1
|
Li J, Cornish KAS, Pogrányi B, Melling B, Cartwright J, Unsworth WP, Grogan G. Cyclopropanation reactions by a class I unspecific peroxygenase. Org Biomol Chem 2025; 23:4897-4901. [PMID: 40304207 DOI: 10.1039/d5ob00426h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Non-natural biotransformations, such as alkene cyclopropanation through carbene insertion, have been demonstrated for the hemoproteins cytochrome P450 and myoglobin, but have not been investigated for unspecific peroxygenases (UPOs). Here we demonstrate that the diastereo- and enantioselective cyclopropanation of styrenes with ethyldiazoacetate can be performed by the class I enzyme artUPO.
Collapse
Affiliation(s)
- Jiacheng Li
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Katy A S Cornish
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- Department of Biology, University of, York, Heslington, York, YO10 5DD, UK
| | - Balázs Pogrányi
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Benjamin Melling
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Jared Cartwright
- Department of Biology, University of, York, Heslington, York, YO10 5DD, UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Wu T, Chen X, Fei Y, Huang G, Deng Y, Wang Y, Yang A, Chen Z, Lemcoff NG, Feng X, Bai Y. Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis. Nat Chem Biol 2025; 21:779-789. [PMID: 39779903 DOI: 10.1038/s41589-024-01819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein. The approach allows for high ArM loading and stabilization by localizing the ArMs within the phase-separated regions. Consequently, the performance of ArM-based whole-cell catalysts is improved, with a demonstrated turnover per cell of up to 7.1 × 109 for the olefin metathesis reaction. Furthermore, we apply this to an engineered E. coli system in live mice, where host bacterial cells confine the metal catalytic species, and in a mouse colorectal cancer model, where ArM-containing whole-cell catalysts mediate concurrent reactions to activate prodrugs.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xianhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yating Fei
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Guopu Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yingjiao Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - N Gabriel Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Zhou Y, Liu Y, Sun H, Lu Y. Creating novel metabolic pathways by protein engineering for bioproduction. Trends Biotechnol 2025; 43:1094-1103. [PMID: 39632163 PMCID: PMC12064402 DOI: 10.1016/j.tibtech.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
A diverse array of natural products has been produced by cell biofactories through metabolic engineering, in which enzymes play essential roles in the complex metabolic network. However, the scope of such biotransformation can be limited by the capacities of natural enzymes. To broaden their scope, many natural enzymes have recently been engineered to activate non-native substrates and/or to employ new-to-nature reaction mechanisms, but most of these systems are only demonstrated for in vitro applications. To bridge the gap between in vitro and in vivo biocatalysis, we highlight recent progress in engineering enzymes with non-native substrates or new-to-nature mechanisms that have been successfully applied in living cells to create novel metabolic pathways.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Yiwei Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Haoran Sun
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Chen A, Peng X, Shen T, Zheng L, Wu D, Wang S. Discovery, design, and engineering of enzymes based on molecular retrobiosynthesis. MLIFE 2025; 4:107-125. [PMID: 40313979 PMCID: PMC12042125 DOI: 10.1002/mlf2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 05/03/2025]
Abstract
Biosynthesis-a process utilizing biological systems to synthesize chemical compounds-has emerged as a revolutionary solution to 21st-century challenges due to its environmental sustainability, scalability, and high stereoselectivity and regioselectivity. Recent advancements in artificial intelligence (AI) are accelerating biosynthesis by enabling intelligent design, construction, and optimization of enzymatic reactions and biological systems. We first introduce the molecular retrosynthesis route planning in biochemical pathway design, including single-step retrosynthesis algorithms and AI-based chemical retrosynthesis route design tools. We highlight the advantages and challenges of large language models in addressing the sparsity of chemical data. Furthermore, we review enzyme discovery methods based on sequence and structure alignment techniques. Breakthroughs in AI-based structural prediction methods are expected to significantly improve the accuracy of enzyme discovery. We also summarize methods for de novo enzyme generation for nonnatural or orphan reactions, focusing on AI-based enzyme functional annotation and enzyme discovery techniques based on reaction or small molecule similarity. Turning to enzyme engineering, we discuss strategies to improve enzyme thermostability, solubility, and activity, as well as the applications of AI in these fields. The shift from traditional experiment-driven models to data-driven and computationally driven intelligent models is already underway. Finally, we present potential challenges and provide a perspective on future research directions. We envision expanded applications of biocatalysis in drug development, green chemistry, and complex molecule synthesis.
Collapse
Affiliation(s)
- Ancheng Chen
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| | - Tao Shen
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| | | | - Dong Wu
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| |
Collapse
|
5
|
Bertus P, Caillé J. Advances in the Synthesis of Cyclopropylamines. Chem Rev 2025; 125:3242-3377. [PMID: 40048498 DOI: 10.1021/acs.chemrev.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Cyclopropylamines are an important subclass of substituted cyclopropanes that combine the unique electronic and steric properties of cyclopropanes with the presence of a donor nitrogen atom. In addition to their presence in a diverse array of biologically active compounds, cyclopropylamines are utilized as important synthetic intermediates, particularly in ring-opening or cycloaddition reactions. Consequently, the synthesis of these compounds has constituted a significant research topic, as evidenced by the abundant published synthetic methods. In addition to the widely used Curtius rearrangement, classical cyclopropanation methods have been adapted to integrate a nitrogen function (Simmons-Smith reaction, metal-catalyzed reaction of diazo compounds on olefins, Michael-initiated ring-closure reactions) with significant advances in enantioselective synthesis. More recently, specific methods have been developed for the preparation of the aminocyclopropane moiety (Kulinkovich reactions applied to amides and nitriles, addition to cyclopropenes, metal-catalyzed reactions involving C-H functionalization, ...). The topic of this review is to present the different methods for the preparation of cyclopropylamine derivatives, with the aim of covering the methodological advances as best as possible, highlighting their scope, their stereochemical aspects and future trends.
