1
|
Wang H, Wu X, Xu J, Lu Z, Hu B, Zhu L, Lu H. Proline mitigates antibiotic resistance evolution induced by ciprofloxacin at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137561. [PMID: 39938368 DOI: 10.1016/j.jhazmat.2025.137561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Antibiotics-induced resistance development in the environment has emerged as a critical issue under the 'one health' framework. Although there have been approaches to control antibiotic resistance evolution in clinical settings, they are rarely applicable in environmental contexts. Amino acids can affect the metabolic states of bacteria and potentially influence their resistance evolution. In this study, we screened 18 amino acids and identified proline as an efficient agent capable of mitigating ciprofloxacin-induced resistance of a soil-isolated Escherichia coli by over 50 % during a 24-day evolutionary experiment. Using transcriptomics and 13C metabolic flux analysis, we revealed the evolution mitigation mechanism of proline, which mainly involves down-regulated gene expressions and reduced metabolic flux of the TCA cycle, thereby decreasing NADH production, proton motive force, and uptake of ciprofloxacin. Based on single-cell RNA-seq, proline also reduced the size of resistant subgroups in the evolved E. coli population. Based on soil microcosm experiments, proline not only reduced the overall antibiotic resistance but also increased community diversity and robustness (optimal dosage: 5 mg/kg). Moreover, proline's evolution mitigation potentials likely extend to other antibiotics (e.g., streptomycin) and populations (e.g., Pseudomonas and Serratia spp.). Overall, proline addition holds promising potentials for mitigating antibiotic resistance in diverse antibiotics-polluted environments.
Collapse
Affiliation(s)
- Hanqing Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiujing Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China; Academy of Ecological Civilization, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Xu C, Feng J, Zhou Y, Ren H, Pan X, Chen S, Liu X, Li G, Li J, Geng B, Gao L, Cheng Z, Jin Y, Ha UH, Jin S, Lamont IL, Pletzer D, Wu W. Azithromycin represses evolution of ceftazidime/avibactam resistance by translational repression of rpoS in Pseudomonas aeruginosa. J Bacteriol 2025; 207:e0055224. [PMID: 40304512 DOI: 10.1128/jb.00552-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
Antibiotic combinations can slow down resistance development and/or achieve synergistic therapeutic effects. In this study, we observed that a combined use of ceftazidime-avibactam (CZA) with azithromycin effectively repressed CZA resistance development in Pseudomonas aeruginosa. Transcriptome analysis revealed that subinhibitory concentrations of azithromycin reduced the expression of genes involved in stress-induced mutagenesis, including the stress response sigma factor rpoS. Interestingly, ribosome profiling revealed global redistribution of ribosomes by azithromycin, among which ribosome stalling was significantly intensified near the 5´ terminus of the rpoS mRNA. Further DNA mutational analysis revealed that azithromycin represses the translation of rpoS through its 5´-terminal rare codons, which in turn reduced its transcription. These in vitro observations have been recapitulated in vivo where azithromycin-repressed CZA resistance development when P. aeruginosa was passaged in mice. Overall, our study revealed the molecular mechanism of azithromycin-mediated repression of antibiotic resistance development, providing a promising antibiotic combination for the treatment of P. aeruginosa infections.IMPORTANCEAntibiotic resistance, a global public health challenge, demands the development of novel antibiotics and therapeutic strategies. Ceftazidime-avibactam (CZA) is a combination of a β-lactam antibiotic with a β-lactamase inhibitor that is effective against various gram-negative bacteria such as Pseudomonas aeruginosa. However, clinical CZA-resistant isolates have been reported. Here, we found that combining CZA with azithromycin can effectively suppress the development of resistance in P. aeruginosa in vitro and in vivo. Moreover, we found that azithromycin represses the translation initiation of rpoS through its 5´-terminal rare and less frequent codons, thereby subsequently reducing the mutational frequency of CZA resistance. Therefore, our work provides a promising antibiotic combination for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuchen Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shuiping Chen
- Department of Infection and Control, 5th Medical Center of PLA General Hospital, Beijing, China
| | - Xuehua Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Guanxian Li
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jinjin Li
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Bin Geng
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Linlin Gao
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, South Korea
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Choe D, Lee E, Kim K, Hwang S, Jeong KJ, Palsson BO, Cho BK, Cho S. Rapid identification of key antibiotic resistance genes in E. coli using high-resolution genome-scale CRISPRi screening. iScience 2025; 28:112435. [PMID: 40352728 PMCID: PMC12063145 DOI: 10.1016/j.isci.2025.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/06/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
Bacteria possess a vast repertoire of genes to adapt to environmental challenges. Understanding the gene fitness landscape under antibiotic stress is crucial for elucidating bacterial resistance mechanisms and antibiotic action. To explore this, we conducted a genome-scale CRISPRi screen using a high-density sgRNA library in Escherichia coli exposed to various antibiotics. This screen identified essential genes under antibiotic-induced stress and offered insights into the molecular mechanisms underlying bacterial responses. We uncovered previously unrecognized genes involved in antibiotic resistance, including essential membrane proteins. The screen also underscored the importance of transcriptional modulation of essential genes in antibiotic tolerance. Our findings emphasize the utility of genome-wide CRISPRi screening in mapping the genetic landscape of antibiotic resistance. This study provides a valuable resource for identifying potential targets for antibiotics or antimicrobial strategies. Moreover, it offers a framework for exploring transcriptional regulatory networks and resistance mechanisms in E. coli and other bacterial pathogens.
Collapse
Affiliation(s)
- Donghui Choe
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eunju Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ki Jun Jeong
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Pérez-Morales G, Martínez-Conde KV, Caspeta L, Merino E, Cevallos MA, Gosset G, Martinez A. Thermally adapted Escherichia coli keeps transcriptomic response during temperature upshift exposure. Appl Microbiol Biotechnol 2025; 109:120. [PMID: 40360840 PMCID: PMC12075407 DOI: 10.1007/s00253-025-13495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
The heat shock response is a cellular protection mechanism against sudden temperature upshifts extensively studied in Escherichia coli. However, the effects of thermal evolution on this response remain largely unknown. In this study, we investigated the early and late physiological and transcriptional responses to temperature upshift in a thermotolerant strain under continuous culture conditions. Adaptive laboratory evolution was performed on a metabolically engineered E. coli strain (JU15), designed for D-lactic acid production, to enable cellular growth and fermentation of glucose at 45 °C in batch cultures. The resulting homofermentative strain, ECL45, successfully adapted to 45 °C in a glucose-mineral medium at pH 7 under non-aerated conditions. The thermal-adapted ECL45 retained the parental strain's high volumetric productivity and product/substrate yield. Genomic sequencing of ECL45 revealed eight mutations, including one in a non-coding region and six within the coding regions of genes associated with metabolic, transport, and regulatory functions. Transcriptomic analysis comparing the evolved strain with its parental counterpart under early and late temperature upshifts indicated that the adaptation involved a controlled stringent response. This mechanism likely contributes to the strain's ability to maintain growth capacity at high temperatures. KEY POINTS: • The temperature upshift response of a thermally adapted strain in continuous culture was studied for the first time. • Genomic analyses revealed the presence of a double point mutation in the spoT gene. • The thermally adapted strain maintained underexpression of the spoT gene at high temperatures. • Supplementation of 0.15 g/L of hydrolyzed protein favored thermal adaptation at 45 °C.
