1
|
Varma S, Gulati KA, Sriramakrishnan J, Ganla RK, Raval R. Environment signal dependent biocontainment systems for engineered organisms: Leveraging triggered responses and combinatorial systems. Synth Syst Biotechnol 2025; 10:356-364. [PMID: 39830078 PMCID: PMC11741035 DOI: 10.1016/j.synbio.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
As synthetic biology advances, the necessity for robust biocontainment strategies for genetically engineered organisms (GEOs) grows increasingly critical to mitigate biosafety risks related to their potential environmental release. This paper aims to evaluate environment signal-dependent biocontainment systems for engineered organisms, focusing specifically on leveraging triggered responses and combinatorial systems. There are different types of triggers-chemical, light, temperature, and pH-this review illustrates how these systems can be designed to respond to environmental signals, ensuring a higher safety profile. It also focuses on combinatorial biocontainment to avoid consequences of unintended GEO release into an external environment. Case studies are discussed to demonstrate the practical applications of these systems in real-world scenarios.
Collapse
Affiliation(s)
- Shreya Varma
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Khushi Ash Gulati
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Janani Sriramakrishnan
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Riyaa Kedar Ganla
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| |
Collapse
|
2
|
Antoney J, Kainrath S, Dubowsky JG, Ahmed FH, Kang SW, Mackie ERR, Bracho Granado G, Soares da Costa TP, Jackson CJ, Janovjak H. A F 420-dependent Single Domain Chemogenetic Tool for Protein De-dimerization. J Mol Biol 2025; 437:169184. [PMID: 40324743 DOI: 10.1016/j.jmb.2025.169184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Protein-protein interactions (PPIs) mediate many fundamental cellular processes. Control of PPIs through optically or chemically responsive protein domains has had a profound impact on basic research and some clinical applications. Most chemogenetic methods induce the association, i.e., dimerization or oligomerization, of target proteins, whilst the few available dissociation approaches either break large oligomeric protein clusters or heteromeric complexes. Here, we have exploited the controlled dissociation of a homodimeric oxidoreductase from mycobacteria (MSMEG_2027) by its native cofactor, F420, which is not present in mammals, as a bioorthogonal monomerization switch. Using X-ray crystallography, we found that in the absence of F420 MSMEG_2027 forms a unique domain-swapped dimer that occludes the cofactor binding site. Rearrangement of the N-terminal helix upon F420 binding results in the dissolution of the dimer. We then showed that MSMEG_2027 can be fused to proteins of interest in human cells and applied it as a tool to induce and release MAPK/ERK signalling downstream of a chimeric fibroblast growth factor receptor 1 (FGFR1) tyrosine kinase. This F420-dependent chemogenetic de-homodimerization tool is stoichiometric and based on a single domain and thus represents a novel mechanism to investigate protein complexes in situ.
Collapse
Affiliation(s)
- James Antoney
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia; ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia
| | - Stephanie Kainrath
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 15 Innovation Walk, Clayton 3800 Melbourne, VIC, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 15 Innovation Walk, Clayton 3800 Melbourne, VIC, Australia; Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Joshua G Dubowsky
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, 1 Flinders Drive, Bedford Park 5042 Adelaide, SA, Australia
| | - F Hafna Ahmed
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia
| | - Suk Woo Kang
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia; Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), 679, Saimdang-ro, Gangneung 25451, Republic of Korea
| | - Emily R R Mackie
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road, Bundoora 3086 Melbourne, VIC, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Hartley Grove, Urrbrae 5064 Adelaide, SA, Australia
| | - Gustavo Bracho Granado
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, 1 Flinders Drive, Bedford Park 5042 Adelaide, SA, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road, Bundoora 3086 Melbourne, VIC, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Hartley Grove, Urrbrae 5064 Adelaide, SA, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia; ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia; ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia.
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 15 Innovation Walk, Clayton 3800 Melbourne, VIC, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 15 Innovation Walk, Clayton 3800 Melbourne, VIC, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, 1 Flinders Drive, Bedford Park 5042 Adelaide, SA, Australia.
| |
Collapse
|
3
|
Ozaki-Noma R, Wazawa T, Kakizuka T, Shidara H, Takemoto K, Nagai T. Positive-Type Reversibly Photoswitching Red Fluorescent Protein for Dual-Color Superresolution Imaging with Single Light Exposure for Off-Switching. ACS NANO 2025; 19:7188-7201. [PMID: 39937184 PMCID: PMC11867007 DOI: 10.1021/acsnano.4c16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Positive-type reversibly photoswitching fluorescent proteins (p-rsFPs) transition to a bright on-state upon light exposure for fluorescence excitation and to a dark off-state under a different wavelength. p-rsFPs are widely used in superresolution (SR) imaging techniques, offering simplified observation procedure and enhanced biocompatibility. Although some green p-rsFPs possess adequate photoproperties for SR imaging, all red p-rsFPs (p-rsRFPs) to date exhibit suboptimal properties, limiting the color palette for multiplexed SR imaging. Here, we present a p-rsRFP, rsZACRO, with 3.0-fold brighter fluorescence, 5.3-fold faster off-switching, and 1.5-fold higher on/off contrast than rsCherry, a conventional representative p-rsRFP. Using rsZACRO with superresolution polarization demodulation/on-state polarization angle narrowing (SPoD-OnSPAN), we successfully demonstrated SR imaging in the red spectrum and dual-color SR imaging with a single light for off-switching, visualizing vimentin intermediate filaments and actin filaments at higher spatial resolution than the diffraction limit of light in a living mammalian cell.
Collapse
Affiliation(s)
- Ryohei Ozaki-Noma
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate
School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuichi Wazawa
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Taishi Kakizuka
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Transdimensional
Life Imaging Division, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hisashi Shidara
- Graduate
School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| | - Kiwamu Takemoto
- Graduate
School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| | - Takeharu Nagai
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate
School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Transdimensional
Life Imaging Division, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
4
|
Watari S, Inaba H, Lv QH, Ichikawa M, Iwasaki T, Wang B, Tadakuma H, Kakugo A, Matsuura K. Optical Control of Microtubule Accumulation and Dispersion by Tau-Derived Peptide-Fused Photoresponsive Protein. JACS AU 2025; 5:791-801. [PMID: 40017775 PMCID: PMC11862932 DOI: 10.1021/jacsau.4c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 03/01/2025]
Abstract
Microtubules, a major component of the cytoskeleton consisting of tubulin dimers, are involved in various cellular functions, including forming axons and dendrites of neurons and retaining cell shapes by forming various accumulated superstructures such as bundles and doublets. Moreover, microtubule-accumulated structures like swarming microtubule assemblies are attractive components for dynamic materials, such as active matter and molecular robots. Thus, dynamic control of microtubule superstructures is an important topic. However, implementing stimulus-dependent control of superstructures remains challenging. This challenge can be resolved by developing designer protein approaches. We have previously developed a Tau-derived peptide (TP), which binds to the inner or outer surface of microtubules depending on the timing of the incubation. In this report, we designed the TP-fused photoswitchable protein Dronpa (TP-Dronpa) that reversibly photoconverts between monomeric and tetrameric states to photocontrol microtubule assemblies. The formation of microtubule superstructures, including bundles and doublets, was induced by tetrameric TP-Dronpa, whereas monomeric TP-Dronpa ensured that microtubules remained dispersed. Tetrameric TP-Dronpa also induced motile aster-like structures and swarming movement of microtubules on a kinesin-coated substrate. The formation/dissociation of these microtubule superstructures can be controlled by light irradiation. This system can generate and photocontrol various microtubule superstructures and provides an approach to facilitate the assembly of dynamic materials for various applications.
