1
|
Jangra M, Travin DY, Aleksandrova EV, Kaur M, Darwish L, Koteva K, Klepacki D, Wang W, Tiffany M, Sokaribo A, Coombes BK, Vázquez-Laslop N, Polikanov YS, Mankin AS, Wright GD. A broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome. Nature 2025; 640:1022-1030. [PMID: 40140562 DOI: 10.1038/s41586-025-08723-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/30/2025] [Indexed: 03/28/2025]
Abstract
Lasso peptides (biologically active molecules with a distinct structurally constrained knotted fold) are natural products that belong to the class of ribosomally synthesized and post-translationally modified peptides1-3. Lasso peptides act on several bacterial targets4,5, but none have been reported to inhibit the ribosome, one of the main targets of antibiotics in the bacterial cell6,7. Here we report the identification and characterization of the lasso peptide antibiotic lariocidin and its internally cyclized derivative lariocidin B, produced by Paenibacillus sp. M2, which has broad-spectrum activity against a range of bacterial pathogens. We show that lariocidins inhibit bacterial growth by binding to the ribosome and interfering with protein synthesis. Structural, genetic and biochemical data show that lariocidins bind at a unique site in the small ribosomal subunit, where they interact with the 16S ribosomal RNA and aminoacyl-tRNA, inhibiting translocation and inducing miscoding. Lariocidin is unaffected by common resistance mechanisms, has a low propensity for generating spontaneous resistance, shows no toxicity to human cells, and has potent in vivo activity in a mouse model of Acinetobacter baumannii infection. Our identification of ribosome-targeting lasso peptides uncovers new routes towards the discovery of alternative protein-synthesis inhibitors and offers a novel chemical scaffold for the development of much-needed antibacterial drugs.
Collapse
MESH Headings
- Ribosomes/drug effects
- Ribosomes/metabolism
- Ribosomes/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/metabolism
- Animals
- Mice
- Protein Biosynthesis/drug effects
- Humans
- Paenibacillus/metabolism
- Paenibacillus/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/chemistry
- Peptides, Cyclic/pharmacology
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/metabolism
- Female
- Models, Molecular
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- Bacteria/drug effects
- Bacteria/growth & development
- Peptides/pharmacology
- Peptides/chemistry
- Microbial Sensitivity Tests
Collapse
Affiliation(s)
- Manoj Jangra
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dmitrii Y Travin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Manpreet Kaur
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lena Darwish
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kalinka Koteva
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Wenliang Wang
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Maya Tiffany
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Akosiererem Sokaribo
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K Coombes
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Yury S Polikanov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada.
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Hassan A, Pinkas M, Yaeshima C, Ishino S, Uchiumi T, Ito K, Demo G. Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization. Nucleic Acids Res 2025; 53:gkae1324. [PMID: 39797736 PMCID: PMC11724365 DOI: 10.1093/nar/gkae1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress. Despite extensive studies on bacteria and eukaryotes, understanding factor-mediated ribosome dimerization or anti-association in archaea remains elusive. Here, we present cryo-electron microscopy structures of an archaeal 30S dimer complexed with an archaeal ribosome dimerization factor (designated aRDF), from Pyrococcus furiosus, resolved at a resolution of 3.2 Å. The complex features two 30S subunits stabilized by aRDF homodimers in a unique head-to-body architecture, which differs from the disome architecture observed during hibernation in bacteria and eukaryotes. aRDF interacts directly with eS32 ribosomal protein, which is essential for subunit association. The binding mode of aRDF elucidates its anti-association properties, which prevent the assembly of archaeal 70S ribosomes.
Collapse
Affiliation(s)
- Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Matyas Pinkas
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Chiaki Yaeshima
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
3
|
Njenga RK, Boele J, Drepper F, Sinha K, Marouda E, Huesgen PF, Blaby-Haas C, Koch HG. Ribosome-inactivation by a class of widely distributed C-tail anchored membrane proteins. Structure 2024; 32:2259-2275.e6. [PMID: 39419022 DOI: 10.1016/j.str.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Ribosome hibernation is a commonly used strategy that protects ribosomes under unfavorable conditions and regulates developmental processes. Multiple ribosome-hibernation factors have been identified in all domains of life, but due to their structural diversity and the lack of a common inactivation mechanism, it is currently unknown how many different hibernation factors exist. Here, we show that the YqjD/ElaB/YgaM paralogs, initially discovered as membrane-bound ribosome binding proteins in E. coli, constitute an abundant class of ribosome-hibernating proteins, which are conserved across all proteobacteria and some other bacterial phyla. Our data demonstrate that they inhibit in vitro protein synthesis by interacting with the 50S ribosomal subunit. In vivo cross-linking combined with mass spectrometry revealed their specific interactions with proteins surrounding the ribosomal tunnel exit and even their penetration into the ribosomal tunnel. Thus, YqjD/ElaB/YgaM inhibit translation by blocking the ribosomal tunnel and thus mimic the activity of antimicrobial peptides and macrolide antibiotics.
Collapse
Affiliation(s)
- Robert Karari Njenga
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Julian Boele
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Kasturica Sinha
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Eirini Marouda
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Pitter F Huesgen
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Crysten Blaby-Haas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Aleksandrova EV, Ma CX, Klepacki D, Alizadeh F, Vázquez-Laslop N, Liang JH, Polikanov YS, Mankin AS. Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Nat Chem Biol 2024; 20:1680-1690. [PMID: 39039256 PMCID: PMC11686707 DOI: 10.1038/s41589-024-01685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.
Collapse
Affiliation(s)
- Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Faezeh Alizadeh
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Wright G, Jangra M, Travin D, Aleksandrova E, Kaur M, Darwish L, Koteva K, Klepacki D, Wang W, Tiffany M, Sokaribo A, Coombes B, Vázquez-Laslop N, Polikanov Y, Mankin A. A Broad Spectrum Lasso Peptide Antibiotic Targeting the Bacterial Ribosome. RESEARCH SQUARE 2024:rs.3.rs-5058118. [PMID: 39372947 PMCID: PMC11451635 DOI: 10.21203/rs.3.rs-5058118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Lasso peptides, biologically active molecules with a distinct structurally constrained knotted fold, are natural products belonging to the class of ribosomally-synthesized and posttranslationally modified peptides (RiPPs). Lasso peptides act upon several bacterial targets, but none have been reported to inhibit the ribosome, one of the main antibiotic targets in the bacterial cell. Here, we report the identification and characterization of the lasso peptide antibiotic, lariocidin (LAR), and its internally cyclized derivative, lariocidin B (LAR-B), produced by Paenabacillussp. M2, with broad-spectrum activity against many bacterial pathogens. We show that lariocidins inhibit bacterial growth by binding to the ribosome and interfering with protein synthesis. Structural, genetic, and biochemical data show that lariocidins bind at a unique site in the small ribosomal subunit, where they interact with the 16S rRNA and aminoacyl-tRNA, inhibiting translocation and inducing miscoding. LAR is unaffected by common resistance mechanisms, has a low propensity for generating spontaneous resistance, shows no human cell toxicity, and has potent in vivo activity in a mouse model of Acinetobacter baumannii infection. Our finding of the first ribosome-targeting lasso peptides uncovers new routes toward discovering alternative protein synthesis inhibitors and offers a new chemical scaffold for developing much-needed antibacterial drugs.
Collapse
|
6
|
Ueta M, Wada A, Wada C. The hibernation promoting factor of Betaproteobacteria Comamonas testosteroni cannot induce 100S ribosome formation but stabilizes 70S ribosomal particles. Genes Cells 2024; 29:613-634. [PMID: 38937957 DOI: 10.1111/gtc.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024]
Abstract
Bacteria use several means to survive under stress conditions such as nutrient depletion. One such response is the formation of hibernating 100S ribosomes, which are translationally inactive 70S dimers. In Gammaproteobacteria (Enterobacterales), 100S ribosome formation requires ribosome modulation factor (RMF) and short hibernation promoting factor (HPF), whereas it is mediated by only long HPF in the majority of bacteria. Here, we investigated the role of HPFs of Comamonas testosteroni, which belongs to the Betaproteobacteria with common ancestor to the Gammaproteobacteria. C. testosteroni has two genes of HPF homologs of differing length (CtHPF-125 and CtHPF-119). CtHPF-125 was induced in the stationary phase, whereas CtHPF-119 conserved in many other Betaproteobacteria was not expressed in the culture conditions used here. Unlike short HPF and RMF, and long HPF, CtHPF-125 could not form 100S ribosome. We first constructed the deletion mutant of Cthpf-125 gene. When the deletion mutant grows in the stationary phase, 70S particles were degraded faster than in the wild strain. CtHPF-125 contributes to stabilizing the 70S ribosome. CtHPF-125 and CtHPF-119 both inhibited protein synthesis by transcription-translation in vitro. Our findings suggest that CtHPF-125 binds to ribosome, and stabilizes 70S ribosomes, inhibits translation without forming 100S ribosomes and supports prolonging life.