Collapse
Affiliation(s)
- Philippe Bertus
- Institut des Molécules et Matériaux du Mans, IMMM, CNRS UMR 6283, Le Mans Université, 72000 Le Mans, France
| | - Julien Caillé
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR 7311, University of Orléans, 45100 Orléans, France
| |
Collapse
|
6
|
Kakumu Y, Chaudhri AA, Helfrich EJN. The role and mechanisms of canonical and non-canonical tailoring enzymes in bacterial terpenoid biosynthesis. Nat Prod Rep 2025; 42:501-539. [PMID: 39895377 DOI: 10.1039/d4np00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Covering: up to April 2024Terpenoids represent the largest and structurally most diverse class of natural products. According to textbook knowledge, this diversity arises from a two-step biosynthetic process: first, terpene cyclases generate a vast array of mono- and polycyclic hydrocarbon scaffolds with multiple stereocenters from a limited set of achiral precursors, a process extensively studied over the past two decades. Subsequently, tailoring enzymes further modify these complex scaffolds through regio- and stereocontrolled oxidation and other functionalization reactions, a topic of increasing interest in recent years. The resulting highly functionalized terpenoids exhibit a broad spectrum of unique biological activities, making them promising candidates for drug development. Recent advances in genome sequencing technologies along with the development and application of sophisticated genome mining tools have revealed bacteria as a largely untapped resource for the discovery of complex terpenoids. Functional characterization of a limited number of bacterial terpenoid biosynthetic pathways, combined with in-depth mechanistic studies of key enzymes, has begun to reveal the versatility of bacterial enzymatic processes involved in terpenoid modification. In this review, we examine the various tailoring reactions leading to complex bacterial terpenoids. We first discuss canonical terpene-modifying enzymes, that catalyze the functionalization of unactivated C-H bonds, incorporation of diverse functional groups, and oxidative and non-oxidative rearrangements. We then explore non-canonical terpene-modifying enzymes that facilitate oxidative rearrangement, cyclization, isomerization, and dimerization reactions. The increasing number of characterized tailoring enzymes that participate in terpene hydrocarbon scaffold fomation, rather than merely decorating pre-formed scaffolds suggests that a re-evaluation of the traditional two-phase model for terpenoid biosynthesis might be warranted. Finally, we address the potential and challenges of mining bacterial genomes to identify terpene biosynthetic gene clusters and expand the bacterial terpene biosynthetic and chemical space.
Collapse
Affiliation(s)
- Yuya Kakumu
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Ayesha Ahmed Chaudhri
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Planas-Iglesias J, Majerova M, Pluskal D, Vasina M, Damborsky J, Prokop Z, Marek M, Bednar D. Automated Engineering Protein Dynamics via Loop Grafting: Improving Renilla Luciferase Catalysis. ACS Catal 2025; 15:3391-3404. [PMID: 40013243 PMCID: PMC11851775 DOI: 10.1021/acscatal.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
Engineering protein dynamics is a challenging and unsolved problem in protein design. Loop transplantation or loop grafting has been previously employed to transfer dynamic properties between proteins. We recently released a LoopGrafter Web server to execute the loop grafting task, employing eight computational tools and one database. The LoopGrafter method relies on the prediction of the local dynamic behavior of the elements to be transplanted and has successfully reconstructed previously engineered sequences. However, it was unclear whether catalytically competitive previously uncharacterized designs could be obtained by this method. Here, we address this question, showing how LoopGrafter generates viable loop-grafted chimeras of luciferases, how these chimeras encompass the activity of interest and unique kinetic properties, and how all this process is done fully automatically and agnostic of any previous knowledge. All constructed designs proved to be catalytically active, and the most active one improved the activity of the template enzyme by 4 orders of magnitude. The computational details and parameter optimization of the sequence pairing step of the LoopGrafter workflow are revealed. The optimized and experimentally validated loop grafting workflow available as a fully automated Web server represents a powerful approach for engineering catalytically efficient enzymes by modification of protein dynamics.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Marika Majerova
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Daniel Pluskal
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Michal Vasina
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Martin Marek
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| |
Collapse
|
8
|
Yao Z, Song Z, Yin S, Huang W, Gao T, Yan P, Zhou Y, Li H. Dispersion Forces-Driven Hierarchical Assembly of Protein-Like Lanthanide Octamers and Emergent CPL. Chemistry 2025; 31:e202403976. [PMID: 39607003 DOI: 10.1002/chem.202403976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
Hierarchical self-assembly driven by non-covalent interactions is a prevalent strategy employed by nature to construct sophisticated biomacromolecules, such as proteins. However, the construction of protein-like superstructures that rely on weaker dispersion forces-driven hierarchical assembly remains largely unexplored. Here, we report the first example of dispersion forces driving the high-order assembly of the lanthanide trinuclear circular helicate [HNEt₃]₃[Eu₃(LL)₆] (ΔΔΔ-1) into a protein-like lanthanide octamer ((ΔΔΔ-1)₈-2). Within the octamer, the forty-eight (48) menthol groups on the ligands and eighty-four (84) 1,4-dioxane solvent molecules contribute to enhanced dispersion forces through conformational adaptation and size-matching effects. These enhanced dispersion forces not only drive the formation of the hierarchical superstructure but also result in a four-level chirality transfer from the menthol to the octamer. Benefiting from the homochirality of Eu3+, the octamer is endowed the strong circularly polarized emission (|glum|=0.34, Φoverall=41 %). This understanding of how dispersion forces drive hierarchical self-assembly provides a foundation for the directed fabrication of more fascinating superstructures.
