1
|
Tao XY, Feng SL, Yuan L, Li YJ, Li XJ, Guan XY, Chen ZH, Xu SC. Harnessing transposable elements for plant functional genomics and genome engineering. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00067-6. [PMID: 40240259 DOI: 10.1016/j.tplants.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Transposable elements (TEs) constitute a large portion of many plant genomes and play important roles in regulating gene expression and in driving genome evolution and crop domestication. Despite advances in understanding the functions and mechanisms of TEs, a comprehensive review of their integrated knowledge and cutting-edge biotechnological applications of TEs is still needed. We provide a thorough overview that connects discoveries, mechanisms, and technologies associated with plant TEs. We discuss the identification and function of TEs driven by functional genomics, epigenetic regulation of TEs, and utilization of active TEs in plant functional genomics and genome engineering. In summary, expanding the knowledge and application of TEs will be beneficial to crop breeding and plant synthetic biology in the future.
Collapse
Affiliation(s)
| | | | - Lu Yuan
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yan-Jun Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xin-Jia Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xue-Ying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, 5064 SA, Australia.
| | - Sheng-Chun Xu
- Xianghu Laboratory, Hangzhou 311231, China; Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, China.
| |
Collapse
|
2
|
Wang S, Liu M, Hu D, Dong Z, Zhao Z. Control of DNA demethylation by superoxide anion in plant stem cells. Nat Chem Biol 2025; 21:567-576. [PMID: 39266722 DOI: 10.1038/s41589-024-01737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
Superoxide anion is thought to be a natural by-product with strong oxidizing ability in all living organisms and was recently found to accumulate in plant meristems to maintain stem cells in the shoot and undifferentiated meristematic cells in the root. Here we show that the DNA demethylase repressor of silencing 1 (ROS1) is one of the direct targets of superoxide in stem cells. The Fe-S clusters in ROS1 are oxidized by superoxide to activate its DNA glycosylase/lyase activity. We demonstrate that superoxide extensively participates in the establishment of active DNA demethylation in the Arabidopsis genome and that ARABIDOPSIS RESPONSE REGULATOR 12 acts downstream of ROS1-mediated superoxide signaling to maintain stem cell fate. Our results provide a mechanistic framework for superoxide control of the stem cell niche and demonstrate how redox and DNA demethylation interact to define stem cell fate in plants.
Collapse
Affiliation(s)
- Shiwen Wang
- Ministry of Education Key Laboratory for Cellular Dynamics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Min Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dongping Hu
- Ministry of Education Key Laboratory for Cellular Dynamics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhong Zhao
- Ministry of Education Key Laboratory for Cellular Dynamics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Miao W, Dai J, Zhang L, Liang Z, Sun X, Huang M, Zhang A, Zheng L, Li Y, Li Y. A new method for identifying proteins involved in DNA methylation through reverse genetics in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112376. [PMID: 39733860 DOI: 10.1016/j.plantsci.2024.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Forward genetic screens have uncovered numerous genes involved in DNA methylation regulation, but these methods are often time-intensive, costly, and labor-intensive. To address these limitations, this study utilized CRISPR technology to knockout selected co-expressed genes, enabling the rapid identification of low luciferase (LUC) luminescence mutants in the Col-LUC line, which harbors a LUC transgene driven by a 2 × 35S promoter in Arabidopsis. As proof of concept, the repressor of silencing 1 (ROS1) and RNA-directed DNA methylation 1 (RDM1) genes were used as controls, while the increased DNA methylation 3 (IDM3) gene, co-expressed with ROS1, was selected as the target for gene knockout experiments. The results demonstrated that combining co-expression analysis with CRISPR technology is an effective strategy for generating low LUC luminescence mutants in the Col-LUC line. Notably, a new mutant, named reduced luminescence 1 (rl1), was identified through this approach. The rl1 mutant exhibited genome-wide DNA hypermethylation, and its reduced luminescence phenotype was largely reversed by treatment with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine, confirming its anti-silencing role in DNA methylation regulation. This study presents a novel and efficient approach for obtaining low luminescence mutants in the Col-LUC line and identifies RL1 as a previously uncharacterized protein involved in DNA methylation regulation.
Collapse
Affiliation(s)
- Wei Miao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China; National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| | - Jie Dai
- Academy for Advanced Interdisciplinary Studies/College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Li Zhang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China.
| | - Zhile Liang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| | - Xiaoxuan Sun
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China.
| | - Meizi Huang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China.
| | - Aqin Zhang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China.
| | - Long Zheng
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China.
| | - Yongjun Li
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China.
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| |
Collapse
|
4
|
Wang M, He Y, Zhong Z, Papikian A, Wang S, Gardiner J, Ghoshal B, Feng S, Jami-Alahmadi Y, Wohlschlegel JA, Jacobsen SE. Histone H3 lysine 4 methylation recruits DNA demethylases to enforce gene expression in Arabidopsis. NATURE PLANTS 2025; 11:206-217. [PMID: 39934332 PMCID: PMC11842272 DOI: 10.1038/s41477-025-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Patterning of DNA methylation in eukaryotic genomes is controlled by de novo methylation, maintenance mechanisms and demethylation pathways. In Arabidopsis thaliana, DNA demethylation enzymes are clearly important for shaping methylation patterns, but how they are regulated is poorly understood. Here we show that the targeting of histone H3 lysine four trimethylation (H3K4me3) with the catalytic domain of the SDG2 histone methyltransferase potently erased DNA methylation and gene silencing at FWA and also erased CG DNA methylation in many other regions of the Arabidopsis genome. This methylation erasure was completely blocked in the ros1 dml2 dml3 triple mutant lacking DNA demethylation enzymes, showing that H3K4me3 promotes the active removal of DNA methylation. Conversely, we found that the targeted removal of H3K4me3 increased the efficiency of targeted DNA methylation. These results highlight H3K4me3 as a potent anti-DNA methylation mark and also pave the way for development of more powerful epigenome engineering tools.
Collapse
Affiliation(s)
- Ming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Yan He
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Ashot Papikian
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shuya Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Translational Plant Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Basudev Ghoshal
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute (HHMI), UCLA, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Jin X, Li X, Teixeira da Silva JA, Liu X. Functions and mechanisms of non-histone protein acetylation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2087-2101. [PMID: 39136630 DOI: 10.1111/jipb.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.
Collapse
Affiliation(s)
- Xia Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | | | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
7
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Tang K, Zhu X, Xie S, Lang Z, Zhu JK. Transgenerational increases in DNA methylation in Arabidopsis plants defective in active DNA demethylation. Proc Natl Acad Sci U S A 2024; 121:e2320468121. [PMID: 38768356 PMCID: PMC11145202 DOI: 10.1073/pnas.2320468121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Spontaneous gain or loss of DNA methylation occurs in plant and animal genomes, and DNA methylation changes can lead to meiotically stable epialleles that generate heritable phenotypic diversity. However, it is unclear whether transgenerational epigenetic stability may be regulated by any cellular factors. Here, we examined spontaneously occurring variations in DNA methylation in wild-type and ros1 mutant Arabidopsis plants that were propagated for ten generations from single-seed descent. We found that the ros1 mutant, which is defective in active DNA demethylation, showed an increased transgenerational epimutation rate. The ros1 mutation led to more spontaneously gained methylation than lost methylation at individual cytosines, compared to the wild type which had similar numbers of spontaneously gained and lost methylation cytosines. Consistently, transgenerational differentially methylated regions were also biased toward hypermethylation in the ros1 mutant. Our results reveal a genetic contribution of the ROS1 DNA demethylase to transgenerational epigenetic stability and suggest that ROS1 may have an unexpected surveillance function in preventing transgenerational DNA methylation increases.