Collapse
Affiliation(s)
- Masami Ueta
- Biological Information Research, Yoshida Biological Laboratory Inc., Yoshida Biological Laboratory, Kyoto, Japan
| | - Akira Wada
- Biological Information Research, Yoshida Biological Laboratory Inc., Yoshida Biological Laboratory, Kyoto, Japan
| | - Chieko Wada
- Biological Information Research, Yoshida Biological Laboratory Inc., Yoshida Biological Laboratory, Kyoto, Japan
| |
Collapse
|
7
|
Meyer I, Volk M, Salto I, Moesser T, Chaoprasid P, Herbrüggen AS, Rohde M, Beckstette M, Heroven AK, Dersch P. RNase-mediated reprogramming of Yersinia virulence. PLoS Pathog 2024; 20:e1011965. [PMID: 39159284 PMCID: PMC11361751 DOI: 10.1371/journal.ppat.1011965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/29/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
RNA degradation is an essential process that allows bacteria to regulate gene expression and has emerged as an important mechanism for controlling virulence. However, the individual contributions of RNases in this process are mostly unknown. Here, we tested the influence of 11 potential RNases in the intestinal pathogen Yersinia pseudotuberculosis on the expression of its type III secretion system (T3SS) and associated effectors (Yops) that are encoded on the Yersinia virulence plasmid. We found that exoribonuclease PNPase and endoribonuclease RNase III inhibit T3SS and yop gene transcription by repressing the synthesis of LcrF, the master activator of Yop-T3SS. Loss of both RNases led to an increase in lcrF mRNA levels. Our work indicates that PNPase exerts its influence via YopD, which accelerates lcrF mRNA degradation. Loss of RNase III, on the other hand, results in the downregulation of the CsrB and CsrC RNAs, thereby increasing the availability of active CsrA, which has been shown previously to enhance lcrF mRNA translation and stability. This CsrA-promoted increase of lcrF mRNA translation could be supported by other factors promoting the protein translation efficiency (e.g. IF-3, RimM, RsmG) that were also found to be repressed by RNase III. Transcriptomic profiling further revealed that Ysc-T3SS-mediated Yop secretion leads to global reprogramming of the Yersinia transcriptome with a massive shift of the expression from chromosomal to virulence plasmid-encoded genes. A similar reprogramming was also observed in the RNase III-deficient mutant under non-secretion conditions. Overall, our work revealed a complex control system where RNases orchestrate the expression of the T3SS/Yop machinery on multiple levels to antagonize phagocytic uptake and elimination by innate immune cells.
Collapse
Affiliation(s)
- Ines Meyer
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Marcel Volk
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Ileana Salto
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Theresa Moesser
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Paweena Chaoprasid
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Anne-Sophie Herbrüggen
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Manfred Rohde
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
- German Center for Infection Research (DZIF), Partner site HZI Braunschweig and associated site University of Münster, Münster, Germany
| |
Collapse
|
8
|
Pandiarajan I, Walunj SB, Banerjee N, Rout J, Srivastava S, Patankar S, Kaledhonkar S. Application of bio-layer interferometry for the analysis of ribosome-protein interactions. Front Mol Biosci 2024; 11:1398964. [PMID: 39148630 PMCID: PMC11325027 DOI: 10.3389/fmolb.2024.1398964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
The ribosome, a ribonucleoprotein complex, performs the function of protein translation. While ribosomal RNA catalyzes polypeptide formation, several proteins assist the ribosome throughout the translation process. Studying the biochemical and kinetic properties of these proteins interacting with the ribosome is vital for elucidating their roles. Various techniques, such as zonal centrifugation, pull-down assays, dynamic light scattering (DLS), fluorescence polarization, and surface plasmon resonance (SPR) are employed for this purpose, each presenting unique advantages and limitations. We add to the repertoire of techniques by using Bio-Layer Interferometry (BLI) to examine interactions between the ribosome and translation factors. Our findings demonstrate that BLI can detect interactions of Escherichia coli ribosomes with two proteins: E. coli initiation factor 2 (IF2) and P. falciparum translation enhancing factor (PTEF). A protein (Green Fluorescent Protein; GFP) known not to bind to E. coli ribosomes, shows no binding in the BLI assay. We show that BLI could be used to study the ribosome-protein interactions as it has key advantages like label-free procedures, ease of assay performance, and ribosome sample reuse. Our results highlight the comprehensive use of BLI in studying the ribosome-protein interactions, in addition to studying protein-protein and protein-ligand interactions.
Collapse
Affiliation(s)
- Ilamathy Pandiarajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sujata B Walunj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nirjhar Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Janmejaya Rout
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sandip Kaledhonkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
9
|
Ekemezie CL, Melnikov SV. Hibernating ribosomes as drug targets? Front Microbiol 2024; 15:1436579. [PMID: 39135874 PMCID: PMC11317432 DOI: 10.3389/fmicb.2024.1436579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
When ribosome-targeting antibiotics attack actively growing bacteria, they occupy ribosomal active centers, causing the ribosomes to stall or make errors that either halt cellular growth or cause bacterial death. However, emerging research indicates that bacterial ribosomes spend a considerable amount of time in an inactive state known as ribosome hibernation, in which they dissociate from their substrates and bind to specialized proteins called ribosome hibernation factors. Since 60% of microbial biomass exists in a dormant state at any given time, these hibernation factors are likely the most common partners of ribosomes in bacterial cells. Furthermore, some hibernation factors occupy ribosomal drug-binding sites - leading to the question of how ribosome hibernation influences antibiotic efficacy, and vice versa. In this review, we summarize the current state of knowledge on physical and functional interactions between hibernation factors and ribosome-targeting antibiotics and explore the possibility of using antibiotics to target not only active but also hibernating ribosomes. Because ribosome hibernation empowers bacteria to withstand harsh conditions such as starvation, stress, and host immunity, this line of research holds promise for medicine, agriculture, and biotechnology: by learning to regulate ribosome hibernation, we could enhance our capacity to manage the survival of microorganisms in dormancy.
Collapse
Affiliation(s)
- Chinenye L. Ekemezie
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Medical School of Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Koli S, Shetty S. Ribosomal dormancy at the nexus of ribosome homeostasis and protein synthesis. Bioessays 2024; 46:e2300247. [PMID: 38769702 DOI: 10.1002/bies.202300247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Dormancy or hibernation is a non-proliferative state of cells with low metabolic activity and gene expression. Dormant cells sequester ribosomes in a translationally inactive state, called dormant/hibernating ribosomes. These dormant ribosomes are important for the preservation of ribosomes and translation shut-off. While recent studies attempted to elucidate their modes of formation, the regulation and roles of the diverse dormant ribosomal populations are still largely understudied. The mechanistic details of the formation of dormant ribosomes in stress and especially their disassembly during recovery remain elusive. In this review, we discuss the roles of dormant ribosomes and their potential regulatory mechanisms. Furthermore, we highlight the paradigms that need to be answered in the field of ribosomal dormancy.
Collapse
Affiliation(s)
- Saloni Koli
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sunil Shetty
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
11
|
Khusainov I, Romanov N, Goemans C, Turoňová B, Zimmerli CE, Welsch S, Langer JD, Typas A, Beck M. Bactericidal effect of tetracycline in E. coli strain ED1a may be associated with ribosome dysfunction. Nat Commun 2024; 15:4783. [PMID: 38839776 PMCID: PMC11153495 DOI: 10.1038/s41467-024-49084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Ribosomes translate the genetic code into proteins. Recent technical advances have facilitated in situ structural analyses of ribosome functional states inside eukaryotic cells and the minimal bacterium Mycoplasma. However, such analyses of Gram-negative bacteria are lacking, despite their ribosomes being major antimicrobial drug targets. Here we compare two E. coli strains, a lab E. coli K-12 and human gut isolate E. coli ED1a, for which tetracycline exhibits bacteriostatic and bactericidal action, respectively. Using our approach for close-to-native E. coli sample preparation, we assess the two strains by cryo-ET and visualize their ribosomes at high resolution in situ. Upon tetracycline treatment, these exhibit virtually identical drug binding sites, yet the conformation distribution of ribosomal complexes differs. While K-12 retains ribosomes in a translation-competent state, tRNAs are lost in the vast majority of ED1a ribosomes. These structural findings together with the proteome-wide abundance and thermal stability assessments indicate that antibiotic responses are complex in cells and can differ between different strains of a single species, thus arguing that all relevant bacterial strains should be analyzed in situ when addressing antibiotic mode of action.
