1
|
Shibuya H. Telomeres, the nuclear lamina, and membrane remodeling: Orchestrating meiotic chromosome movements. J Cell Biol 2025; 224:e202412135. [PMID: 40261310 PMCID: PMC12013511 DOI: 10.1083/jcb.202412135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Telomeres, the DNA-protein complex located at the ends of linear eukaryotic chromosomes, not only safeguard genetic information from DNA erosion and aberrant activation of the DNA damage response pathways but also play a pivotal role in sexual reproduction. During meiotic prophase I, telomeres attach to the nuclear envelope and migrate along its surface, facilitating two-dimensional DNA homology searches that ensure precise pairing and recombination of the paternal and maternal chromosomes. Recent studies across diverse model systems have revealed intricate molecular mechanisms, including modifications to telomere- and nuclear envelope-binding proteins, the nuclear lamina, and even membrane composition. Emerging evidence reveals mutations in the genes encoding these meiotic telomere and nuclear envelope-associated proteins among infertile patients. This review highlights recent advances in the field of meiotic telomere research, particularly emphasizing mammalian model systems, contextualizes these findings through comparisons with other eukaryotes, and concludes by exploring potential future research directions in the field.
Collapse
Affiliation(s)
- Hiroki Shibuya
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Yone H, Kawashima Y, Hirai H, Oda AH, Sato M, Kono H, Ohta K. Light-controlled Spo11-less meiotic DNA breaks by MagTAQing lead to chromosomal aberrations. Nucleic Acids Res 2025; 53:gkaf206. [PMID: 40207630 PMCID: PMC11983132 DOI: 10.1093/nar/gkaf206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
TAQing technologies are based on the restriction enzyme-induced DNA double-strand break (DSB) formation in living cells, which results in large-scale genomic rearrangements and phenotypic alterations. Originally, the TAQing system requires heat treatments to activate restriction enzymes, which sometimes leads to cell toxicity or stress responses. Here, we developed a blue-light-controlled MagTAQing system, which induces DSBs exclusively upon blue-light exposure by assembling the split restriction enzymes via Magnet modules. Application of MagTAQing to mitotic budding yeast cells successfully triggered various genomic rearrangements upon blue-light exposure. Since this technology enables the conditional induction of genomic rearrangements in specific cells or tissues, we employed MagTAQing on meiotic yeast cells lacking the recombinase Spo11 to induce artificial DSBs. Consequently, Spo11-independent meiotic DSBs resulted in aneuploidies and nonallelic homologous recombinations between repetitive sequences such as ribosomal DNA and retrotransposons. These results suggest a pivotal role of Spo11-induced recombination in preventing chromosomal abnormality.
Collapse
Affiliation(s)
- Hideyuki Yone
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuri Kawashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Hayato Hirai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Arisa H Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Moritoshi Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Hiromitsu Kono
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Jiménez-Martín A, Pineda-Santaella A, Martín-García R, Esteban-Villafañe R, Matarrese A, Pinto-Cruz J, Camacho-Cabañas S, León-Periñán D, Terrizzano A, Daga RR, Braun S, Fernández-Álvarez A. Centromere positioning orchestrates telomere bouquet formation and the initiation of meiotic differentiation. Nat Commun 2025; 16:837. [PMID: 39833200 PMCID: PMC11747273 DOI: 10.1038/s41467-025-56049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet. Here, using Schizosaccharomyces pombe as a model system to elucidate telomere bouquet function, we reveal that centromeres, traditionally perceived as playing a passive role in the chromosomal reorganization necessary for bouquet assembly, play a key role in the initiation of telomere bouquet formation. We demonstrate that centromeres are capable to induce telomere mobilization, which is sufficient to trigger the first stages of bouquet assembly and the meiotic transcription program in mitotic cells. This discovery highlights the finely tuned control exerted over long-distance heterochromatic regions and underscores a pivotal step in the mechanism of eukaryotic telomere bouquet formation and meiotic transcriptional rewiring.
Collapse
Affiliation(s)
- Alberto Jiménez-Martín
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | | | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | | | - Alix Matarrese
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | - Jesús Pinto-Cruz
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | - Sergio Camacho-Cabañas
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | - Daniel León-Periñán
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Antonia Terrizzano
- Biology of Centrosomes and Genetic Instability Team, Curie Institute, PSL Research University, CNRS, UMR144, 12 rue Lhomond, Paris, France
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Departamento de Biología Molecular e Ingeniería Bioquímica, Ctra. de Utrera km. 1, Seville, 41013, Spain
| | - Sigurd Braun
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | | |
Collapse
|
4
|
Shi H, Ding G, Wang Y, Wang J, Wang X, Wang D, Lu P. Genome-wide identification of long non-coding RNA for Botrytis cinerea during infection to tomato (Solanum lycopersicum) leaves. BMC Genomics 2025; 26:7. [PMID: 39762752 PMCID: PMC11702200 DOI: 10.1186/s12864-024-11171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Long non-coding RNA (lncRNA) plays important roles in animals and plants. In filamentous fungi, however, their biological function in infection stage has been poorly studied. Here, we investigated the landscape and regulation of lncRNA in the filamentous plant pathogenic fungus Botrytis cinerea by strand-specific RNA-seq of multiple infection stages. In total, 1837 lncRNAs have been identified in B. cinerea. A large number of lncRNAs were found to be antisense to mRNAs, forming 743 sense-antisense pairs, of which 55 antisense lncRNAs and their respective sense transcripts were induced in parallel as the infection stage. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. In addition, we found the alternative splicing events occurred in lncRNA. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in the infection stage and provide fundamental resources for studying infection stage-induced lncRNAs.
Collapse
Affiliation(s)
- Haojie Shi
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Guijuan Ding
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yun Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiaqi Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoli Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Ping Lu
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
5
|
Ding DQ, Okamasa K, Yoshimura Y, Matsuda A, Yamamoto TG, Hiraoka Y, Nakayama JI. Proteins and noncoding RNAs that promote homologous chromosome recognition and pairing in fission yeast meiosis undergo condensate formation in vitro. FASEB J 2024; 38:e70163. [PMID: 39520300 DOI: 10.1096/fj.202302563rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Pairing of homologous chromosomes during meiosis is crucial for successful sexual reproduction. Previous studies have shown that the fission yeast sme2 RNA, a meiosis-specific long noncoding RNA (lncRNA), accumulates at the sme2 locus and plays a key role in mediating robust pairing during meiosis. Several RNA-binding proteins accumulate at the sme2 and other lncRNA gene loci in conjunction with the lncRNAs transcribed from these loci. These lncRNA-protein complexes form condensates that exhibit phase separation properties on chromosomes and are necessary for robust pairing of homologous chromosomes. To further understand the mechanisms by which phase separation affects homologous chromosome pairing, we conducted an in vitro phase separation assay with the sme2 RNA-associated proteins (Smps) and RNAs. Our findings reveal that one of the Smps, Seb1, forms condensates resembling phase separation; the observed number and size of these condensates increase upon the addition of another Smp, Rhn1, and purified RNAs. Additionally, we have found that RNAs protect Smp condensates from treatment with 1,6-hexanediol. The Smp condensates containing different types of RNA display distinct FRAP profiles, and the Smp condensates containing the same type of RNA tend to fuse together more readily than those containing different types of RNAs. Collectively, these results indicate that the specific RNA species within condensates modulate their physical properties, potentially enabling the formation of regional RNA-Smp condensates with distinct characteristics that facilitate homologous chromosome pairing.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kasumi Okamasa
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yuriko Yoshimura
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Atsushi Matsuda
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Takaharu G Yamamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies SOKENDAI, Okazaki, Japan
| |
Collapse
|
6
|
Hockens C, Lorenzi H, Wang TT, Lei EP, Rosin LF. Chromosome segregation during spermatogenesis occurs through a unique center-kinetic mechanism in holocentric moth species. PLoS Genet 2024; 20:e1011329. [PMID: 38913752 PMCID: PMC11226059 DOI: 10.1371/journal.pgen.1011329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/05/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Precise regulation of chromosome dynamics in the germline is essential for reproductive success across species. Yet, the mechanisms underlying meiotic chromosomal events such as homolog pairing and chromosome segregation are not fully understood in many species. Here, we employ Oligopaint DNA FISH to investigate mechanisms of meiotic homolog pairing and chromosome segregation in the holocentric pantry moth, Plodia interpunctella, and compare our findings to new and previous studies in the silkworm moth, Bombyx mori, which diverged from P. interpunctella over 100 million years ago. We find that pairing in both Bombyx and Plodia spermatogenesis is initiated at gene-rich chromosome ends. Additionally, both species form rod shaped cruciform-like bivalents at metaphase I. However, unlike the telomere-oriented chromosome segregation mechanism observed in Bombyx, Plodia can orient bivalents in multiple different ways at metaphase I. Surprisingly, in both species we find that kinetochores consistently assemble at non-telomeric loci toward the center of chromosomes regardless of where chromosome centers are located in the bivalent. Additionally, sister kinetochores do not seem to be paired in these species. Instead, four distinct kinetochores are easily observed at metaphase I. Despite this, we find clear end-on microtubule attachments and not lateral microtubule attachments co-orienting these separated kinetochores. These findings challenge the classical view of segregation where paired, poleward-facing kinetochores are required for accurate homolog separation in meiosis I. Our studies here highlight the importance of exploring fundamental processes in non-model systems, as employing novel organisms can lead to the discovery of novel biology.