Collapse
Affiliation(s)
- Gilberto Pérez-Morales
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Karla V Martínez-Conde
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Luis Caspeta
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Miguel A Cevallos
- Program of Evolutionary Genomics, Centro de Ciencias Genómicas, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2000, Cuernavaca, Morelos, 62210, Mexico
| | - Guillermo Gosset
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Alfredo Martinez
- Department of Cellular Engineering and Biocatalyst, Instituto de Biotecnología, Col. Chamilpa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
5
|
Yang Q, Kaw HY, Yu J, Ma X, Yang K, Zhu L, Wang W. Basic Nitrogenous Heterocyclic Rings at the 7-Position of Fluoroquinolones Foster Their Induction of Antibiotic Resistance in Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6787-6798. [PMID: 40116633 DOI: 10.1021/acs.est.4c11346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The extensive prescription of fluoroquinolone antibiotics has resulted in their ubiquitous presence in the environment, fueling the ongoing development of antibiotic resistance. Besides antibiotics, fluoroquinolone production intermediates, an overlooked category of pollutants that oftentimes possess the intact fluoroquinolone core structure, may also contribute to this public health crisis. To assess their relative potency and collectively examine the structural effects of fluoroquinolones on resistance development, wild-type Escherichia coli K12 was exposed to ten fluoroquinolone antibiotics and five intermediates at their environmentally relevant concentrations for 30 days. Phenotypic resistance alterations revealed that the absence of the C7 ring system in fluoroquinolones significantly impaired their capacity to induce resistance in E. coli, potentially due to diminished oxidative DNA damage and gyrase-mediated dsDNA breaks. Genetic and transcriptional analyses indicated that a uniform resistance mechanism emerged under both antibiotic and intermediate stress. Quantitative structure-activity relationship (QSAR) analysis further emphasized the positive impact of both basic nitrogenous heterocyclic rings at C7 (particularly the hydrogen-bond-donor pharmacophores) and aromatic rings at N1 in promoting resistance development, while highlighting the adverse effects of hydrophobic and hydrogen-bond-donor groups at N1. A robust QSAR model was developed and applied to assess the relative risks of other 105 fluoroquinolones. This study underscored the direct role of fluoroquinolone production intermediates in promoting environmental antibiotic resistance and illustrated how different structural features of fluoroquinolone pollutants will influence this process, offering theoretical insights for future antibiotic design and environmental regulation efforts.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Han Yeong Kaw
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Jing Yu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Xuejing Ma
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Kun Yang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Lizhong Zhu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Wei Wang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
6
|
Jaszczur M, Pham P, Ojha D, Pham C, McDonald J, Woodgate R, Goodman M. Pathogen-encoded Rum DNA polymerase drives rapid bacterial drug resistance. Nucleic Acids Res 2024; 52:12987-13002. [PMID: 39413207 PMCID: PMC11602152 DOI: 10.1093/nar/gkae899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The acquisition of multidrug resistance by pathogenic bacteria is a potentially incipient pandemic. Horizontal transfer of DNA from mobile integrative conjugative elements (ICEs) provides an important way to introduce genes that confer antibiotic (Ab)-resistance in recipient cells. Sizable numbers of SXT/R391 ICEs encode a hypermutagenic Rum DNA polymerase (Rum pol), which has significant homology with Escherichia coli pol V. Here, we show that even under tight transcriptional and post-transcriptional regulation imposed by host bacteria and the R391 ICE itself, Rum pol rapidly accelerates development of multidrug resistance (CIPR, RifR, AmpR) in E. coli in response to SOS-inducing Ab and non-Ab external stressors bleomycin (BLM), ciprofloxacin (CIP) and UV radiation. The impact of Rum pol on the rate of acquisition of drug resistance appears to surpass potential contributions from other cellular processes. We have shown that RecA protein plays a central role in controlling the ability of Rum pol to accelerate antibiotic resistance. A single amino acid substitution in RecA, M197D, acts as a 'Master Regulator' that effectively eliminates the Rum pol-induced Ab resistance. We suggest that Rum pol should be considered as one of the major factors driving development of de novo Ab resistance in pathogens carrying SXT/R391 ICEs.
Collapse
Affiliation(s)
- Malgorzata M Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Debika Ojha
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cecilia Q Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Nordholt N, Sobisch LY, Gödt A, Lewerenz D, Schreiber F. Heterogeneous survival upon disinfection underlies evolution of increased tolerance. Microbiol Spectr 2024; 12:e0327622. [PMID: 39436131 PMCID: PMC11619369 DOI: 10.1128/spectrum.03276-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Disinfection is important to limit the spread of infections, but failure of disinfection may foster the evolution of antimicrobial resistance in bacteria. Persisters are phenotypically tolerant subpopulations that survive toxic stress longer than susceptible cells, leading to failure in treatments with antimicrobials and facilitating resistance evolution. To date, little is known about persistence in the context of disinfectants. The aim of this study was to investigate the influence of persisters on disinfection and to determine the consequences of disinfectant persistence for the evolution of increased tolerance to disinfectants. Disinfection kinetics with high temporal resolution were recorded for Escherichia coli exposed to the following six disinfectants: hydrogen peroxide (H2O2), glutaraldehyde (GTA), chlorhexidine (CHX), benzalkonium chloride (BAC), didecyldimethylammonium chloride (DDAC), and isopropanol (ISO). A mathematical model was used to infer the presence of persisters from the time-kill data. Time-kill kinetics for BAC, DDAC, and ISO were indicative of persisters, whereas no or weak evidence was found for H2O2, GTA, and CHX. When subjected to comparative experimental evolution under recurring disinfection, E. coli evolved increased tolerance to substances for which persisters were predicted (BAC and ISO), whereas adaptation failed for substances in which no persisters were predicted (GTA and CHX), causing extinction of exposed populations. Our findings have implications for the risk of disinfection failure, highlighting a potential link between persistence to disinfectants and the ability to evolve disinfectant survival mechanisms. IMPORTANCE Disinfection is key to control the spread of infections. But the application of disinfectants bears the risk to promote the evolution of reduced susceptibility to antimicrobials if bacteria survive the treatment. The ability of individual bacteria to survive disinfection can display considerable heterogeneity within isogenic populations and may be facilitated by tolerant persister subpopulations. Using time-kill kinetics and interpreting the data within a mathematical framework, we quantify heterogeneity and persistence in Escherichia coli when exposed to six different disinfectants. We find that the level of persistence, and with this the risk for disinfection failure, depends on the disinfectant. Importantly, evolution experiments under recurrent disinfection provide evidence that links the presence of persisters to the ability to evolve reduced susceptibility to disinfectants. This study emphasizes the impact of heterogeneity within bacterial populations on disinfection outcomes and the potential consequences for the evolution of antimicrobial resistances.
Collapse
Affiliation(s)
- Niclas Nordholt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Lydia-Yasmin Sobisch
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Annett Gödt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Dominique Lewerenz
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
8
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
9
|
Al Mamun AAM, Kissoon K, Li YG, Hancock E, Christie PJ. The F plasmid conjutome: the repertoire of E. coli proteins translocated through an F-encoded type IV secretion system. mSphere 2024; 9:e0035424. [PMID: 38940509 PMCID: PMC11288057 DOI: 10.1128/msphere.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Kimberley Kissoon
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Erin Hancock
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
10
|
Liu CSC, Pandey R. Integrative genomics would strengthen AMR understanding through ONE health approach. Heliyon 2024; 10:e34719. [PMID: 39816336 PMCID: PMC11734142 DOI: 10.1016/j.heliyon.2024.e34719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 01/18/2025] Open
Abstract
Emergence of drug-induced antimicrobial resistance (AMR) forms a crippling health and economic crisis worldwide, causing high mortality from otherwise treatable diseases and infections. Next Generation Sequencing (NGS) has significantly augmented detection of culture independent microbes, potential AMR in pathogens and elucidation of mechanisms underlying it. Here, we review recent findings of AMR evolution in pathogens aided by integrated genomic investigation strategies inclusive of bacteria, virus, fungi and AMR alleles. While AMR monitoring is dominated by data from hospital-related infections, we review genomic surveillance of both biotic and abiotic components involved in global AMR emergence and persistence. Identification of pathogen-intrinsic as well as environmental and/or host factors through robust genomics/bioinformatics, along with monitoring of type and frequency of antibiotic usage will greatly facilitate prediction of regional and global patterns of AMR evolution. Genomics-enabled AMR prediction and surveillance will be crucial - in shaping health and economic policies within the One Health framework to combat this global concern.
Collapse
Affiliation(s)
- Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
11
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
12
|
Caporale LH. Evolutionary feedback from the environment shapes mechanisms that generate genome variation. J Physiol 2024; 602:2601-2614. [PMID: 38194279 DOI: 10.1113/jp284411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Darwin recognized that 'a grand and almost untrodden field of inquiry will be opened, on the causes and laws of variation.' However, because the Modern Synthesis assumes that the intrinsic probability of any individual mutation is unrelated to that mutation's potential adaptive value, attention has been focused on selection rather than on the intrinsic generation of variation. Yet many examples illustrate that the term 'random' mutation, as widely understood, is inaccurate. The probabilities of distinct classes of variation are neither evenly distributed across a genome nor invariant over time, nor unrelated to their potential adaptive value. Because selection acts upon variation, multiple biochemical mechanisms can and have evolved that increase the relative probability of adaptive mutations. In effect, the generation of heritable variation is in a feedback loop with selection, such that those mechanisms that tend to generate variants that survive recurring challenges in the environment would be captured by this survival and thus inherited and accumulated within lineages of genomes. Moreover, because genome variation is affected by a wide range of biochemical processes, genome variation can be regulated. Biochemical mechanisms that sense stress, from lack of nutrients to DNA damage, can increase the probability of specific classes of variation. A deeper understanding of evolution involves attention to the evolution of, and environmental influences upon, the intrinsic variation generated in gametes, in other words upon the biochemical mechanisms that generate variation across generations. These concepts have profound implications for the types of questions that can and should be asked, as omics databases become more comprehensive, detection methods more sensitive, and computation and experimental analyses even more high throughput and thus capable of revealing the intrinsic generation of variation in individual gametes. These concepts also have profound implications for evolutionary theory, which, upon reflection it will be argued, predicts that selection would increase the probability of generating adaptive mutations, in other words, predicts that the ability to evolve itself evolves.