Collapse
Affiliation(s)
- Soei Watari
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Qianru H. Lv
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry
and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Muneyoshi Ichikawa
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry
and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Takashi Iwasaki
- Department
of Bioresources Science, Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Bingxun Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Hisashi Tadakuma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Akira Kakugo
- Department
of Physics and Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazunori Matsuura
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
5
|
Guo XY, Xie BB, Fang Q, Fang WH, Cui G. Unidirectional Photoisomerization of the Green Fluorescent Protein Chromophore in a Reversibly Photoswitchable Fluorescent Protein rsKiiro: Insights from Quantum Mechanics/Molecular Mechanics Simulations. J Phys Chem Lett 2025; 16:1485-1493. [PMID: 39898455 DOI: 10.1021/acs.jpclett.4c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In this study, a quantum mechanics/molecular mechanics (QM/MM) framework combined with the CASPT2//CASSCF approach was used to investigate the excited-state decay and isomerization of the rsKiiro green fluorescent protein (GFP) from its neutral "OFF" trans state. Upon irradiation at 400 nm, the trans conformation is initially excited to the bright S1 state. A rapid decay of the excited state then occurs and ultimately leads the molecule to the ground state. Notably, the clockwise and counterclockwise rotations of the C8C9C11N12 [or C5C8C9C11] dihedral angle are asymmetric or unidirectional, with only one direction of rotation effectively driving the excited-state relaxation. This process is shaped by hydrogen-bonding networks and steric constraints within the protein. In addition, trans-cis isomerization may not occur directly in the S1 state because the energy of the S1 cis minimum is relatively higher than that of the S1 trans minimum. Instead, the S1 cis minimum may be generated through the reabsorption of light near 400 nm, as the vertical excitation energy of the S0 cis minimum is close to that of the S0 trans minimum. This work provides important insights into the early photodynamics of rsKiiro GFP and aids in the design of novel GFP-like fluorescent proteins.
Collapse
Affiliation(s)
- Xin-Yi Guo
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231 ,P. R. China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
6
|
Zhang J, Herzog LK, Corkery DP, Lin TC, Klewer L, Chen X, Xin X, Li Y, Wu YW. Modular Photoswitchable Molecular Glues for Chemo-Optogenetic Control of Protein Function in Living Cells. Angew Chem Int Ed Engl 2025; 64:e202416456. [PMID: 39777946 DOI: 10.1002/anie.202416456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Optogenetic systems using photosensitive proteins and chemically induced dimerization/proximity (CID/CIP) approaches enabled by chemical dimerizers (also termed molecular glues), are powerful tools to elucidate the dynamics of biological systems and to dissect complex biological regulatory networks. Here, we report a versatile chemo-optogenetic system using modular, photoswitchable molecular glues (sMGs) that can undergo repeated cycles of optical control to switch protein function on and off. We use molecular dynamics (MD) simulations to rationally design the sMGs and further expand their scope by incorporating different photoswitches, resulting in sMGs with customizable properties. We demonstrate that this system can be used to reversibly control protein localization, organelle positioning, protein-fragment complementation as well as posttranslational protein levels by light with high spatiotemporal precision. This system enables sophisticated optical manipulation of cellular processes and thus opens up a new avenue for chemo-optogenetics.
Collapse
Affiliation(s)
- Jun Zhang
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Laura K Herzog
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Dale P Corkery
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Tzu-Chen Lin
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
- Current address: Department of Chemistry and Chemical Biology, Technical University of Dortmund, 44227, Dortmund, Germany
| | - Laura Klewer
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
| | - Xi Chen
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
- Current address: The HIT Center for Life Sciences, Harbin Institute of Technology, 150001, Harbin City, China
| | - Xiaoyi Xin
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Yaozong Li
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Department of Biochemistry, University of Zurich, CH-8057, Zurich, Switzerland
| | - Yao-Wen Wu
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
7
|
Zhou S, Liu B, Liu J, Yi B, Wang X. Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics. Semin Cell Dev Biol 2025; 166:36-51. [PMID: 39729778 DOI: 10.1016/j.semcdb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
Collapse
Affiliation(s)
- Sijia Zhou
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China; Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Bing Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Narayan OP, Dong J, Huang M, Chen L, Liu L, Nguyen V, Dozic AV, Liu X, Wang H, Yin Q, Tang X, Guan J. Reversible light-responsive protein hydrogel for on-demand cell encapsulation and release. Acta Biomater 2025; 193:202-214. [PMID: 39800098 PMCID: PMC11847564 DOI: 10.1016/j.actbio.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The design of biomaterials that can reconfigure on-demand in response to external stimuli is an emerging area in materials research. However, achieving reversible assembly of protein-based biomaterials by light input remains a major challenge. Here, we present the engineering of a new protein material that is capable of switching between liquid and solid state reversibly, controlled by lights of different wavelengths. The materials are created by incorporating a light-responsive mutant Dronpa protein domain into the backbone of Elastin-Like Proteins (termed DELPs). We show that the DELP material can respond to light and undergo multiple cycles of switching between hydrogel and solution, outperforming the conventional irreversible materials. Additionally, the material is biocompatible with long-term cell proliferation in both adherent and suspension cells. Building on the reversible assembly of the material, we demonstrate efficient cell encapsulation and release upon light triggers. The design principle of incorporating a light-responsive protein element into a structural protein matrix, as demonstrated in this work enables, a broad range of other applications that require adaptive materials to intelligently interface with dynamic biological systems and environments. STATEMENT OF SIGNIFICANCE: This work generates a new class of "smart" biomaterials that uniquely switches between liquid and gel states in response to light input. Light input can be precisely delivered in space and time, highly tunable through wavelengths, intensities, and durations of light exposure. In prior research, light-responsive biomaterials are mostly irreversible, limiting their use to only uni-directional applications and the materials cannot be re-used. In contrast, this material robustly displays reversible switching between liquid and gel using a light-responsive crosslinker. Furthermore, the material is biocompatible, programmable, and suitable for broad applications including but not limited to cell encapsulation, controlled release, tissue engineering, and cell/tissue mechanobiology.