Collapse
Affiliation(s)
- Clio Hockens
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hernan Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tricia T. Wang
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leah F. Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Tian Y, Liu L, Gao J, Wang R. Homologous chromosome pairing: The linchpin of accurate segregation in meiosis. J Cell Physiol 2024; 239:3-19. [PMID: 38032002 DOI: 10.1002/jcp.31166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.
Collapse
Affiliation(s)
- Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Libo Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Ding M, Cao S, Xu D, Xia A, Wang Z, Wang W, Duan K, Wu C, Wang Q, Liang J, Wang D, Liu H, Xu JR, Jiang C. A non-pheromone GPCR is essential for meiosis and ascosporogenesis in the wheat scab fungus. Proc Natl Acad Sci U S A 2023; 120:e2313034120. [PMID: 37812726 PMCID: PMC10589705 DOI: 10.1073/pnas.2313034120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Meiosis is essential for generating genetic diversity and sexual spores, but the regulation of meiosis and ascosporogenesis is not clear in filamentous fungi, in which dikaryotic and diploid cells formed inside fruiting bodies are not free living and independent of pheromones or pheromone receptors. In this study, Gia1, a non-pheromone GPCR (G protein-coupled receptor) with sexual-specific expression in Fusarium graminearum, is found to be essential for ascosporogenesis. The gia1 mutant was normal in perithecium development, crozier formation, and karyogamy but failed to undergo meiosis, which could be partially rescued by a dominant active mutation in GPA1 and activation of the Gpmk1 pathway. GIA1 orthologs have conserved functions in regulating meiosis and ascosporogenesis in Sordariomycetes. GIA1 has a paralog, GIP1, in F. graminearum and other Hypocreales species which is essential for perithecium formation. GIP1 differed from GIA1 in expression profiles and downstream signaling during sexual reproduction. Whereas the C-terminal tail and IR3 were important for intracellular signaling, the N-terminal region and EL3 of Gia1 were responsible for recognizing its ligand, which is likely a protein enriched in developing perithecia, particularly in the gia1 mutant. Taken together, these results showed that GIA1 encodes a non-pheromone GPCR that regulates the entry into meiosis and ascosporogenesis via the downstream Gpmk1 MAP kinase pathway in F. graminearum and other filamentous ascomycetes.
Collapse
Affiliation(s)
- Mingyu Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu210014, China
| | - Daiying Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Aliang Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Wanshan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Kaili Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Chenyu Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Jie Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| |
Collapse
|
9
|
Solé M, Pascual Á, Anton E, Blanco J, Sarrate Z. The courtship choreography of homologous chromosomes: timing and mechanisms of DSB-independent pairing. Front Cell Dev Biol 2023; 11:1191156. [PMID: 37377734 PMCID: PMC10291267 DOI: 10.3389/fcell.2023.1191156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Meiosis involves deep changes in the spatial organisation and interactions of chromosomes enabling the two primary functions of this process: increasing genetic diversity and reducing ploidy level. These two functions are ensured by crucial events such as homologous chromosomal pairing, synapsis, recombination and segregation. In most sexually reproducing eukaryotes, homologous chromosome pairing depends on a set of mechanisms, some of them associated with the repair of DNA double-strand breaks (DSBs) induced at the onset of prophase I, and others that operate before DSBs formation. In this article, we will review various strategies utilised by model organisms for DSB-independent pairing. Specifically, we will focus on mechanisms such as chromosome clustering, nuclear and chromosome movements, as well as the involvement of specific proteins, non-coding RNA, and DNA sequences.
Collapse
Affiliation(s)
| | | | | | - Joan Blanco
- *Correspondence: Joan Blanco, ; Zaida Sarrate,
| | | |
Collapse
|
10
|
Tabara H, Mitani S, Mochizuki M, Kohara Y, Nagata K. A small RNA system ensures accurate homologous pairing and unpaired silencing of meiotic chromosomes. EMBO J 2023; 42:e105002. [PMID: 37078421 PMCID: PMC10233376 DOI: 10.15252/embj.2020105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
During meiosis, chromosomes with homologous partners undergo synaptonemal complex (SC)-mediated pairing, while the remaining unpaired chromosomes are heterochromatinized through unpaired silencing. Mechanisms underlying homolog recognition during SC formation are still unclear. Here, we show that the Caenorhabditis elegans Argonaute proteins, CSR-1 and its paralog CSR-2, interacting with 22G-RNAs, are required for synaptonemal complex formation with accurate homology. CSR-1 in nuclei and meiotic cohesin, constituting the SC lateral elements, were associated with nonsimple DNA repeats, including minisatellites and transposons, and weakly associated with coding genes. CSR-1-associated CeRep55 minisatellites were expressing 22G-RNAs and long noncoding (lnc) RNAs that colocalized with synaptonemal complexes on paired chromosomes and with cohesin regions of unpaired chromosomes. CeRep55 multilocus deletions reduced the efficiencies of homologous pairing and unpaired silencing, which were supported by the csr-1 activity. Moreover, CSR-1 and CSR-2 were required for proper heterochromatinization of unpaired chromosomes. These findings suggest that CSR-1 and CSR-2 play crucial roles in homology recognition, achieving accurate SC formation between chromosome pairs and condensing unpaired chromosomes by targeting repeat-derived lncRNAs.
Collapse
Affiliation(s)
- Hiroaki Tabara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
- Tokyo Women's Medical UniversityTokyoJapan
- Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | | | | | - Yuji Kohara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
| | | |
Collapse
|
11
|
Mazur AK, Gladyshev E. C-DNA may facilitate homologous DNA pairing. Trends Genet 2023:S0168-9525(23)00023-9. [PMID: 36804168 DOI: 10.1016/j.tig.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Recombination-independent homologous pairing represents a prominent yet largely enigmatic feature of chromosome biology. As suggested by studies in the fungus Neurospora crassa, this process may be based on the direct pairing of homologous DNA molecules. Theoretical search for the DNA structures consistent with those genetic results has led to an all-atom model in which the B-DNA conformation of the paired double helices is strongly shifted toward C-DNA. Coincidentally, C-DNA also features a very shallow major groove that could permit initial homologous contacts without atom-atom clashes. The hereby conjectured role of C-DNA in homologous pairing should encourage the efforts to discover its biological functions and may also clarify the mechanism of recombination-independent recognition of DNA homology.