Collapse
|
13
|
Nair ZJ, Gao IH, Firras A, Chong KKL, Hill ED, Choo PY, Colomer-Winter C, Chen Q, Manzano C, Pethe K, Kline KA. An essential protease, FtsH, influences daptomycin resistance acquisition in Enterococcus faecalis. Mol Microbiol 2024; 121:1021-1038. [PMID: 38527904 DOI: 10.1111/mmi.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Daptomycin is a last-line antibiotic commonly used to treat vancomycin-resistant Enterococci, but resistance evolves rapidly and further restricts already limited treatment options. While genetic determinants associated with clinical daptomycin resistance (DAPR) have been described, information on factors affecting the speed of DAPR acquisition is limited. The multiple peptide resistance factor (MprF), a phosphatidylglycerol-modifying enzyme involved in cationic antimicrobial resistance, is linked to DAPR in pathogens such as methicillin-resistant Staphylococcus aureus. Since Enterococcus faecalis encodes two paralogs of mprF and clinical DAPR mutations do not map to mprF, we hypothesized that functional redundancy between the paralogs prevents mprF-mediated resistance and masks other evolutionary pathways to DAPR. Here, we performed in vitro evolution to DAPR in mprF mutant background. We discovered that the absence of mprF results in slowed DAPR evolution and is associated with inactivating mutations in ftsH, resulting in the depletion of the chaperone repressor HrcA. We also report that ftsH is essential in the parental, but not in the ΔmprF, strain where FtsH depletion results in growth impairment in the parental strain, a phenotype associated with reduced extracellular acidification and reduced ability for metabolic reduction. This presents FtsH and HrcA as enticing targets for developing anti-resistance strategies.
Collapse
Affiliation(s)
- Zeus Jaren Nair
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Iris Hanxing Gao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Aslam Firras
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, Singapore, Singapore
| | - Eric D Hill
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Cristina Colomer-Winter
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Qingyan Chen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Caroline Manzano
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin Pethe
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases (NCID), Singapore, Singapore
| | - Kimberly A Kline
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in de novo acquisition of antibiotic resistance in E. coli. iScience 2024; 27:109579. [PMID: 38617560 PMCID: PMC11015494 DOI: 10.1016/j.isci.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
The stringent response of bacteria to starvation and stress also fulfills a role in addressing the threat of antibiotics. Within this stringent response, (p)ppGpp, synthesized by RelA or SpoT, functions as a global alarmone. However, the effect of this (p)ppGpp on resistance development is poorly understood. Here, we show that knockout of relA or rpoS curtails resistance development against bactericidal antibiotics. The emergence of mutated genes associated with starvation and (p)ppGpp, among others, indicates the activation of stringent responses. The growth rate is decreased in ΔrelA-resistant strains due to the reduced ability to synthesize (p)ppGpp and the persistence of deacylated tRNA impeding protein synthesis. Sluggish cellular activity causes decreased production of reactive oxygen species (ROS), thereby reducing oxidative damage, leading to weakened DNA mismatch repair, potentially reducing the generation of mutations. These findings offer new targets for mitigating antibiotic resistance development, potentially achieved through inhibiting (p)ppGpp or ROS synthesis.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Martínez-Álvarez JA, Vicente-Gómez M, García-Contreras R, Wood TK, Ramírez Montiel FB, Vargas-Maya NI, España-Sánchez BL, Rangel-Serrano Á, Padilla-Vaca F, Franco B. High-Throughput Screening Method Using Escherichia coli Keio Mutants for Assessing Primary Damage Mechanism of Antimicrobials. Microorganisms 2024; 12:793. [PMID: 38674737 PMCID: PMC11051750 DOI: 10.3390/microorganisms12040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The Escherichia coli Keio mutant collection has been a tool for assessing the role of specific genes and determining their role in E. coli physiology and uncovering novel functions. In this work, specific mutants in the DNA repair pathways and oxidative stress response were evaluated to identify the primary targets of silver nanoparticles (NPs) and their mechanism of action. The results presented in this work suggest that NPs mainly target DNA via double-strand breaks and base modifications since the recA, uvrC, mutL, and nfo mutants rendered the most susceptible phenotype, rather than involving the oxidative stress response. Concomitantly, during the establishment of the control conditions for each mutant, the katG and sodA mutants showed a hypersensitive phenotype to mitomycin C, an alkylating agent. Thus, we propose that KatG catalase plays a key role as a cellular chaperone, as reported previously for the filamentous fungus Neurospora crassa, a large subunit catalase. The Keio collection mutants may also be a key tool for assessing the resistance mechanism to metallic NPs by using their potential to identify novel pathways involved in the resistance to NPs.
Collapse
Affiliation(s)
- José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Marcos Vicente-Gómez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - Fátima Berenice Ramírez Montiel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Naurú Idalia Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Beatriz Liliana España-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica CIDETEQ S.C., Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| |
Collapse
|
16
|
Behringer MG, Ho WC, Miller SF, Worthan SB, Cen Z, Stikeleather R, Lynch M. Trade-offs, trade-ups, and high mutational parallelism underlie microbial adaptation during extreme cycles of feast and famine. Curr Biol 2024; 34:1403-1413.e5. [PMID: 38460514 PMCID: PMC11066936 DOI: 10.1016/j.cub.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
Microbes are evolutionarily robust organisms capable of rapid adaptation to complex stress, which enables them to colonize harsh environments. In nature, microbes are regularly challenged by starvation, which is a particularly complex stress because resource limitation often co-occurs with changes in pH, osmolarity, and toxin accumulation created by metabolic waste. Often overlooked are the additional complications introduced by eventual resource replenishment, as successful microbes must withstand rapid environmental shifts before swiftly capitalizing on replenished resources to avoid invasion by competing species. To understand how microbes navigate trade-offs between growth and survival, ultimately adapting to thrive in environments with extreme fluctuations, we experimentally evolved 16 Escherichia coli populations for 900 days in repeated feast/famine conditions with cycles of 100-day starvation before resource replenishment. Using longitudinal population-genomic analysis, we found that evolution in response to extreme feast/famine is characterized by narrow adaptive trajectories with high mutational parallelism and notable mutational order. Genetic reconstructions reveal that early mutations result in trade-offs for biofilm and motility but trade-ups for growth and survival, as these mutations conferred positively correlated advantages during both short-term and long-term culture. Our results demonstrate how microbes can navigate the adaptive landscapes of regularly fluctuating conditions and ultimately follow mutational trajectories that confer benefits across diverse environments.
Collapse
Affiliation(s)
- Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA; Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 21st Avenue S, Nashville, TN 37232, USA.
| | - Wei-Chin Ho
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA; Department of Biology, University of Texas at Tyler, University Blvd., Tyler, TX 75799, USA.
| | - Samuel F Miller
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| | - Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA
| | - Zeer Cen
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| |
Collapse
|
17
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
18
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Reactive oxygen species accelerate de novo acquisition of antibiotic resistance in E. coli. iScience 2023; 26:108373. [PMID: 38025768 PMCID: PMC10679899 DOI: 10.1016/j.isci.2023.108373] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Reactive oxygen species (ROS) produced as a secondary effect of bactericidal antibiotics are hypothesized to play a role in killing bacteria. If correct, ROS may play a role in development of de novo resistance. Here we report that single-gene knockout strains with reduced ROS scavenging exhibited enhanced ROS accumulation and more rapid acquisition of resistance when exposed to sublethal levels of bactericidal antibiotics. Consistent with this observation, the ROS scavenger thiourea in the medium decelerated resistance development. Thiourea downregulated the transcriptional level of error-prone DNA polymerase and DNA glycosylase MutM, which counters the incorporation and accumulation of 8-hydroxy-2'-deoxyguanosine (8-HOdG) in the genome. The level of 8-HOdG significantly increased following incubation with bactericidal antibiotics but decreased after treatment with the ROS scavenger thiourea. These observations suggest that in E. coli sublethal levels of ROS stimulate de novo development of resistance, providing a mechanistic basis for hormetic responses induced by antibiotics.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Spiteri D, Griffin S, Karatzas KA, Scerri C, Valdramidis VP. Escherichia coli K-12 Transcriptomics for Assessing the Mechanism of Action of High-Power Ultrasound. Microorganisms 2023; 11:2768. [PMID: 38004779 PMCID: PMC10673019 DOI: 10.3390/microorganisms11112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
An investigation into the mechanisms of action on bacteria involving exposure to stress factors was conducted in this study. The effects of ultrasound on Escherichia coli K-12 MG1655 and its isogenic mutant, ∆gadW, under high power ultrasound treatments (26 kHz) were screened and identified by analysing their transcriptome differences between primary and secondary sequential treatments using RNA-Seq. This also helped to assess any developed protection for cells between different generations. According to our results, 1825 genes of all tested conditions were expressed, playing different roles in the cell. The expression of these genes is associated with DNA damage, cell membrane integrity, and also metabolic effects. The studied strains also showed different differential expressed genes (DEGs), with some genes being directly responsible for defence mechanisms, while others play an indirect effect due to cell damage. A gradual decrease in the expression of the genes, as we moved from just one cycle of ultrasound treatment to sequential treatment, was evident from a heat map analysis of the results. Overall, E. coli K-12 builds a self-protection mechanism by increasing the expression of genes involved in the respiration for increased growth, and production of flagellum and pili. It can be concluded that high power ultrasound is a technology that triggers several different defence mechanisms which directly link to E. coli.