Collapse
Affiliation(s)
- Iskander Khusainov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Av. des Martyrs, 38000, Grenoble, France
| | - Natalie Romanov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Camille Goemans
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), SV, Station 19, 1015, Lausanne, Switzerland
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Christian E Zimmerli
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), BSP Route de la Sorge, 1015, Lausanne, Switzerland
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Julian D Langer
- Membrane Proteomics and Mass Spectrometry, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
- Mass Spectrometry, Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438, Frankfurt am Main, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Helena-Bueno K, Chan LI, Melnikov SV. Rippling life on a dormant planet: hibernation of ribosomes, RNA polymerases, and other essential enzymes. Front Microbiol 2024; 15:1386179. [PMID: 38770025 PMCID: PMC11102965 DOI: 10.3389/fmicb.2024.1386179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
Throughout the tree of life, cells and organisms enter states of dormancy or hibernation as a key feature of their biology: from a bacterium arresting its growth in response to starvation, to a plant seed anticipating placement in fertile ground, to a human oocyte poised for fertilization to create a new life. Recent research shows that when cells hibernate, many of their essential enzymes hibernate too: they disengage from their substrates and associate with a specialized group of proteins known as hibernation factors. Here, we summarize how hibernation factors protect essential cellular enzymes from undesired activity or irreparable damage in hibernating cells. We show how molecular hibernation, once viewed as rare and exclusive to certain molecules like ribosomes, is in fact a widespread property of biological molecules that is required for the sustained persistence of life on Earth.
Collapse
Affiliation(s)
| | | | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
Wu KJY, Tresco BIC, Ramkissoon A, Aleksandrova EV, Syroegin EA, See DNY, Liow P, Dittemore GA, Yu M, Testolin G, Mitcheltree MJ, Liu RY, Svetlov MS, Polikanov YS, Myers AG. An antibiotic preorganized for ribosomal binding overcomes antimicrobial resistance. Science 2024; 383:721-726. [PMID: 38359125 PMCID: PMC11665821 DOI: 10.1126/science.adk8013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
We report the design conception, chemical synthesis, and microbiological evaluation of the bridged macrobicyclic antibiotic cresomycin (CRM), which overcomes evolutionarily diverse forms of antimicrobial resistance that render modern antibiotics ineffective. CRM exhibits in vitro and in vivo efficacy against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We show that CRM is highly preorganized for ribosomal binding by determining its density functional theory-calculated, solution-state, solid-state, and (wild-type) ribosome-bound structures, which all align identically within the macrobicyclic subunits. Lastly, we report two additional x-ray crystal structures of CRM in complex with bacterial ribosomes separately modified by the ribosomal RNA methylases, chloramphenicol-florfenicol resistance (Cfr) and erythromycin-resistance ribosomal RNA methylase (Erm), revealing concessive adjustments by the target and antibiotic that permit CRM to maintain binding where other antibiotics fail.
Collapse
Affiliation(s)
- Kelvin J. Y. Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ben I. C. Tresco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Antonio Ramkissoon
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elena V. Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Egor A. Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dominic N. Y. See
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Priscilla Liow
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Georgia A. Dittemore
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Meiyi Yu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Giambattista Testolin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew J. Mitcheltree
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard Y. Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Maxim S. Svetlov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Helena-Bueno K, Rybak MY, Ekemezie CL, Sullivan R, Brown CR, Dingwall C, Baslé A, Schneider C, Connolly JPR, Blaza JN, Csörgő B, Moynihan PJ, Gagnon MG, Hill CH, Melnikov SV. A new family of bacterial ribosome hibernation factors. Nature 2024; 626:1125-1132. [PMID: 38355796 PMCID: PMC10901736 DOI: 10.1038/s41586-024-07041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.
Collapse
Affiliation(s)
| | - Mariia Yu Rybak
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Rudi Sullivan
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Schneider
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - James N Blaza
- Department of Chemistry, University of York, York, UK
- York Structural Biology Laboratory, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | - Matthieu G Gagnon
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chris H Hill
- York Structural Biology Laboratory, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
- Department of Biology, University of York, York, UK.
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Kumar N, Sharma S, Kaushal PS. Cryo- EM structure of the mycobacterial 70S ribosome in complex with ribosome hibernation promotion factor RafH. Nat Commun 2024; 15:638. [PMID: 38245551 PMCID: PMC10799931 DOI: 10.1038/s41467-024-44879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Ribosome hibernation is a key survival strategy bacteria adopt under environmental stress, where a protein, hibernation promotion factor (HPF), transitorily inactivates the ribosome. Mycobacterium tuberculosis encounters hypoxia (low oxygen) as a major stress in the host macrophages, and upregulates the expression of RafH protein, which is crucial for its survival. The RafH, a dual domain HPF, an orthologue of bacterial long HPF (HPFlong), hibernates ribosome in 70S monosome form, whereas in other bacteria, the HPFlong induces 70S ribosome dimerization and hibernates its ribosome in 100S disome form. Here, we report the cryo- EM structure of M. smegmatis, a close homolog of M. tuberculosis, 70S ribosome in complex with the RafH factor at an overall 2.8 Å resolution. The N- terminus domain (NTD) of RafH binds to the decoding center, similarly to HPFlong NTD. In contrast, the C- terminus domain (CTD) of RafH, which is larger than the HPFlong CTD, binds to a distinct site at the platform binding center of the ribosomal small subunit. The two domain-connecting linker regions, which remain mostly disordered in earlier reported HPFlong structures, interact mainly with the anti-Shine Dalgarno sequence of the 16S rRNA.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
16
|
Phelps GA, Cheramie MN, Fernando DM, Selchow P, Meyer CJ, Waidyarachchi SL, Dharuman S, Liu J, Meuli M, Molin MD, Killam BY, Murphy PA, Reeve SM, Wilt LA, Anderson SM, Yang L, Lee RB, Temrikar ZH, Lukka PB, Meibohm B, Polikanov YS, Hobbie SN, Böttger EC, Sander P, Lee RE. Development of 2nd generation aminomethyl spectinomycins that overcome native efflux in Mycobacterium abscessus. Proc Natl Acad Sci U S A 2024; 121:e2314101120. [PMID: 38165935 PMCID: PMC10786304 DOI: 10.1073/pnas.2314101120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/11/2023] [Indexed: 01/04/2024] Open
Abstract
Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.
Collapse
Affiliation(s)
- Gregory A. Phelps
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN38103
| | - Martin N. Cheramie
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Dinesh M. Fernando
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Petra Selchow
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
| | - Christopher J. Meyer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Samanthi L. Waidyarachchi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Michael Meuli
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
- National Reference Center for Mycobacteria, ZurichCH-8006, Switzerland
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
| | - Benjamin Y. Killam
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Patricia A. Murphy
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Stephanie M. Reeve
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Laura A. Wilt
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Shelby M. Anderson
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Robin B. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Zaid H. Temrikar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Pradeep B. Lukka
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL60607
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
- National Reference Center for Mycobacteria, ZurichCH-8006, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
- National Reference Center for Mycobacteria, ZurichCH-8006, Switzerland
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| |
Collapse
|
17
|
Pourciau C, Yakhnin H, Pannuri A, Gorelik MG, Lai YJ, Romeo T, Babitzke P. CsrA coordinates the expression of ribosome hibernation and anti-σ factor proteins. mBio 2023; 14:e0258523. [PMID: 37943032 PMCID: PMC10746276 DOI: 10.1128/mbio.02585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The Csr/Rsm system (carbon storage regulator or repressor of stationary phase metabolites) is a global post-transcriptional regulatory system that coordinates and responds to environmental cues and signals, facilitating the transition between active growth and stationary phase. Another key determinant of bacterial lifestyle decisions is the management of the cellular gene expression machinery. Here, we investigate the connection between these two processes in Escherichia coli. Disrupted regulation of the transcription and translation machinery impacts many cellular functions, including gene expression, growth, fitness, and stress resistance. Elucidating the role of the Csr system in controlling the activity of RNAP and ribosomes advances our understanding of mechanisms controlling bacterial growth. A more complete understanding of these processes could lead to the improvement of therapeutic strategies for recalcitrant infections.