Collapse
Affiliation(s)
- Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
| | - Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng475004, China
- State Key Laboratory of Cotton Biology, Henan University, Kaifeng475004, China
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN47907
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen518055, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
9
|
Nie WF, Mao Y, Xing E, Liu R. Actin-related protein ARP4 and ARP6 antagonistically regulate DNA demethylase ROS1 in plants. PLANT PHYSIOLOGY 2024; 195:279-282. [PMID: 38319641 DOI: 10.1093/plphys/kiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Affiliation(s)
- Wen-Feng Nie
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yueying Mao
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Enjie Xing
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Gu C, Pei MS, Guo ZH, Wu L, Qi KJ, Wang XP, Liu H, Liu Z, Lang Z, Zhang S. Multi-omics provide insights into the regulation of DNA methylation in pear fruit metabolism. Genome Biol 2024; 25:70. [PMID: 38486226 PMCID: PMC10938805 DOI: 10.1186/s13059-024-03200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Extensive research has been conducted on fruit development in crops, but the metabolic regulatory networks underlying perennial fruit trees remain poorly understood. To address this knowledge gap, we conduct a comprehensive analysis of the metabolome, proteome, transcriptome, DNA methylome, and small RNAome profiles of pear fruit flesh at 11 developing stages, spanning from fruitlet to ripening. Here, we systematically investigate the metabolic landscape and regulatory network involved. RESULTS We generate an association database consisting of 439 metabolites and 14,399 genes to elucidate the gene regulatory network of pear flesh metabolism. Interestingly, we detect increased DNA methylation in the promoters of most genes within the database during pear flesh development. Application of a DNA methylation inhibitor to the developing fruit represses chlorophyll degradation in the pericarp and promotes xanthophyll, β-carotene, and abscisic acid (ABA) accumulation in the flesh. We find the gradual increase in ABA production during pear flesh development is correlated with the expression of several carotenoid pathway genes and multiple transcription factors. Of these transcription factors, the zinc finger protein PbZFP1 is identified as a positive mediator of ABA biosynthesis in pear flesh. Most ABA pathway genes and transcription factors are modified by DNA methylation in the promoters, although some are induced by the DNA methylation inhibitor. These results suggest that DNA methylation inhibits ABA accumulation, which may delay fruit ripening. CONCLUSION Our findings provide insights into epigenetic regulation of metabolic regulatory networks during pear flesh development, particularly with regard to DNA methylation.
Collapse
Affiliation(s)
- Chao Gu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mao-Song Pei
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Hua Guo
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Wu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai-Jie Qi
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue-Ping Wang
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Liu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Shaoling Zhang
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Roelfs KU, Känel A, Twyman RM, Prüfer D, Schulze Gronover C. Epigenetic variation in early and late flowering plants of the rubber-producing Russian dandelion Taraxacum koksaghyz provides insights into the regulation of flowering time. Sci Rep 2024; 14:4283. [PMID: 38383610 PMCID: PMC10881582 DOI: 10.1038/s41598-024-54862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
The Russian dandelion (Taraxacum koksaghyz) grows in temperate zones and produces large amounts of poly(cis-1,4-isoprene) in its roots, making it an attractive alternative source of natural rubber. Most T. koksaghyz plants require vernalization to trigger flower development, whereas early flowering varieties that have lost their vernalization dependence are more suitable for breeding and domestication. To provide insight into the regulation of flowering time in T. koksaghyz, we induced epigenetic variation by in vitro cultivation and applied epigenomic and transcriptomic analysis to the resulting early flowering plants and late flowering controls, allowing us to identify differences in methylation patterns and gene expression that correlated with flowering. This led to the identification of candidate genes homologous to vernalization and photoperiodism response genes in other plants, as well as epigenetic modifications that may contribute to the control of flower development. Some of the candidate genes were homologous to known floral regulators, including those that directly or indirectly regulate the major flowering control gene FT. Our atlas of genes can be used as a starting point to investigate mechanisms that control flowering time in T. koksaghyz in greater detail and to develop new breeding varieties that are more suited to domestication.
Collapse
Affiliation(s)
- Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 48149, Münster, Germany
| | - Andrea Känel
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 48149, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | |
Collapse
|
12
|
Wu Y, Hou J, Ren R, Chen Z, Yue M, Li L, Hou H, Zheng X, Li L. DNA methylation and lipid metabolism are involved in GA-induced maize aleurone layers PCD as revealed by transcriptome analysis. BMC PLANT BIOLOGY 2023; 23:584. [PMID: 37993774 PMCID: PMC10664605 DOI: 10.1186/s12870-023-04565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The aleurone layer is a part of many plant seeds, and during seed germination, aleurone cells undergo PCD, which is promoted by GA from the embryo. However, the numerous components of the GA signaling pathway that mediate PCD of the aleurone layers remain to be identified. Few genes and transcriptomes have been studied thus far in aleurone layers to improve our understanding of how PCD occurs and how the regulatory mechanism functions during PCD. Our previous studies have shown that histone deacetylases (HDACs) are required in GA-induced PCD of aleurone layer. To further explore the molecular mechanisms by which epigenetic modifications regulate aleurone PCD, we performed a global comparative transcriptome analysis of embryoless aleurones treated with GA or histone acetylase (HAT) inhibitors. RESULTS In this study, a total of 7,919 differentially expressed genes (DEGs) were analyzed, 2,554 DEGs of which were found to be common under two treatments. These identified DEGs were involved in various biological processes, including DNA methylation, lipid metabolism and ROS signaling. Further investigations revealed that inhibition of DNA methyltransferases prevented aleurone PCD, suggesting that active DNA methylation plays a role in regulating aleurone PCD. GA or HAT inhibitor induced lipoxygenase gene expression, leading to lipid degradation, but this process was not affected by DNA methylation. However, DNA methylation inhibitor could regulate ROS-related gene expression and inhibit GA-induced production of hydrogen peroxide (H2O2). CONCLUSION Overall, linking of lipoxygenase, DNA methylation, and H2O2 may indicate that GA-induced higher HDAC activity in aleurones causes breakdown of lipids via regulating lipoxygenase gene expression, and increased DNA methylation positively mediates H2O2 production; thus, DNA methylation and lipid metabolism pathways may represent an important and complex signaling network in maize aleurone PCD.
Collapse
Affiliation(s)
- Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruifei Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Le Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- College of Food, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
13
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Hsieh JWA, Chang P, Kuang LY, Hsing YIC, Chen PY. Rice transformation treatments leave specific epigenome changes beyond tissue culture. PLANT PHYSIOLOGY 2023; 193:1297-1312. [PMID: 37394940 PMCID: PMC10517251 DOI: 10.1093/plphys/kiad382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
During transgenic plant production, tissue culture often carries epigenetic, and genetic changes that underlie somaclonal variations, leading to unpredictable phenotypes. Additionally, specific treatments for rice (Oryza sativa) transformation processes may individually or jointly contribute to somaclonal variations, but their specific impacts on rice epigenomes toward transcriptional variations remain unknown. Here, the impact of individual transformation treatments on genome-wide DNA methylation and the transcriptome were examined. In addition to activating stress-responsive genes, individual transformation components targeted different gene expression modules that were enriched in specific functional categories. The transformation treatments strongly impacted DNA methylation and expression; 75% were independent of tissue culture. Furthermore, our genome-wide analysis showed that the transformation treatments consistently resulted in global hypo-CHH methylation enriched at promoters highly associated with downregulation, particularly when the promoters were colocalized with miniature inverted-repeat transposable elements. Our results clearly highlight the specificity of impacts triggered by individual transformation treatments during rice transformation with the potential association between DNA methylation and gene expression. These changes in gene expression and DNA methylation resulting from rice transformation treatments explain a significant portion of somaclonal variations, that is, way beyond the tissue culture effect.
Collapse
Affiliation(s)
- Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National
Taiwan University, Taipei 10617, Taiwan
| | - Pearl Chang
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
- Department of Tropical Agriculture and International Cooperation/Department
of Biological Science and Technology, National Pingtung University of Science and
Technology, Pingtung 91201, Taiwan
| | - Lin-Yun Kuang
- The Transgenic Plant Core Facility, Agricultural Biotechnology Research
Center, Academia Sinica, Taipei 115201, Taiwan
| | - Yue-Ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National
Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Zuzina AB, Vinarskaya AK, Balaban PM. DNA Methylation Inhibition Reversibly Impairs the Long-Term Context Memory Maintenance in Helix. Int J Mol Sci 2023; 24:14068. [PMID: 37762369 PMCID: PMC10531757 DOI: 10.3390/ijms241814068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
This work aims to study the epigenetic mechanisms of regulating long-term context memory in the gastropod mollusk: Helix. We have shown that RG108, an inhibitor of DNA methyltransferase (DNMT), impaired long-term context memory in snails, and this impairment can be reversed within a limited time window: no more than 48 h. Research on the mechanisms through which the long-term context memory impaired by DNMT inhibition could be reinstated demonstrated that this effect depends on several biochemical mechanisms: nitric oxide synthesis, protein synthesis, and activity of the serotonergic system. Memory recovery did not occur if at least one of these mechanisms was impaired. The need for the joint synergic activity of several biochemical systems for a successful memory rescue confirms the assumption that the memory recovery process depends on the process of active reconsolidation, and is not simply a passive weakening of the effect of RG108 over time. Finally, we showed that the reactivation of the impaired memory by RG108, followed by administration of histone deacetylase inhibitor sodium butyrate, led to memory recovery only within a narrow time window: no more than 48 h after memory disruption.