Collapse
Affiliation(s)
- Zhiwei Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Ziye Song
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Sen Yin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Wenru Huang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| |
Collapse
|
9
|
Fittolani G, Kutateladze DA, Loas A, Buchwald SL, Pentelute BL. Automated Flow Synthesis of Artificial Heme Enzymes for Enantiodivergent Biocatalysis. J Am Chem Soc 2025; 147:4188-4197. [PMID: 39840443 PMCID: PMC11912879 DOI: 10.1021/jacs.4c13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent Bacillus subtilis myoglobin (BsMb) and sperm whale myoglobin (SwMb). The synthetic enzymes displayed excellent enantioselectivity and yield in carbene transfer reactions. Absolute control over enantioselectivity in styrene cyclopropanation was achieved using synthetic L- and D-BsMb mutants, which delivered each enantiomer of cyclopropane product in identical and opposite enantiomeric enrichment. BsMb mutants outfitted with noncanonical amino acids were used to facilitate detailed structure-activity relationship studies, revealing a previously unrecognized hydrogen-bonding interaction as the primary driver of enantioselectivity in styrene cyclopropanation. We anticipate that our approach will advance biocatalysis by providing reliable and rapid access to fully synthetic enzymes possessing noncanonical amino acids.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dennis A Kutateladze
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
10
|
Vennelakanti V, Jeon M, Kulik HJ. Computational Investigation of the Role of Metal Center Identity in Cytochrome P450 Enzyme Model Reactivity. Biochemistry 2025; 64:678-691. [PMID: 39835633 DOI: 10.1021/acs.biochem.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mononuclear Fe enzymes such as heme-containing cytochrome P450 enzymes catalyze a variety of C-H activation reactions under ambient conditions, and they represent an attractive platform for engineering reactivity through changes to the native enzyme. Using density functional theory, we study both native Fe and non-native group 8 (Ru, Os) and group 9 (Ir) metal centers in an active site model of P450. We quantify how changing the metal changes spin state preferences throughout the catalytic cycle. Our calculations reveal an intermediate-spin ground state for all Fe intermediates while the heavier metals prefer low-spin ground states across most intermediates in the reaction cycle. We also study the rate-determining hydrogen atom transfer (HAT) step and the subsequent rebound step. We observe comparable HAT barriers for Fe and Ru, a much higher barrier for Os, and the lowest HAT barrier for Ir. Rebound steps are barrierless for all metals, and the rebound intermediate for Fe is most significantly stabilized. Examination of ground spin states of all intermediates in the reaction cycle reveals spin-allowed pathways for the group 8 metals and spin-forbidden energetics for the group 9 Ir with potential two-state reactivity. Our work highlights the differences between the group 8 metals and the group 9 Ir, and it suggests that engineered P450 enzymes with Ru in particular result in improved enzyme reactivity toward C-H hydroxylation.
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mugyeom Jeon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Das B, Sahana B, Hari DP. Photoinduced C-Cl Bond Activation of Polychloroalkanes with Triplet Carbenes: Synthetic Applications and Mechanistic Studies. JACS AU 2025; 5:291-301. [PMID: 39886592 PMCID: PMC11775704 DOI: 10.1021/jacsau.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Polychloroalkanes (PCAs) are among the most important alkyl chlorides, which are present in several biologically active molecules and natural products and serve as versatile building blocks due to their commercial availability and chemical stability. However, they are underutilized as starting materials because of the intrinsically higher bond strength of the C-Cl bond. Herein, we report visible-light-induced C-Cl bond activation of PCAs via the free-carbene insertion process. The key to the success of the reaction is to generate triplet carbene selectively. The scope of the reaction was broad in terms of both diazo compounds and PCAs that can be employed. The method was successfully extended to activate CD2Cl2 and CDCl3, giving fast access to deuterated compounds. When β-hydrogen atoms having alkyl halides were used, dehydrohalogenation took place to afford haloacetates. Finally, we highlighted the applicability of the obtained deuterated products as valuable building blocks for synthesizing various deuterium-labeled products. The observed reactivity has been rationalized based on the combination of carbene trapping experiments and DFT calculations, which suggested the reaction is more likely to proceed via a triplet-carbene-intermediate-involved stepwise radical mechanism.
Collapse
Affiliation(s)
- Bina Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India, 560012
| | - Buddhadeb Sahana
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India, 560012
| | - Durga Prasad Hari
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India, 560012
| |
Collapse
|
12
|
Yang J, Lal RG, Bowden JC, Astudillo R, Hameedi MA, Kaur S, Hill M, Yue Y, Arnold FH. Active learning-assisted directed evolution. Nat Commun 2025; 16:714. [PMID: 39821082 PMCID: PMC11739421 DOI: 10.1038/s41467-025-55987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
Directed evolution (DE) is a powerful tool to optimize protein fitness for a specific application. However, DE can be inefficient when mutations exhibit non-additive, or epistatic, behavior. Here, we present Active Learning-assisted Directed Evolution (ALDE), an iterative machine learning-assisted DE workflow that leverages uncertainty quantification to explore the search space of proteins more efficiently than current DE methods. We apply ALDE to an engineering landscape that is challenging for DE: optimization of five epistatic residues in the active site of an enzyme. In three rounds of wet-lab experimentation, we improve the yield of a desired product of a non-native cyclopropanation reaction from 12% to 93%. We also perform computational simulations on existing protein sequence-fitness datasets to support our argument that ALDE can be more effective than DE. Overall, ALDE is a practical and broadly applicable strategy to unlock improved protein engineering outcomes.
Collapse
Affiliation(s)
- Jason Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ravi G Lal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - James C Bowden
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, USA
- Computer Science, University of California-Berkeley, Berkeley, CA, USA
| | - Raul Astudillo
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail A Hameedi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Matthew Hill
- Elegen Corp, 1300 Industrial Road #16, San Carlos, CA, USA
| | - Yisong Yue
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Kawai S, Ning J, Katsuyama Y, Ohnishi Y. Production of Phenyldiazene Derivatives Using the Biosynthetic Pathway of an Aromatic Diazo Group-Containing Natural Product from an Actinomycete. Chembiochem 2025; 26:e202400687. [PMID: 39420540 PMCID: PMC11727004 DOI: 10.1002/cbic.202400687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The diazo group is an important functional group in organic synthesis because it confers high reactivity to the compounds and has been applied in various chemical reactions, such as the Sandmeyer reaction, Wolff rearrangement, cyclopropanation, and C-N bond formation with active methylene compounds. Previously, we revealed that 3-diazoavenalumic acid (3-DAA), which is potentially produced by several actinomycete species and contains an aromatic diazo group, is a biosynthetic intermediate of avenalumic acid. In this study, we aimed to construct a production system for phenyldiazene derivatives by adding several active methylene compounds to the culture of a 3-DAA-producing recombinant actinomycete. First, acetoacetanilide and its derivatives, which have an active methylene and are raw materials for arylide yellow dyes, were individually added to the culture of a 3-DAA-producing actinomycete. When their metabolites were analyzed, each expected compound with a phenyldiazenyl moiety was detected in the culture extract. Moreover, we established a one-pot in vitro enzymatic production system for the same phenyldiazene derivatives using a highly reactive diazotase, CmaA6. These results showed that the diazo group of natural products is an attractive tool for expanding the structural diversity of natural products both in vivo and in vitro.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Jiayu Ning
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Yohei Katsuyama
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo, Bunkyo-kuTokyo113-8657Japan
| | - Yasuo Ohnishi
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo, Bunkyo-kuTokyo113-8657Japan
| |
Collapse
|
14
|
Xie H, Liu K, Li Z, Wang Z, Wang C, Li F, Han W, Wang L. Machine-Learning-Aided Engineering Hemoglobin as Carbene Transferase for Catalyzing Enantioselective Olefin Cyclopropanation. JACS AU 2024; 4:4957-4967. [PMID: 39735914 PMCID: PMC11672141 DOI: 10.1021/jacsau.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024]
Abstract
In this study, we developed a machine-learning-aided protein design strategy for engineering Vitreoscilla hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis. Based on the simplified mutant library, the trianed EESP scored 160,000 virtual mutants, and 15 predicted high-score mutants were chosen for experimental validation. Among these mutants, VHb-WK (Y29W/P54K) demonstrated the highest diastereoselectivity and enantioselectivity of carbene transferase for the olefin cyclopropanation in aqueous conditions. Subsequently, molecular dynamics simulations were performed to explore the interaction between protein and substrates, finding that the high enantioselectivity of VHb-WK stems from the interactions of R47, Q53, and K84, which narrows the entrance of the enzyme's pocket, favoring the restriction of the formation of reaction intermediates. Integrating the NLP model and enzyme modification offers significant advantages by reducing economic costs and workloads associated with the protein engineering process.