Collapse
Affiliation(s)
- Om Prakash Narayan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Jiawei Dong
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Liqiang Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Lu Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Vivian Nguyen
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Abdul Vehab Dozic
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Xiangping Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Qian Yin
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| | - Juan Guan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Panigaj M, Basu Roy T, Skelly E, Chandler MR, Wang J, Ekambaram S, Bircsak K, Dokholyan NV, Afonin KA. Autonomous Nucleic Acid and Protein Nanocomputing Agents Engineered to Operate in Living Cells. ACS NANO 2025; 19:1865-1883. [PMID: 39760461 PMCID: PMC11757000 DOI: 10.1021/acsnano.4c13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In recent years, the rapid development and employment of autonomous technology have been observed in many areas of human activity. Autonomous technology can readily adjust its function to environmental conditions and enable an efficient operation without human control. While applying the same concept to designing advanced biomolecular therapies would revolutionize nanomedicine, the design approaches to engineering biological nanocomputing agents for predefined operations within living cells remain a challenge. Autonomous nanocomputing agents made of nucleic acids and proteins are an appealing idea, and two decades of research has shown that the engineered agents act under real physical and biochemical constraints in a logical manner. Throughout all domains of life, nucleic acids and proteins perform a variety of vital functions, where the sequence-defined structures of these biopolymers either operate on their own or efficiently function together. This programmability and synergy inspire massive research efforts that utilize the versatility of nucleic and amino acids to encode functions and properties that otherwise do not exist in nature. This Perspective covers the key concepts used in the design and application of nanocomputing agents and discusses potential limitations and paths forward.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Tanaya Basu Roy
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | | | - Jian Wang
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Srinivasan Ekambaram
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kristin Bircsak
- MIMETAS
US, INC, Gaithersburg, Maryland 20878, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
10
|
Huang J, Fussenegger M. Programming mammalian cell behaviors by physical cues. Trends Biotechnol 2025; 43:16-42. [PMID: 39179464 DOI: 10.1016/j.tibtech.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
11
|
Fok HKF, Dai X, Yi Q, Che CM, Jiang L, Duan L, Huang J, Yang Z, Sun F. Red-Shifting B 12-Dependent Photoreceptor Protein via Optical Coupling for Inducible Living Materials. Angew Chem Int Ed Engl 2024:e202411105. [PMID: 39239776 DOI: 10.1002/anie.202411105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Cobalamin (B12)-dependent photoreceptors are gaining traction in materials synthetic biology, especially for optically controlling cell-to-cell adhesion in living materials. However, these proteins are mostly responsive to green light, limiting their deep-tissue applications. Here, we present a general strategy for shifting photoresponse of B12-dependent photoreceptor CarHC from green to red/far-red light via optical coupling. Using thiol-maleimide click chemistry, we labeled cysteine-containing CarHC mutants with SulfoCyanine5 (Cy5), a red light-capturing fluorophore. The resulting photoreceptors not only retained the ability to tetramerize in the presence of adenosylcobalamin (AdoB12), but also gained sensitivity to red light; labeled tetramers disassembled on red light exposure. Using genetically encoded click chemistry, we assembled the red-shifted proteins into hydrogels that degraded rapidly in response to red light. Furthermore, Saccharomyces cerevisiae cells were genetically engineered to display CarHC variants, which, alongside in situ Cy5 labeling, led to living materials that could assemble and disassemble in response to AdoB12 and red light, respectively. These results illustrate the CarHC spectrally tuned by optical coupling as a versatile motif for dynamically controlling cell-to-cell interactions within engineered living materials. Given their prevalence and ecological diversity in nature, this spectral tuning method will expand the use of B12-dependent photoreceptors in optogenetics and living materials.
Collapse
Affiliation(s)
- Hong Kiu Francis Fok
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Qikun Yi
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Chi Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, 999077, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518036, China
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Research Institute of Tsinghua Pearl River Delta, Guangzhou, 510530, China
| |
Collapse
|
12
|
Nishibe N, Maruta S. Photocontrol of small GTPase Ras fused with a photoresponsive protein. J Biochem 2024; 176:11-21. [PMID: 38366640 DOI: 10.1093/jb/mvae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
The small GTPase Ras plays an important role in intracellular signal transduction and functions as a molecular switch. In this study, we used a photoresponsive protein as the molecular regulatory device to photoregulate Ras GTPase activity. Photo zipper (PZ), a variant of the photoresponsive protein Aureochrome1 developed by Hisatomi et al. was incorporated into the C-terminus of Ras as a fusion protein. The three constructs of the Ras-PZ fusion protein had spacers of different lengths between Ras and PZ. They were designed using an Escherichia coli expression system. The Ras-PZ fusion proteins exhibited photoisomerization upon blue light irradiation and in the dark. Ras-PZ dimerized upon light irradiation. Moreover, Ras GTPase activity, which is accelerated by the Ras regulators guanine nucleotide exchange factors and GTPase-activating proteins, is controlled by photoisomerization. It has been suggested that light-responsive proteins are applicable to the photoswitching of the enzymatic activity of small GTPases as photoregulatory molecular devices.
Collapse
Affiliation(s)
- Nobuyuki Nishibe
- Department of Biosciences, Graduate School of Science and Engineering Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shinsaku Maruta
- Department of Biosciences, Graduate School of Science and Engineering Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
13
|
Allemailem KS, Almatroudi A, Rahmani AH, Alrumaihi F, Alradhi AE, Alsubaiyel AM, Algahtani M, Almousa RM, Mahzari A, Sindi AAA, Dobie G, Khan AA. Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies. Int J Nanomedicine 2024; 19:5335-5363. [PMID: 38859956 PMCID: PMC11164216 DOI: 10.2147/ijn.s455574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | - Rand Mohammad Almousa
- Department of Education, General Directorate of Education, Qassim 52361, Saudi Arabia
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan 82911, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
14
|
Lu Q, Sun Y, Liang Z, Zhang Y, Wang Z, Mei Q. Nano-optogenetics for Disease Therapies. ACS NANO 2024; 18:14123-14144. [PMID: 38768091 DOI: 10.1021/acsnano.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhengbing Liang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhigang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
15
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
16
|
List NH, Jones CM, Martínez TJ. Chemical control of excited-state reactivity of the anionic green fluorescent protein chromophore. Commun Chem 2024; 7:25. [PMID: 38316834 PMCID: PMC10844232 DOI: 10.1038/s42004-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Controlling excited-state reactivity is a long-standing challenge in photochemistry, as a desired pathway may be inaccessible or compete with other unwanted channels. An important example is internal conversion of the anionic green fluorescent protein (GFP) chromophore where non-selective progress along two competing torsional modes (P: phenolate and I: imidazolinone) impairs and enables Z-to-E photoisomerization, respectively. Developing strategies to promote photoisomerization could drive new areas of applications of GFP-like proteins. Motivated by the charge-transfer dichotomy of the torsional modes, we explore chemical substitution on the P-ring of the chromophore as a way to control excited-state pathways and improve photoisomerization. As demonstrated by methoxylation, selective P-twisting appears difficult to achieve because the electron-donating potential effects of the substituents are counteracted by inertial effects that directly retard the motion. Conversely, these effects act in concert to promote I-twisting when introducing electron-withdrawing groups. Specifically, 2,3,5-trifluorination leads to both pathway selectivity and a more direct approach to the I-twisted intersection which, in turn, doubles the photoisomerization quantum yield. Our results suggest P-ring engineering as an effective approach to boost photoisomerization of the anionic GFP chromophore.