Collapse
Affiliation(s)
| | | | - Pavel M. Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia; (A.B.Z.); (A.K.V.)
| |
Collapse
|
16
|
Zhang Y, Toivainen T, Mackenzie K, Yakovlev I, Krokene P, Hytönen T, Grini PE, Fossdal CG. Methylome, transcriptome, and phenotype changes induced by temperature conditions experienced during sexual reproduction in Fragaria vesca. PHYSIOLOGIA PLANTARUM 2023; 175:e13963. [PMID: 37340851 DOI: 10.1111/ppl.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Temperature conditions experienced during embryogenesis and seed development may induce epigenetic changes that increase phenotypic variation in plants. Here we investigate if embryogenesis and seed development at two different temperatures (28 vs. 18°C) result in lasting phenotypic effects and DNA methylation changes in woodland strawberry (Fragaria vesca). Using five European ecotypes from Spain (ES12), Iceland (ICE2), Italy (IT4), and Norway (NOR2 and NOR29), we found statistically significant differences between plants from seeds produced at 18 or 28°C in three of four phenotypic features investigated under common garden conditions. This indicates the establishment of a temperature-induced epigenetic memory-like response during embryogenesis and seed development. The memory effect was significant in two ecotypes: in NOR2 flowering time, number of growth points and petiole length were affected, and in ES12 number of growth points was affected. This indicates that genetic differences between ecotypes in their epigenetic machinery, or other allelic differences, impact this type of plasticity. We observed statistically significant differences between ecotypes in DNA methylation marks in repetitive elements, pseudogenes, and genic elements. Leaf transcriptomes were also affected by embryonic temperature in an ecotype-specific manner. Although we observed significant and lasting phenotypic change in at least some ecotypes, there was considerable variation in DNA methylation between individual plants within each temperature treatment. This within-treatment variability in DNA methylation marks in F. vesca progeny may partly be a result of allelic redistribution from recombination during meiosis and subsequent epigenetic reprogramming during embryogenesis.
Collapse
Affiliation(s)
- Yupeng Zhang
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kathryn Mackenzie
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Paul E Grini
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
17
|
Sheikh AH, Nawaz K, Tabassum N, Almeida-Trapp M, Mariappan KG, Alhoraibi H, Rayapuram N, Aranda M, Groth M, Hirt H. Linker histone H1 modulates defense priming and immunity in plants. Nucleic Acids Res 2023; 51:4252-4265. [PMID: 36840717 PMCID: PMC10201415 DOI: 10.1093/nar/gkad106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/26/2023] Open
Abstract
Linker H1 histones play an important role in animal and human pathogenesis, but their function in plant immunity is poorly understood. Here, we analyzed mutants of the three canonical variants of Arabidopsis H1 histones, namely H1.1, H1.2 and H1.3. We observed that double h1.1h1.2 and triple h1.1h1.2h1.3 (3h1) mutants were resistant to Pseudomonas syringae and Botrytis cinerea infections. Transcriptome analysis of 3h1 mutant plants showed H1s play a key role in regulating the expression of early and late defense genes upon pathogen challenge. Moreover, 3h1 mutant plants showed enhanced production of reactive oxygen species and activation of mitogen activated protein kinases upon pathogen-associated molecular pattern (PAMP) treatment. However, 3h1 mutant plants were insensitive to priming with flg22, a well-known bacterial PAMP which induces enhanced resistance in WT plants. The defective defense response in 3h1 upon priming was correlated with altered DNA methylation and reduced global H3K56ac levels. Our data place H1 as a molecular gatekeeper in governing dynamic changes in the chromatin landscape of defense genes during plant pathogen interaction.
Collapse
Affiliation(s)
- Arsheed H Sheikh
- King Abdullah University of Science and Technology, KAUST, 23955 Thuwal, Saudi Arabia
| | - Kashif Nawaz
- King Abdullah University of Science and Technology, KAUST, 23955 Thuwal, Saudi Arabia
| | - Naheed Tabassum
- King Abdullah University of Science and Technology, KAUST, 23955 Thuwal, Saudi Arabia
| | - Marilia Almeida-Trapp
- King Abdullah University of Science and Technology, KAUST, 23955 Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- King Abdullah University of Science and Technology, KAUST, 23955 Thuwal, Saudi Arabia
| | - Hanna Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551Jeddah, Saudi Arabia
| | - Naganand Rayapuram
- King Abdullah University of Science and Technology, KAUST, 23955 Thuwal, Saudi Arabia
| | - Manuel Aranda
- King Abdullah University of Science and Technology, KAUST, 23955 Thuwal, Saudi Arabia
| | - Martin Groth
- Institute of Functional Epigenetics, Helmholtz Munich, 85764Neuherberg, Germany
| | - Heribert Hirt
- King Abdullah University of Science and Technology, KAUST, 23955 Thuwal, Saudi Arabia
| |
Collapse
|
18
|
Yang F, Sun Y, Du X, Chu Z, Zhong X, Chen X. Plant-specific histone deacetylases associate with ARGONAUTE4 to promote heterochromatin stabilization and plant heat tolerance. THE NEW PHYTOLOGIST 2023; 238:252-269. [PMID: 36631970 DOI: 10.1111/nph.18729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
High temperature causes devasting effects on many aspects of plant cells and thus enhancing plant heat tolerance is critical for crop production. Emerging studies have revealed the important roles of chromatin modifications in heat stress responses. However, how chromatin is regulated during heat stress remains unclear. We show that heat stress results in heterochromatin disruption coupled with histone hyperacetylation and DNA hypomethylation. Two plant-specific histone deacetylases HD2B and HD2C could promote DNA methylation and relieve the heat-induced heterochromatin decondensation. We noted that most DNA methylation regulated by HD2B and HD2C is lost upon heat stress. HD2B- and HD2C-regulated histone acetylation and DNA methylation are dispensable for heterochromatin maintenance under normal conditions, but critical for heterochromatin stabilization under heat stress. We further showed that HD2B and HD2C promoted DNA methylation through associating with ARGONAUTE4 in nucleoli and Cajal bodies, and facilitating its nuclear accumulation. Thus, HD2B and HD2C act both canonically and noncanonically to stabilize heterochromatin under heat stress. This study not only reveals a novel plant-specific crosstalk between histone deacetylases and key factor of DNA methylation pathway, but also uncovers their new roles in chromatic regulation of plant heat tolerance.
Collapse
Affiliation(s)
- Fangfang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Yingnan Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xiaoxuan Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xuehua Zhong
- Department of Biology, Washington University, St Louis, MO, 63130, USA
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| |
Collapse
|
19
|
Jiang K, Guo H, Zhai J. Interplay of phytohormones and epigenetic regulation: A recipe for plant development and plasticity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:381-398. [PMID: 36223083 DOI: 10.1111/jipb.13384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Both phytohormone signaling and epigenetic mechanisms have long been known to play crucial roles in plant development and plasticity in response to ambient stimuli. Indeed, diverse signaling pathways mediated by phytohormones and epigenetic processes integrate multiple upstream signals to regulate various plant traits. Emerging evidence indicates that phytohormones and epigenetic processes interact at multiple levels. In this review, we summarize the current knowledge of the interplay between phytohormones and epigenetic processes from the perspective of phytohormone biology. We also review chemical regulators used in epigenetic studies and propose strategies for developing novel regulators using multidisciplinary approaches.
Collapse
Affiliation(s)
- Kai Jiang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
20
|
Han Q, Hung YH, Zhang C, Bartels A, Rea M, Yang H, Park C, Zhang XQ, Fischer RL, Xiao W, Hsieh TF. Loss of linker histone H1 in the maternal genome influences DEMETER-mediated demethylation and affects the endosperm DNA methylation landscape. FRONTIERS IN PLANT SCIENCE 2022; 13:1070397. [PMID: 36618671 PMCID: PMC9813442 DOI: 10.3389/fpls.2022.1070397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The Arabidopsis DEMETER (DME) DNA glycosylase demethylates the central cell genome prior to fertilization. This epigenetic reconfiguration of the female gamete companion cell establishes gene imprinting in the endosperm and is essential for seed viability. DME demethylates small and genic-flanking transposons as well as intergenic and heterochromatin sequences, but how DME is recruited to these loci remains unknown. H1.2 was identified as a DME-interacting protein in a yeast two-hybrid screen, and maternal genome H1 loss affects DNA methylation and expression of selected imprinted genes in the endosperm. Yet, the extent to which H1 influences DME demethylation and gene imprinting in the Arabidopsis endosperm has not been investigated. Here, we showed that without the maternal linker histones, DME-mediated demethylation is facilitated, particularly in the heterochromatin regions, indicating that H1-bound heterochromatins are barriers for DME demethylation. Loss of H1 in the maternal genome has a very limited effect on gene transcription or gene imprinting regulation in the endosperm; however, it variably influences euchromatin TE methylation and causes a slight hypermethylation and a reduced expression in selected imprinted genes. We conclude that loss of maternal H1 indirectly influences DME-mediated demethylation and endosperm DNA methylation landscape but does not appear to affect endosperm gene transcription and overall imprinting regulation.