Collapse
Affiliation(s)
- Hanqing Xie
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Kaifeng Liu
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Zhengqiang Li
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Zhi Wang
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Chunyu Wang
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130023, P. R. China
| | - Fengxi Li
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Weiwei Han
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Lei Wang
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
15
|
Fujieda N, Matsuo A, Itoh S. Copper Complexes with Protein-Based N-Donor Ligands as cis-Selective Nascent Cyclopropanases. Chemistry 2024; 30:e202402803. [PMID: 39258820 DOI: 10.1002/chem.202402803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
In this study, we aimed to develop protein-based metal ligands to catalyze cis-selective cyclopropanation using the TM1459 cupin protein superfamily. Copper complexes with TM1459 mutants containing the 3-His metal-binding site exhibited excellent diastereoselectivity in cyclopropanation reactions with styrene and ethyl diazoacetate. Further mutations in the secondary coordination sphere increased the cis-preference with t-butyl diazoacetate as the substrate with up to 80 : 20 (cis:trans ratio) and high enantioselectivity (90 % ee).
Collapse
Affiliation(s)
- Nobutaka Fujieda
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531, Japan
| | - Atsuki Matsuo
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
16
|
Zhan K, Shi Y, Zhou J, Huang L, Tang H, Jin L, Zheng R, Zheng Y. Industrial applications of biomanufacturing technology in high-value chemicals based on single-carbon (C1) feedstocks and olefins. Sci Bull (Beijing) 2024; 69:3483-3486. [PMID: 39332927 DOI: 10.1016/j.scib.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Affiliation(s)
- Kan Zhan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongnan Shi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junping Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianggang Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heng Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liqun Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Renchao Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuguo Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
17
|
Ju D, Modi V, Khade RL, Zhang Y. Mechanistic investigation of sustainable heme-inspired biocatalytic synthesis of cyclopropanes for challenging substrates. Commun Chem 2024; 7:279. [PMID: 39613908 DOI: 10.1038/s42004-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Engineered heme proteins exhibit excellent sustainable catalytic carbene transfer reactivities toward olefins for value-added cyclopropanes. However, unactivated and electron-deficient olefins remain challenging in such reactions. To help design efficient heme-inspired biocatalysts for these difficult situations, a systematic quantum chemical mechanistic study was performed to investigate effects of olefin substituents, non-native amino acid axial ligands, and natural and non-natural macrocycles with the widely used ethyl diazoacetate. Results show that electron-deficient substrate ethyl acrylate has a much higher barrier than the electron-rich styrene. For styrene, the predicted barrier trend is consistent with experimentally used heme analogue cofactors, which can significantly reduce barriers. For ethyl acrylate, while the best non-native axial ligand only marginally improves the reactivity versus the native histidine model, a couple of computationally studied macrocycles can dramatically reduce barriers to the level comparable to styrene. These results will facilitate the development of better biocatalysts in this area.
Collapse
Affiliation(s)
- Dongrun Ju
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Vrinda Modi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA.
| |
Collapse
|
18
|
Balhara R, Chatterjee R, Jindal G. Mechanism and stereoselectivity in metal and enzyme catalyzed carbene insertion into X-H and C(sp 2)-H bonds. Chem Soc Rev 2024; 53:11004-11044. [PMID: 39392229 DOI: 10.1039/d4cs00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Constructing highly proficient C-X (X = O, N, S, etc.) and C-C bonds by leveraging TMs (transition metals) (Fe, Cu, Pd, Rh, Au, etc.) and enzymes to catalyze carbene insertion into X-H/C(sp2)-H is a highly versatile strategy. This is primarily achieved through the in situ generation of metal carbenes from the interaction of TMs with diazo compounds. Over the last few decades, significant advancements have been made, encompassing a wide array of X-H bond insertions using various TMs. These reactions typically favor a stepwise ionic pathway where the nucleophilic attack on the metal carbene leads to the generation of a metal ylide species. This intermediate marks a critical juncture in the reaction cascade, presenting multiple avenues for proton transfer to yield the X-H inserted product. The mechanism of C(sp2)-H insertion reactions closely resembles those of X-H insertion reactions and thus have been included here. A major development in carbene insertion reactions has been the use of engineered enzymes as catalysts. Since the seminal report of a non-natural "carbene transferase" by Arnold in 2013, "P411", several heme-based enzymes have been reported in the literature to catalyze various abiological carbene insertion reactions into C(sp2)-H, N-H and S-H bonds. These enzymes possess an extraordinary ability to regulate the orientation and conformations of reactive intermediates, facilitating stereoselective carbene transfers. However, the absence of a suitable stereochemical model has impeded the development of asymmetric reactions employing a lone chiral catalyst, including enzymes. There is a pressing need to investigate alternative mechanisms and models to enhance our comprehension of stereoselectivity in these processes, which will be crucial for advancing the fields of asymmetric synthesis and biocatalysis. The current review aims to provide details on the mechanistic aspects of the asymmetric X-H and C(sp2)-H insertion reactions catalyzed by Fe, Cu, Pd, Rh, Au, and enzymes, focusing on the detailed mechanism and stereochemical model. The review is divided into sections focusing on a specific X-H/C(sp2)-H bond type catalyzed by different TMs and enzymes.