Collapse
Affiliation(s)
- Alexey K Mazur
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris, France; Institut Pasteur, Université Paris Cité, Group Fungal Epigenomics, Paris, France.
| | - Eugene Gladyshev
- Institut Pasteur, Université Paris Cité, Group Fungal Epigenomics, Paris, France.
| |
Collapse
|
12
|
Chauhan N, Karanastasis A, Ullal CK, Wang X. Homologous pairing in short double-stranded DNA-grafted colloidal microspheres. Biophys J 2022; 121:4819-4829. [PMID: 36196058 PMCID: PMC9811663 DOI: 10.1016/j.bpj.2022.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 01/07/2023] Open
Abstract
Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Apostolos Karanastasis
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Chaitanya K Ullal
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
13
|
Ono Y, Katayama K, Onuma T, Kubo K, Tsuyuzaki H, Hamada M, Sato M. Structure-based screening for functional non-coding RNAs in fission yeast identifies a factor repressing untimely initiation of sexual differentiation. Nucleic Acids Res 2022; 50:11229-11242. [PMID: 36259651 PMCID: PMC9638895 DOI: 10.1093/nar/gkac825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
Non-coding RNAs (ncRNAs) ubiquitously exist in normal and cancer cells. Despite their prevalent distribution, the functions of most long ncRNAs remain uncharacterized. The fission yeast Schizosaccharomyces pombe expresses >1800 ncRNAs annotated to date, but most unconventional ncRNAs (excluding tRNA, rRNA, snRNA and snoRNA) remain uncharacterized. To discover the functional ncRNAs, here we performed a combinatory screening of computational and biological tests. First, all S. pombe ncRNAs were screened in silico for those showing conservation in sequence as well as in secondary structure with ncRNAs in closely related species. Almost a half of the 151 selected conserved ncRNA genes were uncharacterized. Twelve ncRNA genes that did not overlap with protein-coding sequences were next chosen for biological screening that examines defects in growth or sexual differentiation, as well as sensitivities to drugs and stresses. Finally, we highlighted an ncRNA transcribed from SPNCRNA.1669, which inhibited untimely initiation of sexual differentiation. A domain that was predicted as conserved secondary structure by the computational operations was essential for the ncRNA to function. Thus, this study demonstrates that in silico selection focusing on conservation of the secondary structure over species is a powerful method to pinpoint novel functional ncRNAs.
Collapse
Affiliation(s)
- Yu Ono
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kenta Katayama
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomoki Onuma
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kento Kubo
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Bioinformatics Laboratory, Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hayato Tsuyuzaki
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Bioinformatics Laboratory, Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan.,Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
14
|
Cao L, Li C, Li H, Wang Z, Jiang Y, Guo Y, Sun P, Chen X, Li Q, Tian H, Li Z, Yuan L, Shen J. Disruption of REC8 in Meiosis I led to watermelon seedless. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111394. [PMID: 35905897 DOI: 10.1016/j.plantsci.2022.111394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In triploid watermelon (Citrullus lanatus), the homologous chromosomes of germ cells are disorder during meiosis, resulting in the failure of seeds formation and producing seedless fruit. Therefore, mutating the genes specifically functioning in meiosis may be an alternative way to achieve seedless watermelon. REC8, as a key component of the cohesin complex in meiosis, is dramatically essential for sister chromatid cohesion and chromosome segregation. However, the role of REC8 in meiosis has not yet been characterized in watermelon. Here, we identified ClREC8 as a member of RAD21/REC8 family with a high expression in male and female flowers of watermelon. In situ hybridization analysis showed that ClREC8 was highly expressed at the early stage of meiosis during pollen formation. Knocking out ClREC8 in watermelon led to decline of pollen vitality. After pollinating with foreign normal pollen, the ovaries of ClREC8 knockout lines could inflate normally but failed to form seeds. We further compared the meiosis chromosomes of pollen mother cells in different stages between the knockout lines and the corresponding wild type. The results indicated that ClREC8 was required for the monopolar orientation of the sister kinetochores in Meiosis I. Additionally, transcriptome sequencing (RNA-seq) analysis between WT and the knockout lines revealed that the disruption of ClREC8 caused the expression levels of mitosis-related genes and meiosis-related genes to decrease. Our results demonstrated ClREC8 has a specific role in Meiosis I of watermelon germ cells, and loss-of-function of the ClREC8 led to seedless fruit, which may provide an alternative strategy to breed cultivars with seedless watermelon.
Collapse
Affiliation(s)
- Lihong Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chuang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hewei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zheng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanxin Jiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yalu Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Piaoyun Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qingqing Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haoran Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zheng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Li Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Junjun Shen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Martín Caballero L, Capella M, Barrales RR, Dobrev N, van Emden T, Hirano Y, Suma Sreechakram VN, Fischer-Burkart S, Kinugasa Y, Nevers A, Rougemaille M, Sinning I, Fischer T, Hiraoka Y, Braun S. The inner nuclear membrane protein Lem2 coordinates RNA degradation at the nuclear periphery. Nat Struct Mol Biol 2022; 29:910-921. [PMID: 36123402 PMCID: PMC9507967 DOI: 10.1038/s41594-022-00831-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
Transcriptionally silent chromatin often localizes to the nuclear periphery. However, whether the nuclear envelope (NE) is a site for post-transcriptional gene repression is not well understood. Here we demonstrate that Schizosaccharomycespombe Lem2, an NE protein, regulates nuclear-exosome-mediated RNA degradation. Lem2 deletion causes accumulation of RNA precursors and meiotic transcripts and de-localization of an engineered exosome substrate from the nuclear periphery. Lem2 does not directly bind RNA but instead interacts with the exosome-targeting MTREC complex and its human homolog PAXT to promote RNA recruitment. This pathway acts largely independently of nuclear bodies where exosome factors assemble. Nutrient availability modulates Lem2 regulation of meiotic transcripts, implying that this pathway is environmentally responsive. Our work reveals that multiple spatially distinct degradation pathways exist. Among these, Lem2 coordinates RNA surveillance of meiotic transcripts and non-coding RNAs by recruiting exosome co-factors to the nuclear periphery. The Braun lab shows that the conserved nuclear membrane protein Lem2 interacts with the MTREC complex of the nuclear-exosome pathway to promote recruitment and degradation of ncRNAs and meiotic transcripts at the nuclear periphery in Schizosaccharomycespombe.
Collapse
Affiliation(s)
- Lucía Martín Caballero
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Matías Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Nikolay Dobrev
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Vishnu N Suma Sreechakram
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Fischer-Burkart
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Regulation for intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Alicia Nevers
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mathieu Rougemaille
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Tamás Fischer
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.,The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Sigurd Braun
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany. .,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany. .,Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Time to match; when do homologous chromosomes become closer? Chromosoma 2022; 131:193-205. [PMID: 35960388 DOI: 10.1007/s00412-022-00777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022]
Abstract
In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a three-dimensional fluorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.
Collapse
|
17
|
Zhang R, Liu Y, Gao J. Phase separation in controlling meiotic chromosome dynamics. Curr Top Dev Biol 2022; 151:69-90. [PMID: 36681478 DOI: 10.1016/bs.ctdb.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sexually reproducing organisms produce haploid gametes through meiotic cell division, during which a single round of DNA replication is followed by two consecutive chromosome segregation. A series of meiosis-specific events take place during the meiotic prophase to ensure successful chromosome segregation. These events include programmed DNA double-strand break formation, chromosome movement driven by cytoplasmic forces, homologous pairing, synaptonemal complex installation, and inter-homolog crossover formation. Phase separation has emerged as a key principle controlling cellular biomolecular material organization and biological processes. Recent studies have revealed the involvements of phase separation in assembling meiotic chromosome-associated structures. Here we review and discuss how phase separation may participate in meiotic chromosome dynamics and propose that it may provide opportunities to understand the mysteries in meiotic regulations.
Collapse
Affiliation(s)
- Ruirui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China.
| |
Collapse
|
18
|
Sakuno T, Tashiro S, Tanizawa H, Iwasaki O, Ding DQ, Haraguchi T, Noma KI, Hiraoka Y. Rec8 Cohesin-mediated Axis-loop chromatin architecture is required for meiotic recombination. Nucleic Acids Res 2022; 50:3799-3816. [PMID: 35333350 PMCID: PMC9023276 DOI: 10.1093/nar/gkac183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of cohesin-dependent axial structures in the fission yeast Schizosaccharomyces pombe. This organism forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the transverse filaments. Hi-C analysis using a highly synchronous population of meiotic S. pombe cells revealed that the axis-loop chromatin structure formed in meiotic prophase was dependent on the Rec8 cohesin complex. In contrast, the Rec8-mediated formation of the axis-loop structure occurred in cells lacking components of LinEs. To dissect the functions of Rec8, we identified a rec8-F204S mutant that lost the ability to assemble the axis-loop structure without losing cohesion of sister chromatids. This mutant showed defects in the formation of the axis-loop structure and LinE assembly and thus exhibited reduced meiotic recombination. Collectively, our results demonstrate that the Rec8-dependent axis-loop structure provides a structural platform essential for LinE assembly, facilitating meiotic recombination of homologous chromosomes, independently of its role in sister chromatid cohesion.