Collapse
Affiliation(s)
- Nanna H List
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden.
| | - Chey M Jones
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, CA, 94305, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, CA, 94305, USA.
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
17
|
Lu Y, Chen Y, Zhu Y, Zhao J, Ren K, Lu Z, Li J, Hao Z. Stimuli-Responsive Protein Hydrogels: Their Design, Properties, and Biomedical Applications. Polymers (Basel) 2023; 15:4652. [PMID: 38139904 PMCID: PMC10747532 DOI: 10.3390/polym15244652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-based hydrogels are considered ideal biomaterials due to their high biocompatibility, diverse structure, and their improved bioactivity and biodegradability. However, it remains challenging to mimic the native extracellular matrices that can dynamically respond to environmental stimuli. The combination of stimuli-responsive functionalities with engineered protein hydrogels has facilitated the development of new smart hydrogels with tunable biomechanics and biological properties that are triggered by cyto-compatible stimuli. This review summarizes the recent advancements of responsive hydrogels prepared from engineered proteins and integrated with physical, chemical or biological responsive moieties. We underscore the design principles and fabrication approaches of responsive protein hydrogels, and their biomedical applications in disease treatment, drug delivery, and tissue engineering are briefly discussed. Finally, the current challenges and future perspectives in this field are highlighted.
Collapse
Affiliation(s)
- Yuxuan Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhe Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhan Zhu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jingyi Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ketong Ren
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Zhao Lu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jun Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ziyang Hao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| |
Collapse
|
18
|
Nalbant P, Wagner J, Dehmelt L. Direct investigation of cell contraction signal networks by light-based perturbation methods. Pflugers Arch 2023; 475:1439-1452. [PMID: 37851146 DOI: 10.1007/s00424-023-02864-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Cell contraction plays an important role in many physiological and pathophysiological processes. This includes functions in skeletal, heart, and smooth muscle cells, which lead to highly coordinated contractions of multicellular assemblies, and functions in non-muscle cells, which are often highly localized in subcellular regions and transient in time. While the regulatory processes that control cell contraction in muscle cells are well understood, much less is known about cell contraction in non-muscle cells. In this review, we focus on the mechanisms that control cell contraction in space and time in non-muscle cells, and how they can be investigated by light-based methods. The review particularly focusses on signal networks and cytoskeletal components that together control subcellular contraction patterns to perform functions on the level of cells and tissues, such as directional migration and multicellular rearrangements during development. Key features of light-based methods that enable highly local and fast perturbations are highlighted, and how experimental strategies can capitalize on these features to uncover causal relationships in the complex signal networks that control cell contraction.
Collapse
Affiliation(s)
- Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Room T03 R01 D33, Universitätsstrasse 2, 45141, Essen, Germany.
| | - Jessica Wagner
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Room T03 R01 D33, Universitätsstrasse 2, 45141, Essen, Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology, Fakultät für Chemie und Chemische Biologie, Max Planck Institute of Molecular Physiology, and Dortmund University of Technology, Room CP-02-157, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
19
|
Godbole SS, Dokholyan NV. Allosteric regulation of kinase activity in living cells. eLife 2023; 12:RP90574. [PMID: 37943025 PMCID: PMC10635643 DOI: 10.7554/elife.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities, making it difficult to specifically target one kinase, and allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss the methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or 'sensors,' are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Department of Biomedical Engineering, Penn State University, University ParkHersheyUnited States
- Department of Engineering Science and Mechanics, Penn State University, University ParkHersheyUnited States
- Department of Biochemistry & Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Chemistry, Penn State University, University ParkHersheyUnited States
| |
Collapse
|
20
|
Hutchison CDM, Baxter JM, Fitzpatrick A, Dorlhiac G, Fadini A, Perrett S, Maghlaoui K, Lefèvre SB, Cordon-Preciado V, Ferreira JL, Chukhutsina VU, Garratt D, Barnard J, Galinis G, Glencross F, Morgan RM, Stockton S, Taylor B, Yuan L, Romei MG, Lin CY, Marangos JP, Schmidt M, Chatrchyan V, Buckup T, Morozov D, Park J, Park S, Eom I, Kim M, Jang D, Choi H, Hyun H, Park G, Nango E, Tanaka R, Owada S, Tono K, DePonte DP, Carbajo S, Seaberg M, Aquila A, Boutet S, Barty A, Iwata S, Boxer SG, Groenhof G, van Thor JJ. Optical control of ultrafast structural dynamics in a fluorescent protein. Nat Chem 2023; 15:1607-1615. [PMID: 37563326 PMCID: PMC10624617 DOI: 10.1038/s41557-023-01275-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.
Collapse
Affiliation(s)
| | - James M Baxter
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Ann Fitzpatrick
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Gabriel Dorlhiac
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Alisia Fadini
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Karim Maghlaoui
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Salomé Bodet Lefèvre
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Violeta Cordon-Preciado
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Josie L Ferreira
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Volha U Chukhutsina
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Douglas Garratt
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Jonathan Barnard
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Gediminas Galinis
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Flo Glencross
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Rhodri M Morgan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Sian Stockton
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Ben Taylor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Letong Yuan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jon P Marangos
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Viktoria Chatrchyan
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Heidelberg, Germany
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Dogeun Jang
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Hyeongi Choi
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - HyoJung Hyun
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Eriko Nango
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Daniel P DePonte
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sergio Carbajo
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Matt Seaberg
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Andrew Aquila
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sebastien Boutet
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - So Iwata
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Jasper J van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
21
|
Godbole S, Dokholyan NV. Allosteric regulation of kinase activity in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549709. [PMID: 37503033 PMCID: PMC10370130 DOI: 10.1101/2023.07.19.549709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or "sensors" are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
- Shivani Godbole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
22
|
Mim MS, Knight C, Zartman JJ. Quantitative insights in tissue growth and morphogenesis with optogenetics. Phys Biol 2023; 20:061001. [PMID: 37678266 PMCID: PMC10594237 DOI: 10.1088/1478-3975/acf7a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through the spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.
Collapse
Affiliation(s)
- Mayesha Sahir Mim
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Caroline Knight
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jeremiah J Zartman
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| |
Collapse
|
23
|
Westberg M, Song D, Duong V, Fernandez D, Huang PS, Lin MZ. Photoswitchable binders enable temporal dissection of endogenous protein function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557687. [PMID: 37745504 PMCID: PMC10515898 DOI: 10.1101/2023.09.14.557687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
General methods for spatiotemporal control of specific endogenous proteins would be broadly useful for probing protein function in living cells. Synthetic protein binders that bind and inhibit endogenous protein targets can be obtained from nanobodies, designed ankyrin repeat proteins (DARPins), and other small protein scaffolds, but generalizable methods to control their binding activity are lacking. Here, we report robust single-chain photoswitchable DARPins (psDARPins) for bidirectional optical control of endogenous proteins. We created topological variants of the DARPin scaffold by computer-aided design so fusion of photodissociable dimeric Dronpa (pdDronpa) results in occlusion of target binding at baseline. Cyan light induces pdDronpa dissociation to expose the binding surface (paratope), while violet light restores pdDronpa dimerization and paratope caging. Since the DARPin redesign leaves the paratope intact, the approach was easily applied to existing DARPins for GFP, ERK, and Ras, as demonstrated by relocalizing GFP-family proteins and inhibiting endogenous ERK and Ras with optical control. Finally, a Ras-targeted psDARPin was used to determine that, following EGF-activation of EGFR, Ras is required for sustained EGFR to ERK signaling. In summary, psDARPins provide a generalizable strategy for precise spatiotemporal dissection of endogenous protein function.