Collapse
Affiliation(s)
- Christine Pourciau
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archanna Pannuri
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Mark G. Gorelik
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ying-Jung Lai
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
18
|
Liu H, Wang Y, Zhang Z, Qi H, Zhang Y, Li W, Shi Q, Xie X. Nutrient condition modulates the antibiotic tolerance of Pseudomonas aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166749. [PMID: 37659534 DOI: 10.1016/j.scitotenv.2023.166749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The variation in nutrient content across diverse environments has a significant impact on the survival and metabolism of microorganisms. In this study, we examined the influence of nutrients on the antibiotic tolerance of the PAO1 strain of Pseudomonas aeruginosa. Our findings indicate that under nutrient-rich conditions, this strain exhibited relatively high tolerance to ceftazidime, chloramphenicol, and tetracycline, but not aminoglycosides and fluoroquinolones. Transcriptome analysis revealed that genes associated with antibiotic tolerance were expressed more efficiently in nutrient-rich media, including ribosomal protein genes and multidrug efflux pump genes, which conferred higher tetracycline tolerance to the strain. Furthermore, the genes responsible for translation, biosynthesis, and oxidative phosphorylation were suppressed when nutrients were limited, resulting in decreased metabolic activity and lower sensitivity to ciprofloxacin. Artificial interference with ATP synthesis utilizing arsenate confirmed that the curtailment of energy provision bolstered the observed tolerance to ciprofloxacin. In general, our results indicate that this strain of P. aeruginosa tends to activate its intrinsic resistance mechanisms in nutrient-rich environments, thereby enhancing resistance to certain antibiotics. Conversely, in nutrient-limited environments, the strain is more likely to enter a dormant state, which enables it to tolerate antibiotics to which it would otherwise be sensitive. These findings further suggest that antibiotics released in environments with varying eutrophication levels may have divergent effects on the development of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Qi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wenru Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
19
|
Sharma MR, Manjari SR, Agrawal EK, Keshavan P, Koripella RK, Majumdar S, Marcinkiewicz AL, Lin YP, Agrawal RK, Banavali NK. The structure of a hibernating ribosome in a Lyme disease pathogen. Nat Commun 2023; 14:6961. [PMID: 37907464 PMCID: PMC10618245 DOI: 10.1038/s41467-023-42266-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
The spirochete bacterial pathogen Borrelia (Borreliella) burgdorferi (Bbu) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. Here we present the structure of the Bbu 70S ribosome obtained by single particle cryo-electron microscopy at 2.9 Å resolution, revealing a bound hibernation promotion factor protein and two genetically non-annotated ribosomal proteins bS22 and bL38. The ribosomal protein uL30 in Bbu has an N-terminal α-helical extension, partly resembling the mycobacterial bL37 protein, suggesting evolution of bL37 and a shorter uL30 from a longer uL30 protein. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energy predictions for antibiotics reflect subtle distinctions in antibiotic-binding sites in the Bbu ribosome. Discovery of these features in the Bbu ribosome may enable better ribosome-targeted antibiotic design for Lyme disease treatment.
Collapse
Affiliation(s)
- Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Swati R Manjari
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ekansh K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- University of California at Berkeley, Berkeley, CA, USA
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA, USA
| | - Soneya Majumdar
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| | - Nilesh K Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| |
Collapse
|
20
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Chen CW, Leimer N, Syroegin EA, Dunand C, Bulman ZP, Lewis K, Polikanov YS, Svetlov MS. Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A. Nat Commun 2023; 14:4196. [PMID: 37452045 PMCID: PMC10349075 DOI: 10.1038/s41467-023-39653-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
The ever-growing rise of antibiotic resistance among bacterial pathogens is one of the top healthcare threats today. Although combination antibiotic therapies represent a potential approach to more efficiently combat infections caused by susceptible and drug-resistant bacteria, only a few known drug pairs exhibit synergy/cooperativity in killing bacteria. Here, we discover that well-known ribosomal antibiotics, hygromycin A (HygA) and macrolides, which target peptidyl transferase center and peptide exit tunnel, respectively, can act cooperatively against susceptible and drug-resistant bacteria. Remarkably, HygA slows down macrolide dissociation from the ribosome by 60-fold and enhances the otherwise weak antimicrobial activity of the newest-generation macrolide drugs known as ketolides against macrolide-resistant bacteria. By determining a set of high-resolution X-ray crystal structures of drug-sensitive wild-type and macrolide-resistant Erm-methylated 70S ribosomes in complex with three HygA-macrolide pairs, we provide a structural rationale for the binding cooperativity of these drugs and also uncover the molecular mechanism of overcoming Erm-type resistance by macrolides acting together with hygromycin A. Altogether our structural, biochemical, and microbiological findings lay the foundation for the subsequent development of synergistic antibiotic tandems with improved bactericidal properties against drug-resistant pathogens, including those expressing erm genes.
Collapse
Affiliation(s)
- Chih-Wei Chen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Nadja Leimer
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Clémence Dunand
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
22
|
Fekete FJ, Marotta NJ, Liu X, Weinert EE. An O 2-sensing diguanylate cyclase broadly affects the aerobic transcriptome in the phytopathogen Pectobacterium carotovorum. Front Microbiol 2023; 14:1134742. [PMID: 37485529 PMCID: PMC10360401 DOI: 10.3389/fmicb.2023.1134742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Pectobacterium carotovorum is an important plant pathogen responsible for the destruction of crops through bacterial soft rot, which is modulated by oxygen (O2) concentration. A soluble globin coupled sensor protein, Pcc DgcO (also referred to as PccGCS) is one way through which P. carotovorum senses oxygen. DgcO contains a diguanylate cyclase output domain producing c-di-GMP. Synthesis of the bacterial second messenger c-di-GMP is increased upon oxygen binding to the sensory globin domain. This work seeks to understand regulation of function by DgcO at the transcript level. RNA sequencing and differential expression analysis revealed that the deletion of DgcO only affects transcript levels in cells grown under aerobic conditions. Differential expression analysis showed that DgcO deletion alters transcript levels for metal transporters. These results, followed by inductively coupled plasma-mass spectrometry showing decreased concentrations of six biologically relevant metals upon DgcO deletion, provide evidence that a globin coupled sensor can affect cellular metal content. These findings improve the understanding of the transcript level control of O2-dependent phenotypes in an important phytopathogen and establish a basis for further studies on c-di-GMP-dependent functions in P. carotovorum.
Collapse
Affiliation(s)
- Florian J. Fekete
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, United States
| | - Nick J. Marotta
- Graduate Program in Molecular, Cellular, and Integrative Biosciences, Penn State University, University Park, PA, United States
| | - Xuanyu Liu
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, United States
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, United States
- Department of Chemistry, Penn State University, University Park, PA, United States
| |
Collapse
|
23
|
Nguyen T, Mills JC, Cho CJ. The coordinated management of ribosome and translation during injury and regeneration. Front Cell Dev Biol 2023; 11:1186638. [PMID: 37427381 PMCID: PMC10325863 DOI: 10.3389/fcell.2023.1186638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. Mills
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J. Cho
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
24
|
Sharma MR, Manjari SR, Agrawal EK, Keshavan P, Koripella RK, Majumdar S, Marcinkiewicz AL, Lin YP, Agrawal RK, Banavali NK. The structure of a hibernating ribosome in a Lyme disease pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537070. [PMID: 37131667 PMCID: PMC10153394 DOI: 10.1101/2023.04.16.537070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The spirochete bacterial pathogen Borrelia ( Borreliella) burgdorferi ( Bbu ) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. We determined the structure of the Bbu 70S ribosome by single particle cryo-electron microscopy (cryo-EM) at a resolution of 2.9 Å, revealing its distinctive features. In contrast to a previous study suggesting that the single hibernation promoting factor protein present in Bbu (bbHPF) may not bind to its ribosome, our structure reveals a clear density for bbHPF bound to the decoding center of the small ribosomal 30S subunit. The 30S subunit has a non-annotated ribosomal protein, bS22, that has been found only in mycobacteria and Bacteroidetes so far. The protein bL38, recently discovered in Bacteroidetes, is also present in the Bbu large 50S ribosomal subunit. The protein bL37, previously seen only in mycobacterial ribosomes, is replaced by an N-terminal α-helical extension of uL30, suggesting that the two bacterial ribosomal proteins uL30 and bL37 may have evolved from one longer uL30 protein. The longer uL30 protein interacts with both the 23S rRNA and the 5S rRNA, is near the peptidyl transferase center (PTC), and could impart greater stability to this region. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energies are predicted for antibiotics, bound to the decoding center or PTC and are in clinical use for Lyme disease, that account for subtle distinctions in antibiotic-binding regions in the Bbu ribosome structure. Besides revealing unanticipated structural and compositional features for the Bbu ribosome, our study thus provides groundwork to enable ribosome-targeted antibiotic design for more effective treatment of Lyme disease.
Collapse
|
25
|
Ribosome Protein Composition Mediates Translation during the Escherichia coli Stationary Phase. Int J Mol Sci 2023; 24:ijms24043128. [PMID: 36834540 PMCID: PMC9959377 DOI: 10.3390/ijms24043128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bacterial ribosomes contain over 50 ribosome core proteins (r-proteins). Tens of non-ribosomal proteins bind to ribosomes to promote various steps of translation or suppress protein synthesis during ribosome hibernation. This study sets out to determine how translation activity is regulated during the prolonged stationary phase. Here, we report the protein composition of ribosomes during the stationary phase. According to quantitative mass-spectrometry analysis, ribosome core proteins bL31B and bL36B are present during the late log and first days of the stationary phase and are replaced by corresponding A paralogs later in the prolonged stationary phase. Ribosome hibernation factors Rmf, Hpf, RaiA, and Sra are bound to the ribosomes during the onset and a few first days of the stationary phase when translation is strongly suppressed. In the prolonged stationary phase, a decrease in ribosome concentration is accompanied by an increase in translation and association of translation factors with simultaneous dissociation of ribosome hibernating factors. The dynamics of ribosome-associated proteins partially explain the changes in translation activity during the stationary phase.