Collapse
Affiliation(s)
- Takeshi Sakuno
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Sanki Tashiro
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Osamu Iwasaki
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Ken-ichi Noma
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
19
|
Faber MW, Vo TV. Long RNA-Mediated Chromatin Regulation in Fission Yeast and Mammals. Int J Mol Sci 2022; 23:968. [PMID: 35055152 PMCID: PMC8778201 DOI: 10.3390/ijms23020968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
As part of a complex network of genome control, long regulatory RNAs exert significant influences on chromatin dynamics. Understanding how this occurs could illuminate new avenues for disease treatment and lead to new hypotheses that would advance gene regulatory research. Recent studies using the model fission yeast Schizosaccharomyces pombe (S. pombe) and powerful parallel sequencing technologies have provided many insights in this area. This review will give an overview of key findings in S. pombe that relate long RNAs to multiple levels of chromatin regulation: histone modifications, gene neighborhood regulation in cis and higher-order chromosomal ordering. Moreover, we discuss parallels recently found in mammals to help bridge the knowledge gap between the study systems.
Collapse
Affiliation(s)
| | - Tommy V. Vo
- Department of Biochemistry and Molecular Biology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
20
|
Rodriguez-Lopez M, Anver S, Cotobal C, Kamrad S, Malecki M, Correia-Melo C, Hoti M, Townsend S, Marguerat S, Pong SK, Wu MY, Montemayor L, Howell M, Ralser M, Bähler J. Functional profiling of long intergenic non-coding RNAs in fission yeast. eLife 2022; 11:e76000. [PMID: 34984977 PMCID: PMC8730722 DOI: 10.7554/elife.76000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.
Collapse
Affiliation(s)
- Maria Rodriguez-Lopez
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Shajahan Anver
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Cristina Cotobal
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Stephan Kamrad
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Institute of BiochemistryBerlinGermany
| | - Michal Malecki
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Clara Correia-Melo
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
| | - Mimoza Hoti
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - StJohn Townsend
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
| | - Samuel Marguerat
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Sheng Kai Pong
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Mary Y Wu
- The Francis Crick Institute, High Throughput ScreeningLondonUnited Kingdom
| | - Luis Montemayor
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Michael Howell
- The Francis Crick Institute, High Throughput ScreeningLondonUnited Kingdom
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Institute of BiochemistryBerlinGermany
| | - Jürg Bähler
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| |
Collapse
|
21
|
Dacher M, Fujita R, Kujirai T, Kurumizaka H. Method for Evaluating Effects of Non-coding RNAs on Nucleosome Stability. Methods Mol Biol 2022; 2509:195-208. [PMID: 35796965 DOI: 10.1007/978-1-0716-2380-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In eukaryotic cells, genomic DNA is stored in the nucleus in a structure called chromatin. The nucleosome, the basic structural unit of chromatin consisting of DNA wound around a histone octamer, regulates access of transcription machinery to DNA. Nucleosome stability is thus tightly associated with gene expression. Recently, a class of non-coding RNAs was found to be directly associated with chromatin. Although these non-coding RNAs are reportedly important in genome regulation, the molecular mechanisms through which these RNAs act remain unclear. Here, we introduce a biochemical method to evaluate the effects of ncRNAs on nucleosome stability, using the breast cancer-associated ncRNA Eleanor2 as an example. This method is useful for assessing the effects of different RNAs on chromatin stability and conformation.
Collapse
Affiliation(s)
- Mariko Dacher
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Risa Fujita
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
22
|
Lin Y, Fang X. Phase separation in RNA biology. J Genet Genomics 2021; 48:872-880. [PMID: 34371110 DOI: 10.1016/j.jgg.2021.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
The formation of biomolecular condensates via liquid-liquid phase separation (LLPS) is an advantageous strategy for cells to organize subcellular compartments for diverse functions. The involvement of LLPS is more widespread and overrepresented in RNA-related biological processes. This is in part because that RNAs are intrinsically multivalent macromolecules, and the presence of RNAs affects the formation, dissolution, and biophysical properties of biomolecular condensates formed by LLPS. Emerging studies have illustrated how LLPS participates in RNA transcription, splicing, processing, quality control, translation, and function. The interconnected regulation between LLPS and RNAs ensures tight control of RNA-related cellular functions.
Collapse
Affiliation(s)
- Yi Lin
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Xiaofeng Fang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Telzrow CL, Zwack PJ, Esher Righi S, Dietrich FS, Chan C, Owzar K, Alspaugh JA, Granek JA. Comparative analysis of RNA enrichment methods for preparation of Cryptococcus neoformans RNA sequencing libraries. G3 (BETHESDA, MD.) 2021; 11:jkab301. [PMID: 34518880 PMCID: PMC8527493 DOI: 10.1093/g3journal/jkab301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022]
Abstract
RNA sequencing (RNA-Seq) experiments focused on gene expression involve removal of ribosomal RNA (rRNA) because it is the major RNA constituent of cells. This process, called RNA enrichment, is done primarily to reduce cost: without rRNA removal, deeper sequencing must be performed to compensate for the sequencing reads wasted on rRNA. The ideal RNA enrichment method removes all rRNA without affecting other RNA in the sample. We tested the performance of three RNA enrichment methods on RNA isolated from Cryptococcus neoformans, a fungal pathogen of humans. We find that the RNase H depletion method is more efficient in depleting rRNA and more specific in recapitulating non-rRNA levels present in unenriched controls than the commonly-used Poly(A) isolation method. The RNase H depletion method is also more effective than the Ribo-Zero depletion method as measured by rRNA depletion efficiency and recapitulation of protein-coding RNA levels present in unenriched controls, while the Ribo-Zero depletion method more closely recapitulates annotated non-coding RNA (ncRNA) levels. Finally, we leverage these data to accurately map the C. neoformans mitochondrial rRNA genes, and also demonstrate that RNA-Seq data generated with the RNase H and Ribo-Zero depletion methods can be used to explore novel C. neoformans long non-coding RNA genes.
Collapse
Affiliation(s)
- Calla L Telzrow
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Paul J Zwack
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Shannon Esher Righi
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - J Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua A Granek
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
24
|
Recombination-independent recognition of DNA homology for meiotic silencing in Neurospora crassa. Proc Natl Acad Sci U S A 2021; 118:2108664118. [PMID: 34385329 DOI: 10.1073/pnas.2108664118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pairing of homologous chromosomes represents a critical step of meiosis in nearly all sexually reproducing species. In many organisms, pairing involves chromosomes that remain apparently intact. The mechanistic nature of homology recognition at the basis of such pairing is unknown. Using "meiotic silencing by unpaired DNA" (MSUD) as a model process, we demonstrate the existence of a cardinally different approach to DNA homology recognition in meiosis. The main advantage of MSUD over other experimental systems lies in its ability to identify any relatively short DNA fragment lacking a homologous allelic partner. Here, we show that MSUD does not rely on the canonical mechanism of meiotic recombination, yet it is promoted by REC8, a conserved component of the meiotic cohesion complex. We also show that certain patterns of interspersed homology are recognized as pairable during MSUD. Such patterns need to be colinear and must contain short tracts of sequence identity spaced apart at 21 or 22 base pairs. By using these periodicity values as a guiding parameter in all-atom molecular modeling, we discover that homologous DNA molecules can pair by forming quadruplex-based contacts with an interval of 2.5 helical turns. This process requires right-handed plectonemic coiling and additional conformational changes in the intervening double-helical segments. Our results 1) reconcile genetic and biophysical evidence for the existence of direct homologous double-stranded DNA (dsDNA)-dsDNA pairing, 2) identify a role for this process in initiating RNA interference, and 3) suggest that chromosomes can be cross-matched by a precise mechanism that operates on intact dsDNA molecules.