Collapse
Affiliation(s)
- Qiang Han
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Yu-Hung Hung
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Changqing Zhang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Arthur Bartels
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Matthew Rea
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Hanwen Yang
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Christine Park
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Xiang-Qian Zhang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- College of Food Science and Engineering, Foshan University, Foshan, China
| | - Robert L. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
21
|
Nunez-Vazquez R, Desvoyes B, Gutierrez C. Histone variants and modifications during abiotic stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:984702. [PMID: 36589114 PMCID: PMC9797984 DOI: 10.3389/fpls.2022.984702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Plants have developed multiple mechanisms as an adaptive response to abiotic stresses, such as salinity, drought, heat, cold, and oxidative stress. Understanding these regulatory networks is critical for coping with the negative impact of abiotic stress on crop productivity worldwide and, eventually, for the rational design of strategies to improve plant performance. Plant alterations upon stress are driven by changes in transcriptional regulation, which rely on locus-specific changes in chromatin accessibility. This process encompasses post-translational modifications of histone proteins that alter the DNA-histones binding, the exchange of canonical histones by variants that modify chromatin conformation, and DNA methylation, which has an implication in the silencing and activation of hypervariable genes. Here, we review the current understanding of the role of the major epigenetic modifications during the abiotic stress response and discuss the intricate relationship among them.
Collapse
Affiliation(s)
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| |
Collapse
|
22
|
Yan Y, Li C, Liu Z, Zhuang JJ, Kong JR, Yang ZK, Yu J, Shah Alam M, Ruan CC, Zhang HM, Xu JH. A new demethylase gene, OsDML4, is involved in high temperature-increased grain chalkiness in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7273-7284. [PMID: 36073837 DOI: 10.1093/jxb/erac367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
High temperature (HT) can affect the accumulation of seed storage materials and cause adverse effects on the yield and quality of rice. DNA methylation plays an important role in plant growth and development. Here, we identified a new demethylase gene OsDML4 and discovered its function in cytosine demethylation to affect endosperm formation. Loss of function of OsDML4 induced chalky endosperm only under HT and dramatically reduced the transcription and accumulation of glutelins and 16 kDa prolamin. The expression of two transcription factor genes RISBZ1 and RPBF was significantly decreased in the osdml4 mutants, which caused adverse effects on the formation of protein bodies (PBs) with greatly decreased PB-II number, and incomplete and abnormally shaped PB-IIs. Whole-genome bisulfite sequencing analysis of seeds at 15 d after pollination revealed much higher global methylation levels of CG, CHG, and CHH contexts in the osdml4 mutants compared with the wild type. Moreover, the RISBZ1 promoter was hypermethylated but the RPBF promoter was almost unchanged under HT. No significant difference was detected between the wild type and osdml4 mutants under normal temperature. Our study demonstrated a novel OsDML4-mediated DNA methylation involved in the formation of chalky endosperm only under HT and provided a new perspective in regulating endosperm development and the accumulation of seed storage proteins in rice.
Collapse
Affiliation(s)
- Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jun-Jie Zhuang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jia-Rui Kong
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Kun Yang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jie Yu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Cheng Ruan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong 276034, China
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
23
|
Shang JY, Cai XW, Su YN, Zhang ZC, Wang X, Zhao N, He XJ. Arabidopsis Trithorax histone methyltransferases are redundant in regulating development and DNA methylation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2438-2454. [PMID: 36354145 DOI: 10.1111/jipb.13406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3K4 methylation in Arabidopsis thaliana, it is unknown whether and how these histone methyltransferases affect DNA methylation. Here, we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation. The expression and H3K4me3 levels of both RNA-directed DNA methylation (RdDM) genes (NRPE1, DCL3, IDN2, and IDP2) and active DNA demethylation genes (ROS1, DML2, and DML3) were downregulated in the atx1/2/4/5 mutant. Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites, and that the RdDM pathway mediates DNA methylation mainly at CHH sites, whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3 (rdd), and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1, suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3K4me3 levels and expression levels of both RdDM genes and active DNA demethylation genes. Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes, we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation. This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.
Collapse
Affiliation(s)
- Ji-Yun Shang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Nan Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
25
|
Zhou X, Wei M, Nie W, Xi Y, Peng L, Zheng Q, Tang K, Satheesh V, Wang Y, Luo J, Du X, Liu R, Yang Z, La H, Zhong Y, Yang Y, Zhu JK, Du J, Lei M. The H3K9me2-binding protein AGDP3 limits DNA methylation and transcriptional gene silencing in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2385-2395. [PMID: 36149781 DOI: 10.1111/jipb.13369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation, a conserved epigenetic mark, is critical for tuning temporal and spatial gene expression. The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci. However, how ROS1 is recruited to specific loci is not well understood. Here, we report the discovery of Arabidopsis AGENET Domain Containing Protein 3 (AGDP3) as a cellular factor that is required to prevent gene silencing and DNA hypermethylation. AGDP3 binds to H3K9me2 marks in its target DNA via its AGD12 cassette. Analysis of the crystal structure of the AGD12 cassette of AGDP3 in complex with an H3K9me2 peptide revealed that dimethylated H3K9 and unmodified H3K4 are specifically anchored into two different surface pockets. A histidine residue located in the methyllysine binding aromatic cage provides AGDP3 with pH-dependent H3K9me2 binding capacity. Our results uncover a molecular mechanism for the regulation of DNA demethylation by the gene silencing mark H3K9me2.
Collapse
Affiliation(s)
- Xuelin Zhou
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengwei Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenfeng Nie
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yue Xi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qijie Zheng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Kai Tang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Idiana, 47906, USA
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuhua Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinyan Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xuan Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenlin Yang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Honggui La
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yingli Zhong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Idiana, 47906, USA
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
26
|
Wang Z, Zheng H, Huang J, Yang G, Yan K, Zhang S, Wu C, Zheng C. DEMETHYLATION REGULATOR 1 regulates DNA demethylation of the nuclear and mitochondrial genomes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2344-2360. [PMID: 36223079 DOI: 10.1111/jipb.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Active DNA demethylation effectively modulates gene expression during plant development and in response to stress. However, little is known about the upstream regulatory factors that regulate DNA demethylation. We determined that the demethylation regulator 1 (demr1) mutant exhibits a distinct DNA methylation profile at selected loci queried by methylation-sensitive polymerase chain reaction and globally based on whole-genome bisulfite sequencing. Notably, the transcript levels of the DNA demethylase gene REPRESSOR OF SILENCING 1 (ROS1) were lower in the demr1 mutant. We established that DEMR1 directly binds to the ROS1 promoter in vivo and in vitro, and the methylation level in the DNA methylation monitoring sequence of ROS1 promoter decreased by 60% in the demr1 mutant. About 40% of the hyper-differentially methylated regions (DMRs) in the demr1 mutant were shared with the ros1-4 mutant. Genetic analysis indicated that DEMR1 acts upstream of ROS1 to positively regulate abscisic acid (ABA) signaling during seed germination and seedling establishment stages. Surprisingly, the loss of DEMR1 function also caused a rise in methylation levels of the mitochondrial genome, impaired mitochondrial structure and an early flowering phenotype. Together, our results show that DEMR1 is a novel regulator of DNA demethylation of both the nuclear and mitochondrial genomes in response to ABA and plant development in Arabidopsis.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
27
|
Zhang Z, Zeng W, Zhang W, Li J, Kong D, Zhang L, Wang R, Peng F, Kong Z, Ke Y, Zhang H, Kim C, Zhang H, Botella JR, Zhu JK, Miki D. Insights into the molecular mechanisms of CRISPR/Cas9-mediated gene targeting at multiple loci in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2203-2216. [PMID: 36106983 PMCID: PMC9706422 DOI: 10.1093/plphys/kiac431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination-mediated gene targeting (GT) enables precise sequence knockin or sequence replacement, and thus is a powerful tool for heritable precision genome engineering. We recently established a clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9)-mediated approach for heritable GT in Arabidopsis (Arabidopsis thaliana), but its broad utility was not tested, and the underlying molecular mechanism was unclear. Here, we achieved precise GT at 14 out of 27 tested endogenous target loci using the sequential transformation approach and obtained vector-free GT plants by backcrossing. Thus, the sequential transformation GT method provides a broadly applicable technology for precise genome manipulation. We show that our approach generates heritable GT in the egg cell or early embryo of T1 Arabidopsis plants. Analysis of imprecise GT events suggested that single-stranded transfer DNA (T-DNA)/VirD2 complexes produced during the Agrobacterium (Agrobacterium tumefaciens) transformation process may serve as the donor templates for homologous recombination-mediated repair in the GT process. This study provides new insights into the molecular mechanisms of CRISPR/Cas9-mediated GT in Arabidopsis.
