio Sarriena, S/N 48940 Leioa Spain
- Present address: Grupo de Espectrocopía Molecular; Edificio Quifima; Laboratorios de Espectroscopia y Bioespectroscopia Unidad Asociada CSIC; Parque Científico UVa; Universidad de Valladolid; 47011 Valladolid Spain
| | - Imanol Usabiaga
- Department Of Physical Chemistryt; University of the Basque Country (UPV/EHU); Barrio Sarriena, S/N 48940 Leioa Spain
- Present address: Dipartimento di Chimica “Giacomo Ciamician”; Università degli Studi di Bologna; via Selmi 2 I-40126 Bologna Italy
| | - Pedro F. Arnaiz
- Department Of Physical Chemistryt; University of the Basque Country (UPV/EHU); Barrio Sarriena, S/N 48940 Leioa Spain
| | - Alberto Lesarri
- Department of Physical Chemistry and Inorganic Chemistry; University of Valladolid; 47005 Valladolid Spain
| | - José A. Fernández
- Department Of Physical Chemistryt; University of the Basque Country (UPV/EHU); Barrio Sarriena, S/N 48940 Leioa Spain
| |
Collapse
|
43
|
Hurtley AE, Stone EA, Metrano AJ, Miller SJ. Desymmetrization of Diarylmethylamido Bis(phenols) through Peptide-Catalyzed Bromination: Enantiodivergence as a Consequence of a 2 amu Alteration at an Achiral Residue within the Catalyst. J Org Chem 2018; 82:11326-11336. [PMID: 29020446 DOI: 10.1021/acs.joc.7b02339] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diarylmethylamido bis(phenols) have been subjected to peptide-catalyzed, enantioselective bromination reactions. Desymmetrization of compounds in this class has been achieved such that enantioenriched products may be isolated with up to 97:3 er. Mechanistically, the observed enantioselectivity was shown to be primarily a function of differential functionalization of enantiotopic arenes, although additional studies unveiled a contribution from secondary kinetic resolution of the product (to afford the symmetrical dibromide) under the reaction conditions. Variants of the tetrapeptide catalyst were also evaluated and revealed a striking observation-enantiodivergent catalysis is observed upon changing the achiral amino acid residue in the catalyst (at the i+2 position) from an aminocyclopropane carboxamide residue (97:3 er) to an aminoisobutyramide residue (33:67 er) under a common set of conditions. An expanded set of catalysts was also evaluated, enabling structure/selectivity correlations to be considered in a mechanistic light.
Collapse
Affiliation(s)
- Anna E Hurtley
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Elizabeth A Stone
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Anthony J Metrano
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
44
|
Voss JM, Fischer KC, Garand E. Accessing the Vibrational Signatures of Amino Acid Ions Embedded in Water Clusters. J Phys Chem Lett 2018; 9:2246-2250. [PMID: 29659284 DOI: 10.1021/acs.jpclett.8b00738] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present an infrared predissociation (IRPD) study of microsolvated GlyH+(H2O) n and GlyH+(D2O) n clusters, formed inside of a cryogenic ion trap via condensation of H2O or D2O onto the protonated glycine ions. The resulting IRPD spectra, showing characteristic O-H and O-D stretches, indicate that H/D exchange reactions are quenched when the ion trap is held at 80 K, minimizing the presence of isotopomers. Comparisons of GlyH+(H2O) n and GlyH+(D2O) n spectra clearly highlight and distinguish the vibrational signatures of the water solvent molecules from those of the core GlyH+ ion, allowing for quick assessment of solvation structures. Without the aid of calculations, we can already infer solvation motifs and the presence of multiple conformations. The use of a cryogenic ion trap to cluster solvent molecules around ions of interest and control H/D exchange reactions is broadly applicable and should be extendable to studies of more complex peptidic ions in large solvated clusters.