Collapse
|
25
|
Hondo Y, Azumi Y. Fluorescent In Situ Hybridization of 25S rDNA and Telomere Probes in the Lamium amplexicaule Chromosomes and their Signals Behavior during Meiosis. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yuki Hondo
- Department of Biological Sciences, Faculty of Science, Kanagawa University
| | - Yoshitaka Azumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University
| |
Collapse
|
26
|
Andric V, Rougemaille M. Long Non-Coding RNAs in the Control of Gametogenesis: Lessons from Fission Yeast. Noncoding RNA 2021; 7:ncrna7020034. [PMID: 34208016 PMCID: PMC8293462 DOI: 10.3390/ncrna7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to cell fate decisions by modulating genome expression and stability. In the fission yeast Schizosaccharomyces pombe, the transition from mitosis to meiosis results in a marked remodeling of gene expression profiles, which ultimately ensures gamete production and inheritance of genetic information to the offspring. This key developmental process involves a set of dedicated lncRNAs that shape cell cycle-dependent transcriptomes through a variety of mechanisms, including epigenetic modifications and the modulation of transcription, post-transcriptional and post-translational regulations, and that contribute to meiosis-specific chromosomal events. In this review, we summarize the biology of these lncRNAs, from their identification to mechanism of action, and discuss their regulatory role in the control of gametogenesis.
Collapse
Affiliation(s)
- Vedrana Andric
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Institute Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75005 Paris, France;
| | - Mathieu Rougemaille
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
27
|
Grey C, de Massy B. Chromosome Organization in Early Meiotic Prophase. Front Cell Dev Biol 2021; 9:688878. [PMID: 34150782 PMCID: PMC8209517 DOI: 10.3389/fcell.2021.688878] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
One of the most fascinating aspects of meiosis is the extensive reorganization of the genome at the prophase of the first meiotic division (prophase I). The first steps of this reorganization are observed with the establishment of an axis structure, that connects sister chromatids, from which emanate arrays of chromatin loops. This axis structure, called the axial element, consists of various proteins, such as cohesins, HORMA-domain proteins, and axial element proteins. In many organisms, axial elements are required to set the stage for efficient sister chromatid cohesion and meiotic recombination, necessary for the recognition of the homologous chromosomes. Here, we review the different actors involved in axial element formation in Saccharomyces cerevisiae and in mouse. We describe the current knowledge of their localization pattern during prophase I, their functional interdependence, their role in sister chromatid cohesion, loop axis formation, homolog pairing before meiotic recombination, and recombination. We also address further challenges that need to be resolved, to fully understand the interplay between the chromosome structure and the different molecular steps that take place in early prophase I, which lead to the successful outcome of meiosis I.
Collapse
Affiliation(s)
- Corinne Grey
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
28
|
ArcRNAs and the formation of nuclear bodies. Mamm Genome 2021; 33:382-401. [PMID: 34085114 DOI: 10.1007/s00335-021-09881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) have long been collectively and passively defined as transcripts that do not encode proteins. However, extensive functional studies performed over the last decade have enabled the classification of lncRNAs into multiple categories according to their functions and/or molecular properties. Architectual RNAs (arcRNAs) are a group of lncRNAs that serve as architectural components of submicron-scale cellular bodies or nonmembranous organelles, which are composed of specific sets of proteins and nucleic acids involved in particular molecular processes. In this review, we focus on arcRNAs that function in the nucleus, which provide a structural basis for the formation of nuclear bodies, nonmembranous organelles in the cell nucleus. We will summarize the current list of arcRNAs and proteins associated with classic and more recently discovered nuclear bodies and discuss general rules that govern the formation of nuclear bodies, emphasizing weak multivalent interactions mediated by innately flexible biomolecules.
Collapse
|
29
|
Li J, Liu X, Yin Z, Hu Z, Zhang KQ. An Overview on Identification and Regulatory Mechanisms of Long Non-coding RNAs in Fungi. Front Microbiol 2021; 12:638617. [PMID: 33995298 PMCID: PMC8113380 DOI: 10.3389/fmicb.2021.638617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
For decades, more and more long non-coding RNAs (lncRNAs) have been confirmed to play important functions in key biological processes of different organisms. At present, most identified lncRNAs and those with known functional roles are from mammalian systems. However, lncRNAs have also been found in primitive eukaryotic fungi, and they have different functions in fungal development, metabolism, and pathogenicity. In this review, we highlight some recent researches on lncRNAs in the primitive eukaryotic fungi, particularly focusing on the identification of lncRNAs and their regulatory roles in diverse biological processes.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoying Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ziyu Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zhihong Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
30
|
Murashko MM, Stasevich EM, Schwartz AM, Kuprash DV, Uvarova AN, Demin DE. The Role of RNA in DNA Breaks, Repair and Chromosomal Rearrangements. Biomolecules 2021; 11:biom11040550. [PMID: 33918762 PMCID: PMC8069526 DOI: 10.3390/biom11040550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
Incorrect reparation of DNA double-strand breaks (DSB) leading to chromosomal rearrangements is one of oncogenesis's primary causes. Recently published data elucidate the key role of various types of RNA in DSB formation, recognition and repair. With growing interest in RNA biology, increasing RNAs are classified as crucial at the different stages of the main pathways of DSB repair in eukaryotic cells: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Gene mutations or variation in expression levels of such RNAs can lead to local DNA repair defects, increasing the chromosome aberration frequency. Moreover, it was demonstrated that some RNAs could stimulate long-range chromosomal rearrangements. In this review, we discuss recent evidence demonstrating the role of various RNAs in DSB formation and repair. We also consider how RNA may mediate certain chromosomal rearrangements in a sequence-specific manner.
Collapse
Affiliation(s)
- Matvey Mikhailovich Murashko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Ekaterina Mikhailovna Stasevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Anton Markovich Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics, 141701 Moscow, Russia
| | - Dmitriy Vladimirovich Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Aksinya Nicolaevna Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Denis Eriksonovich Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Correspondence:
| |
Collapse
|
31
|
Geisinger A, Rodríguez-Casuriaga R, Benavente R. Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol 2021; 9:626020. [PMID: 33748111 PMCID: PMC7973102 DOI: 10.3389/fcell.2021.626020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.
Collapse
Affiliation(s)
- Adriana Geisinger
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
TOR targets an RNA processing network to regulate facultative heterochromatin, developmental gene expression and cell proliferation. Nat Cell Biol 2021; 23:243-256. [PMID: 33574613 PMCID: PMC9260697 DOI: 10.1038/s41556-021-00631-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023]
Abstract
Cell proliferation and differentiation require signalling pathways that enforce appropriate and timely gene expression. We find that Tor2, the catalytic subunit of the TORC1 complex in fission yeast, targets a conserved nuclear RNA elimination network, particularly the serine and proline-rich protein Pir1, to control gene expression through RNA decay and facultative heterochromatin assembly. Phosphorylation by Tor2 protects Pir1 from degradation by the ubiquitin-proteasome system involving the polyubiquitin Ubi4 stress-response protein and the Cul4-Ddb1 E3 ligase. This pathway suppresses widespread and untimely gene expression and is critical for sustaining cell proliferation. Moreover, we find that the dynamic nature of Tor2-mediated control of RNA elimination machinery defines gene expression patterns that coordinate fundamental chromosomal events during gametogenesis, such as meiotic double-strand-break formation and chromosome segregation. These findings have important implications for understanding how the TOR signalling pathway reprogrammes gene expression patterns and contributes to diseases such as cancer.