Collapse
Affiliation(s)
- Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxin Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangnan Peng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Kong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongping Ke
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jose Ramón Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
28
|
Wang X, Wang M, Dai J, Wang Q, La H. Fine mapping and characterization of RLL6 locus required for anti-silencing of a transgene and DNA demethylation in Arabidopsisthaliana. Front Genet 2022; 13:1008700. [PMID: 36226182 PMCID: PMC9549997 DOI: 10.3389/fgene.2022.1008700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
DNA methylation patterns in plants are dynamically shaped by the antagonistic actions of DNA methylation and demethylation pathways. Although the DNA methylation pathway has been well studied, the DNA demethylation pathway, however, are not fully understood so far. To gain deeper insights into the mechanisms of DNA demethylation pathway, we conducted a genetic screening for proteins that were involved in preventing epigenetic gene silencing, and then the ones, which were also implicated in DNA demethylation pathway, were used for further studies. Eventually, a mutant with low luciferase luminescence (low LUC luminescence) was recovered, and named reduced LUC luminescence 6–1 (rll6-1). Map-based cloning revealed that rll6-1 mutation was located on chromosome 4, and there were a total of 10 candidate genes residing within such a region. Analyses of genome-wide methylation patterns of rll6-1 mutant showed that mutation of RLL6 locus led to 3,863 hyper-DMRs (DMRs for differentially methylated regions) throughout five Arabidopsis chromosomes, and elevated DNA methylation level of 2 × 35S promoter, which was similar to that found in the ros1 (repressor of silencing 1) mutant. Further analysis demonstrated that there were 1,456 common hyper-DMRs shared by rll6-1 and ros1-7 mutants, suggesting that both proteins acted together in a synergistic manner to remove DNA methylation. Further investigations demonstrated that mutation of RLL6 locus did not affect the expression of the four genes of the DNA glycosylase/lyase family. Thus, our results demonstrate that RLL6 locus-encoded protein not only participates in transcriptional anti-silencing of a transgene, but is also involved in DNA demethylation pathway.
Collapse
|
29
|
Zhao L, Zhou Q, He L, Deng L, Lozano-Duran R, Li G, Zhu JK. DNA methylation underpins the epigenomic landscape regulating genome transcription in Arabidopsis. Genome Biol 2022; 23:197. [PMID: 36127735 PMCID: PMC9487137 DOI: 10.1186/s13059-022-02768-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is challenging to determine the effect of DNA methylation on the epigenetic landscape and the function in higher organisms due to the lack of DNA methylation-free mutants. RESULTS Here, the analysis of a recently generated Arabidopsis mutant completely devoid of DNA methylation reveals that DNA methylation underpins the genome-wide landscape of histone modifications. Complete loss of DNA methylation causes an upheaval of the histone modification landscape, including complete loss of H3K9me2 and widespread redistribution of active and H3K27me3 histone marks, mostly owing to the role of DNA methylation in initiating H3K9me2 deposition and excluding active marks and repressive mark H3K27me3; CG and non-CG methylation can act independently at some genomic regions while they act cooperatively at many other regions. The transcriptional reprogramming upon loss of all DNA methylation correlates with the extensive redistribution or switches of the examined histone modifications. Histone modifications retained or gained in the DNA methylation-free mutant serve as DNA methylation-independent transcriptional regulatory signals: active marks promote genome transcription, whereas the repressive mark H3K27me3 compensates for the lack of DNA hypermethylation/H3K9me2 at multiple transposon families. CONCLUSIONS Our results show that an intact DNA methylome constitutes the scaffolding of the epigenomic landscape in Arabidopsis and is critical for controlled genome transcription and ultimately for proper growth and development.
Collapse
Affiliation(s)
- Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li He
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076, Tübingen, Germany
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
30
|
Fang J, Jiang J, Leichter SM, Liu J, Biswal M, Khudaverdyan N, Zhong X, Song J. Mechanistic basis for maintenance of CHG DNA methylation in plants. Nat Commun 2022; 13:3877. [PMID: 35790763 PMCID: PMC9256654 DOI: 10.1038/s41467-022-31627-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/26/2022] [Indexed: 11/08/2022] Open
Abstract
DNA methylation is an evolutionarily conserved epigenetic mechanism essential for transposon silencing and heterochromatin assembly. In plants, DNA methylation widely occurs in the CG, CHG, and CHH (H = A, C, or T) contexts, with the maintenance of CHG methylation mediated by CMT3 chromomethylase. However, how CMT3 interacts with the chromatin environment for faithful maintenance of CHG methylation is unclear. Here we report structure-function characterization of the H3K9me2-directed maintenance of CHG methylation by CMT3 and its Zea mays ortholog ZMET2. Base-specific interactions and DNA deformation coordinately underpin the substrate specificity of CMT3 and ZMET2, while a bivalent readout of H3K9me2 and H3K18 allosterically stimulates substrate binding. Disruption of the interaction with DNA or H3K9me2/H3K18 led to loss of CMT3/ZMET2 activity in vitro and impairment of genome-wide CHG methylation in vivo. Together, our study uncovers how the intricate interplay of CMT3, repressive histone marks, and DNA sequence mediates heterochromatic CHG methylation.
Collapse
Affiliation(s)
- Jian Fang
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jianjun Jiang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Sarah M Leichter
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jie Liu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Mahamaya Biswal
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
31
|
Parrilla-Doblas J, Morales-Ruiz T, Ariza R, Martínez-Macías M, Roldán-Arjona T. The C-terminal domain of Arabidopsis ROS1 DNA demethylase interacts with histone H3 and is required for DNA binding and catalytic activity. DNA Repair (Amst) 2022; 115:103341. [DOI: 10.1016/j.dnarep.2022.103341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
|
32
|
FDDM1 and FDDM2, Two SGS3-like Proteins, Function as a Complex to Affect DNA Methylation in Arabidopsis. Genes (Basel) 2022; 13:genes13020339. [PMID: 35205382 PMCID: PMC8872474 DOI: 10.3390/genes13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
DNA methylation is an important epigenetic modification required for the specific regulation of gene expression and the maintenance of genome stability in plants and animals. However, the mechanism of DNA demethylation remains largely unknown. Here, we show that two SGS3-like proteins, FACTOR OF DNA DEMETHYLATION 1 (FDDM1) and FDDM2, negatively affect the DNA methylation levels at ROS1-dependend DNA loci in Arabidopsis. FDDM1 binds dsRNAs with 5′ overhangs through its XS (rice gene X and SGS3) domain and forms a heterodimer with FDDM2 through its XH (rice gene X Homology) domain. A lack of FDDM1 or FDDM2 increased DNA methylation levels at several ROS1-dependent DNA loci. However, FDDM1 and FDDM2 may not have an additive effect on DNA methylation levels. Moreover, the XS and XH domains are required for the function of FDDM1. Taken together, these results suggest that FDDM1 and FDDM2 act as a heterodimer to positively modulate DNA demethylation. Our finding extends the function of plant-specific SGS3-like proteins.