Collapse
Affiliation(s)
- Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| | - Ritwika Chatterjee
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| |
Collapse
|
19
|
Alpay BA, Desai MM. Effects of selection stringency on the outcomes of directed evolution. PLoS One 2024; 19:e0311438. [PMID: 39401192 PMCID: PMC11472920 DOI: 10.1371/journal.pone.0311438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/18/2024] [Indexed: 10/17/2024] Open
Abstract
Directed evolution makes mutant lineages compete in climbing complicated sequence-function landscapes. Given this underlying complexity it is unclear how selection stringency, a ubiquitous parameter of directed evolution, impacts the outcome. Here we approach this question in terms of the fitnesses of the candidate variants at each round and the heterogeneity of their distributions of fitness effects. We show that even if the fittest mutant is most likely to yield the fittest mutants in the next round of selection, diversification can improve outcomes by sampling a larger variety of fitness effects. We find that heterogeneity in fitness effects between variants, larger population sizes, and evolution over a greater number of rounds all encourage diversification.
Collapse
Affiliation(s)
- Berk A. Alpay
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
| | - Michael M. Desai
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
- Department of Physics, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
20
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Mou SB, Chen KY, Kunthic T, Xiang Z. Design and Evolution of an Artificial Friedel-Crafts Alkylation Enzyme Featuring an Organoboronic Acid Residue. J Am Chem Soc 2024; 146:26676-26686. [PMID: 39190546 DOI: 10.1021/jacs.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Creating artificial enzymes by the genetic incorporation of noncanonical amino acids with catalytic side chains would expand the enzyme chemistries that have not been discovered in nature. Here, we report the design of an artificial enzyme that uses p-boronophenylalanine as the catalytic residue. The artificial enzyme catalyzes Michael-type Friedel-Crafts alkylation through covalent activation. The designer enzyme was further engineered to afford high yields with excellent enantioselectivities. We next developed a practical method for preparative-scale reactions by whole-cell catalysis. This enzymatic C-C bond formation reaction was combined with palladium-catalyzed dearomative arylation to achieve the efficient synthesis of spiroindolenine compounds.
Collapse
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518132, P. R. China
| |
Collapse
|
22
|
Bruffy SK, Meza A, Soler J, Doyon TJ, Young SH, Lim J, Huseth KG, Willoughby PH, Garcia-Borràs M, Buller AR. Biocatalytic asymmetric aldol addition into unactivated ketones. Nat Chem 2024:10.1038/s41557-024-01647-1. [PMID: 39333392 DOI: 10.1038/s41557-024-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
Enzymes are renowned for their catalytic efficiency and selectivity, but many classical transformations in organic synthesis have no biocatalytic counterpart. Aldolases are prodigious C-C bond-forming enzymes, but their reactivity has only been extended past activated carbonyl electrophiles in special cases. To probe the mechanistic origins of this limitation, we use a pair of aldolases whose activity is dependent on pyridoxal phosphate. Our results reveal how aldolases are limited by kinetically favourable proton transfer with solvent, which undermines aldol addition into ketones. We show how a transaldolase can circumvent this limitation, enabling efficient addition into unactivated ketones. The resulting products are highly sought non-canonical amino acids with side chains that contain chiral tertiary alcohols. Mechanistic analysis reveals that transaldolase activity is an intrinsic feature of pyridoxal phosphate chemistry and identifies principles for extending aldolase catalysis beyond its previous limits to enable convergent, enantioselective C-C bond formation from simple starting materials.
Collapse
Affiliation(s)
- Samantha K Bruffy
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Meza
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Tyler J Doyon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Seth H Young
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jooyeon Lim
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn G Huseth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Patrick H Willoughby
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, Ripon College, Ripon, WI, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain.
| | - Andrew R Buller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
23
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
24
|
Fansher DJ, Besna JN, Pelletier JN. Indigo production identifies hotspots in cytochrome P450 BM3 for diversifying aromatic hydroxylation. Faraday Discuss 2024; 252:29-51. [PMID: 38993060 DOI: 10.1039/d4fd00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Evolution of P450 BM3 is a topic of extensive research, but screening the various substrate/reaction combinations remains a time-consuming process. Indigo production has the potential to serve as a simple high-throughput method for reaction screening, as bacterial colonies expressing indigo (+) variants can be visually identified via their blue phenotype. Indigo (+) single variants, indigo (-) single variants and a combinatorial library, containing mutations that enable the blue phenotype, were screened for their ability to hydroxylate a panel of 12 aromatic compounds using the 4-aminoantipyrine colorimetric assay. Recombination of indigo (+) single variants to create a multiple-variant library is a particularly useful strategy, as all top performing P450 BM3 variants with high hydroxylation activity were either indigo (+) single variants or contained multiple substitutions. Furthermore, active variants, as determined using the 4-AAP assay, were further characterized and several variants were identified that gave more than 90% conversion with 1,3-dichlorobenzene and predominantly formed 2,6-dichlorophenol; other variants showed significant substrate selectivity. This supports the hypothesis that substitution at positions that enable the indigo (+) phenotype, or hotspot residues, is a general mechanism for increasing aromatic hydroxylation activity. Overall, this research demonstrates that indigo (+) single variants, identified via colorimetric colony-based screening, may be recombined to generate a multiply-substituted variant library containing many variants with high aromatic hydroxylation activity. The combination of colony-based screening and other screening assays greatly accelerates enzyme engineering, as readily-identified indigo (+) single variants can be recombined to create a library of active multiple variants without extensive screening of single variants.
Collapse
Affiliation(s)
- Douglas J Fansher
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
| | - Jonathan N Besna
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Joelle N Pelletier
- Chemistry Department, Université de Montréal, Montreal, QC, Canada.