Collapse
|
26
|
Hassan A, Byju S, Freitas F, Roc C, Pender N, Nguyen K, Kimbrough E, Mattingly J, Gonzalez Jr. R, de Oliveira R, Dunham C, Whitford P. Ratchet, swivel, tilt and roll: a complete description of subunit rotation in the ribosome. Nucleic Acids Res 2023; 51:919-934. [PMID: 36583339 PMCID: PMC9881166 DOI: 10.1093/nar/gkac1211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis by the ribosome requires large-scale rearrangements of the 'small' subunit (SSU; ∼1 MDa), including inter- and intra-subunit rotational motions. However, with nearly 2000 structures of ribosomes and ribosomal subunits now publicly available, it is exceedingly difficult to design experiments based on analysis of all known rotation states. To overcome this, we developed an approach where the orientation of each SSU head and body is described in terms of three angular coordinates (rotation, tilt and tilt direction) and a single translation. By considering the entire RCSB PDB database, we describe 1208 fully-assembled ribosome complexes and 334 isolated small subunits, which span >50 species. This reveals aspects of subunit rearrangements that are universal, and others that are organism/domain-specific. For example, we show that tilt-like rearrangements of the SSU body (i.e. 'rolling') are pervasive in both prokaryotic and eukaryotic (cytosolic and mitochondrial) ribosomes. As another example, domain orientations associated with frameshifting in bacteria are similar to those found in eukaryotic ribosomes. Together, this study establishes a common foundation with which structural, simulation, single-molecule and biochemical efforts can more precisely interrogate the dynamics of this prototypical molecular machine.
Collapse
Affiliation(s)
- Asem Hassan
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Sandra Byju
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Claude Roc
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
| | - Nisaa Pender
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
| | - Kien Nguyen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Evelyn M Kimbrough
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA 30322, USA
| | - Jacob M Mattingly
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | | | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Christine M Dunham
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
27
|
Paranjpe M, Marina V, Grachev A, Maviza T, Tolicheva O, Paleskava A, Osterman I, Sergiev P, Konevega A, Polikanov Y, Gagnon M. Insights into the molecular mechanism of translation inhibition by the ribosome-targeting antibiotic thermorubin. Nucleic Acids Res 2023; 51:449-462. [PMID: 36546783 PMCID: PMC9841432 DOI: 10.1093/nar/gkac1189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Thermorubin (THR) is an aromatic anthracenopyranone antibiotic active against both Gram-positive and Gram-negative bacteria. It is known to bind to the 70S ribosome at the intersubunit bridge B2a and was thought to inhibit factor-dependent initiation of translation and obstruct the accommodation of tRNAs into the A site. Here, we show that thermorubin causes ribosomes to stall in vivo and in vitro at internal and termination codons, thereby allowing the ribosome to initiate protein synthesis and translate at least a few codons before stalling. Our biochemical data show that THR affects multiple steps of translation elongation with a significant impact on the binding stability of the tRNA in the A site, explaining premature cessation of translation. Our high-resolution crystal and cryo-EM structures of the 70S-THR complex show that THR can co-exist with P- and A-site tRNAs, explaining how ribosomes can elongate in the presence of the drug. Remarkable is the ability of THR to arrest ribosomes at the stop codons. Our data suggest that by causing structural re-arrangements in the decoding center, THR interferes with the accommodation of tRNAs or release factors into the ribosomal A site.
Collapse
Affiliation(s)
- Madhura N Paranjpe
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Valeria I Marina
- Department of Chemistry and Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Aleksandr A Grachev
- Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Tinashe P Maviza
- Department of Chemistry and Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga A Tolicheva
- Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Alena Paleskava
- Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Ilya A Osterman
- Department of Chemistry and Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Petr V Sergiev
- Department of Chemistry and Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey L Konevega
- Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Matthieu G Gagnon
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
28
|
Insights into the ribosome function from the structures of non-arrested ribosome-nascent chain complexes. Nat Chem 2023; 15:143-153. [PMID: 36316410 PMCID: PMC9840698 DOI: 10.1038/s41557-022-01073-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
During protein synthesis, the growing polypeptide threads through the ribosomal exit tunnel and modulates ribosomal activity by itself or by sensing various small molecules, such as metabolites or antibiotics, appearing in the tunnel. While arrested ribosome-nascent chain complexes (RNCCs) have been extensively studied structurally, the lack of a simple procedure for the large-scale preparation of peptidyl-tRNAs, intermediates in polypeptide synthesis that carry the growing chain, means that little attention has been given to RNCCs representing functionally active states of the ribosome. Here we report the facile synthesis of stably linked peptidyl-tRNAs through a chemoenzymatic approach based on native chemical ligation and use them to determine several structures of RNCCs in the functional pre-attack state of the peptidyl transferase centre. These structures reveal that C-terminal parts of the growing peptides adopt the same uniform β-strand conformation stabilized by an intricate network of hydrogen bonds with the universally conserved 23S rRNA nucleotides, and explain how the ribosome synthesizes growing peptides containing various sequences with comparable efficiencies.
Collapse
|
29
|
Safdari HA, Kasvandik S, Polte C, Ignatova Z, Tenson T, Wilson D. Structure of Escherichia coli heat shock protein Hsp15 in complex with the ribosomal 50S subunit bearing peptidyl-tRNA. Nucleic Acids Res 2022; 50:12515-12526. [PMID: 36370110 PMCID: PMC9757039 DOI: 10.1093/nar/gkac1035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022] Open
Abstract
In Escherichia coli, the heat shock protein 15 (Hsp15) is part of the cellular response to elevated temperature. Hsp15 interacts with peptidyl-tRNA-50S complexes that arise upon dissociation of translating 70S ribosomes, and is proposed to facilitate their rescue and recycling. A previous structure of E. coli Hsp15 in complex with peptidyl-tRNA-50S complex reported a binding site located at the central protuberance of the 50S subunit. By contrast, recent structures of RqcP, the Hsp15 homolog in Bacillus subtilis, in complex with peptidyl-tRNA-50S complexes have revealed a distinct site positioned between the anticodon-stem-loop (ASL) of the P-site tRNA and H69 of the 23S rRNA. Here we demonstrate that exposure of E. coli cells to heat shock leads to a decrease in 70S ribosomes and accumulation of 50S subunits, thus identifying a natural substrate for Hsp15 binding. Additionally, we have determined a cryo-EM reconstruction of the Hsp15-50S-peptidyl-tRNA complex isolated from heat shocked E. coli cells, revealing that Hsp15 binds to the 50S-peptidyl-tRNA complex analogously to its B. subtilis homolog RqcP. Collectively, our findings support a model where Hsp15 stabilizes the peptidyl-tRNA in the P-site and thereby promotes access to the A-site for putative rescue factors to release the aberrant nascent polypeptide chain.
Collapse
Affiliation(s)
- Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany
| | - Sergo Kasvandik
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Christine Polte
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Daniel N Wilson
- To whom correspondence should be addressed. Tel: +49 40 42838 2841;
| |
Collapse
|
30
|
Otoupal PB, Cress BF, Doudna JA, Schoeniger J. CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Res 2022; 50:8986-8998. [PMID: 35950485 PMCID: PMC9410913 DOI: 10.1093/nar/gkac680] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tools for synthetically controlling gene expression are a cornerstone of genetic engineering. CRISPRi and CRISPRa technologies have been applied extensively for programmable modulation of gene transcription, but there are few such tools for targeted modulation of protein translation rates. Here, we employ CRISPR-Cas13 as a programmable activator of translation. We develop a novel variant of the catalytically-deactivated Cas13d enzyme dCasRx by fusing it to translation initiation factor IF3. We demonstrate dCasRx-IF3's ability to enhance expression 21.3-fold above dCasRx when both are targeted to the start of the 5' untranslated region of mRNA encoding red fluorescent protein in Escherichia coli. Activation of translation is location-dependent, and we show dCasRx-IF3 represses translation when targeted to the ribosomal binding site, rather than enhancing it. We provide evidence that dCasRx-IF3 targeting enhances mRNA stability relative to dCasRx, providing mechanistic insights into how this new tool functions to enhance gene expression. We also demonstrate targeted upregulation of native LacZ 2.6-fold, showing dCasRx-IF3's ability to enhance expression of endogenous genes. dCasRx-IF3 requires no additional host modification to influence gene expression. This work outlines a novel approach, CRISPR-RNAa, for post-transcriptional control of translation to activate gene expression.