Collapse
|
33
|
Yu L, Sun Y, Zhang X, Chen M, Wu T, Zhang J, Xing Y, Tian J, Yao Y. ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. HORTICULTURE RESEARCH 2022; 9:uhac007. [PMID: 35147161 PMCID: PMC9123231 DOI: 10.1093/hr/uhac007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/15/2021] [Indexed: 05/07/2023]
Abstract
Low temperature can affect the growth and development of plants through changes in DNA demethylation patterns. Another known effect of low temperature is the accumulation of anthocyanin pigments. However, it is not known whether the two phenomena are linked, specifically, whether DNA demethylation participates in anthocyanin accumulation in response to low-temperature stress. The ROS1 gene is involved in plant DNA demethylation and influences methylation levels in response to low temperature stress. In this study, using RNA sequencing, we detected that the transcription levels of MdROS1 correlate with the anthocyanin content, as well as with those of anthocyanin biosynthesis-related genes in apple (Malus domestica), at low temperatures. Genomic bisulfite sequencing showed that the methylation levels of the promoters of the anthocyanin related genes MdCHS, MdCHI, MdF3'H, MdANS, MdUFGT, and MdMYB10 decreased in apple leaves after low-temperature treatment. Similar expression and methylation results were also found in apple fruit. Transiently silencing MdROS1 in the leaves and fruit of apple cultivars inhibited the accumulation of anthocyanins and led to decreased expression of anthocyanin biosynthetic genes, and the opposite results were detected in MdROS1-overexpressing leaves and fruit. A promoter binding assay showed that the conserved RRD-DME domains of MdROS1 directly bind to the promoters of MdF3'H and MdUFGT. Taken together, these results suggest that ROS1 affects the anthocyanin biosynthetic pathway by decreasing the methylation level of anthocyanin-related gene promoters, thereby increasing their expression and increasing anthocyanin accumulation.
Collapse
Affiliation(s)
- Lujia Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuying Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Mengchen Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yifan Xing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
34
|
Gui X, Liu C, Qi Y, Zhou X. Geminiviruses employ host DNA glycosylases to subvert DNA methylation-mediated defense. Nat Commun 2022; 13:575. [PMID: 35102164 PMCID: PMC8803994 DOI: 10.1038/s41467-022-28262-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/12/2022] [Indexed: 01/13/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that plays important roles in gene regulation and transposon silencing. Active DNA demethylation has evolved to counterbalance DNA methylation at many endogenous loci. Here, we report that active DNA demethylation also targets viral DNAs, tomato yellow leaf curl China virus (TYLCCNV) and its satellite tomato yellow leaf curl China betasatellite (TYLCCNB), to promote their virulence. We demonstrate that the βC1 protein, encoded by TYLCCNB, interacts with a ROS1-like DNA glycosylase in Nicotiana benthamiana and with the DEMETER (DME) DNA glycosylase in Arabidopsis thaliana. The interaction between βC1 and DME facilitates the DNA glycosylase activity to decrease viral DNA methylation and promote viral virulence. These findings reveal that active DNA demethylation can be regulated by a viral protein to subvert DNA methylation-mediated defense.
Collapse
Affiliation(s)
- Xiaojian Gui
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chang Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
35
|
Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:295-315. [DOI: 10.1007/978-3-031-11454-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Miao W, Dai J, Wang Y, Wang Q, Lu C, La Y, Niu J, Tan F, Zhou S, Wu Y, Chen H, La H. Roles of IDM3 and SDJ1/2/3 in Establishment and/or Maintenance of DNA Methylation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:1409-1422. [PMID: 34185870 DOI: 10.1093/pcp/pcab091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Previous studies had demonstrated that in Arabidopsis, IDM3 is involved in ROS1-mediated DNA demethylation pathway, and SUVH-SDJ complex functions as a DNA methylation reader complex for enhancing gene transcription, which presumably recruits ROS1 to the promoters of target genes for DNA demethylation. Here, our analyses, however, showed that the IDM3 and SDJ1/2/3, the components of the SUVH-SDJ complex, are implicated in establishing and/or maintaining DNA methylation as well through DDR (DRD1-DMS3-RDM1) complex. idm3-3 or sdj1/2/3 mutations led to genome-wide DNA hypomethylation, and both mutants shared a large number of common hypo-DMRs (Differentially Methylated Regions) with rdm1-4 and dms3-4, suggesting that IDM3 and SDJ1/2/3 help establish and/or maintain DNA methylation, mediated by RdDM pathway, at a subset of genomic regions largely through DDR complex. IDM3 is able to strongly interact with RDM1 and DMS3, but weakly with SDJ1 and SDJ3; SDJ1 and SDJ3 is capable of interacting separately with RDM1 and DMS3. Furthermore, comparisons of DNA methylation features in idm3-3 and sdj1/2/3 indicated that idm3-3 and sdj1/2/3 mutations make differential impacts on DNA methylation levels and patterns on a genome-wide scale, indicating that they are targeted to quite distinct genomic regions for aiding in DNA methylation. Further analyses on ChIP-seq data demonstrated that RDM1, DMS3 and NRPE1 are enriched in IDM3- and SDJ1/2/3-targted regions. Altogether, our results provide clear demonstration that IDM3 and SDJ1/2/3 play a part in establishing and/or maintaining DNA methylation of a group of genomic regions, through the DDR complex.
Collapse
Affiliation(s)
- Wei Miao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Dai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yutong Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chong Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yumei La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiayu Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feng Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shaoxia Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Huhui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
37
|
Inagaki S. Silencing and anti-silencing mechanisms that shape the epigenome in plants. Genes Genet Syst 2021; 96:217-228. [PMID: 34719532 DOI: 10.1266/ggs.21-00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epigenome information mediates genome function and maintenance by regulating gene expression and chromatin organization. Because the epigenome pattern can change in response to internal and external environments, it may underlie an adaptive genome response that modulates phenotypes during development and in changing environments. Here I summarize recent progress in our understanding of how epigenome patterns are shaped and modulated by concerted actions of silencing and anti-silencing factors mainly in Arabidopsis thaliana. I discuss the dynamic nature of epigenome regulation, which is realized by cooperation and counteraction among silencing and anti-silencing factors, and how the dynamic epigenome mediates robust and plastic responses of plants to fluctuating environments.
Collapse
Affiliation(s)
- Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
38
|
Zhao K, Kong D, Jin B, Smolke CD, Rhee SY. A novel bivalent chromatin associates with rapid induction of camalexin biosynthesis genes in response to a pathogen signal in Arabidopsis. eLife 2021; 10:69508. [PMID: 34523419 PMCID: PMC8547951 DOI: 10.7554/elife.69508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Temporal dynamics of gene expression underpin responses to internal and environmental stimuli. In eukaryotes, regulation of gene induction includes changing chromatin states at target genes and recruiting the transcriptional machinery that includes transcription factors. As one of the most potent defense compounds in Arabidopsis thaliana, camalexin can be rapidly induced by bacterial and fungal infections. Though several transcription factors controlling camalexin biosynthesis genes have been characterized, how the rapid activation of genes in this pathway upon a pathogen signal is enabled remains unknown. By combining publicly available epigenomic data with in vivo chromatin modification mapping, we found that camalexin biosynthesis genes are marked with two epigenetic modifications with opposite effects on gene expression, trimethylation of lysine 27 of histone 3 (H3K27me3) (repression) and acetylation of lysine 18 of histone 3 (H3K18ac) (activation), to form a previously uncharacterized type of bivalent chromatin. Mutants with reduced H3K27me3 or H3K18ac suggested that both modifications were required to determine the timing of gene expression and metabolite accumulation at an early stage of the stress response. Our study indicates that the H3K27me3-H3K18ac bivalent chromatin, which we name as kairostat, plays an important role in controlling the timely induction of gene expression upon stress stimuli in plants.