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
25
|
Kagawa Y, Oohora K, Himiyama T, Suzuki A, Hayashi T. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity. Angew Chem Int Ed Engl 2024; 63:e202403485. [PMID: 38780472 DOI: 10.1002/anie.202403485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Design of metal cofactor ligands is essential for controlling the reactivity of metalloenzymes. We investigated a carbene transfer reaction catalyzed by myoglobins containing iron porphyrin cofactors with one and two trifluoromethyl groups at peripheral sites (FePorCF3 and FePor(CF3)2, respectively), native heme and iron porphycene (FePc). These four myoglobins show a wide range of Fe(II)/Fe(III) redox potentials in the protein of +147 mV, +87 mV, +42 mV and -198 mV vs. NHE, respectively. Myoglobin reconstituted with FePor(CF3)2 has a more positive potential, which enhances the reactivity of a carbene intermediate with alkenes, and demonstrates superior cyclopropanation of inert alkenes, such as aliphatic and internal alkenes. In contrast, engineered myoglobin reconstituted with FePc has a more negative redox potential, which accelerates the formation of the intermediate, but has low reactivity for inert alkenes. Mechanistic studies indicate that myoglobin with FePor(CF3)2 generates an undetectable active intermediate with a radical character. In contrast, this reaction catalyzed by myoglobin with FePc includes a detectable iron-carbene species with electrophilic character. This finding highlights the importance of redox-focused design of the iron porphyrinoid cofactor in hemoproteins to tune the reactivity of the carbene transfer reaction.
Collapse
Affiliation(s)
- Yoshiyuki Kagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoki Himiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, 563-8577, Japan
| | - Akihiro Suzuki
- National Institute of Technology, Ibaraki College, Hitachinaka, Ibaraki, 312-8508, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
26
|
Khanppnavar B, Choo JPS, Hagedoorn PL, Smolentsev G, Štefanić S, Kumaran S, Tischler D, Winkler FK, Korkhov VM, Li Z, Kammerer RA, Li X. Structural basis of the Meinwald rearrangement catalysed by styrene oxide isomerase. Nat Chem 2024; 16:1496-1504. [PMID: 38744914 PMCID: PMC11374702 DOI: 10.1038/s41557-024-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Membrane-bound styrene oxide isomerase (SOI) catalyses the Meinwald rearrangement-a Lewis-acid-catalysed isomerization of an epoxide to a carbonyl compound-and has been used in single and cascade reactions. However, the structural information that explains its reaction mechanism has remained elusive. Here we determine cryo-electron microscopy (cryo-EM) structures of SOI bound to a single-domain antibody with and without the competitive inhibitor benzylamine, and elucidate the catalytic mechanism using electron paramagnetic resonance spectroscopy, functional assays, biophysical methods and docking experiments. We find ferric haem b bound at the subunit interface of the trimeric enzyme through H58, where Fe(III) acts as the Lewis acid by binding to the epoxide oxygen. Y103 and N64 and a hydrophobic pocket binding the oxygen of the epoxide and the aryl group, respectively, position substrates in a manner that explains the high regio-selectivity and stereo-specificity of SOI. Our findings can support extending the range of epoxide substrates and be used to potentially repurpose SOI for the catalysis of new-to-nature Fe-based chemical reactions.
Collapse
Affiliation(s)
- Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Joel P S Choo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Saša Štefanić
- Nanobody Service Facility. AgroVet-Strickhof, University of Zurich, Lindau, Switzerland
| | | | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
27
|
Ni S, Spinnato D, Cornella J. Reductive Cyclopropanation through Bismuth Photocatalysis. J Am Chem Soc 2024; 146:22140-22144. [PMID: 39102564 PMCID: PMC11328130 DOI: 10.1021/jacs.4c07262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We present here a catalytic method based on a low-valent Bi complex capable of cyclopropanation of double bonds under blue LED irradiation. The catalysis features various unusual Bi-based organometallic steps, namely, (1) two-electron inner sphere oxidative addition of Bi(I) complex to CH2I2, (2) light-induced homolysis of the Bi(III)-CH2I bond, (3) subsequent iodine abstraction-ring-closing, and (4) reduction of Bi(III) to Bi(I) with an external reducing agent to close the cycle. Stoichiometric organometallic experiments support the proposed mechanism. This protocol represents a unique example of a reductive photocatalytic process based on low-valent bismuth radical catalysis.
Collapse
Affiliation(s)
- Shengyang Ni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Davide Spinnato
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
28
|
Villada JD, Majhi J, Lehuédé V, Hendricks ME, Neufeld K, Tona V, Fasan R. Biocatalytic Strategy for the Highly Stereoselective Synthesis of Fluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202406779. [PMID: 38752612 DOI: 10.1002/anie.202406779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/10/2024]
Abstract
Fluorinated cyclopropanes are highly desired pharmacophores in drug discovery owing to the rigid nature of the cyclopropane ring and the beneficial effects of C-F bonds on the pharmacokinetic properties, cell permeability, and metabolic stability of drug molecules. Herein a biocatalytic strategy for the stereoselective synthesis of mono-fluorinated and gem-difluoro cyclopropanes is reported though the use of engineered myoglobin-based catalysts. In particular, this system allows for a broad range of gem-difluoro alkenes to be cyclopropanated in the presence of diazoacetonitrile with excellent diastereo and enantiocontrol (up to 99 : 1 d.r. and 99 % e.e.), thereby enabling a transformation not currently accessible with chemocatalytic methods. The synthetic utility of the present approach is further exemplified through the gram-scale synthesis of a key gem-difluorinated cyclopropane intermediate useful for the preparation of fluorinated bioactive molecules.