Collapse
|
33
|
Andric V, Nevers A, Hazra D, Auxilien S, Menant A, Graille M, Palancade B, Rougemaille M. A scaffold lncRNA shapes the mitosis to meiosis switch. Nat Commun 2021; 12:770. [PMID: 33536434 PMCID: PMC7859202 DOI: 10.1038/s41467-021-21032-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to the regulation of gene expression in response to intra- or extracellular signals but the underlying molecular mechanisms remain largely unexplored. Here, we identify an uncharacterized lncRNA as a central player in shaping the meiotic gene expression program in fission yeast. We report that this regulatory RNA, termed mamRNA, scaffolds the antagonistic RNA-binding proteins Mmi1 and Mei2 to ensure their reciprocal inhibition and fine tune meiotic mRNA degradation during mitotic growth. Mechanistically, mamRNA allows Mmi1 to target Mei2 for ubiquitin-mediated downregulation, and conversely enables accumulating Mei2 to impede Mmi1 activity, thereby reinforcing the mitosis to meiosis switch. These regulations also occur within a unique Mmi1-containing nuclear body, positioning mamRNA as a spatially-confined sensor of Mei2 levels. Our results thus provide a mechanistic basis for the mutual control of gametogenesis effectors and further expand our vision of the regulatory potential of lncRNAs.
Collapse
Affiliation(s)
- Vedrana Andric
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Alicia Nevers
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ditipriya Hazra
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
- Department of Biochemistry, Oxford University, Oxford, OX1 3QU, UK
| | - Sylvie Auxilien
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Alexandra Menant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Benoit Palancade
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Mathieu Rougemaille
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
34
|
So C, Cheng S, Schuh M. Phase Separation during Germline Development. Trends Cell Biol 2021; 31:254-268. [PMID: 33455855 DOI: 10.1016/j.tcb.2020.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Phase separation has emerged as a new key principle of intracellular organization. Phase-separated structures play diverse roles in various biological processes and pathogenesis of protein aggregation diseases. Recent work has revealed crucial functions for phase separation during germline development. Phase separation controls the assembly and segregation of germ granules that determine which embryonic cells become germ cells. Phase separation promotes the formation of the Balbiani body, a structure that stores organelles and RNAs during the prolonged prophase arrest of oocytes. Phase separation also facilitates meiotic recombination that prepares homologous chromosomes for segregation, and drives the formation of a liquid-like spindle domain that promotes spindle assembly in mammalian oocytes. We review how phase separation drives these essential steps during germline development.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
35
|
Barakate A, Orr J, Schreiber M, Colas I, Lewandowska D, McCallum N, Macaulay M, Morris J, Arrieta M, Hedley PE, Ramsay L, Waugh R. Barley Anther and Meiocyte Transcriptome Dynamics in Meiotic Prophase I. FRONTIERS IN PLANT SCIENCE 2021; 11:619404. [PMID: 33510760 PMCID: PMC7835676 DOI: 10.3389/fpls.2020.619404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 05/07/2023]
Abstract
In flowering plants, successful germinal cell development and meiotic recombination depend upon a combination of environmental and genetic factors. To gain insights into this specialized reproductive development program we used short- and long-read RNA-sequencing (RNA-seq) to study the temporal dynamics of transcript abundance in immuno-cytologically staged barley (Hordeum vulgare) anthers and meiocytes. We show that the most significant transcriptional changes in anthers occur at the transition from pre-meiosis to leptotene-zygotene, which is followed by increasingly stable transcript abundance throughout prophase I into metaphase I-tetrad. Our analysis reveals that the pre-meiotic anthers are enriched in long non-coding RNAs (lncRNAs) and that entry to meiosis is characterized by their robust and significant down regulation. Intriguingly, only 24% of a collection of putative meiotic gene orthologs showed differential transcript abundance in at least one stage or tissue comparison. Argonautes, E3 ubiquitin ligases, and lys48 specific de-ubiquitinating enzymes were enriched in prophase I meiocyte samples. These developmental, time-resolved transcriptomes demonstrate remarkable stability in transcript abundance in meiocytes throughout prophase I after the initial and substantial reprogramming at meiosis entry and the complexity of the regulatory networks involved in early meiotic processes.
Collapse
Affiliation(s)
- Abdellah Barakate
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jamie Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | | | - Nicola McCallum
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Mikel Arrieta
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
36
|
Hiraoka Y. Phase separation drives pairing of homologous chromosomes. Curr Genet 2020; 66:881-887. [PMID: 32285141 DOI: 10.1007/s00294-020-01077-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023]
Abstract
Pairing of homologous chromosomes is crucial for ensuring accurate segregation of chromosomes during meiosis. Molecular mechanisms of homologous chromosome pairing in meiosis have been extensively studied in the fission yeast Schizosaccharomyces pombe. In this organism, meiosis-specific noncoding RNA transcribed from specific genes accumulates at the respective gene loci, and chromosome-associated RNA-protein complexes mediate meiotic pairing of homologous loci through phase separation. Pairing of homologous chromosomes also occurs in somatic diploid cells in certain situations. For example, somatic pairing of homologous chromosomes occurs during the early embryogenesis in diptera, and relies on the transcription-associated chromatin architecture. Earlier models also suggest that transcription factories along the chromosome mediate pairing of homologous chromosomes in plants. These studies suggest that RNA bodies formed on chromosomes mediate the pairing of homologous chromosomes. This review summarizes lessons from S. pombe to provide general insights into mechanisms of homologous chromosome pairing mediated by phase separation of chromosome-associated RNA-protein complexes.
Collapse
Affiliation(s)
- Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
37
|
Hamada N, Hamazaki N, Shimamoto S, Hikabe O, Nagamatsu G, Takada Y, Kato K, Hayashi K. Germ cell-intrinsic effects of sex chromosomes on early oocyte differentiation in mice. PLoS Genet 2020; 16:e1008676. [PMID: 32214314 PMCID: PMC7138321 DOI: 10.1371/journal.pgen.1008676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/07/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
A set of sex chromosomes is required for gametogenesis in both males and females, as represented by sex chromosome disorders causing agametic phenotypes. Although studies using model animals have investigated the functional requirement of sex chromosomes, involvement of these chromosomes in gametogenesis remains elusive. Here, we elicit a germ cell-intrinsic effect of sex chromosomes on oogenesis, using a novel culture system in which oocytes were induced from embryonic stem cells (ESCs) harboring XX, XO or XY. In the culture system, oogenesis using XO and XY ESCs was severely disturbed, with XY ESCs being more strongly affected. The culture system revealed multiple defects in the oogenesis of XO and XY ESCs, such as delayed meiotic entry and progression, and mispairing of the homologous chromosomes. Interestingly, Eif2s3y, a Y-linked gene that promotes proliferation of spermatogonia, had an inhibitory effect on oogenesis. This led us to the concept that male and female gametogenesis appear to be in mutual conflict at an early stage. This study provides a deeper understanding of oogenesis under a sex-reversal condition.
Collapse
Affiliation(s)
- Norio Hamada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - So Shimamoto
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Orie Hikabe
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yuki Takada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
38
|
Yamada T, Yamada S, Ding DQ, Fujita Y, Takaya E, Hiraoka Y, Murakami H, Ohta K. Maintenance of meiotic crossover against reduced double-strand break formation in fission yeast lacking histone H2A.Z. Gene 2020; 743:144615. [PMID: 32222534 DOI: 10.1016/j.gene.2020.144615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 11/26/2022]
Abstract
Meiotic crossover (CO) recombination initiates from programmed DNA double-strand breaks (DSBs) around hotspots, and results in reciprocal exchange of chromosome segments between homologous chromosomes (homologs). COs are crucial for most sexually-reproducing organisms because they promote accurate chromosome segregation and create genetic diversity. Therefore, faithful accomplishment of CO formation is ensured in many ways, but the bases of the regulation are not fully understood. Our previous study using fission yeast has revealed that mutants lacking the conserved histone H2A.Z are defective in DSB formation but maintain CO frequency at three loci tested. Here, we tested five additional sites to show that mutants lacking H2A.Z exhibit normal and increased CO frequency at two and three loci, respectively. Examining one of the CO-increased intervals in the mutant revealed that the CO upregulation is mediated at least partly at a recombination intermediate level. In addition, our genetic as well as genome-wide analyses implied a possibility that, even without H2A.Z, COs are maintained by weak and non-hotspot DSBs, which are processed preferentially as CO. These observations provide clues to further our understanding on CO control.