Collapse
Affiliation(s)
- Jonathan M Voss
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Kaitlyn C Fischer
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Etienne Garand
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
45
|
Sekiguchi T, Tamura M, Oba H, Çarçarbal P, Lozada-Garcia RR, Zehnacker-Rentien A, Grégoire G, Ishiuchi SI, Fujii M. Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottom-Up Approach. Angew Chem Int Ed Engl 2018; 57:5626-5629. [DOI: 10.1002/anie.201712976] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/13/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Tsubasa Sekiguchi
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masato Tamura
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Hikari Oba
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Pierre Çarçarbal
- Institut des Sciences Moléculaires d'Orsay (ISMO); CNRS, Univ. Paris-Sud, Université Paris-Saclay; F-91405 Orsay France
| | - Rolando Rafael Lozada-Garcia
- Institut des Sciences Moléculaires d'Orsay (ISMO); CNRS, Univ. Paris-Sud, Université Paris-Saclay; F-91405 Orsay France
| | - Anne Zehnacker-Rentien
- Institut des Sciences Moléculaires d'Orsay (ISMO); CNRS, Univ. Paris-Sud, Université Paris-Saclay; F-91405 Orsay France
- Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT); Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay; F-91405 Orsay France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d'Orsay (ISMO); CNRS, Univ. Paris-Sud, Université Paris-Saclay; F-91405 Orsay France
- Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT); Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay; F-91405 Orsay France
| | - Shun-ichi Ishiuchi
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
46
|
Sekiguchi T, Tamura M, Oba H, Çarçarbal P, Lozada-Garcia RR, Zehnacker-Rentien A, Grégoire G, Ishiuchi SI, Fujii M. Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottom-Up Approach. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tsubasa Sekiguchi
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masato Tamura
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Hikari Oba
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Pierre Çarçarbal
- Institut des Sciences Moléculaires d'Orsay (ISMO); CNRS, Univ. Paris-Sud, Université Paris-Saclay; F-91405 Orsay France
| | - Rolando Rafael Lozada-Garcia
- Institut des Sciences Moléculaires d'Orsay (ISMO); CNRS, Univ. Paris-Sud, Université Paris-Saclay; F-91405 Orsay France
| | - Anne Zehnacker-Rentien
- Institut des Sciences Moléculaires d'Orsay (ISMO); CNRS, Univ. Paris-Sud, Université Paris-Saclay; F-91405 Orsay France
- Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT); Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay; F-91405 Orsay France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d'Orsay (ISMO); CNRS, Univ. Paris-Sud, Université Paris-Saclay; F-91405 Orsay France
- Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT); Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay; F-91405 Orsay France
| | - Shun-ichi Ishiuchi
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
47
|
Sheldrick A, Müller D, Günther A, Nieto P, Dopfer O. Optical spectroscopy of isolated flavins: photodissociation of protonated lumichrome. Phys Chem Chem Phys 2018; 20:7407-7414. [DOI: 10.1039/c8cp00590g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cryogenic ion spectroscopy of protonated lumichrome realized by photodissociation of mass selected ions in a tandem mass spectrometer provides the first optical spectrum of a flavin molecule isolated in the gas phase.
Collapse
Affiliation(s)
- Alexander Sheldrick
- Technische Universität Berlin
- Institut für Optik und Atomare Physik
- Berlin D-10623
- Germany
| | - David Müller
- Technische Universität Berlin
- Institut für Optik und Atomare Physik
- Berlin D-10623
- Germany
| | - Alan Günther
- Technische Universität Berlin
- Institut für Optik und Atomare Physik
- Berlin D-10623
- Germany
| | - Pablo Nieto
- Technische Universität Berlin
- Institut für Optik und Atomare Physik
- Berlin D-10623
- Germany
| | - Otto Dopfer
- Technische Universität Berlin
- Institut für Optik und Atomare Physik
- Berlin D-10623
- Germany
| |
Collapse
|
48
|
Voss JM, Kregel SJ, Fischer KC, Garand E. IR-IR Conformation Specific Spectroscopy of Na +(Glucose) Adducts. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:42-50. [PMID: 28956282 DOI: 10.1007/s13361-017-1813-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 05/14/2023]
Abstract
We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jonathan M Voss
- Department of Chemistry, University of Wisconsin, 1101 University Ave., Madison, WI, 53706, USA
| | - Steven J Kregel
- Department of Chemistry, University of Wisconsin, 1101 University Ave., Madison, WI, 53706, USA
| | - Kaitlyn C Fischer
- Department of Chemistry, University of Wisconsin, 1101 University Ave., Madison, WI, 53706, USA
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin, 1101 University Ave., Madison, WI, 53706, USA.