Collapse
Affiliation(s)
- Kangmei Zhao
- Carnegie Institution for Science, Department of Plant Biology, Stanford, United States
| | - Deze Kong
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Benjamin Jin
- Carnegie Institution for Science, Department of Plant Biology, Stanford, United States
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Seung Yon Rhee
- Carnegie Institution for Science, Department of Plant Biology, Stanford, United States
| |
Collapse
|
39
|
Wang Q, Bao X, Chen S, Zhong H, Liu Y, Zhang L, Xia Y, Kragler F, Luo M, Li XD, Lam HM, Zhang S. AtHDA6 functions as an H3K18ac eraser to maintain pericentromeric CHG methylation in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:9755-9767. [PMID: 34403482 PMCID: PMC8464031 DOI: 10.1093/nar/gkab706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pericentromeric DNA, consisting of high-copy-number tandem repeats and transposable elements, is normally silenced through DNA methylation and histone modifications to maintain chromosomal integrity and stability. Although histone deacetylase 6 (HDA6) has been known to participate in pericentromeric silencing, the mechanism is still yet unclear. Here, using whole genome bisulfite sequencing (WGBS) and chromatin immunoprecipitation-sequencing (ChIP-Seq), we mapped the genome-wide patterns of differential DNA methylation and histone H3 lysine 18 acetylation (H3K18ac) in wild-type and hda6 mutant strains. Results show pericentromeric CHG hypomethylation in hda6 mutants was mediated by DNA demethylases, not by DNA methyltransferases as previously thought. DNA demethylases can recognize H3K18ac mark and then be recruited to the chromatin. Using biochemical assays, we found that HDA6 could function as an ‘eraser’ enzyme for H3K18ac mark to prevent DNA demethylation. Oxford Nanopore Technology Direct RNA Sequencing (ONT DRS) also revealed that hda6 mutants with H3K18ac accumulation and CHG hypomethylation were shown to have transcriptionally active pericentromeric DNA.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Xiucong Bao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Shengjie Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Yaqin Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Li Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yiji Xia
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region.,State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Friedrich Kragler
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Ming Luo
- Agriculture and Biotechnology Research Center, Guangdong Provincial Key Laboratory of Applied Botany, Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Shoudong Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| |
Collapse
|
40
|
Feng Z, Zhan X, Pang J, Liu X, Zhang H, Lang Z, Zhu JK. Genetic analysis implicates a molecular chaperone complex in regulating epigenetic silencing of methylated genomic regions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1451-1461. [PMID: 34289245 DOI: 10.1111/jipb.13155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
DNA cytosine methylation confers stable epigenetic silencing in plants and many animals. However, the mechanisms underlying DNA methylation-mediated genomic silencing are not fully understood. We conducted a forward genetic screen for cellular factors required for the silencing of a heavily methylated p35S:NPTII transgene in the Arabidopsis thaliana rdm1-1 mutant background, which led to the identification of a Hsp20 family protein, RDS1 (rdm1-1 suppressor 1). Loss-of-function mutations in RDS1 released the silencing of the p35S::NPTII transgene in rdm1-1 mutant plants, without changing the DNA methylation state of the transgene. Protein interaction analyses suggest that RDS1 exists in a protein complex consisting of the methyl-DNA binding domain proteins MBD5 and MBD6, two other Hsp20 family proteins, RDS2 and IDM3, a Hsp40/DNAJ family protein, and a Hsp70 family protein. Like rds1 mutations, mutations in RDS2, MBD5, or MBD6 release the silencing of the transgene in the rdm1 mutant background. Our results suggest that Hsp20, Hsp40, and Hsp70 proteins may form a complex that is recruited to some genomic regions with DNA methylation by methyl-DNA binding proteins to regulate the state of silencing of these regions.
Collapse
Affiliation(s)
- Zhengyan Feng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jia Pang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Liu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
41
|
DNA methylation: from model plants to vegetable crops. Biochem Soc Trans 2021; 49:1479-1487. [PMID: 34060587 DOI: 10.1042/bst20210353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022]
Abstract
As a subgroup of horticultural crops, vegetable food is a kind of indispensable energy source for human beings, providing necessary nutritional components including vitamins, carbohydrates, dietary fiber, and active substances such as carotenoids and flavonoids. The developmental process of vegetable crops is not only regulated by environmental stimulations, but also manipulated by both genetic and epigenetic modifications. Epigenetic modifications are composed by several regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Among these modifications, DNA methylation functions in multiple biological pathways ranging from fundamental development to environmental stimulations by mediating transcriptomic alterations, resulting in the activation or silencing of target genes. In recent years, intensive studies have revealed that DNA methylation is essential to fruit development and ripening, indicating that the epigenome of fruit crops could be dynamically modified according to the specific requirements in the commercial production. Firstly, this review will present the mechanisms of DNA methylation, and update the understanding on active DNA demethylation in Arabidopsis thaliana. Secondly, this review will summarize the recent progress on the function of DNA methylation in regulating fruit ripening. Moreover, the possible functions of DNA methylation on controlling the expansion of edible organs, senescence of leafy vegetables, and anthocyanin pigmentation in several important vegetable crops will be discussed. Finally, this review will highlight the intractable issues that need to be resolved in the application of epigenome in vegetable crops, and provide perspectives for the potential challenges in the further studies.
Collapse
|
42
|
Scheid R, Chen J, Zhong X. Biological role and mechanism of chromatin readers in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102008. [PMID: 33581373 PMCID: PMC8222062 DOI: 10.1016/j.pbi.2021.102008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 05/05/2023]
Abstract
Epigenetic modifications are important gene regulatory mechanisms conserved in plants, animals, and fungi. Chromatin reader domains are protein-protein/DNA interaction modules acting within the chromatin-modifying complex to function as molecular interpreters of the epigenetic code. Understanding how reader proteins recognize specific epigenetic modifications and mediate downstream chromatin and transcriptional events is fundamental to many biological processes. Recent studies have uncovered a number of novel reader proteins with diverse functions and mechanisms in plants. Here, we provide an overview of the recent progress on reader-mark recognition modes, the mechanisms by which reader proteins influence chromatin dynamics, and how reader-chromatin interactions regulate biological function. Because of space limitations, this review focuses on reader domains in plants that specifically bind histone methylation, histone acetylation, and DNA methylation.
Collapse
Affiliation(s)
- Ray Scheid
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiani Chen
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
43
|
Carballo J, Zappacosta D, Marconi G, Gallardo J, Di Marsico M, Gallo CA, Caccamo M, Albertini E, Echenique V. Differential Methylation Patterns in Apomictic vs. Sexual Genotypes of the Diplosporous Grass Eragrostis curvula. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050946. [PMID: 34068493 PMCID: PMC8150776 DOI: 10.3390/plants10050946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 05/05/2023]
Abstract
DNA methylation is an epigenetic mechanism by which a methyl group is added to a cytosine or an adenine. When located in a gene/regulatory sequence it may repress or de-repress genes, depending on the context and species. Eragrostis curvula is an apomictic grass in which facultative genotypes increases the frequency of sexual pistils triggered by epigenetic mechanisms. The aim of the present study was to look for correlations between the reproductive mode and specific methylated genes or genomic regions. To do so, plants with contrasting reproductive modes were investigated through MCSeEd (Methylation Context Sensitive Enzyme ddRad) showing higher levels of DNA methylation in apomictic genotypes. Moreover, an increased proportion of differentially methylated positions over the regulatory regions were observed, suggesting its possible role in regulation of gene expression. Interestingly, the methylation pathway was also found to be self-regulated since two of the main genes (ROS1 and ROS4), involved in de-methylation, were found differentially methylated between genotypes with different reproductive behavior. Moreover, this work allowed us to detect several genes regulated by methylation that were previously found as differentially expressed in the comparisons between apomictic and sexual genotypes, linking DNA methylation to differences in reproductive mode.
Collapse
Affiliation(s)
- Jose Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Diego Zappacosta
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Gianpiero Marconi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Jimena Gallardo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Marco Di Marsico
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Cristian A. Gallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
| | - Mario Caccamo
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
- Correspondence: (E.A.); (V.E.); Tel.: +39-075-585-6206 (E.A.); +54-291-486-1124 (V.E.)
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS–CCT–CONICET Bahía Blanca), Camino de la Carrindanga km 7, 8000 Bahía Blanca, Argentina; (J.C.); (D.Z.); (J.G.); (C.A.G.)
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000 Bahía Blanca, Argentina
- Correspondence: (E.A.); (V.E.); Tel.: +39-075-585-6206 (E.A.); +54-291-486-1124 (V.E.)