Collapse
Affiliation(s)
- David Spiteri
- Department of Food Science and Nutrition, University of Malta, MSD 2080 Msida, Malta; (D.S.); (S.G.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta;
| | - Sholeem Griffin
- Department of Food Science and Nutrition, University of Malta, MSD 2080 Msida, Malta; (D.S.); (S.G.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta;
| | | | - Christian Scerri
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta;
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta
| | - Vasilis P. Valdramidis
- Department of Food Science and Nutrition, University of Malta, MSD 2080 Msida, Malta; (D.S.); (S.G.)
- Department of Chemistry, National and Kapodistrian University of Athens, 34400 Psachna, Greece
| |
Collapse
|
21
|
Yaeger LN, French S, Brown ED, Côté JP, Burrows LL. Central metabolism is a key player in E. coli biofilm stimulation by sub-MIC antibiotics. PLoS Genet 2023; 19:e1011013. [PMID: 37917668 PMCID: PMC10645362 DOI: 10.1371/journal.pgen.1011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/14/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Exposure of Escherichia coli to sub-inhibitory antibiotics stimulates biofilm formation through poorly characterized mechanisms. Using a high-throughput Congo Red binding assay to report on biofilm matrix production, we screened ~4000 E. coli K12 deletion mutants for deficiencies in this biofilm stimulation response. We screened using three different antibiotics to identify core components of the biofilm stimulation response. Mutants lacking acnA, nuoE, or lpdA failed to respond to sub-MIC cefixime and novobiocin, implicating central metabolism and aerobic respiration in biofilm stimulation. These genes are members of the ArcA/B regulon-controlled by a respiration-sensitive two-component system. Mutants of arcA and arcB had a 'pre-activated' phenotype, where biofilm formation was already high relative to wild type in vehicle control conditions, and failed to increase further with the addition of sub-MIC cefixime. Using a tetrazolium dye and an in vivo NADH sensor, we showed spatial co-localization of increased metabolic activity with sub-lethal concentrations of the bactericidal antibiotics cefixime and novobiocin. Supporting a role for respiratory stress, the biofilm stimulation response to cefixime and novobiocin was inhibited when nitrate was provided as an alternative electron acceptor. Deletion of a gene encoding part of the machinery for respiring nitrate abolished its ameliorating effects, and nitrate respiration increased during growth with sub-MIC cefixime. Finally, in probing the generalizability of biofilm stimulation, we found that the stimulation response to translation inhibitors, unlike other antibiotic classes, was minimally affected by nitrate supplementation, suggesting that targeting the ribosome stimulates biofilm formation in distinct ways. By characterizing the biofilm stimulation response to sub-MIC antibiotics at a systems level, we identified multiple avenues for design of therapeutics that impair bacterial stress management.
Collapse
Affiliation(s)
- Luke N. Yaeger
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jean Philippe Côté
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Buchmann D, Schwabe M, Weiss R, Kuss AW, Schaufler K, Schlüter R, Rödiger S, Guenther S, Schultze N. Natural phenolic compounds as biofilm inhibitors of multidrug-resistant Escherichia coli - the role of similar biological processes despite structural diversity. Front Microbiol 2023; 14:1232039. [PMID: 37731930 PMCID: PMC10507321 DOI: 10.3389/fmicb.2023.1232039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli.
Collapse
Affiliation(s)
- David Buchmann
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Schwabe
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Romano Weiss
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Andreas W. Kuss
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Nadin Schultze
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Zhai Y, Pribis JP, Dooling SW, Garcia-Villada L, Minnick P, Xia J, Liu J, Mei Q, Fitzgerald DM, Herman C, Hastings P, Costa-Mattioli M, Rosenberg SM. Drugging evolution of antibiotic resistance at a regulatory network hub. SCIENCE ADVANCES 2023; 9:eadg0188. [PMID: 37352342 PMCID: PMC10289659 DOI: 10.1126/sciadv.adg0188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
Evolution of antibiotic resistance is a world health crisis, fueled by new mutations. Drugs to slow mutagenesis could, as cotherapies, prolong the shelf-life of antibiotics, yet evolution-slowing drugs and drug targets have been underexplored and ineffective. Here, we used a network-based strategy to identify drugs that block hubs of fluoroquinolone antibiotic-induced mutagenesis. We identify a U.S. Food and Drug Administration- and European Medicines Agency-approved drug, dequalinium chloride (DEQ), that inhibits activation of the Escherichia coli general stress response, which promotes ciprofloxacin-induced (stress-induced) mutagenic DNA break repair. We uncover the step in the pathway inhibited: activation of the upstream "stringent" starvation stress response, and find that DEQ slows evolution without favoring proliferation of DEQ-resistant mutants. Furthermore, we demonstrate stress-induced mutagenesis during mouse infections and its inhibition by DEQ. Our work provides a proof-of-concept strategy for drugs to slow evolution in bacteria and generally.
Collapse
Affiliation(s)
- Yin Zhai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P. Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean W. Dooling
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad Garcia-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - P.J. Minnick
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P.J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mauro Costa-Mattioli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M. Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Buko T, Tuczko N, Ishikawa T. DNA Data Storage. BIOTECH 2023; 12:44. [PMID: 37366792 DOI: 10.3390/biotech12020044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The demand for data storage is growing at an unprecedented rate, and current methods are not sufficient to accommodate such rapid growth due to their cost, space requirements, and energy consumption. Therefore, there is a need for a new, long-lasting data storage medium with high capacity, high data density, and high durability against extreme conditions. DNA is one of the most promising next-generation data carriers, with a storage density of 10¹⁹ bits of data per cubic centimeter, and its three-dimensional structure makes it about eight orders of magnitude denser than other storage media. DNA amplification during PCR or replication during cell proliferation enables the quick and inexpensive copying of vast amounts of data. In addition, DNA can possibly endure millions of years if stored in optimal conditions and dehydrated, making it useful for data storage. Numerous space experiments on microorganisms have also proven their extraordinary durability in extreme conditions, which suggests that DNA could be a durable storage medium for data. Despite some remaining challenges, such as the need to refine methods for the fast and error-free synthesis of oligonucleotides, DNA is a promising candidate for future data storage.
Collapse
Affiliation(s)
- Tomasz Buko
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| | - Nella Tuczko
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| |
Collapse
|
25
|
George JT, Levine H. Optimal cancer evasion in a dynamic immune microenvironment generates diverse post-escape tumor antigenicity profiles. eLife 2023; 12:82786. [PMID: 37096883 PMCID: PMC10129331 DOI: 10.7554/elife.82786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
The failure of cancer treatments, including immunotherapy, continues to be a major obstacle in preventing durable remission. This failure often results from tumor evolution, both genotypic and phenotypic, away from sensitive cell states. Here, we propose a mathematical framework for studying the dynamics of adaptive immune evasion that tracks the number of tumor-associated antigens available for immune targeting. We solve for the unique optimal cancer evasion strategy using stochastic dynamic programming and demonstrate that this policy results in increased cancer evasion rates compared to a passive, fixed strategy. Our foundational model relates the likelihood and temporal dynamics of cancer evasion to features of the immune microenvironment, where tumor immunogenicity reflects a balance between cancer adaptation and host recognition. In contrast with a passive strategy, optimally adaptive evaders navigating varying selective environments result in substantially heterogeneous post-escape tumor antigenicity, giving rise to immunogenically hot and cold tumors.
Collapse
Affiliation(s)
- Jason T George
- Department of Biomedical Engineering, Texas A&M University, Houston, United States
- Engineering Medicine Program, Texas A&M University, Houston, United States
- Center for Theoretical Biological Physics, Rice University, Houston, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, United States
- Department of Physics, Northeastern University, Boston, United States
- Department of Bioengineering, Northeastern University, Boston, United States
| |
Collapse
|
26
|
Zhai Y, Minnick PJ, Pribis JP, Garcia-Villada L, Hastings PJ, Herman C, Rosenberg SM. ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells. Mol Cell 2023; 83:1298-1310.e4. [PMID: 36965481 PMCID: PMC10317147 DOI: 10.1016/j.molcel.2023.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.