Collapse
Affiliation(s)
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA,Department of Chemistry, University of California, Berkeley, CA, USA,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Gladstone Institutes, University of California, San Francisco, CA, USA
| | - Joseph S Schoeniger
- To whom correspondence should be addressed. Tel: +1 925 294 2955; Fax: +1 925 294 3020;
| |
Collapse
|
31
|
Syroegin EA, Aleksandrova EV, Polikanov YS. Structural basis for the inability of chloramphenicol to inhibit peptide bond formation in the presence of A-site glycine. Nucleic Acids Res 2022; 50:7669-7679. [PMID: 35766409 PMCID: PMC9303264 DOI: 10.1093/nar/gkac548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Ribosome serves as a universal molecular machine capable of synthesis of all the proteins in a cell. Small-molecule inhibitors, such as ribosome-targeting antibiotics, can compromise the catalytic versatility of the ribosome in a context-dependent fashion, preventing transpeptidation only between particular combinations of substrates. Classic peptidyl transferase center inhibitor chloramphenicol (CHL) fails to inhibit transpeptidation reaction when the incoming A site acceptor substrate is glycine, and the molecular basis for this phenomenon is unknown. Here, we present a set of high-resolution X-ray crystal structures that explain why CHL is unable to inhibit peptide bond formation between the incoming glycyl-tRNA and a nascent peptide that otherwise is conducive to the drug action. Our structures reveal that fully accommodated glycine residue can co-exist in the A site with the ribosome-bound CHL. Moreover, binding of CHL to a ribosome complex carrying glycyl-tRNA does not affect the positions of the reacting substrates, leaving the peptide bond formation reaction unperturbed. These data exemplify how small-molecule inhibitors can reshape the A-site amino acid binding pocket rendering it permissive only for specific amino acid residues and rejective for the other substrates extending our detailed understanding of the modes of action of ribosomal antibiotics.
Collapse
Affiliation(s)
- Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
32
|
Regulatory effect of polyamines and indole on expression of stress adaptation genes in <i> Escherichia coli </i>. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Indole and polyamines are involved in the regulation of physiological processes in bacteria associated with adaptation to stress, biofilm formation, antibiotic tolerance, and bacterial persistence. However, the molecular targets and mechanisms of action of these metabolites are still poorly understood. In this work, we studied the effect of polyamines and indole on the expression of such genes as: rpoS, relA, and spoT, encoding regulators of the general stress responses and starvation; hns and stpA, encoding global regulators of gene expression; rmf, yqjD, hpf, raiA, rsfS, sra, ettA, encoding ribosome hibernation factors.The aim. To study the regulatory effects of polyamines and indole on the expression of these genes, which are responsible for the adaptation of Escherichia coli to stress.Materials and methods. We used strains of E. coli in this study. The amount of polyamines was studied by thin layer chromatography. The indole concentration was determined by high performance liquid chromatography. Gene expression was studied using real-time RT-PCR.Results. The addition of polyamines putrescine, cadaverine and spermidine to the medium stimulated the expression of all the studied genes. The maximal stimulation was observed at the stationary phase mostly. Putrescine and spermidine had the most significant effect. At 24 h of cultivation, an equimolar conversion of exogenous tryptophan into indole was showed. At this time, the expression of two genes – rmf and raiA – increased.Conclusions. We have shown that polyamines upregulate the expression of all the studied genes at the transcriptional level. The stimulating effect is specific for the phase of the batch culture and the type of polyamine. Indole has a positive effect on the expression of the rmf and raiA genes.
Collapse
|
33
|
Khaova EA, Kashevarova NM, Tkachenko AG. Ribosome Hibernation: Molecular Strategy of Bacterial Survival (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Wu C, Balakrishnan R, Braniff N, Mori M, Manzanarez G, Zhang Z, Hwa T. Cellular perception of growth rate and the mechanistic origin of bacterial growth law. Proc Natl Acad Sci U S A 2022; 119:e2201585119. [PMID: 35544692 PMCID: PMC9171811 DOI: 10.1073/pnas.2201585119] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Many cellular activities in bacteria are organized according to their growth rate. The notion that ppGpp measures the cell’s growth rate is well accepted in the field of bacterial physiology. However, despite decades of interrogation and the identification of multiple molecular interactions that connects ppGpp to some aspects of cell growth, we lack a system-level, quantitative picture of how this alleged “measurement” is performed. Through quantitative experiments, we show that the ppGpp pool responds inversely to the rate of translational elongation in Escherichia coli. Together with its roles in inhibiting ribosome biogenesis and activity, ppGpp closes a key regulatory circuit that enables the cell to perceive and control the rate of its growth across conditions. The celebrated linear growth law relating the ribosome content and growth rate emerges as a consequence of keeping a supply of ribosome reserves while maintaining elongation rate in slow growth conditions. Further analysis suggests the elongation rate itself is detected by sensing the ratio of dwelling and translocating ribosomes, a strategy employed to collapse the complex, high-dimensional dynamics of the molecular processes underlying cell growth to perceive the physiological state of the whole.
Collapse
Affiliation(s)
- Chenhao Wu
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Rohan Balakrishnan
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Nathan Braniff
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Matteo Mori
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Gabriel Manzanarez
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Zhongge Zhang
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Terence Hwa
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
35
|
Abstract
In all living cells, the ribosome translates the genetic information carried by messenger RNAs (mRNAs) into proteins. The process of ribosome recycling, a key step during protein synthesis that ensures ribosomal subunits remain available for new rounds of translation, has been largely overlooked. Despite being essential to the survival of the cell, several mechanistic aspects of ribosome recycling remain unclear. In eubacteria and mitochondria, recycling of the ribosome into subunits requires the concerted action of the ribosome recycling factor (RRF) and elongation factor G (EF-G). Recently, the conserved protein HflX was identified in bacteria as an alternative factor that recycles the ribosome under stress growth conditions. The homologue of HflX, the GTP-binding protein 6 (GTPBP6), has a dual role in mitochondrial translation by facilitating ribosome recycling and biogenesis. In this review, mechanisms of ribosome recycling in eubacteria and mitochondria are described based on structural studies of ribosome complexes.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
36
|
Syroegin EA, Flemmich L, Klepacki D, Vazquez-Laslop N, Micura R, Polikanov YS. Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nat Struct Mol Biol 2022; 29:152-161. [PMID: 35165455 PMCID: PMC9071271 DOI: 10.1038/s41594-022-00720-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023]
Abstract
Ribosome-targeting antibiotics serve as powerful antimicrobials and as tools for studying the ribosome, the catalytic peptidyl transferase center (PTC) of which is targeted by many drugs. The classic PTC-acting antibiotic chloramphenicol (CHL) and the newest clinically significant linezolid (LZD) were considered indiscriminate inhibitors of protein synthesis that cause ribosome stalling at every codon of every gene being translated. However, recent discoveries have shown that CHL and LZD preferentially arrest translation when the ribosome needs to polymerize particular amino acid sequences. The molecular mechanisms that underlie the context-specific action of ribosome inhibitors are unknown. Here we present high-resolution structures of ribosomal complexes, with or without CHL, carrying specific nascent peptides that support or negate the drug action. Our data suggest that the penultimate residue of the nascent peptide directly modulates antibiotic affinity to the ribosome by either establishing specific interactions with the drug or by obstructing its proper placement in the binding site.
Collapse
Affiliation(s)
- Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Laurin Flemmich
- Institute of Organic Chemistry, University of Innsbruck, Center of Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Vazquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ronald Micura
- Institute of Organic Chemistry, University of Innsbruck, Center of Molecular Biosciences Innsbruck, Innsbruck, Austria.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Misal SA, Zhao B, Reilly JP. Interpretation of Anomalously Long Crosslinks in Ribosome Crosslinking reveals the ribosome interaction in stationary phase E. coli. RSC Chem Biol 2022; 3:886-894. [PMID: 35866168 PMCID: PMC9257603 DOI: 10.1039/d2cb00101b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Crosslinking mass spectrometry (XL-MS) of bacterial ribosomes revealed the dynamic intra and intermolecular interactions within the ribosome structure. It has been also extended to capture the interactions of ribosome binding...
Collapse
Affiliation(s)
- Santosh A Misal
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - Bingqing Zhao
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - James P Reilly
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| |
Collapse
|
38
|
Maki Y, Yoshida H. Ribosomal Hibernation-Associated Factors in Escherichia coli. Microorganisms 2021; 10:microorganisms10010033. [PMID: 35056482 PMCID: PMC8778775 DOI: 10.3390/microorganisms10010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/30/2023] Open
Abstract
Bacteria convert active 70S ribosomes to inactive 100S ribosomes to survive under various stress conditions. This state, in which the ribosome loses its translational activity, is known as ribosomal hibernation. In gammaproteobacteria such as Escherichia coli, ribosome modulation factor and hibernation-promoting factor are involved in forming 100S ribosomes. The expression of ribosome modulation factor is regulated by (p)ppGpp (which is induced by amino acid starvation), cAMP-CRP (which is stimulated by reduced metabolic energy), and transcription factors involved in biofilm formation. This indicates that the formation of 100S ribosomes is an important strategy for bacterial survival under various stress conditions. In recent years, the structures of 100S ribosomes from various bacteria have been reported, enhancing our understanding of the 100S ribosome. Here, we present previous findings on the 100S ribosome and related proteins and describe the stress-response pathways involved in ribosomal hibernation.