| |
Collapse
|
49
|
Roy TK, Nagornova NS, Boyarkin OV, Gerber RB. A Decapeptide Hydrated by Two Waters: Conformers Determined by Theory and Validated by Cold Ion Spectroscopy. J Phys Chem A 2017; 121:9401-9408. [PMID: 29091429 DOI: 10.1021/acs.jpca.7b10357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intrinsic structures of biomolecules in the gas phase may not reflect their native solution geometries. Microsolvation of the molecules bridges the two environments, enabling a tracking of molecular structural changes upon hydration at the atomistic level. We employ density functional calculations to compute a large pool of structures and vibrational spectra for a gas-phase complex, in which a doubly protonated decapeptide, gramicidin S, is solvated by two water molecules. Though most vibrations of this large complex are treated in a harmonic approximation, the water molecules and the vibrations of the host ion coupled to them are locally described by a quantum mechanical vibrational self-consistent field theory with second-order perturbation correction (VSCF-PT2). Guided and validated by the available cold ion spectroscopy data, the computational analysis identifies structures of the three experimentally observed conformers of the complex. They, mainly, differ by the hydration sites, of which the one at the Orn side chain is the most important for reshaping the peptide toward its native structure. The study demonstrates the ability of a quantum chemistry approach that intelligently combines the semiempirical and ab initio computations to disentangle a complex interplay of intra- and intermolecular hydrogen bonds in large molecular systems.
Collapse
Affiliation(s)
- Tapta Kanchan Roy
- Department of Chemistry & Chemical Sciences, Central University of Jammu , Jammu, 180011 India
| | - Natalia S Nagornova
- Laboratoire de Chimie Physique Molèculaire, École Polytechnique Fèdèrale de Lausanne , 1015 Lausanne, Switzerland
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Molèculaire, École Polytechnique Fèdèrale de Lausanne , 1015 Lausanne, Switzerland
| | - R Benny Gerber
- Institute of Chemistry, The Hebrew University , Jerusalem 91904, Israel.,Department of Chemistry, University of California , Irvine, California 92697, United States.,Department of Chemistry, University of Helsinki , P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
50
|
Gorlova O, Colvin SM, Brathwaite A, Menges FS, Craig SM, Miller SJ, Johnson MA. Identification and Partial Structural Characterization of Mass Isolated Valsartan and Its Metabolite with Messenger Tagging Vibrational Spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2414-2422. [PMID: 28801884 DOI: 10.1007/s13361-017-1767-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Recent advances in the coupling of vibrational spectroscopy with mass spectrometry create new opportunities for the structural characterization of metabolites with great sensitivity. Previous studies have demonstrated this scheme on 300 K ions using very high power free electron lasers in the fingerprint region of the infrared. Here we extend the scope of this approach to a single investigator scale as well as extend the spectral range to include the OH stretching fundamentals. This is accomplished by detecting the IR absorptions in a linear action regime by photodissociation of weakly bound N2 molecules, which are attached to the target ions in a cryogenically cooled, rf ion trap. We consider the specific case of the widely used drug Valsartan and two isomeric forms of its metabolite. Advantages and challenges of the cold ion approach are discussed, including disentangling the role of conformers and the strategic choices involved in the selection of the charging mechanism that optimize spectral differentiation among candidate structural isomers. In this case, the Na+ complexes are observed to yield sharp resonances in the high frequency NH and OH stretching regions, which can be used to easily differentiate between two isomers of the metabolite. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Olga Gorlova
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Sean M Colvin
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Antonio Brathwaite
- College of Science and Mathematics, University of the Virgin Islands, St. Thomas, 00802, Virgin Islands (U.S.)
| | - Fabian S Menges
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Mark A Johnson
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|