Collapse
|
24
|
Pal DS, Lin Y, Zhan H, Banerjee T, Kuhn J, Providence S, Devreotes PN. Optogenetic modulation of guanine nucleotide exchange factors of Ras superfamily proteins directly controls cell shape and movement. Front Cell Dev Biol 2023; 11:1195806. [PMID: 37492221 PMCID: PMC10363612 DOI: 10.3389/fcell.2023.1195806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
In this article, we provide detailed protocols on using optogenetic dimerizers to acutely perturb activities of guanine nucleotide exchange factors (GEFs) specific to Ras, Rac or Rho small GTPases of the migratory networks in various mammalian and amoeba cell lines. These GEFs are crucial components of signal transduction networks which link upstream G-protein coupled receptors to downstream cytoskeletal components and help cells migrate through their dynamic microenvironment. Conventional approaches to perturb and examine these signaling and cytoskeletal networks, such as gene knockout or overexpression, are protracted which allows networks to readjust through gene expression changes. Moreover, these tools lack spatial resolution to probe the effects of local network activations. To overcome these challenges, blue light-inducible cryptochrome- and LOV domain-based dimerization systems have been recently developed to control signaling or cytoskeletal events in a spatiotemporally precise manner. We illustrate that, within minutes of global membrane recruitment of full-length GEFs or their catalytic domains only, widespread increases or decreases in F-actin rich protrusions and cell size occur, depending on the particular node in the networks targeted. Additionally, we demonstrate localized GEF recruitment as a robust assay system to study local network activation-driven changes in polarity and directed migration. Altogether, these optical tools confirmed GEFs of Ras superfamily GTPases as regulators of cell shape, actin dynamics, and polarity. Furthermore, this optogenetic toolbox may be exploited in perturbing complex signaling interactions in varied physiological contexts including mammalian embryogenesis.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jonathan Kuhn
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Stephenie Providence
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Ingenuity Research Program, Baltimore Polytechnic Institute, Baltimore, MD, United States
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
25
|
Clark MG, Ma S, Mahapatra S, Mohn KJ, Zhang C. Chemical-imaging-guided optical manipulation of biomolecules. Front Chem 2023; 11:1198670. [PMID: 37214479 PMCID: PMC10196011 DOI: 10.3389/fchem.2023.1198670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Chemical imaging via advanced optical microscopy technologies has revealed remarkable details of biomolecules in living specimens. However, the ways to control chemical processes in biological samples remain preliminary. The lack of appropriate methods to spatially regulate chemical reactions in live cells in real-time prevents investigation of site-specific molecular behaviors and biological functions. Chemical- and site-specific control of biomolecules requires the detection of chemicals with high specificity and spatially precise modulation of chemical reactions. Laser-scanning optical microscopes offer great platforms for high-speed chemical detection. A closed-loop feedback control system, when paired with a laser scanning microscope, allows real-time precision opto-control (RPOC) of chemical processes for dynamic molecular targets in live cells. In this perspective, we briefly review recent advancements in chemical imaging based on laser scanning microscopy, summarize methods developed for precise optical manipulation, and highlight a recently developed RPOC technology. Furthermore, we discuss future directions of precision opto-control of biomolecules.
Collapse
Affiliation(s)
| | - Seohee Ma
- Department of Chemistry, West Lafayette, IN, United States
| | | | | | - Chi Zhang
- Department of Chemistry, West Lafayette, IN, United States
- Purdue Center for Cancer Research, West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
26
|
Gao TT, Oh T, Mehta K, Huang YA, Camp T, Fan H, Han JW, Barnes CM, Zhang K. The clinical potential of optogenetic interrogation of pathogenesis. Clin Transl Med 2023; 13:e1243. [PMID: 37132114 PMCID: PMC10154842 DOI: 10.1002/ctm2.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye. AIMS AND METHODS This work summarizes the progress of current clinical trials and provides a brief overview of basic structures and photophysics of commonly used photoactivable proteins. We highlight recent achievements such as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system, gene expression, and organelle dynamics. We discuss conceptual innovation and technical challenges faced by current optogenetic research. CONCLUSION In doing so, we provide a framework that showcases ever-growing applications of optogenetics in biomedical research and may inform novel precise medicine strategies based on this enabling technology.
Collapse
Affiliation(s)
- Tianyu Terry Gao
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Teak‐Jung Oh
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kritika Mehta
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Yu‐En Andrew Huang
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
| | - Tyler Camp
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Huaxun Fan
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Jeong Won Han
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Collin Michael Barnes
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kai Zhang
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
27
|
Wu Y, Walker JR, Westberg M, Ning L, Monje M, Kirkland TA, Lin MZ, Su Y. Kinase-Modulated Bioluminescent Indicators Enable Noninvasive Imaging of Drug Activity in the Brain. ACS CENTRAL SCIENCE 2023; 9:719-732. [PMID: 37122464 PMCID: PMC10141594 DOI: 10.1021/acscentsci.3c00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 05/03/2023]
Abstract
Aberrant kinase activity contributes to the pathogenesis of brain cancers, neurodegeneration, and neuropsychiatric diseases, but identifying kinase inhibitors that function in the brain is challenging. Drug levels in blood do not predict efficacy in the brain because the blood-brain barrier prevents entry of most compounds. Rather, assessing kinase inhibition in the brain requires tissue dissection and biochemical analysis, a time-consuming and resource-intensive process. Here, we report kinase-modulated bioluminescent indicators (KiMBIs) for noninvasive longitudinal imaging of drug activity in the brain based on a recently optimized luciferase-luciferin system. We develop an ERK KiMBI to report inhibitors of the Ras-Raf-MEK-ERK pathway, for which no bioluminescent indicators previously existed. ERK KiMBI discriminates between brain-penetrant and nonpenetrant MEK inhibitors, reveals blood-tumor barrier leakiness in xenograft models, and reports MEK inhibitor pharmacodynamics in native brain tissues and intracranial xenografts. Finally, we use ERK KiMBI to screen ERK inhibitors for brain efficacy, identifying temuterkib as a promising brain-active ERK inhibitor, a result not predicted from chemical characteristics alone. Thus, KiMBIs enable the rapid identification and pharmacodynamic characterization of kinase inhibitors suitable for treating brain diseases.