Collapse
|
39
|
The Role of the Universally Conserved ATPase YchF/Ola1 in Translation Regulation during Cellular Stress. Microorganisms 2021; 10:microorganisms10010014. [PMID: 35056463 PMCID: PMC8779481 DOI: 10.3390/microorganisms10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.
Collapse
|
40
|
Lang M, Krin E, Korlowski C, Sismeiro O, Varet H, Coppée JY, Mazel D, Baharoglu Z. Sleeping ribosomes: Bacterial signaling triggers RaiA mediated persistence to aminoglycosides. iScience 2021; 24:103128. [PMID: 34611612 PMCID: PMC8476650 DOI: 10.1016/j.isci.2021.103128] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Indole is a molecule proposed to be involved in bacterial signaling. We find that indole secretion is induced by sublethal tobramycin concentrations and increases persistence to aminoglycosides in V. cholerae. Indole transcriptomics showed increased expression of raiA, a ribosome associated factor. Deletion of raiA abolishes the appearance of indole dependent persisters to aminoglycosides, although its overexpression leads to 100-fold increase of persisters, and a reduction in lag phase, evocative of increased active 70S ribosome content, confirmed by sucrose gradient analysis. We propose that, under stress conditions, RaiA-bound inactive 70S ribosomes are stored as “sleeping ribosomes”, and are rapidly reactivated upon stress relief. Our results point to an active process of persister formation through ribosome protection during translational stress (e.g., aminoglycoside treatment) and reactivation upon antibiotic removal. Translation is a universal process, and these results could help elucidate a mechanism of persistence formation in a controlled, thus inducible way. Indole is produced under sub-MIC tobramycin stress in V. cholerae and upregulates raiA RaiA is involved in indole-dependent formation of aminoglycoside specific persisters RaiA overexpression allows faster growth restart and increases 70S ribosome content RaiA-bound inactive 70S ribosomes form intact and reactivable sleeping ribosome pools
Collapse
Affiliation(s)
- Manon Lang
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Evelyne Krin
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Chloé Korlowski
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Odile Sismeiro
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Hugo Varet
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| | - Jean-Yves Coppée
- Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Didier Mazel
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Corresponding author
| | - Zeynep Baharoglu
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Corresponding author
| |
Collapse
|
41
|
Liu F, Bratulić S, Costello A, Miettinen TP, Badran AH. Directed evolution of rRNA improves translation kinetics and recombinant protein yield. Nat Commun 2021; 12:5638. [PMID: 34561441 PMCID: PMC8463689 DOI: 10.1038/s41467-021-25852-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022] Open
Abstract
In bacteria, ribosome kinetics are considered rate-limiting for protein synthesis and cell growth. Enhanced ribosome kinetics may augment bacterial growth and biomanufacturing through improvements to overall protein yield, but whether this can be achieved by ribosome-specific modifications remains unknown. Here, we evolve 16S ribosomal RNAs (rRNAs) from Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae towards enhanced protein synthesis rates. We find that rRNA sequence origin significantly impacted evolutionary trajectory and generated rRNA mutants with augmented protein synthesis rates in both natural and engineered contexts, including the incorporation of noncanonical amino acids. Moreover, discovered consensus mutations can be ported onto phylogenetically divergent rRNAs, imparting improved translational activities. Finally, we show that increased translation rates in vivo coincide with only moderately reduced translational fidelity, but do not enhance bacterial population growth. Together, these findings provide a versatile platform for development of unnatural ribosomal functions in vivo.
Collapse
MESH Headings
- Base Sequence
- Directed Molecular Evolution/methods
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Kinetics
- Mass Spectrometry/methods
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Protein Biosynthesis
- Proteome/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Recombinant Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Fan Liu
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
| | - Siniša Bratulić
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Alan Costello
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Ahmed H Badran
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
42
|
GeZi G, Liu R, Du D, Wu N, Bao N, Fan L, Morigen M. YfiF, an unknown protein, affects initiation timing of chromosome replication in Escherichia coli. J Basic Microbiol 2021; 61:883-899. [PMID: 34486756 DOI: 10.1002/jobm.202100265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 11/09/2022]
Abstract
The Escherichia coli YfiF protein is functionally unknown, being predicted as a transfer RNA/ribosomal RNA (tRNA/rRNA) methyltransferase. We find that absence of the yfiF gene delays initiation of chromosome replication and the delay is reversed by ectopic expression of YfiF, whereas excess YfiF causes an early initiation. A slight decrease in both cell size and number of origin per mass is observed in ΔyfiF cells. YfiF does not genetically interact with replication proteins such as DnaA, DnaB, and DnaC. Interestingly, YfiF is associated with ribosome modulation factor (RMF), hibernation promotion factor (HPF), and the tRNA methyltransferase TrmL. Defects in replication initiation of Δrmf, Δhpf, and ΔtrmL can be rescued by overexpression of YfiF, indicating that YfiF is functionally identical to RMF, HPF, and TrmL in terms of replication initiation. Also, YfiF interacts with the rRNA methyltransferase RsmC. Moreover, the total amount of proteins and DnaA content per cell decreases or increases in the absence of YfiF or the presence of excess YfiF. These facts suggest that YfiF is a ribosomal dormancy-like factor, affecting ribosome function. Thus, we propose that YfiF is involved in the correct timing of chromosome replication by changing the DnaA content per cell as a result of affecting ribosome function.
Collapse
Affiliation(s)
- GeZi GeZi
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Rui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dongdong Du
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Nier Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Narisu Bao
- Institute of Mongolian Medicinal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
43
|
Li Y, Sharma MR, Koripella RK, Banavali NK, Agrawal RK, Ojha AK. Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. MICROBIOLOGY-SGM 2021; 167. [PMID: 33555244 DOI: 10.1099/mic.0.001035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
44
|
Feaga HA, Dworkin J. Transcription regulates ribosome hibernation. Mol Microbiol 2021; 116:663-673. [PMID: 34152658 PMCID: PMC8628635 DOI: 10.1111/mmi.14762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Most bacteria are quiescent, typically as a result of nutrient limitation. In order to minimize energy consumption during this potentially prolonged state, quiescent bacteria substantially attenuate protein synthesis, the most energetically costly cellular process. Ribosomes in quiescent bacteria are present as dimers of two 70S ribosomes. Dimerization is dependent on a single protein, hibernation promoting factor (HPF), that binds the ribosome in the mRNA channel. This interaction indicates that dimers are inactive, suggesting that HPF inhibits translation. However, we observe that HPF does not significantly affect protein synthesis in vivo suggesting that dimerization is a consequence of inactivity, not the cause. The HPF-dimer interaction further implies that re-initiation of translation when the bacteria exit quiescence requires dimer resolution. We show that ribosome dimers quickly resolve in the presence of nutrients, and this resolution is dependent on transcription, indicating that mRNA synthesis is required for dimer resolution. Finally, we observe that ectopic HPF expression in growing cells where mRNA is abundant does not significantly affect protein synthesis despite stimulating dimer formation, suggesting that dimerization is dynamic. Thus, the extensive transcription that occurs in response to nutrient availability rapidly re-activates the translational apparatus of a quiescent cell and induces dimer resolution.
Collapse
Affiliation(s)
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
45
|
Hibernation-Promoting Factor Sequesters Staphylococcus aureus Ribosomes to Antagonize RNase R-Mediated Nucleolytic Degradation. mBio 2021; 12:e0033421. [PMID: 34253058 PMCID: PMC8406268 DOI: 10.1128/mbio.00334-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial and eukaryotic hibernation factors prevent translation by physically blocking the decoding center of ribosomes, a phenomenon called ribosome hibernation that often occurs in response to nutrient deprivation. The human pathogen Staphylococcus aureus lacking the sole hibernation factor HPF undergoes massive ribosome degradation via an unknown pathway. Using genetic and biochemical approaches, we find that inactivating the 3′-to-5′ exonuclease RNase R suppresses ribosome degradation in the Δhpf mutant. In vitro cell-free degradation assays confirm that 30S and 70S ribosomes isolated from the Δhpf mutant are extremely susceptible to RNase R, in stark contrast to nucleolytic resistance of the HPF-bound 70S and 100S complexes isolated from the wild type. In the absence of HPF, specific S. aureus 16S rRNA helices are sensitive to nucleolytic cleavage. These RNase hot spots are distinct from that found in the Escherichia coli ribosomes. S. aureus RNase R is associated with ribosomes, but unlike the E. coli counterpart, it is not regulated by general stressors and acetylation. The results not only highlight key differences between the evolutionarily conserved RNase R homologs but also provide direct evidence that HPF preserves ribosome integrity beyond its role in translational avoidance, thereby poising the hibernating ribosomes for rapid resumption of translation.