Collapse
Affiliation(s)
- Yin Zhai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P J Minnick
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad Garcia-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Susan M Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Zhao L, Tabari E, Rong H, Dong X, Xue D, Su Z. Antisense transcription and its roles in adaption to environmental stress in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533988. [PMID: 36993172 PMCID: PMC10055363 DOI: 10.1101/2023.03.23.533988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED It has been reported that a highly varying proportion (1% ∼ 93%) of genes in various prokaryotes have antisense RNA (asRNA) transcription. However, the extent of the pervasiveness of asRNA transcription in the well-studied E. coli K12 strain has thus far been an issue of debate. Furthermore, very little is known about the expression patterns and functions of asRNAs under various conditions. To fill these gaps, we determined the transcriptomes and proteomes of E. coli K12 at multiple time points in five culture conditions using strand-specific RNA-seq, differential RNA-seq, and quantitative mass spectrometry methods. To reduce artifacts of possible transcriptional noise, we identified asRNA using stringent criteria with biological replicate verification and transcription start sites (TSSs) information included. We identified a total of 660 asRNAs, which were generally short and largely condition-dependently transcribed. We found that the proportions of the genes which had asRNA transcription highly depended on the culture conditions and time points. We classified the transcriptional activities of the genes in six transcriptional modes according to their relative levels of asRNA to mRNA. Many genes changed their transcriptional modes at different time points of the culture conditions, and such transitions can be described in a well-defined manner. Intriguingly, the protein levels and mRNA levels of genes in the sense-only/sense-dominant mode were moderately correlated, but the same was not true for genes in the balanced/antisense-dominant mode, in which asRNAs were at a comparable or higher level to mRNAs. These observations were further validated by western blot on candidate genes, where an increase in asRNA transcription diminished gene expression in one case and enhanced it in another. These results suggest that asRNAs may directly or indirectly regulate translation by forming duplexes with cognate mRNAs. Thus, asRNAs may play an important role in the bacterium's responses to environmental changes during growth and adaption to different environments. IMPORTANCE The cis -antisense RNA (asRNA) is a type of understudied RNA molecules in prokaryotes, which is believed to be important in regulating gene expression. Our current understanding of asRNA is constrained by inconsistent reports about its identification and properties. These discrepancies are partially caused by a lack of sufficient samples, biological replicates, and culture conditions. This study aimed to overcome these disadvantages and identified 660 putative asRNAs using integrated information from strand-specific RNA-seq, differential RNA-seq, and mass spectrometry methods. In addition, we explored the relative expression between asRNAs and sense RNAs and investigated asRNA regulated transcriptional activity changes over different culture conditions and time points. Our work strongly suggests that asRNAs may play a crucial role in bacterium's responses to environmental changes during growth and adaption to different environments.
Collapse
|
28
|
Jeje O, Ewunkem AJ, Jeffers-Francis LK, Graves JL. Serving Two Masters: Effect of Escherichia coli Dual Resistance on Antibiotic Susceptibility. Antibiotics (Basel) 2023; 12:antibiotics12030603. [PMID: 36978471 PMCID: PMC10044975 DOI: 10.3390/antibiotics12030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The prevalence of multidrug-resistant bacteria and their increased pathogenicity has led to a growing interest in metallic antimicrobial materials and bacteriophages as potential alternatives to conventional antibiotics. This study examines how resistance to excess iron (III) influences the evolution of bacteriophage resistance in the bacterium Escherichia coli. We utilized experimental evolution in E. coli to test the effect of the evolution of phage T7 resistance on populations resistant to excess iron (III) and populations without excess iron resistance. Phage resistance evolved rapidly in both groups. Dual-resistant (iron (III)/phage) populations were compared to their controls (excess iron (III)-resistant, phage-resistant, no resistance to either) for their performance against each stressor, excess iron (III) and phage; and correlated resistances to excess iron (II), gallium (III), silver (I) and conventional antibiotics. Excess iron (III)/phage-resistant populations demonstrated superior 24 h growth compared to all other populations when exposed to increasing concentrations of iron (II, III), gallium (III), ampicillin, and tetracycline. No differences in 24 h growth were shown between excess iron (III)/phage-resistant and excess iron (III)-resistant populations in chloramphenicol, sulfonamide, and silver (I). The genomic analysis identified selective sweeps in the iron (III) resistant (rpoB, rpoC, yegB, yeaG), phage-resistant (clpX →/→ lon, uvaB, yeaG, fliR, gatT, ypjF, waaC, rpoC, pgi, and yjbH) and iron (III)/phage resistant populations (rcsA, hldE, rpoB, and waaC). E. coli selected for resistance to both excess iron (III) and T7 phage showed some evidence of a synergistic effect on various components of fitness. Dual selection resulted in correlated resistances to ionic metals {iron (II), gallium (III), and silver (I)} and several conventional antibiotics. There is a likelihood that this sort of combination antimicrobial treatment may result in bacterial variants with multiple resistances.
Collapse
Affiliation(s)
- Olusola Jeje
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Akamu J Ewunkem
- Department of Biological Sciences, Winston Salem State University, 601 S Martin Luther King Jr Drive, Winston Salem, NC 27110, USA
| | - Liesl K Jeffers-Francis
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Joseph L Graves
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
29
|
Deng S. The origin of genetic and metabolic systems: Evolutionary structuralinsights. Heliyon 2023; 9:e14466. [PMID: 36967965 PMCID: PMC10036676 DOI: 10.1016/j.heliyon.2023.e14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
DNA is derived from reverse transcription and its origin is related to reverse transcriptase, DNA polymerase and integrase. The gene structure originated from the evolution of the first RNA polymerase. Thus, an explanation of the origin of the genetic system must also explain the evolution of these enzymes. This paper proposes a polymer structure model, termed the stable complex evolution model, which explains the evolution of enzymes and functional molecules. Enzymes evolved their functions by forming locally tightly packed complexes with specific substrates. A metabolic reaction can therefore be considered to be the result of adaptive evolution in this way when a certain essential molecule is lacking in a cell. The evolution of the primitive genetic and metabolic systems was thus coordinated and synchronized. According to the stable complex model, almost all functional molecules establish binding affinity and specific recognition through complementary interactions, and functional molecules therefore have the nature of being auto-reactive. This is thermodynamically favorable and leads to functional duplication and self-organization. Therefore, it can be speculated that biological systems have a certain tendency to maintain functional stability or are influenced by an inherent selective power. The evolution of dormant bacteria may support this hypothesis, and inherent selectivity can be unified with natural selection at the molecular level.
Collapse
Affiliation(s)
- Shaojie Deng
- Chongqing (Fengjie) Municipal Bureau of Planning and Natural Resources, China
| |
Collapse
|
30
|
Cory MB, Li A, Hurley CM, Hostetler ZM, Venkatesh Y, Jones CM, Petersson EJ, Kohli RM. Engineered RecA Constructs Reveal the Minimal SOS Activation Complex. Biochemistry 2022; 61:2884-2896. [PMID: 36473084 PMCID: PMC9982712 DOI: 10.1021/acs.biochem.2c00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SOS response is a bacterial DNA damage response pathway that has been heavily implicated in bacteria's ability to evolve resistance to antibiotics. Activation of the SOS response is dependent on the interaction between two bacterial proteins, RecA and LexA. RecA acts as a DNA damage sensor by forming lengthy oligomeric filaments (RecA*) along single-stranded DNA (ssDNA) in an ATP-dependent manner. RecA* can then bind to LexA, the repressor of SOS response genes, triggering LexA degradation and leading to induction of the SOS response. Formation of the RecA*-LexA complex therefore serves as the key "SOS activation signal." Given the challenges associated with studying a complex involving multiple macromolecular interactions, the essential constituents of RecA* that allow LexA cleavage are not well defined. Here, we leverage head-to-tail linked and end-capped RecA constructs as tools to define the minimal RecA* filament that can engage LexA. In contrast to previously postulated models, we found that as few as three linked RecA units are capable of ssDNA binding, LexA binding, and LexA cleavage. We further demonstrate that RecA oligomerization alone is insufficient for LexA cleavage, with an obligate requirement for ATP and ssDNA binding to form a competent SOS activation signal with the linked constructs. Our minimal system for RecA* highlights the limitations of prior models for the SOS activation signal and offers a novel tool that can inform efforts to slow acquired antibiotic resistance by targeting the SOS response.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Allen Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christina M. Hurley
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zachary M. Hostetler
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chloe M. Jones
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
31
|
Kim HB, Bacik JP, Wu R, Jha RK, Hebron M, Triandafillou C, McCown JE, Baek NI, Kim JH, Kim YJ, Goulding CW, Strauss CEM, Schmidt JG, Shetye GS, Ryoo S, Jo EK, Jeon YH, Hung LW, Terwilliger TC, Kim CY. Label-free affinity screening, design and synthesis of inhibitors targeting the Mycobacterium tuberculosis L-alanine dehydrogenase. PLoS One 2022; 17:e0277670. [PMID: 36395154 PMCID: PMC9671377 DOI: 10.1371/journal.pone.0277670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH). Biochemical and structural analyses of AlaDH confirmed binding of nucleoside derivatives and showed a site adjacent to the nucleoside binding pocket that can confer specificity to putative inhibitors. Using a combination of dye-ligand affinity chromatography, enzyme kinetics and protein crystallographic studies, we show the development and validation of drug prototypes. Crystal structures of AlaDH-inhibitor complexes with variations at the N6 position of the adenyl-moiety of the inhibitor provide insight into the molecular basis for the specificity of these compounds. We describe a drug-designing pipeline that aims to block Mtb to proliferate upon re-oxygenation by specifically blocking NAD accessibility to AlaDH. The collective approach to drug discovery was further evaluated through in silico analyses providing additional insight into an efficient drug development strategy that can be further assessed with the incorporation of in vivo studies.