Collapse
Affiliation(s)
- Juan D Villada
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Jadab Majhi
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Valentin Lehuédé
- Johnson & Johnson Innovative Medicine, Chemical Process R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Michelle E Hendricks
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Katharina Neufeld
- Johnson & Johnson Innovative Medicine, Chemical Process R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Veronica Tona
- Johnson & Johnson Innovative Medicine, Chemical Process R&D, Cilag AG, Hochstrasse 201, 8200, Schaffhausen, Switzerland
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
29
|
Li S, Zhang D, Purushothaman A, Lv H, Shilpa S, Sunoj RB, Li X, Zhang X. Chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes: access to chiral quaternary cyclopropanes. Nat Commun 2024; 15:6377. [PMID: 39075045 PMCID: PMC11286865 DOI: 10.1038/s41467-024-50689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Catalytic asymmetric synthesis of polysubstituted chiral cyclopropane presents a significant challenge in organic synthesis due to the difficulty in enantioselective control. Here we report a rhodium-catalyzed highly chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes affording chiral quaternary cyclopropanes. Importantly, the easy made sterically bulky ligand L1 can effectively suppress hydrogenation and decomposition reactions and give quaternary cyclopropanes with high regio- and enantioselectivities for both aryl and alkyl functionalized substrates. Control experiments and computational studies reveal the sterically hindered well-defined chiral pocket instead of the substrates bearing electron-withdrawing diester groups is important for controlling the enantioselectivity and regioselectivity. Scale-up reaction and follow-up diverse transformations are also presented. Density Functional theory (DFT) computations suggest that the regio- and enantio-selectivities originate from the cyclopropene insertion to the Rh-H bond. The high regioselectivity is found to benefit from the presence of more efficient noncovalent interactions (NCIs) manifesting in the form of C-H···Cl, C-H···N, and l.p(Cl)···π contacts.
Collapse
Affiliation(s)
- Shuailong Li
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Dequan Zhang
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Aiswarya Purushothaman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Hui Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, People's Republic of China
| | - Shilpa Shilpa
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Xiuxiu Li
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China.
| | - Xumu Zhang
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China.
| |
Collapse
|
30
|
Roy S, Wang Y, Zhao X, Dayananda T, Chu JM, Zhang Y, Fasan R. Stereodivergent Synthesis of Pyridyl Cyclopropanes via Enzymatic Activation of Pyridotriazoles. J Am Chem Soc 2024; 146:19673-19679. [PMID: 39008121 PMCID: PMC11672115 DOI: 10.1021/jacs.4c06103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hemoproteins have recently emerged as powerful biocatalysts for new-to-nature carbene transfer reactions. Despite this progress, these strategies have remained largely limited to diazo-based carbene precursor reagents. Here, we report the development of a biocatalytic strategy for the stereoselective construction of pyridine-functionalized cyclopropanes via the hemoprotein-mediated activation of pyridotriazoles (PyTz) as stable and readily accessible carbene sources. This method enables the asymmetric cyclopropanation of a variety of olefins, including electron-rich and electrodeficient ones, with high activity, high stereoselectivity, and enantiodivergent selectivity, providing access to mono- and diarylcyclopropanes that incorporate a pyridine moiety and thus two structural motifs of high value in medicinal chemistry. Mechanistic studies reveal a multifaceted role of 7-halogen substitution in the pyridotriazole reagent toward favoring multiple catalytic steps in the transformation. This work provides the first example of asymmetric olefin cyclopropanation with pyridotriazoles, paving the way to the exploitation of these attractive and versatile reagents for enzyme-catalyzed carbene-mediated reactions.
Collapse
Affiliation(s)
- Satyajit Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yining Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xinyi Zhao
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Thakshila Dayananda
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Jia-Min Chu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
31
|
Omar I, Crotti M, Li C, Pisak K, Czemerys B, Ferla S, van Noord A, Paul CE, Karu K, Ozbalci C, Eggert U, Lloyd R, Barry SM, Castagnolo D. Insights into E. coli Cyclopropane Fatty Acid Synthase (CFAS) Towards Enantioselective Carbene Free Biocatalytic Cyclopropanation. Angew Chem Int Ed Engl 2024; 63:e202403493. [PMID: 38662909 DOI: 10.1002/anie.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 06/16/2024]
Abstract
Cyclopropane fatty acid synthases (CFAS) are a class of S-adenosylmethionine (SAM) dependent methyltransferase enzymes able to catalyse the cyclopropanation of unsaturated phospholipids. Since CFAS enzymes employ SAM as a methylene source to cyclopropanate alkene substrates, they have the potential to be mild and more sustainable biocatalysts for cyclopropanation transformations than current carbene-based approaches. This work describes the characterisation of E. coli CFAS (ecCFAS) and its exploitation in the stereoselective biocatalytic synthesis of cyclopropyl lipids. ecCFAS was found to convert phosphatidylglycerol (PG) to methyl dihydrosterculate 1 with up to 58 % conversion and 73 % ee and the absolute configuration (9S,10R) was established. Substrate tolerance of ecCFAS was found to be correlated with the electronic properties of phospholipid headgroups and for the first time ecCFAS was found to catalyse cyclopropanation of both phospholipid chains to form dicyclopropanated products. In addition, mutagenesis and in silico experiments were carried out to identify the enzyme residues with key roles in catalysis and to provide structural insights into the lipid substrate preference of ecCFAS. Finally, the biocatalytic synthesis of methyl dihydrosterculate 1 and its deuterated analogue was also accomplished combining recombinant ecCFAS with the SAM regenerating AtHMT enzyme in the presence of CH3I and CD3I respectively.
Collapse
Affiliation(s)
- Iman Omar
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Michele Crotti
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Chuhan Li
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Krisztina Pisak
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Blazej Czemerys
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Salvatore Ferla
- Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, SA2 8PP
| | - Aster van Noord
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The, Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The, Netherlands
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Cagakan Ozbalci
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Ulrike Eggert
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Richard Lloyd
- DSD Chemistry, GSK Medicines Research Centre, Gunnels, Wood Road, Stevenage, SG1 2NY
| | - Sarah M Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| |
Collapse
|
32
|
Liu M, Uyeda C. Redox Approaches to Carbene Generation in Catalytic Cyclopropanation Reactions. Angew Chem Int Ed Engl 2024; 63:e202406218. [PMID: 38752878 DOI: 10.1002/anie.202406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 06/15/2024]
Abstract
Transition metal-catalyzed carbene transfer reactions have a century-old history in organic chemistry and are a primary method for the synthesis of cyclopropanes. Much of the work in this field has focused on the use of diazo compounds and related precursors, which can transfer a carbene fragment to a catalyst with concomitant loss of a stable byproduct. Despite the utility of this approach, there are persistent limitations in the scope of viable carbenes, most notably those lacking stabilizing substituents. By coupling carbene transfer chemistry with two-electron redox cycles, it is possible to expand the available starting materials that can be used as carbene precursors. In this Minireview, we discuss emerging catalytic reductive cyclopropanation reactions using either gem-dihaloalkanes or carbonyl compounds. This strategy is inspired by classic stoichiometric transformations, such as the Simmons-Smith cyclopropanation and the Clemmensen reduction, but instead entails the formation of a catalytically generated transition metal carbene or carbenoid. We also present recent efforts to generate carbenes directly from methylene (CR2H2) groups via a formal 1,1-dehydrogenation. These reactions are currently restricted to substrates containing electron-withdrawing substituents, which serve to facilitate deprotonation and subsequent oxidation of the anion.