Collapse
|
46
|
Usachev KS, Yusupov MM, Validov SZ. Hibernation as a Stage of Ribosome Functioning. BIOCHEMISTRY (MOSCOW) 2021; 85:1434-1442. [PMID: 33280583 DOI: 10.1134/s0006297920110115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In response to stress, eubacteria reduce the level of protein synthesis and either disassemble ribosomes into the 30S and 50S subunits or turn them into translationally inactive 70S and 100S complexes. This helps the cell to solve two principal tasks: (i) to reduce the cost of protein biosynthesis under unfavorable conditions, and (ii) to preserve functional ribosomes for rapid recovery of protein synthesis until favorable conditions are restored. All known genes for ribosome silencing factors and hibernation proteins are located in the operons associated with the response to starvation as one of the stress factors, which helps the cells to coordinate the slowdown of protein synthesis with the overall stress response. It is possible that hibernation systems work as regulators that coordinate the intensity of protein synthesis with the energy state of bacterial cell. Taking into account the limited amount of nutrients in natural conditions and constant pressure of other stress factors, bacterial ribosome should remain most of time in a complex with the silencing/hibernation proteins. Therefore, hibernation is an additional stage between the ribosome recycling and translation initiation, at which the ribosome is maintained in a "preserved" state in the form of separate subunits, non-translating 70S particles, or 100S dimers. The evolution of the ribosome hibernation has occurred within a very long period of time; ribosome hibernation is a conserved mechanism that is essential for maintaining the energy- and resource-consuming process of protein biosynthesis in organisms living in changing environment under stress conditions.
Collapse
Affiliation(s)
- K S Usachev
- Kazan Federal University, Kazan, 420008, Russia
| | - M M Yusupov
- Kazan Federal University, Kazan, 420008, Russia. .,Institute of Genetics and Molecular and Cellular Biology, Illkirch-Graffenstaden, 67400, France
| | | |
Collapse
|
47
|
Yoshida H, Nakayama H, Maki Y, Ueta M, Wada C, Wada A. Functional Sites of Ribosome Modulation Factor (RMF) Involved in the Formation of 100S Ribosome. Front Mol Biosci 2021; 8:661691. [PMID: 34012979 PMCID: PMC8126665 DOI: 10.3389/fmolb.2021.661691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
One of the important cellular events in all organisms is protein synthesis, which is catalyzed by ribosomes. The ribosomal activity is dependent on the environmental situation of the cell. Bacteria form 100S ribosomes, lacking translational activity, to survive under stress conditions such as nutrient starvation. The 100S ribosome is a dimer of two 70S ribosomes bridged through the 30S subunits. In some pathogens of gammaproteobacteria, such as Escherichia coli, Yersinia pestis, and Vibrio cholerae, the key factor for ribosomal dimerization is the small protein, ribosome modulation factor (RMF). When ribosomal dimerization by RMF is impaired, long-term bacterial survival is abolished. This shows that the interconversion system between active 70S ribosomes and inactive 100S ribosomes is an important survival strategy for bacteria. According to the results of several structural analyses, RMF does not directly connect two ribosomes, but binds to them and changes the conformation of their 30S subunits, thus promoting ribosomal dimerization. In this study, conserved RMF amino acids among 50 bacteria were selectively altered by mutagenesis to identify the residues involved in ribosome binding and dimerization. The activities of mutant RMF for ribosome binding and ribosome dimerization were measured using the sucrose density gradient centrifugation (SDGC) and western blotting methods. As a result, some essential amino acids of RMF for the ribosomal binding and dimerization were elucidated. Since the induction of RMF expression inhibits bacterial growth, the data on this protein could serve as information for the development of antibiotic or bacteriostatic agents.
Collapse
Affiliation(s)
- Hideji Yoshida
- Department of Physics, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hideki Nakayama
- Bio Industry Business Department, Rapica Team, HORIBA Advanced Techno, Co., Ltd., Kyoto, Japan
| | - Yasushi Maki
- Department of Physics, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | | | | | - Akira Wada
- Yoshida Biological Laboratory, Kyoto, Japan
| |
Collapse
|
48
|
Ohtsuka H, Kobayashi M, Shimasaki T, Sato T, Akanuma G, Kitaura Y, Otsubo Y, Yamashita A, Aiba H. Magnesium depletion extends fission yeast lifespan via general amino acid control activation. Microbiologyopen 2021; 10:e1176. [PMID: 33970532 PMCID: PMC8088111 DOI: 10.1002/mbo3.1176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Nutrients including glucose, nitrogen, sulfur, zinc, and iron are involved in the regulation of chronological lifespan (CLS) of yeast, which serves as a model of the lifespan of differentiated cells of higher organisms. Herein, we show that magnesium (Mg2+) depletion extends CLS of the fission yeast Schizosaccharomyces pombe through a mechanism involving the Ecl1 gene family. We discovered that ecl1+ expression, which extends CLS, responds to Mg2+ depletion. Therefore, we investigated the underlying intracellular responses. In amino acid auxotrophic strains, Mg2+ depletion robustly induces ecl1+ expression through the activation of the general amino acid control (GAAC) pathway—the equivalent of the amino acid response of mammals. Polysome analysis indicated that the expression of Ecl1 family genes was required for regulating ribosome amount when cells were starved, suggesting that Ecl1 family gene products control the abundance of ribosomes, which contributes to longevity through the activation of the evolutionarily conserved GAAC pathway. The present study extends our understanding of the cellular response to Mg2+ depletion and its influence on the mechanism controlling longevity.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Mikuto Kobayashi
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Teppei Sato
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Genki Akanuma
- Department of Life Science, College of Sciences, Rikkyo University, Tokyo, Japan.,Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,National Institute for Fusion Science, Toki, Japan.,Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
| | - Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
49
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
50
|
Chen CW, Pavlova JA, Lukianov DA, Tereshchenkov AG, Makarov GI, Khairullina ZZ, Tashlitsky VN, Paleskava A, Konevega AL, Bogdanov AA, Osterman IA, Sumbatyan NV, Polikanov YS. Binding and Action of Triphenylphosphonium Analog of Chloramphenicol upon the Bacterial Ribosome. Antibiotics (Basel) 2021; 10:390. [PMID: 33916420 PMCID: PMC8066774 DOI: 10.3390/antibiotics10040390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Chloramphenicol (CHL) is a ribosome-targeting antibiotic that binds to the peptidyl transferase center (PTC) of the bacterial ribosome and inhibits peptide bond formation. As an approach for modifying and potentially improving the properties of this inhibitor, we explored ribosome binding and inhibitory properties of a semi-synthetic triphenylphosphonium analog of CHL-CAM-C4-TPP. Our data demonstrate that this compound exhibits a ~5-fold stronger affinity for the bacterial ribosome and higher potency as an in vitro protein synthesis inhibitor compared to CHL. The X-ray crystal structure of the Thermus thermophilus 70S ribosome in complex with CAM-C4-TPP reveals that, while its amphenicol moiety binds at the PTC in a fashion identical to CHL, the C4-TPP tail adopts an extended propeller-like conformation within the ribosome exit tunnel where it establishes multiple hydrophobic Van der Waals interactions with the rRNA. The synthesized compound represents a promising chemical scaffold for further development by medicinal chemists because it simultaneously targets the two key functional centers of the bacterial ribosome-PTC and peptide exit tunnel.
Collapse
Affiliation(s)
- Chih-Wei Chen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Julia A. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (V.N.T.); (A.A.B.)
| | - Dmitrii A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143028 Skolkovo, Russia;
| | - Andrey G. Tereshchenkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Gennady I. Makarov
- Laboratory of Multiscale Modeling of Multicomponent Materials, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Zimfira Z. Khairullina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (V.N.T.); (A.A.B.)
| | - Vadim N. Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (V.N.T.); (A.A.B.)
| | - Alena Paleskava
- Petersburg Nuclear Physics Institute, National Research Center (NRC) “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Peter the Great St.Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Andrey L. Konevega
- Petersburg Nuclear Physics Institute, National Research Center (NRC) “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Peter the Great St.Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- National Research Center (NRC) “Kurchatov Institute”, 123182 Moscow, Russia
| | - Alexey A. Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (V.N.T.); (A.A.B.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Ilya A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (V.N.T.); (A.A.B.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143028 Skolkovo, Russia;
| | - Natalia V. Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (V.N.T.); (A.A.B.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|