Collapse
Affiliation(s)
- Heung-Bok Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John-Paul Bacik
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
| | - Ruilian Wu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Michaeline Hebron
- Georgetown University Medical Center, Washington, D.C., United States of America
| | - Catherine Triandafillou
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, Illinois, United States of America
| | - Joseph E. McCown
- Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jeong Han Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Charlie E. M. Strauss
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jurgen G. Schmidt
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Gauri S. Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois, Chicago, Illinois, United States of America
| | - Sungweon Ryoo
- Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon-si, Gyeongsangnam-do, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
32
|
Noronha A, Belugali Nataraj N, Lee JS, Zhitomirsky B, Oren Y, Oster S, Lindzen M, Mukherjee S, Will R, Ghosh S, Simoni-Nieves A, Verma A, Chatterjee R, Borgoni S, Robinson W, Sinha S, Brandis A, Kerr DL, Wu W, Sekar A, Giri S, Chung Y, Drago-Garcia D, Danysh BP, Lauriola M, Fiorentino M, Ardizzoni A, Oren M, Blakely CM, Ezike J, Wiemann S, Parida L, Bivona TG, Aqeilan RI, Brugge JS, Regev A, Getz G, Ruppin E, Yarden Y. AXL and Error-Prone DNA Replication Confer Drug Resistance and Offer Strategies to Treat EGFR-Mutant Lung Cancer. Cancer Discov 2022; 12:2666-2683. [PMID: 35895872 PMCID: PMC9627128 DOI: 10.1158/2159-8290.cd-22-0111] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
Abstract
Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.
Collapse
Affiliation(s)
- Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Joo Sang Lee
- Cancer Data Science Lab, NCI, NIH, Bethesda, Maryland.,Next-Gen Medicine Lab, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | | | - Yaara Oren
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Sara Oster
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rainer Will
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soma Ghosh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Arturo Simoni-Nieves
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Aakanksha Verma
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rishita Chatterjee
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sanju Sinha
- Cancer Data Science Lab, NCI, NIH, Bethesda, Maryland
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - D. Lucas Kerr
- Department of Medicine, University of California, San Francisco, California
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, California
| | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suvendu Giri
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Youngmin Chung
- Next-Gen Medicine Lab, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Brian P. Danysh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Medical Oncology IRCCS Azienda Ospedaliero, University of Bologna, Bologna, Italy
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Collin M. Blakely
- Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jideofor Ezike
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laxmi Parida
- Thomas J. Watson Research Center, IBM Research, Yorktown Heights, New York
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Aviv Regev
- Genentech Inc., South San Francisco, California
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Cancer Center and Department of Pathology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Eytan Ruppin
- Cancer Data Science Lab, NCI, NIH, Bethesda, Maryland
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Corresponding Author: Yosef Yarden, Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel. Phone: 972-8-934-3974; Fax: 972-8-934-2488; E-mail:
| |
Collapse
|
33
|
ArsR Family Regulator MSMEG_6762 Mediates the Programmed Cell Death by Regulating the Expression of HNH Nuclease in Mycobacteria. Microorganisms 2022; 10:microorganisms10081535. [PMID: 36013953 PMCID: PMC9416677 DOI: 10.3390/microorganisms10081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Programmed cell death (PCD) is the result of an intracellular program and is accomplished by a regulated process in both prokaryotic and eukaryotic organisms. Here, we report a programed cell death process in Mycobacterium smegmatis, an Actinobacteria species which involves a transcription factor and a DNase of the HNH family. We found that over-expression of an ArsR family member of the transcription factor, MSMEG_6762, leads to cell death. Transcriptome analysis revealed an increase in the genes' transcripts involved in DNA repair and homologous recombination, and in three members of HNH family DNases. Knockout of one of the DNase genes, MSMEG_1275, alleviated cell death and its over-expression of programmed cell death. Purified MSMEG_1275 cleaved the M. smegmatis DNA at multiple sites. Overall, our results indicate that the MSMEG_6762 affects cell death and is mediated, at least partially, by activation of the HNH nuclease expression under a stress condition.
Collapse
|
34
|
Abstract
Mechanisms of evolution and evolution of antibiotic resistance are both fundamental and world health problems. Stress-induced mutagenesis defines mechanisms of mutagenesis upregulated by stress responses, which drive adaptation when cells are maladapted to their environments—when stressed. Work in mutagenesis induced by antibiotics had produced tantalizing clues but not coherent mechanisms. We review recent advances in antibiotic-induced mutagenesis that integrate how reactive oxygen species (ROS), the SOS and general stress responses, and multichromosome cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair of DNA breaks. Moreover, while sibling cells stay stable, a mutable “gambler” cell subpopulation is induced by differentially generated ROS, which signal the general stress response. We discuss other evolvable subpopulations and consider diverse evolution-promoting molecules as potential targets for drugs to slow evolution of antibiotic resistance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies “stealth” evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.
Collapse
|
35
|
Abstract
Bacteria have evolved to develop multiple strategies for antibiotic resistance by effectively reducing intracellular antibiotic concentrations or antibiotic binding affinities, but the role of cell morphology in antibiotic resistance remains poorly understood. By analyzing cell morphological data for different bacterial species under antibiotic stress, we find that bacteria increase or decrease the cell surface-to-volume ratio depending on the antibiotic target. Using quantitative modeling, we show that by reducing the surface-to-volume ratio, bacteria can effectively reduce the intracellular antibiotic concentration by decreasing antibiotic influx. The model further predicts that bacteria can increase the surface-to-volume ratio to induce the dilution of membrane-targeting antibiotics, in agreement with experimental data. Using a whole-cell model for the regulation of cell shape and growth by antibiotics, we predict shape transformations that bacteria can utilize to increase their fitness in the presence of antibiotics. We conclude by discussing additional pathways for antibiotic resistance that may act in synergy with shape-induced resistance.
Collapse
Affiliation(s)
- Nikola Ojkic
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Diana Serbanescu
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
36
|
Youn J, Rai N, Tagkopoulos I. Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes. Nat Commun 2022; 13:2360. [PMID: 35487919 PMCID: PMC9055065 DOI: 10.1038/s41467-022-29993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
We present a machine learning framework to automate knowledge discovery through knowledge graph construction, inconsistency resolution, and iterative link prediction. By incorporating knowledge from 10 publicly available sources, we construct an Escherichia coli antibiotic resistance knowledge graph with 651,758 triples from 23 triple types after resolving 236 sets of inconsistencies. Iteratively applying link prediction to this graph and wet-lab validation of the generated hypotheses reveal 15 antibiotic resistant E. coli genes, with 6 of them never associated with antibiotic resistance for any microbe. Iterative link prediction leads to a performance improvement and more findings. The probability of positive findings highly correlates with experimentally validated findings (R2 = 0.94). We also identify 5 homologs in Salmonella enterica that are all validated to confer resistance to antibiotics. This work demonstrates how evidence-driven decisions are a step toward automating knowledge discovery with high confidence and accelerated pace, thereby substituting traditional time-consuming and expensive methods.
Collapse
Affiliation(s)
- Jason Youn
- Department of Computer Science, University of California, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, CA, 95616, USA
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), University of California, Davis, CA, 95616, USA
| | - Navneet Rai
- Department of Computer Science, University of California, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, CA, 95616, USA
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), University of California, Davis, CA, 95616, USA
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California, Davis, CA, 95616, USA.
- Genome Center, University of California, Davis, CA, 95616, USA.