Collapse
Affiliation(s)
- Yan Wu
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Joel R. Walker
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Westberg
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Lin Ning
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Michelle Monje
- Department
of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
- Howard Hughes
Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Thomas A. Kirkland
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Z. Lin
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department
of Chemical and Systems Biology, Stanford
University, Stanford, California 94305, United States
| | - Yichi Su
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Allemailem KS, Almatroodi SA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Al-Megrin WAI, Aljamaan AN, Rahmani AH, Khan AA. Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. Int J Mol Sci 2023; 24:7052. [PMID: 37108214 PMCID: PMC10139162 DOI: 10.3390/ijms24087052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
29
|
Nadendla K, Simpson GG, Becher J, Journeaux T, Cabeza-Cabrerizo M, Bernardes GJL. Strategies for Conditional Regulation of Proteins. JACS AU 2023; 3:344-357. [PMID: 36873677 PMCID: PMC9975842 DOI: 10.1021/jacsau.2c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Design of the next-generation of therapeutics, biosensors, and molecular tools for basic research requires that we bring protein activity under control. Each protein has unique properties, and therefore, it is critical to tailor the current techniques to develop new regulatory methods and regulate new proteins of interest (POIs). This perspective gives an overview of the widely used stimuli and synthetic and natural methods for conditional regulation of proteins.
Collapse
Affiliation(s)
- Karthik Nadendla
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Grant G. Simpson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Julie Becher
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Toby Journeaux
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Mar Cabeza-Cabrerizo
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
30
|
Liu Q, Huang Y, Li L, Li Z, Li M. Endogenous Enzyme-Operated Spherical Nucleic Acids for Cell-Selective Protein Capture and Localization Regulation. Angew Chem Int Ed Engl 2023; 62:e202214958. [PMID: 36788111 DOI: 10.1002/anie.202214958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Precise regulation of protein activity and localization in cancer cells is crucial to dissect the function of the protein-involved cellular network in tumorigenesis, but there is a lack of suitable methodology. Here we report the design of enzyme-operated spherical nucleic acids (E-SNAs) for manipulation of the nucleocytoplasmic translocation of proteins with cancer-cell selectivity. The E-SNAs are constructed by programmable engineering of aptamer-based modules bearing enzyme-responsive units in predesigned sites and further combination with SNA nanotechnology. We demonstrate that E-SNAs are able to regulate cytoplasmic-to-nuclear shuttling of RelA protein efficiently and specifically in tumor cells, while they remain inactive in normal cells due to insufficient enzyme expression. We further confirmed the generality of this strategy by investigating the enzyme-modulated inhibition/activation of thrombin activity by varying the aptamer-based design.
Collapse
Affiliation(s)
- Qing Liu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
31
|
Brown W, Galpin JD, Rosenblum C, Tsang M, Ahern CA, Deiters A. Chemically Acylated tRNAs are Functional in Zebrafish Embryos. J Am Chem Soc 2023; 145:2414-2420. [PMID: 36669466 PMCID: PMC10155198 DOI: 10.1021/jacs.2c11452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genetic code expansion has pushed protein chemistry past the canonical 22 amino acids. The key enzymes that make this possible are engineered aminoacyl tRNA synthetases. However, as the number of genetically encoded amino acids has increased over the years, obvious limits in the type and size of novel side chains that can be accommodated by the synthetase enzyme become apparent. Here, we show that chemically acylating tRNAs allow for robust, site-specific incorporation of unnatural amino acids into proteins in zebrafish embryos, an important model organism for human health and development. We apply this approach to incorporate a unique photocaged histidine analogue for which synthetase engineering efforts have failed. Additionally, we demonstrate optical control over different enzymes in live embryos by installing photocaged histidine into their active sites.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
32
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
33
|
Lan TH, He L, Huang Y, Zhou Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet 2022; 38:1253-1270. [PMID: 35738948 PMCID: PMC10484296 DOI: 10.1016/j.tig.2022.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
Collapse
Affiliation(s)
- Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Liu L, Sui R, Li L, Zhang L, Zeng D, Ni X, Sun J. Light Activates Cdc42-Mediated Needle-Shaped Filopodia Formation via the Integration of Small GTPases. Cell Mol Bioeng 2022; 15:599-609. [PMID: 36531863 PMCID: PMC9751244 DOI: 10.1007/s12195-022-00743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Cdc42 has been linked to multiple human cancers and is implicated in the migration of cancer cells. Cdc42 could be activated via biochemical and biophysical factors in tumor microenvironment, the precise control of Cdc42 was essential to determine its role to cell behaviors. Needle-shaped protrusions (filopodia) could sense the extracellular biochemical cues and pave the path for cell movement, which was a key structure involved in the regulation of cancer cell motility. Methods We used the photoactivatable Cdc42 to elucidate the breast cancer cell protrusions, the mutation of Cdc42 was to confirm the optogenetic results. We also inhibit the Cdc42, Rac or Rho respectively by the corresponding inhibitors. Results We identified that the activation of Cdc42 by light could greatly enhance the formation of filopodia, which was positive for the contribution of cell movement. The expression of Cdc42 active form Cdc42-Q61L in cells resulted in the longer and more filopodia while the Cdc42 inactive form Cdc42-T17N were with the shorter and less filopodia. Moreover, the inhibition of Cdc42, Rac or Rho all significantly reduced the filopodia numbers and length in the co-expression of Cdc42-Q61L, which showed that the integration of small GTPases was necessary in the formation of filopodia. Furthermore, photoactivation of Cdc42 failed to enhance the filopodia formation with the inhibition of Rac or Rho. However, with the inhibition of Cdc42, the photoactivation of Cdc42 could partially recover back the filopodia formations, which indicated that the integration of small GTPases was key for the filopodia formations. Conclusions Our work highlights that light activates Cdc42 is sufficient to promote filopodia formation without the destructive structures of small GTPases, it not only points out the novel technique to determine cell structure formations but also provides the experimental basis for the efficient small GTPases-based anti-cancer strategies.
Collapse
Affiliation(s)
- Lingling Liu
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Ran Sui
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lianxin Li
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lin Zhang
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jinghui Sun
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| |
Collapse
|
35
|
Husser MC, Ozugergin I, Resta T, Martin VJJ, Piekny AJ. Cytokinetic diversity in mammalian cells is revealed by the characterization of endogenous anillin, Ect2 and RhoA. Open Biol 2022; 12:220247. [PMID: 36416720 PMCID: PMC9683116 DOI: 10.1098/rsob.220247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells. Over-expression can introduce artefacts, while HeLa are cancerous human cells that have lost their epithelial identity, and the mechanisms controlling cytokinesis in these cells could be vastly different from other cell types. Here, we tagged endogenous anillin, Ect2 and RhoA with mNeonGreen and characterized their localization during cytokinesis for the first time in live human cells. Comparing anillin localization in multiple cell types revealed cytokinetic diversity with differences in the duration and symmetry of ring closure, and the timing of cortical recruitment. Our findings show that the breadth of anillin correlates with the rate of ring closure, and support models where cell size or ploidy affects the cortical organization, and intrinsic mechanisms control the symmetry of ring closure. This work highlights the need to study cytokinesis in more diverse cell types, which will be facilitated by the reagents generated for this study.