Collapse
Affiliation(s)
- Takatomi Yamada
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Shintaro Yamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yurika Fujita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Emi Takaya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Murakami
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
39
|
Tanaka S, Yoshida K, Sato K, Takumi S. Diploid genome differentiation conferred by RNA sequencing-based survey of genome-wide polymorphisms throughout homoeologous loci in Triticum and Aegilops. BMC Genomics 2020; 21:246. [PMID: 32192452 PMCID: PMC7083043 DOI: 10.1186/s12864-020-6664-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background Triticum and Aegilops diploid species have morphological and genetic diversity and are crucial genetic resources for wheat breeding. According to the chromosomal pairing-affinity of these species, their genome nomenclatures have been defined. However, evaluations of genome differentiation based on genome-wide nucleotide variations are still limited, especially in the three genomes of the genus Aegilops: Ae. caudata L. (CC genome), Ae. comosa Sibth. et Sm. (MM genome), and Ae. uniaristata Vis. (NN genome). To reveal the genome differentiation of these diploid species, we first performed RNA-seq-based polymorphic analyses for C, M, and N genomes, and then expanded the analysis to include the 12 diploid species of Triticum and Aegilops. Results Genetic divergence of the exon regions throughout the entire chromosomes in the M and N genomes was larger than that between A- and Am-genomes. Ae. caudata had the second highest genetic diversity following Ae. speltoides, the putative B genome donor of common wheat. In the phylogenetic trees derived from the nuclear and chloroplast genome-wide polymorphism data, the C, D, M, N, U, and S genome species were connected with short internal branches, suggesting that these diploid species emerged during a relatively short period in the evolutionary process. The highly consistent nuclear and chloroplast phylogenetic topologies indicated that nuclear and chloroplast genomes of the diploid Triticum and Aegilops species coevolved after their diversification into each genome, accounting for most of the genome differentiation among the diploid species. Conclusions RNA-sequencing-based analyses successfully evaluated genome differentiation among the diploid Triticum and Aegilops species and supported the chromosome-pairing-based genome nomenclature system, except for the position of Ae. speltoides. Phylogenomic and epigenetic analyses of intergenic and centromeric regions could be essential for clarifying the mechanisms behind this inconsistency.
Collapse
Affiliation(s)
- Sayaka Tanaka
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan.
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
40
|
Abstract
In the nucleus, genomic DNA is wrapped around histone octamers to form nucleosomes. In principle, nucleosomes are substantial barriers to transcriptional activities. Nuclear non-coding RNAs (ncRNAs) are proposed to function in chromatin conformation modulation and transcriptional regulation. However, it remains unclear how ncRNAs affect the nucleosome structure. Eleanors are clusters of ncRNAs that accumulate around the estrogen receptor-α (ESR1) gene locus in long-term estrogen deprivation (LTED) breast cancer cells, and markedly enhance the transcription of the ESR1 gene. Here we detected nucleosome depletion around the transcription site of Eleanor2, the most highly expressed Eleanor in the LTED cells. We found that the purified Eleanor2 RNA fragment drastically destabilized the nucleosome in vitro. This activity was also exerted by other ncRNAs, but not by poly(U) RNA or DNA. The RNA-mediated nucleosome destabilization may be a common feature among natural nuclear RNAs, and may function in transcription regulation in chromatin. The Eleanor cluster of non-coding RNAs is localised upstream of estrogen receptor-α (ESR1) gene locus in estrogen-deprived breast cancer cells. Fujita et al find that RNA fragments of Eleanor2 and of other non-coding RNAs are able to destabilise nucleosomes in vitro, suggesting a role in transcriptional regulation.
Collapse
|
41
|
Ding DQ, Okamasa K, Katou Y, Oya E, Nakayama JI, Chikashige Y, Shirahige K, Haraguchi T, Hiraoka Y. Chromosome-associated RNA-protein complexes promote pairing of homologous chromosomes during meiosis in Schizosaccharomyces pombe. Nat Commun 2019; 10:5598. [PMID: 31811152 PMCID: PMC6898681 DOI: 10.1038/s41467-019-13609-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023] Open
Abstract
Pairing of homologous chromosomes in meiosis is essential for sexual reproduction. We have previously demonstrated that the fission yeast sme2 RNA, a meiosis-specific long noncoding RNA (lncRNA), accumulates at the sme2 chromosomal loci and mediates their robust pairing in meiosis. However, the mechanisms underlying lncRNA-mediated homologous pairing have remained elusive. In this study, we identify conserved RNA-binding proteins that are required for robust pairing of homologous chromosomes. These proteins accumulate mainly at the sme2 and two other chromosomal loci together with meiosis-specific lncRNAs transcribed from these loci. Remarkably, the chromosomal accumulation of these lncRNA–protein complexes is required for robust pairing. Moreover, the lncRNA–protein complexes exhibit phase separation properties, since 1,6-hexanediol treatment reversibly disassembled these complexes and disrupted the pairing of associated loci. We propose that lncRNA–protein complexes assembled at specific chromosomal loci mediate recognition and subsequent pairing of homologous chromosomes. During meiosis, pairing of homologous chromosomes is critical for sexual reproduction. Here the authors reveal in S. pombe the role of lncRNA–protein complexes during the pairing of homologues chromosomes that assemble at specific chromosomal loci to mediate recognition of the pairs.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.
| | - Kasumi Okamasa
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Yuki Katou
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Eriko Oya
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, 467-8501, Japan.,Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551, Japan
| | - Jun-Ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, 467-8501, Japan.,Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan. .,Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
42
|
Mazur AK, Nguyen TS, Gladyshev E. Direct Homologous dsDNA-dsDNA Pairing: How, Where, and Why? J Mol Biol 2019; 432:737-744. [PMID: 31726060 DOI: 10.1016/j.jmb.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The ability of homologous chromosomes (or selected chromosomal loci) to pair specifically in the apparent absence of DNA breakage and recombination represents a prominent feature of eukaryotic biology. The mechanism of homology recognition at the basis of such recombination-independent pairing has remained elusive. A number of studies have supported the idea that sequence homology can be sensed between intact DNA double helices in vivo. In particular, recent analyses of the two silencing phenomena in fungi, known as "repeat-induced point mutation" (RIP) and "meiotic silencing by unpaired DNA" (MSUD), have provided genetic evidence for the existence of the direct homologous dsDNA-dsDNA pairing. Both RIP and MSUD likely rely on the same search strategy, by which dsDNA segments are matched as arrays of interspersed base-pair triplets. This process is general and very efficient, yet it proceeds normally without the RecA/Rad51/Dmc1 proteins. Further studies of RIP and MSUD may yield surprising insights into the function of DNA in the cell.
Collapse
Affiliation(s)
- Alexey K Mazur
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France; Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Tinh-Suong Nguyen
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France
| | - Eugene Gladyshev
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
43
|
meiRNA, A Polyvalent Player in Fission Yeast Meiosis. Noncoding RNA 2019; 5:ncrna5030045. [PMID: 31533287 PMCID: PMC6789587 DOI: 10.3390/ncrna5030045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022] Open
Abstract
A growing number of recent studies have revealed that non-coding RNAs play a wide variety of roles beyond expectation. A lot of non-coding RNAs have been shown to function by forming intracellular structures either in the nucleus or the cytoplasm. In the fission yeast Schizosaccharomyces pombe, a non-coding RNA termed meiRNA has been shown to play multiple vital roles in the course of meiosis. meiRNA is tethered to its genetic locus after transcription and forms a peculiar intranuclear dot structure. It ensures stable expression of meiotic genes in cooperation with an RNA-binding protein Mei2. Chromosome-associated meiRNA also facilitates recognition of homologous chromosome loci and induces robust pairing. In this review, the quarter-century history of meiRNA, from its identification to functional characterization, will be outlined.