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), University of California, Davis, CA, 95616, USA.
| |
Collapse
|
37
|
Yadav NS, Titov V, Ayemere I, Byeon B, Ilnytskyy Y, Kovalchuk I. Multigenerational Exposure to Heat Stress Induces Phenotypic Resilience, and Genetic and Epigenetic Variations in Arabidopsis thaliana Offspring. FRONTIERS IN PLANT SCIENCE 2022; 13:728167. [PMID: 35419019 PMCID: PMC8996174 DOI: 10.3389/fpls.2022.728167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plants are sedentary organisms that constantly sense changes in their environment and react to various environmental cues. On a short-time scale, plants respond through alterations in their physiology, and on a long-time scale, plants alter their development and pass on the memory of stress to the progeny. The latter is controlled genetically and epigenetically and allows the progeny to be primed for future stress encounters, thus increasing the likelihood of survival. The current study intended to explore the effects of multigenerational heat stress in Arabidopsis thaliana. Twenty-five generations of Arabidopsis thaliana were propagated in the presence of heat stress. The multigenerational stressed lineage F25H exhibited a higher tolerance to heat stress and elevated frequency of homologous recombination, as compared to the parallel control progeny F25C. A comparison of genomic sequences revealed that the F25H lineage had a three-fold higher number of mutations [single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)] as compared control lineages, suggesting that heat stress induced genetic variations in the heat-stressed progeny. The F25H stressed progeny showed a 7-fold higher number of non-synonymous mutations than the F25C line. Methylome analysis revealed that the F25H stressed progeny showed a lower global methylation level in the CHH context than the control progeny. The F25H and F25C lineages were different from the parental control lineage F2C by 66,491 and 80,464 differentially methylated positions (DMPs), respectively. F25H stressed progeny displayed higher frequency of methylation changes in the gene body and lower in the body of transposable elements (TEs). Gene Ontology analysis revealed that CG-DMRs were enriched in processes such as response to abiotic and biotic stimulus, cell organizations and biogenesis, and DNA or RNA metabolism. Hierarchical clustering of these epimutations separated the heat stressed and control parental progenies into distinct groups which revealed the non-random nature of epimutations. We observed an overall higher number of epigenetic variations than genetic variations in all comparison groups, indicating that epigenetic variations are more prevalent than genetic variations. The largest difference in epigenetic and genetic variations was observed between control plants comparison (F25C vs. F2C), which clearly indicated that the spontaneous nature of epigenetic variations and heat-inducible nature of genetic variations. Overall, our study showed that progenies derived from multigenerational heat stress displayed a notable adaption in context of phenotypic, genotypic and epigenotypic resilience.
Collapse
|
38
|
Webb JP, Paiva AC, Rossoni L, Alstrom-Moore A, Springthorpe V, Vaud S, Yeh V, Minde DP, Langer S, Walker H, Hounslow A, Nielsen DR, Larson T, Lilley K, Stephens G, Thomas GH, Bonev BB, Kelly DJ, Conradie A, Green J. Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals. Metab Eng 2022; 72:133-149. [DOI: 10.1016/j.ymben.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
|
39
|
Sørensen PE, Baig S, Stegger M, Ingmer H, Garmyn A, Butaye P. Spontaneous Phage Resistance in Avian Pathogenic Escherichia coli. Front Microbiol 2021; 12:782757. [PMID: 34966369 PMCID: PMC8711792 DOI: 10.3389/fmicb.2021.782757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the most important bacterial pathogens affecting poultry worldwide. The emergence of multidrug-resistant pathogens has renewed the interest in the therapeutic use of bacteriophages (phages). However, a major concern for the successful implementation of phage therapy is the emergence of phage-resistant mutants. The understanding of the phage-host interactions, as well as underlying mechanisms of resistance, have shown to be essential for the development of a successful phage therapy. Here, we demonstrate that the strictly lytic Escherichia phage vB_EcoM-P10 rapidly selected for resistance in the APEC ST95 O1 strain AM621. Whole-genome sequence analysis of 109 spontaneous phage-resistant mutant strains revealed 41 mutants with single-nucleotide polymorphisms (SNPs) in their core genome. In 32 of these, a single SNP was detected while two SNPs were identified in a total of nine strains. In total, 34 unique SNPs were detected. In 42 strains, including 18 strains with SNP(s), gene losses spanning 17 different genes were detected. Affected by genetic changes were genes known to be involved in phage resistance (outer membrane protein A, lipopolysaccharide-, O- antigen-, or cell wall-related genes) as well as genes not previously linked to phage resistance, including two hypothetical genes. In several strains, we did not detect any genetic changes. Infecting phages were not able to overcome the phage resistance in host strains. However, interestingly the initial infection was shown to have a great fitness cost for several mutant strains, with up to ∼65% decrease in overall growth. In conclusion, this study provides valuable insights into the phage-host interaction and phage resistance in APEC. Although acquired resistance to phages is frequently observed in pathogenic E. coli, it may be associated with loss of fitness, which could be exploited in phage therapy.
Collapse
Affiliation(s)
- Patricia E. Sørensen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Sharmin Baig
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
40
|
Korry BJ, Lee SYE, Chakrabarti AK, Choi AH, Ganser C, Machan JT, Belenky P. Genotoxic Agents Produce Stressor-Specific Spectra of Spectinomycin Resistance Mutations Based on Mechanism of Action and Selection in Bacillus subtilis. Antimicrob Agents Chemother 2021; 65:e0089121. [PMID: 34339280 PMCID: PMC8448107 DOI: 10.1128/aac.00891-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Mutagenesis is integral for bacterial evolution and the development of antibiotic resistance. Environmental toxins and stressors are known to elevate the rate of mutagenesis through direct DNA toxicity, known as stress-associated mutagenesis, or via a more general stress-induced process that relies on intrinsic bacterial pathways. Here, we characterize the spectra of mutations induced by an array of different stressors using high-throughput sequencing to profile thousands of spectinomycin-resistant colonies of Bacillus subtilis. We found 69 unique mutations in the rpsE and rpsB genes, and that each stressor leads to a unique and specific spectrum of antibiotic-resistance mutations. While some mutations clearly reflected the DNA damage mechanism of the stress, others were likely the result of a more general stress-induced mechanism. To determine the relative fitness of these mutants under a range of antibiotic selection pressures, we used multistrain competitive fitness experiments and found an additional landscape of fitness and resistance. The data presented here support the idea that the environment in which the selection is applied (mutagenic stressors that are present), as well as changes in local drug concentration, can significantly alter the path to spectinomycin resistance in B. subtilis.
Collapse
Affiliation(s)
- Benjamin J. Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Stella Ye Eun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Amit K. Chakrabarti
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Ashley H. Choi
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Collin Ganser
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jason T. Machan
- Department of Orthopedics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
41
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
42
|
A fluorescence-based genetic screen reveals diverse mechanisms silencing small RNA signaling in E. coli. Proc Natl Acad Sci U S A 2021; 118:2106964118. [PMID: 34210798 DOI: 10.1073/pnas.2106964118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As key players of gene regulation in many bacteria, small regulatory RNAs (sRNAs) associated with the RNA chaperone Hfq shape numerous phenotypic traits, including metabolism, stress response and adaptation, as well as virulence. sRNAs can alter target messenger RNA (mRNA) translation and stability via base pairing. sRNA synthesis is generally under tight transcriptional regulation, but other levels of regulation of sRNA signaling are less well understood. Here we used a fluorescence-based functional screen to identify regulators that can quench sRNA signaling of the iron-responsive sRNA RyhB in Escherichia coli The identified regulators fell into two classes, general regulators (affecting signaling by many sRNAs) and RyhB-specific regulators; we focused on the specific ones here. General regulators include three Hfq-interacting sRNAs, CyaR, ChiX, and McaS, previously found to act through Hfq competition, RNase T, a 3' to 5' exonuclease not previously implicated in sRNA degradation, and YhbS, a putative GCN5-related N-acetyltransferase (GNAT). Two specific regulators were identified. AspX, a 3'end-derived small RNA, specifically represses RyhB signaling via an RNA sponging mechanism. YicC, a previously uncharacterized but widely conserved protein, triggers rapid RyhB degradation via collaboration with the exoribonuclease PNPase. These findings greatly expand our knowledge of regulation of bacterial sRNA signaling and suggest complex regulatory networks for controlling iron homeostasis in bacteria. The fluorescence-based genetic screen system described here is a powerful tool expected to accelerate the discovery of novel regulators of sRNA signaling in many bacteria.
Collapse
|
43
|
Virus-Host Interaction Gets Curiouser and Curiouser. PART II: Functional Transcriptomics of the E. coli DksA-Deficient Cell upon Phage P1 vir Infection. Int J Mol Sci 2021; 22:ijms22116159. [PMID: 34200430 PMCID: PMC8201110 DOI: 10.3390/ijms22116159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
The virus–host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage–host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA− hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.