Collapse
Affiliation(s)
| | - Imge Ozugergin
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Tiziana Resta
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada
| | - Alisa J. Piekny
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada,Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Plug-and-Display Photo-Switchable Systems on Plant Virus Nanoparticles. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040049. [PMID: 36278561 PMCID: PMC9589989 DOI: 10.3390/biotech11040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Light can be used to regulate protein interactions with a high degree of spatial and temporal precision. Photo-switchable systems therefore allow the development of controllable protein complexes that can influence various cellular and molecular processes. Here, we describe a plant virus-based nanoparticle shuttle for the distribution of proteins that can be released when exposed to light. Potato virus X (PVX) is often used as a presentation system for heterologous proteins and epitopes, and has ideal properties for biomedical applications such as good tissue penetration and the ability to form hydrogels that present signaling molecules and promote cell adhesion. In this study, we describe three different systems attached to the surface of PVX particles: LOVTRAP, BphP1/QPAS1 and Dronpa145N. We demonstrated the functionality of all three photo-switchable protein complexes in vitro and the successful loading and unloading of PVX particles. The new systems provide the basis for promising applications in the biomedical and biomaterial sciences.
Collapse
|
37
|
A photo-switchable assay system for dendrite degeneration and repair in Drosophila melanogaster. Proc Natl Acad Sci U S A 2022; 119:e2204577119. [PMID: 35969739 PMCID: PMC9407391 DOI: 10.1073/pnas.2204577119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurodegeneration arising from aging, injury, or diseases has devastating health consequences. Whereas neuronal survival and axon degeneration have been studied extensively, much less is known about how neurodegeneration affects dendrites, in part due to the limited assay systems available. To develop an assay for dendrite degeneration and repair, we used photo-switchable caspase-3 (caspase-Light-Oxygen-Voltage-sensing [caspase-LOV]) in peripheral class 4 dendrite arborization (c4da) neurons to induce graded neurodegeneration by adjusting illumination duration during development and adulthood in Drosophila melanogaster. We found that both developing and mature c4da neurons were able to survive while sustaining mild neurodegeneration induced by moderate caspase-LOV activation. Further, we observed active dendrite addition and dendrite regeneration in developing and mature c4da neurons, respectively. Using this assay, we found that the mouse Wallerian degeneration slow (WldS) protein can protect c4da neurons from caspase-LOV-induced dendrite degeneration and cell death. Furthermore, our data show that WldS can reduce dendrite elimination without affecting dendrite addition. In summary, we successfully established a photo-switchable assay system in both developing and mature neurons and used WldS as a test case to study the mechanisms underlying dendrite regeneration and repair.
Collapse
|
38
|
Chen B, Cui M, Wang Y, Shi P, Wang H, Wang F. Recent advances in cellular optogenetics for photomedicine. Adv Drug Deliv Rev 2022; 188:114457. [PMID: 35843507 DOI: 10.1016/j.addr.2022.114457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Meihui Cui
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
39
|
Ju J, Lee HN, Ning L, Ryu H, Zhou XX, Chun H, Lee YW, Lee-Richerson AI, Jeong C, Lin MZ, Seong J. Optical regulation of endogenous RhoA reveals selection of cellular responses by signal amplitude. Cell Rep 2022; 40:111080. [PMID: 35830815 DOI: 10.1016/j.celrep.2022.111080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022] Open
Abstract
How protein signaling networks respond to different input strengths is an important but poorly understood problem in cell biology. For example, RhoA can promote focal adhesion (FA) growth or disassembly, but how RhoA activity mediates these opposite outcomes is not clear. Here, we develop a photoswitchable RhoA guanine nucleotide exchange factor (GEF), psRhoGEF, to precisely control endogenous RhoA activity. Using this optical tool, we discover that peak FA disassembly selectively occurs upon activation of RhoA to submaximal levels. We also find that Src activation at FAs selectively occurs upon submaximal RhoA activation, identifying Src as an amplitude-dependent RhoA effector. Finally, a pharmacological Src inhibitor reverses the direction of the FA response to RhoA activation from disassembly to growth, demonstrating that Src functions to suppress FA growth upon RhoA activation. Thus, rheostatic control of RhoA activation by psRhoGEF reveals that cells can use signal amplitude to produce multiple responses to a single biochemical signal.
Collapse
Affiliation(s)
- Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Lin Ning
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Hyunjoo Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Xin X Zhou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Hyeyeon Chun
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yong Woo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | | | - Cherlhyun Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Republic of Korea; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Zhang J, Zhao P, Li W, Ye L, Li L, Li Z, Li M. Near-Infrared Light-Activatable Spherical Nucleic Acids for Conditional Control of Protein Activity. Angew Chem Int Ed Engl 2022; 61:e202117562. [PMID: 35191157 DOI: 10.1002/anie.202117562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/05/2022]
Abstract
Optical control of protein activity represents a promising strategy for precise modulation of biological processes. We report rationally designed, aptamer-based spherical nucleic acids (SNAs) capable of noninvasive and programmable regulation of target protein activity by deep-tissue-penetrable near-infrared (NIR) light. The photoresponsive SNAs are constructed by integrating activatable aptamer modules onto the surface of upconversion nanoparticles. The SNAs remain inert but can be remotely reverted by NIR light irradiation to capture the target protein and thus function as an enzyme inhibitor, while introduction of antidote DNA could further reverse their inhibition functions. Furthermore, we demonstrate the potential of the SNAs as controllable anticoagulants for the NIR light-triggered regulation of thrombin function. Ultimately, the availability of diverse aptamers would allow the design to regulate the activities of various proteins in a programmable manner.
Collapse
Affiliation(s)
- Jingfang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peng Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wenzhe Li
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ling Ye
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
41
|
Baumschlager A. Engineering Light-Control in Biology. Front Bioeng Biotechnol 2022; 10:901300. [PMID: 35573251 PMCID: PMC9096073 DOI: 10.3389/fbioe.2022.901300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Unraveling the transformative power of optogenetics in biology requires sophisticated engineering for the creation and optimization of light-regulatable proteins. In addition, diverse strategies have been used for the tuning of these light-sensitive regulators. This review highlights different protein engineering and synthetic biology approaches, which might aid in the development and optimization of novel optogenetic proteins (Opto-proteins). Focusing on non-neuronal optogenetics, chromophore availability, general strategies for creating light-controllable functions, modification of the photosensitive domains and their fusion to effector domains, as well as tuning concepts for Opto-proteins are discussed. Thus, this review shall not serve as an encyclopedic summary of light-sensitive regulators but aims at discussing important aspects for the engineering of light-controllable proteins through selected examples.