| |
Collapse
|
44
|
Schreiber KJ, Lewis JD. Identification of a Putative DNA-Binding Protein in Arabidopsis That Acts as a Susceptibility Hub and Interacts With Multiple Pseudomonas syringae Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:410-425. [PMID: 33373263 DOI: 10.1094/mpmi-10-20-0291-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytopathogens use secreted effector proteins to suppress host immunity and promote pathogen virulence, and there is increasing evidence that the host-pathogen interactome comprises a complex network. To identify novel interactors of the Pseudomonas syringae effector HopZ1a, we performed a yeast two-hybrid screen that identified a previously uncharacterized Arabidopsis protein that we designate HopZ1a interactor 1 (ZIN1). Additional analyses in yeast and in planta revealed that ZIN1 also interacts with several other P. syringae effectors. We show that an Arabidopsis loss-of-function zin1 mutant is less susceptible to infection by certain strains of P. syringae, while overexpression of ZIN1 results in enhanced susceptibility. Functionally, ZIN1 exhibits topoisomerase-like activity in vitro. Transcriptional profiling of wild-type and zin1 Arabidopsis plants inoculated with P. syringae indicated that while ZIN1 regulates a wide range of pathogen-responsive biological processes, the list of genes more highly expressed in zin1 versus wild-type plants is particularly enriched for ribosomal protein genes. Altogether, these data illuminate ZIN1 as a potential susceptibility hub that interacts with multiple effectors to influence the outcome of plant-microbe interactions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
- Plant Gene Expression Center, United States Department of Agriculture, Albany, CA 94710-1105, U.S.A
| |
Collapse
|
45
|
Liu P, Nie WF, Xiong X, Wang Y, Jiang Y, Huang P, Lin X, Qin G, Huang H, Niu Q, Du J, Lang Z, Lozano-Duran R, Zhu JK. A novel protein complex that regulates active DNA demethylation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:772-786. [PMID: 33615694 DOI: 10.1111/jipb.13045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression. The 5-methylcytosine DNA glycosylase/lyase ROS1 initiates a base-excision repair pathway for active DNA demethylation and is required for the prevention of DNA hypermethylation at 1 000s of genomic regions in Arabidopsis. How ROS1 is regulated and targeted to specific genomic regions is not well understood. Here, we report the discovery of an Arabidopsis protein complex that contains ROS1, regulates ROS1 gene expression, and likely targets the ROS1 protein to specific genomic regions. ROS1 physically interacts with a WD40 domain protein (RWD40), which in turn interacts with a methyl-DNA binding protein (RMB1) as well as with a zinc finger and homeobox domain protein (RHD1). RMB1 binds to DNA that is methylated in any sequence context, and this binding is necessary for its function in vivo. Loss-of-function mutations in RWD40, RMB1, or RHD1 cause DNA hypermethylation at several tested genomic regions independently of the known ROS1 regulator IDM1. Because the hypermethylated genomic regions include the DNA methylation monitoring sequence in the ROS1 promoter, plants mutated in RWD40, RMB1, or RHD1 show increased ROS1 expression. Importantly, ROS1 binding to the ROS1 promoter requires RWD40, RMB1, and RHD1, suggesting that this complex dictates ROS1 targeting to this locus. Our results demonstrate that ROS1 forms a protein complex with RWD40, RMB1, and RHD1, and that this novel complex regulates active DNA demethylation at several endogenous loci in Arabidopsis.
Collapse
Affiliation(s)
- Pan Liu
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Feng Nie
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiansong Xiong
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhua Wang
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuwei Jiang
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei Huang
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueqiang Lin
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Guochen Qin
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Huan Huang
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qingfeng Niu
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jiamu Du
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, 47906, USA
| |
Collapse
|
46
|
Markus C, Pecinka A, Merotto A. Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana. Int J Mol Sci 2021; 22:3314. [PMID: 33804990 PMCID: PMC8037345 DOI: 10.3390/ijms22073314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 11/24/2022] Open
Abstract
Herbicide resistance is broadly recognized as the adaptive evolution of weed populations to the intense selection pressure imposed by the herbicide applications. Here, we tested whether transcriptional gene silencing (TGS) and RNA-directed DNA Methylation (RdDM) pathways modulate resistance to commonly applied herbicides. Using Arabidopsis thaliana wild-type plants exposed to sublethal doses of glyphosate, imazethapyr, and 2,4-D, we found a partial loss of TGS and increased susceptibility to herbicides in six out of 11 tested TGS/RdDM mutants. Mutation in REPRESSOR OF SILENCING 1 (ROS1), that plays an important role in DNA demethylation, leading to strongly increased susceptibility to all applied herbicides, and imazethapyr in particular. Transcriptomic analysis of the imazethapyr-treated wild type and ros1 plants revealed a relation of the herbicide upregulated genes to chemical stimulus, secondary metabolism, stress condition, flavonoid biosynthesis, and epigenetic processes. Hypersensitivity to imazethapyr of the flavonoid biosynthesis component TRANSPARENT TESTA 4 (TT4) mutant plants strongly suggests that ROS1-dependent accumulation of flavonoids is an important mechanism for herbicide stress response in A. thaliana. In summary, our study shows that herbicide treatment affects transcriptional gene silencing pathways and that misregulation of these pathways makes Arabidopsis plants more sensitive to herbicide treatment.
Collapse
Affiliation(s)
- Catarine Markus
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil;
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Experimental Botany, Czech Academy Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil;
| |
Collapse
|
47
|
Regulation of DNA (de)Methylation Positively Impacts Seed Germination during Seed Development under Heat Stress. Genes (Basel) 2021; 12:genes12030457. [PMID: 33807066 PMCID: PMC8005211 DOI: 10.3390/genes12030457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Seed development needs the coordination of multiple molecular mechanisms to promote correct tissue development, seed filling, and the acquisition of germination capacity, desiccation tolerance, longevity, and dormancy. Heat stress can negatively impact these processes and upon the increase of global mean temperatures, global food security is threatened. Here, we explored the impact of heat stress on seed physiology, morphology, gene expression, and methylation on three stages of seed development. Notably, Arabidopsis Col-0 plants under heat stress presented a decrease in germination capacity as well as a decrease in longevity. We observed that upon mild stress, gene expression and DNA methylation were moderately affected. Nevertheless, upon severe heat stress during seed development, gene expression was intensively modified, promoting heat stress response mechanisms including the activation of the ABA pathway. By analyzing candidate epigenetic markers using the mutants’ physiological assays, we observed that the lack of DNA demethylation by the ROS1 gene impaired seed germination by affecting germination-related gene expression. On the other hand, we also observed that upon severe stress, a large proportion of differentially methylated regions (DMRs) were located in the promoters and gene sequences of germination-related genes. To conclude, our results indicate that DNA (de)methylation could be a key regulatory process to ensure proper seed germination of seeds produced under heat stress.
Collapse
|
48
|
Song ZT, Zhang LL, Han JJ, Zhou M, Liu JX. Histone H3K4 methyltransferases SDG25 and ATX1 maintain heat-stress gene expression during recovery in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1326-1338. [PMID: 33278042 DOI: 10.1111/tpj.15114] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Plants have short-term stress memory that enables them to maintain the expression state of a substantial subset of heat-inducible genes during stress recovery after heat stress. Little is known about the molecular mechanisms controlling stress-responsive gene expression at the recovery stage in plants, however. In this article, we demonstrate that histone H3K4 methyltransferases SDG25 and ATX1 are required for heat-stress tolerance in Arabidopsis. SDG25 and ATX1 are not only important for stress-responsive gene expression during heat stress, but also for maintaining stress-responsive gene expression during stress recovery. A combination of whole-genome bisulfite sequencing, RNA-sequencing and ChIP-qPCR demonstrated that mutations of SDG25 and ATX1 decrease histone H3K4me3 levels, increase DNA cytosine methylation and inhibit the expression of a subset of heat stress-responsive genes during stress recovery in Arabidopsis. ChIP-qPCR results confirm that ATX1 binds to chromatins associated with these target genes. Our results reveal that histone H3K4me3 affects DNA methylation at regions in the loci associated with heat stress-responsive gene expression during stress recovery, providing insights into heat-stress transcriptional memory in plants.
Collapse
Affiliation(s)
- Ze-Ting Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Lin-Lin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Jia Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China
| | - Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
49
|
Halter T, Wang J, Amesefe D, Lastrucci E, Charvin M, Singla Rastogi M, Navarro L. The Arabidopsis active demethylase ROS1 cis-regulates defence genes by erasing DNA methylation at promoter-regulatory regions. eLife 2021; 10:e62994. [PMID: 33470193 PMCID: PMC7880685 DOI: 10.7554/elife.62994] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Active DNA demethylation has emerged as an important regulatory process of plant and mammalian immunity. However, very little is known about the mechanisms by which active demethylation controls transcriptional immune reprogramming and disease resistance. Here, we first show that the Arabidopsis active demethylase ROS1 promotes basal resistance towards Pseudomonas syringae by antagonizing RNA-directed DNA methylation (RdDM). Furthermore, we demonstrate that ROS1 facilitates the flagellin-triggered induction of the disease resistance gene RMG1 by limiting RdDM at the 3' boundary of a transposable element (TE)-derived repeat embedded in its promoter. We further identify flagellin-responsive ROS1 putative primary targets and show that at a subset of promoters, ROS1 erases methylation at discrete regions exhibiting WRKY transcription factors (TFs) binding. In particular, we demonstrate that ROS1 removes methylation at the orphan immune receptor RLP43 promoter, to ensure DNA binding of WRKY TFs. Finally, we show that ROS1-directed demethylation of RMG1 and RLP43 promoters is causal for both flagellin responsiveness of these genes and for basal resistance. Overall, these findings significantly advance our understanding of how active demethylases shape transcriptional immune reprogramming to enable antibacterial resistance.
Collapse
Affiliation(s)
- Thierry Halter
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Jingyu Wang
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Delase Amesefe
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Emmanuelle Lastrucci
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Magali Charvin
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Meenu Singla Rastogi
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Lionel Navarro
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| |
Collapse
|
50
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|