Collapse
|
44
|
Russo M, Sogari A, Bardelli A. Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment. Cancer Discov 2021; 11:1886-1895. [PMID: 33952585 DOI: 10.1158/2159-8290.cd-20-1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer is characterized by loss of the regulatory mechanisms that preserve homeostasis in multicellular organisms, such as controlled proliferation, cell-cell adhesion, and tissue differentiation. The breakdown of multicellularity rules is accompanied by activation of "selfish," unicellular-like life features, which are linked to the increased adaptability to environmental changes displayed by cancer cells. Mechanisms of stress response, resembling those observed in unicellular organisms, are actively exploited by mammalian cancer cells to boost genetic diversity and increase chances of survival under unfavorable conditions, such as lack of oxygen/nutrients or exposure to drugs. Unicellular organisms under stressful conditions (e.g., antibiotic treatment) stop replicating or slowly divide and transiently increase their mutation rates to foster diversity, a process known as adaptive mutability. Analogously, tumor cells exposed to drugs enter a persister phenotype and can reduce DNA replication fidelity, which in turn fosters genetic diversity. The implications of adaptive evolution are of relevance to understand resistance to anticancer therapies.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| | - Alberto Sogari
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| |
Collapse
|
45
|
Abstract
Vitamin B6 is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the Escherichia coli MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. E. coli and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in E. coli vitamin B6 metabolism. In E. coli, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B6 metabolism in E. coli, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.
Collapse
|
46
|
Klaric JA, Glass DJ, Perr EL, Reuven AD, Towne MJ, Lovett ST. DNA damage-signaling, homologous recombination and genetic mutation induced by 5-azacytidine and DNA-protein crosslinks in Escherichia coli. Mutat Res 2021; 822:111742. [PMID: 33743507 DOI: 10.1016/j.mrfmmm.2021.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022]
Abstract
Covalent linkage between DNA and proteins produces highly toxic lesions and can be caused by commonly used chemotherapeutic agents, by internal and external chemicals and by radiation. In this study, using Escherichia coli, we investigate the consequences of 5-azacytidine (5-azaC), which traps covalent complexes between itself and the Dcm cytosine methyltransferase protein. DNA protein crosslink-dependent effects can be ascertained by effects that arise in wild-type but not in dcmΔ strains. We find that 5-azaC induces the bacterial DNA damage response and stimulates homologous recombination, a component of which is Dcm-dependent. Template-switching at an imperfect inverted repeat ("quasipalindrome", QP) is strongly enhanced by 5-azaC and this enhancement was entirely Dcm-dependent and independent of double-strand break repair. The SOS response helps ameliorate the mutagenic effect of 5-azaC but this is not a result of SOS-induced DNA polymerases since their induction, especially PolIV, seems to stimulate QP-associated mutagenesis. Cell division regulator SulA was also required for recovery of QP mutants induced by 5-azaC. In the absence of Lon protease, Dcm-dependent QP-mutagenesis is strongly elevated, suggesting it may play a role in DPC tolerance. Deletions at short tandem repeats, which occur likewise by a replication template-switch, are elevated, but only modestly, by 5-azaC. We see evidence for Dcm-dependent and-independent killing by 5-azaC in sensitive mutants, such as recA, recB, and lon; homologous recombination and deletion mutations are also stimulated in part by a Dcm-independent effect of 5-azaC. Whether this occurs by a different protein/DNA crosslink or by an alternative form of DNA damage is unknown.
Collapse
Affiliation(s)
- Julie A Klaric
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - David J Glass
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Eli L Perr
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Arianna D Reuven
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Mason J Towne
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Susan T Lovett
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States.
| |
Collapse
|
47
|
Bacterial phenotypic heterogeneity in DNA repair and mutagenesis. Biochem Soc Trans 2021; 48:451-462. [PMID: 32196548 PMCID: PMC7200632 DOI: 10.1042/bst20190364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Genetically identical cells frequently exhibit striking heterogeneity in various phenotypic traits such as their morphology, growth rate, or gene expression. Such non-genetic diversity can help clonal bacterial populations overcome transient environmental challenges without compromising genome stability, while genetic change is required for long-term heritable adaptation. At the heart of the balance between genome stability and plasticity are the DNA repair pathways that shield DNA from lesions and reverse errors arising from the imperfect DNA replication machinery. In principle, phenotypic heterogeneity in the expression and activity of DNA repair pathways can modulate mutation rates in single cells and thus be a source of heritable genetic diversity, effectively reversing the genotype-to-phenotype dogma. Long-standing evidence for mutation rate heterogeneity comes from genetics experiments on cell populations, which are now complemented by direct measurements on individual living cells. These measurements are increasingly performed using fluorescence microscopy with a temporal and spatial resolution that enables localising, tracking, and counting proteins with single-molecule sensitivity. In this review, we discuss which molecular processes lead to phenotypic heterogeneity in DNA repair and consider the potential consequences on genome stability and dynamics in bacteria. We further inspect these concepts in the context of DNA damage and mutation induced by antibiotics.
Collapse
|
48
|
Tagel M, Ilves H, Leppik M, Jürgenstein K, Remme J, Kivisaar M. Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp. Microorganisms 2020; 9:microorganisms9010025. [PMID: 33374637 PMCID: PMC7822408 DOI: 10.3390/microorganisms9010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
Collapse
Affiliation(s)
- Mari Tagel
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | | | | | | | - Jaanus Remme
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | - Maia Kivisaar
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| |
Collapse
|
49
|
Neves HI, Machado GT, Ramos TCDS, Yang HM, Yagil E, Spira B. Competition for nutritional resources masks the true frequency of bacterial mutants. BMC Biol 2020; 18:194. [PMID: 33317515 PMCID: PMC7737367 DOI: 10.1186/s12915-020-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background It is widely assumed that all mutant microorganisms present in a culture are able to grow and form colonies, provided that they express the features required for selection. Unlike wild-type Escherichia coli, PHO-constitutive mutants overexpress alkaline phosphatase and hence can hydrolyze glycerol-2-phosphate (G2P) to glycerol and form colonies on plates having G2P as the sole carbon source. These mutations mostly occur in the pst operon. However, the frequency of PHO-constitutive colonies on the G2P selective plate is exceptionally low. Results We show that the rate in which spontaneous PHO-constitutive mutations emerge is about 8.0 × 10−6/generation, a relatively high rate, but the growth of most existing mutants is inhibited by their neighboring wild-type cells. This inhibition is elicited only by non-mutant viable bacteria that can take up and metabolize glycerol formed by the mutants. Evidence indicates that the few mutants that do form colonies derive from microclusters of mutants on the selective plate. A mathematical model that describes the fate of the wild-type and mutant populations under these circumstances supports these results. Conclusion This scenario in which neither the wild-type nor the majority of the mutants are able to grow resembles an unavoidable “tragedy of the commons” case which results in the collapse of the majority of the population. Cooperation between rare adjacent mutants enables them to overcome the competition and eventually form mutant colonies. The inhibition of PHO-constitutive mutants provides an example of mutant frequency masked by orders of magnitude due to a competition between mutants and their ancestral wild-type cells. Similar “tragedy of the commons-like” cases may occur in other settings and should be taken into consideration while estimating true mutant frequencies and mutation rates. Supplementary Information The online version contains supplementary material available at (doi:10.1186/s12915-020-00913-1).
Collapse
Affiliation(s)
- Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gabriella Trombini Machado
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Hyun Mo Yang
- Departamento de Matemática Aplicada, Instituto de Matemática, Estatística e Computação Científica, Campinas, SP, Brazil
| | - Ezra Yagil
- Departament of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
50
|
Seong W, Han GH, Lim HS, Baek JI, Kim SJ, Kim D, Kim SK, Lee H, Kim H, Lee SG, Lee DH. Adaptive laboratory evolution of Escherichia coli lacking cellular byproduct formation for enhanced acetate utilization through compensatory ATP consumption. Metab Eng 2020; 62:249-259. [PMID: 32931907 DOI: 10.1016/j.ymben.2020.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Acetate has attracted great attention as a carbon source to develop economically feasible bioprocesses for sustainable bioproducts. Acetate is a less-preferred carbon source and a well-known growth inhibitor of Escherichia coli. In this study, we carried out adaptive laboratory evolution of an E. coli strain lacking four genes (adhE, pta, ldhA, and frdA) involved in acetyl-CoA consumption, allowing the efficient utilization of acetate as its sole carbon and energy source. Four genomic mutations were found in the evolved strain through whole-genome sequencing, and two major mutations (in cspC and patZ) mainly contributed to efficient utilization of acetate and tolerance to acetate. Transcriptomic reprogramming was examined by analyzing the genome-wide transcriptome with different carbon sources. The evolved strain showed high levels of intracellular ATP by upregulation of genes involved in NADH and ATP biosynthesis, which facilitated the production of enhanced green fluorescent protein, mevalonate, and n-butanol using acetate alone. This new strain, given its high acetate tolerance and high ATP levels, has potential as a starting host for cell factories targeting the production of acetyl-CoA-derived products from acetate or of products requiring high ATP levels.
Collapse
Affiliation(s)
- Wonjae Seong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Gui Hwan Han
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Center for Industrialization of Agricultural and Livestock Microorganism (CIALM), Jeongeup, 56212, Republic of Korea
| | - Hyun Seung Lim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ji In Baek
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seong Keun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|