Collapse
Affiliation(s)
- Armin Baumschlager
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
| |
Collapse
|
42
|
Zhang J, Zhao P, Li W, Ye L, Li L, Li Z, Li M. Near‐Infrared Light‐Activatable Spherical Nucleic Acids for Conditional Control of Protein Activity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingfang Zhang
- School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Peng Zhao
- School of Pharmaceutical Sciences Capital Medical University Beijing 100069 China
| | - Wenzhe Li
- School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Ling Ye
- School of Pharmaceutical Sciences Capital Medical University Beijing 100069 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
| | - Zhengping Li
- School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
43
|
Hasanzadeh A, Noori H, Jahandideh A, Haeri Moghaddam N, Kamrani Mousavi SM, Nourizadeh H, Saeedi S, Karimi M, Hamblin MR. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS APPLIED BIO MATERIALS 2022; 5:413-437. [PMID: 35040621 DOI: 10.1021/acsabm.1c01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of CRISPR/Cas technology has enabled scientists to precisely edit genomic DNA sequences. This approach can be used to modulate gene expression for the treatment of genetic disorders and incurable diseases such as cancer. This potent genome-editing tool is based on a single guide RNA (sgRNA) strand that recognizes the targeted DNA, plus a Cas nuclease protein for binding and processing the target. CRISPR/Cas has great potential for editing many genes in different types of cells and organisms both in vitro and in vivo. Despite these remarkable advances, the risk of off-target effects has hindered the translation of CRISPR/Cas technology into clinical applications. To overcome this hurdle, researchers have devised gene regulatory systems that can be controlled in a spatiotemporal manner, by designing special sgRNA, Cas, and CRISPR/Cas delivery vehicles that are responsive to different stimuli, such as temperature, light, magnetic fields, ultrasound (US), pH, redox, and enzymatic activity. These systems can even respond to dual or multiple stimuli simultaneously, thereby providing superior spatial and temporal control over CRISPR/Cas gene editing. Herein, we summarize the latest advances on smart sgRNA, Cas, and CRISPR/Cas nanocarriers, categorized according to their stimulus type (physical, chemical, or biological).
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Atefeh Jahandideh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Niloofar Haeri Moghaddam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyede Mahtab Kamrani Mousavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
44
|
Kleist TJ, Bortolazzo A, Keyser ZP, Perera AM, Irving TB, Venkateshwaran M, Atanjaoui F, Tang RJ, Maeda J, Cartwright HN, Christianson ML, Lemaux PG, Luan S, Ané JM. Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway. iScience 2022; 25:103754. [PMID: 35146383 PMCID: PMC8819110 DOI: 10.1016/j.isci.2022.103754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Abstract
Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming.
Collapse
Affiliation(s)
- Thomas J. Kleist
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Plant Biology, Carnegie Institute for Science, Stanford, CA 94305, USA
- Institute for Molecular Physiology, Department of Biology, Heinrich Heine University, Düsseldorf 40225, Germany
- Corresponding author
| | - Anthony Bortolazzo
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zachary P. Keyser
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adele M. Perera
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Thomas B. Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Fatiha Atanjaoui
- Institute for Molecular Physiology, Department of Biology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Ren-Jie Tang
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heather N. Cartwright
- Department of Plant Biology, Carnegie Institute for Science, Stanford, CA 94305, USA
| | - Michael L. Christianson
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Peggy G. Lemaux
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Sheng Luan
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Corresponding author
| |
Collapse
|
45
|
Temperature-responsive optogenetic probes of cell signaling. Nat Chem Biol 2022; 18:152-160. [PMID: 34937907 PMCID: PMC9252025 DOI: 10.1038/s41589-021-00917-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
We describe single-component optogenetic probes whose activation dynamics depend on both light and temperature. We used the BcLOV4 photoreceptor to stimulate Ras and phosphatidyl inositol-3-kinase signaling in mammalian cells, allowing activation over a large dynamic range with low basal levels. Surprisingly, we found that BcLOV4 membrane translocation dynamics could be tuned by both light and temperature such that membrane localization spontaneously decayed at elevated temperatures despite constant illumination. Quantitative modeling predicted BcLOV4 activation dynamics across a range of light and temperature inputs and thus provides an experimental roadmap for BcLOV4-based probes. BcLOV4 drove strong and stable signal activation in both zebrafish and fly cells, and thermal inactivation provided a means to multiplex distinct blue-light sensitive tools in individual mammalian cells. BcLOV4 is thus a versatile photosensor with unique light and temperature sensitivity that enables straightforward generation of broadly applicable optogenetic tools.
Collapse
|
46
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
47
|
Bansal A, Shikha S, Zhang Y. Towards translational optogenetics. Nat Biomed Eng 2022; 7:349-369. [PMID: 35027688 DOI: 10.1038/s41551-021-00829-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,NUS Suzhou Research Institute, Suzhou, Jiangsu, P. R. China.
| |
Collapse
|
48
|
Lehtinen K, Nokia MS, Takala H. Red Light Optogenetics in Neuroscience. Front Cell Neurosci 2022; 15:778900. [PMID: 35046775 PMCID: PMC8761848 DOI: 10.3389/fncel.2021.778900] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic tools are operated with blue, green, or yellow light, which all have limited penetration in biological tissues compared to red light and especially infrared light. This difference is significant, especially considering the size of the rodent brain, a major research model in neuroscience. Our review will focus on the utilization of red light-operated optogenetic tools in neuroscience. We first outline the advantages of red light for in vivo studies. Then we provide a brief overview of the red light-activated optogenetic proteins and systems with a focus on new developments in the field. Finally, we will highlight different tools and applications, which further facilitate the use of red light optogenetics in neuroscience.
Collapse
Affiliation(s)
- Kimmo Lehtinen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam S. Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
49
|
Bourke AM, Kennedy MJ. Spatial and Temporal Control of Protein Secretion with Light. Methods Mol Biol 2022; 2473:29-45. [PMID: 35819757 PMCID: PMC10907983 DOI: 10.1007/978-1-0716-2209-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
How newly synthesized integral membrane proteins and secreted factors are sorted and trafficked to the appropriate location in different cell types remains an important problem in cell biology. One powerful approach for elucidating the trafficking route of a specific protein is to sequester it following synthesis in the endoplasmic reticulum and trigger its release with an externally applied cue. Combined with fluorescent probes, this approach can be used to directly visualize each trafficking step as cargo molecules progress through the different organelles of the secretory network. Here, we discuss design strategies and practical implementation of an inducible protein secretion system we recently developed (zapalog mediated ER trap: zapERtrap) that allows one to use light to initiate secretory trafficking from targeted cells or subcellular domains. We provide detailed protocols for experiments using this approach to visualize protein trafficking from the endoplasmic reticulum to the plasma membrane in fibroblast cell lines and primary cultured neurons.
Collapse
Affiliation(s)
- Ashley M Bourke
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
50
|
Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nat Biotechnol 2022; 40:598-605. [PMID: 34845372 PMCID: PMC9005348 DOI: 10.1038/s41587-021-01100-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Reversibly photo-switchable proteins are essential for many super-resolution fluorescence microscopic and optoacoustic imaging methods. However, they have yet to be used as sensors that measure the distribution of specific analytes at the nanoscale or in the tissues of live animals. Here we constructed the prototype of a photo-switchable Ca2+ sensor based on GCaMP5G that can be switched with 405/488-nm light and describe its molecular mechanisms at the structural level, including the importance of the interaction of the core barrel structure of the fluorescent protein with the Ca2+ receptor moiety. We demonstrate super-resolution imaging of Ca2+ concentration in cultured cells and optoacoustic Ca2+ imaging in implanted tumor cells in mice under controlled Ca2+ conditions. Finally, we show the generalizability of the concept by constructing examples of photo-switching maltose and dopamine sensors based on periplasmatic binding protein and G-protein-coupled receptor-based sensors.
Collapse
|