Collapse
|
44
|
Distribution, Characteristics, and Regulatory Potential of Long Noncoding RNAs in Brown-Rot Fungi. Int J Genomics 2019; 2019:9702342. [PMID: 31192251 PMCID: PMC6525899 DOI: 10.1155/2019/9702342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs have been thoroughly studied in plants, animals, and yeasts, where they play important roles as regulators of transcription. Nevertheless, almost nothing is known about their presence and characteristics in filamentous fungi, especially in basidiomycetes. In the present study, we have carried out an exhaustive annotation and characterization of lncRNAs in two lignin degrader basidiomycetes, Coniophora puteana and Serpula lacrymans. We identified 2,712 putative lncRNAs in the former and 2,242 in the latter, mainly originating from intergenic locations of transposon-sparse genomic regions. The lncRNA length, GC content, expression levels, and stability of the secondary structure differ from coding transcripts but are similar in these two species and resemble that of other eukaryotes. Nevertheless, they lack sequence conservation. Also, we found that lncRNAs are transcriptionally regulated in the same proportion as genes when the fungus actively decomposes soil organic matter. Finally, up to 7% of the upstream gene regions of Coniophora puteana and Serpula lacrymans are transcribed and produce lncRNAs. The study of expression trends in these gene-lncRNA pairs uncovered groups with similar and opposite transcriptional profiles which may be the result of cis-transcriptional regulation.
Collapse
|
45
|
Atkinson SR, Marguerat S, Bitton DA, Rodríguez-López M, Rallis C, Lemay JF, Cotobal C, Malecki M, Smialowski P, Mata J, Korber P, Bachand F, Bähler J. Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast. RNA (NEW YORK, N.Y.) 2018; 24:1195-1213. [PMID: 29914874 PMCID: PMC6097657 DOI: 10.1261/rna.065524.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/14/2018] [Indexed: 05/31/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive noncoding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyze lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4× the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses.
Collapse
Affiliation(s)
- Sophie R Atkinson
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Samuel Marguerat
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Danny A Bitton
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Maria Rodríguez-López
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Pawel Smialowski
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Philipp Korber
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - François Bachand
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
46
|
Developmental Dynamics of Long Noncoding RNA Expression during Sexual Fruiting Body Formation in Fusarium graminearum. mBio 2018; 9:mBio.01292-18. [PMID: 30108170 PMCID: PMC6094484 DOI: 10.1128/mbio.01292-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum, we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies.
Collapse
|
47
|
Partition of Repeat-Induced Point Mutations Reveals Structural Aspects of Homologous DNA-DNA Pairing. Biophys J 2018; 115:605-615. [PMID: 30086830 DOI: 10.1016/j.bpj.2018.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 11/21/2022] Open
Abstract
In some fungi, a premeiotic process known as repeat-induced point mutation (RIP) can accurately identify and mutate nearly all gene-sized DNA repeats present in the haploid germline nuclei. Studies in Neurospora crassa have suggested that RIP detects sequence homology directly between intact DNA double helices, without strand separation and without the participation of RecA-like proteins. Those studies used the aggregated number of RIP mutations as a simple quantitative measure of RIP activity. Additional structural information about homologous DNA-DNA pairing during RIP can be extracted by analyzing spatial distributions of RIP mutations converted into profiles of partitioned RIP propensity (PRP). Further analysis shows that PRP is strongly affected by the topological configuration and the relative positioning of the participating DNA segments. Most notably, pairs of closely positioned repeats produce very distinct PRP profiles depending on whether these repeats are present in the direct or the inverted orientation. Such an effect can be attributed to a topology-dependent redistribution of the supercoiling stress created by the predicted limited untwisting of the DNA segments during pairing. This and other results raise a possibility that such pairing-induced fluctuations in DNA supercoiling can modulate the overall structure and properties of repetitive DNA. Such effects can be particularly strong in the context of long tandem-repeat arrays that are typically present in the pericentromeric and centromeric regions of chromosomes in many species of plants, fungi, and animals, including humans.
Collapse
|
48
|
A current view on long noncoding RNAs in yeast and filamentous fungi. Appl Microbiol Biotechnol 2018; 102:7319-7331. [PMID: 29974182 PMCID: PMC6097775 DOI: 10.1007/s00253-018-9187-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial players in epigenetic regulation. They were initially discovered in human, yet they emerged as common factors involved in a number of central cellular processes in several eukaryotes. For example, in the past decade, research on lncRNAs in yeast has steadily increased. Several examples of lncRNAs were described in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Also, screenings for lncRNAs in ascomycetes were performed and, just recently, the first full characterization of a lncRNA was performed in the filamentous fungus Trichoderma reesei. In this review, we provide a broad overview about currently known fugal lncRNAs. We make an attempt to categorize them according to their functional context, regulatory strategies or special properties. Moreover, the potential of lncRNAs as a biotechnological tool is discussed.
Collapse
|
49
|
Calderón MC, Rey MD, Martín A, Prieto P. Homoeologous Chromosomes From Two Hordeum Species Can Recognize and Associate During Meiosis in Wheat in the Presence of the Ph1 Locus. FRONTIERS IN PLANT SCIENCE 2018; 9:585. [PMID: 29765389 PMCID: PMC5938817 DOI: 10.3389/fpls.2018.00585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/13/2018] [Indexed: 05/20/2023]
Abstract
Understanding the system of a basic eukaryotic cellular mechanism like meiosis is of fundamental importance in plant biology. Moreover, it is also of great strategic interest in plant breeding since unzipping the mechanism of chromosome specificity/pairing during meiosis will allow its manipulation to introduce genetic variability from related species into a crop. The success of meiosis in a polyploid like wheat strongly depends on regular pairing of homologous (identical) chromosomes and recombination, processes mainly controlled by the Ph1 locus. This means that pairing and recombination of related chromosomes rarely occur in the presence of this locus, making difficult wheat breeding trough the incorporation of genetic variability from related species. In this work, we show that wild and cultivated barley chromosomes associate in the wheat background even in the presence of the Ph1 locus. We have developed double monosomic wheat lines carrying two chromosomes from two barley species for the same and different homoeology chromosome group, respectively. Genetic in situ hybridization revealed that homoeologous Hordeum chromosomes recognize each other and pair during early meiosis in wheat. However, crossing over does not occur at any time and they remained always as univalents during meiosis metaphase I. Our results suggest that the Ph1 locus does not prevent chromosome recognition and pairing but crossing over between homoeologous. The role of subtelomeres in chromosome recognition is also discussed.
Collapse
Affiliation(s)
- María C. Calderón
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Antonio Martín
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto
| |
Collapse
|
50
|
Wichman L, Somasundaram S, Breindel C, Valerio DM, McCarrey JR, Hodges CA, Khalil AM. Dynamic expression of long noncoding RNAs reveals their potential roles in spermatogenesis and fertility†. Biol Reprod 2017; 97:313-323. [DOI: 10.1093/biolre/iox084] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Abstract
Mammalian reproduction requires that males and females produce functional haploid germ cells through complex cellular differentiation processes known as spermatogenesis and oogenesis, respectively. While numerous studies have functionally characterized protein-coding genes and small noncoding RNAs (microRNAs and piRNAs) that are essential for gametogenesis, the roles of regulatory long noncoding RNAs (lncRNAs) are yet to be fully characterized. Previously, we and others have demonstrated that intergenic regions of the mammalian genome encode thousands of long noncoding RNAs, and many studies have now demonstrated their critical roles in key biological processes. Thus, we postulated that some lncRNAs may also impact mammalian spermatogenesis and fertility. In this study, we identified a dynamic expression pattern of lncRNAs during murine spermatogenesis. Importantly, we identified a subset of lncRNAs and very few mRNAs that appear to escape meiotic sex chromosome inactivation, an epigenetic process that leads to the silencing of the X- and Y-chromosomes at the pachytene stage of meiosis. Further, some of these lncRNAs and mRNAs show a strong testis expression pattern suggesting that they may play key roles in spermatogenesis. Lastly, we generated a mouse knockout of one X-linked lncRNA, Tslrn1 (testis-specific long noncoding RNA 1), and found that males carrying a Tslrn1 deletion displayed normal fertility but a significant reduction in spermatozoa. Our findings demonstrate that dysregulation of specific mammalian lncRNAs is a novel mechanism of low sperm count or infertility, thus potentially providing new biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Lauren Wichman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Saigopal Somasundaram
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christine Breindel
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dana M. Valerio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - John R. McCarrey
- Department of Biology, The University of Texas at San Antonio, Texas, USA
| | - Craig A. Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ahmad M. Khalil
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|