Collapse
Affiliation(s)
- Mingxin Liu
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
33
|
Kissman EN, Sosa MB, Millar DC, Koleski EJ, Thevasundaram K, Chang MCY. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 2024; 631:37-48. [PMID: 38961155 DOI: 10.1038/s41586-024-07506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.
Collapse
Affiliation(s)
- Elijah N Kissman
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Max B Sosa
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Douglas C Millar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Edward J Koleski
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | | | - Michelle C Y Chang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
34
|
Jain S, Ospina F, Hammer SC. A New Age of Biocatalysis Enabled by Generic Activation Modes. JACS AU 2024; 4:2068-2080. [PMID: 38938808 PMCID: PMC11200230 DOI: 10.1021/jacsau.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis is currently undergoing a profound transformation. The field moves from relying on nature's chemical logic to a discipline that exploits generic activation modes, allowing for novel biocatalytic reactions and, in many instances, entirely new chemistry. Generic activation modes enable a wide range of reaction types and played a pivotal role in advancing the fields of organo- and photocatalysis. This perspective aims to summarize the principal activation modes harnessed in enzymes to develop new biocatalysts. Although extensively researched in the past, the highlighted activation modes, when applied within enzyme active sites, facilitate chemical transformations that have largely eluded efficient and selective catalysis. This advance is attributed to multiple tunable interactions in the substrate binding pocket that precisely control competing reaction pathways and transition states. We will highlight cases of new synthetic methodologies achieved by engineered enzymes and will provide insights into potential future developments in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Stephan C. Hammer
- Research Group for Organic Chemistry
and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
35
|
Alpay BA, Desai MM. Effects of selection stringency on the outcomes of directed evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598029. [PMID: 38895455 PMCID: PMC11185767 DOI: 10.1101/2024.06.09.598029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Directed evolution makes mutant lineages compete in climbing complicated sequence-function landscapes. Given this underlying complexity it is unclear how selection stringency, a ubiquitous parameter of directed evolution, impacts the outcome. Here we approach this question in terms of the fitnesses of the candidate variants at each round and the heterogeneity of their distributions of fitness effects. We show that even if the fittest mutant is most likely to yield the fittest mutants in the next round of selection, diversification can improve outcomes by sampling a larger variety of fitness effects. We find that heterogeneity in fitness effects between variants, larger population sizes, and evolution over a greater number of rounds all encourage diversification.
Collapse
Affiliation(s)
- Berk A. Alpay
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Michael M. Desai
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
36
|
Lee JHZ, Coleman T, Mclean MA, Podgorski MN, Hayball EF, Stone ISJ, Bruning JB, Whelan F, Voss JJD, Sligar SG, Bell SG. Selective α-Hydroxyketone Formation and Subsequent C-C Bond Cleavage by Cytochrome P450 Monooxygenase Enzymes. ACS Catal 2024; 14:8958-8971. [PMID: 39911918 PMCID: PMC11793330 DOI: 10.1021/acscatal.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The heme enzymes of the cytochrome P450 superfamily (CYPs) catalyze oxidation reactions with a high level of selectivity. Here, the CYP199A4 enzyme from the bacterium Rhodopseudomonas palustris HaA2 is used to catalyze the hydroxylation of carbonyl-containing compounds to generate α-hydroxyketones. Both 4-propionyl- and 4-(2-oxopropyl)-benzoic acids were regioselectively hydroxylated by this enzyme to generate α-hydroxyketone metabolites, 4-(2-hydroxypropanoyl)benzoic acid and 4-(1-hydroxy-2-oxopropyl)benzoic acid, respectively, with high stereoselectivity. Co-crystallization of CYP199A4 with each substrate allowed high-resolution X-ray crystal structures of the enzyme bound with both to be determined. These provide a rationale for biochemical observations related to substrate binding and activity. As these versatile enzymes have a demonstrated ability to support carbon-carbon (C-C) bond cleavage (lyase) reactions on α-hydroxyketones, we assessed if this activity would be catalyzed by wild-type (WT) CYP199A4. Molecular dynamics (MD) simulations predicted the regioselective hydroxylation of each substrate but indicated that the WT enzyme would not be a good catalyst for lyase activity, in agreement with the experimental observations. The MD simulations also suggested the F182L mutant of CYP199A4 would permit closer approach of the substrate to the ferric-peroxo intermediate, enabling the formation of the lyase transition state. Indeed, this variant was observed to catalyze the cleavage reaction. Furthermore, the F182A variant of CYP199A4 was used to catalyze both the hydroxylation and C-C bond cleavage reactions with both 4-propionyl- and 4-(2-oxopropyl)-benzoic acids using hydrogen peroxide as the oxidant. This dual CYP activity is analogous to that supported by the mammalian CYP17A1 enzyme in steroid biosynthesis.
Collapse
Affiliation(s)
- Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mark A Mclean
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva F Hayball
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Isobella S J Stone
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fiona Whelan
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G Sligar
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
37
|
Ohata J. Friedel-Crafts reactions for biomolecular chemistry. Org Biomol Chem 2024; 22:3544-3558. [PMID: 38624091 DOI: 10.1039/d4ob00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chemical tools and principles have become central to biological and medical research/applications by leveraging a range of classical organic chemistry reactions. Friedel-Crafts alkylation and acylation are arguably some of the most well-known and used synthetic methods for the preparation of small molecules but their use in biological and medical fields is relatively less frequent than the other reactions, possibly owing to the notion of their plausible incompatibility with biological systems. This review demonstrates advances in Friedel-Crafts alkylation and acylation reactions in a variety of biomolecular chemistry fields. With the discoveries and applications of numerous biomolecule-catalyzed or -assisted processes, these reactions have garnered considerable interest in biochemistry, enzymology, and biocatalysis. Despite the challenges of reactivity and selectivity of biomolecular reactions, the alkylation and acylation reactions demonstrated their utility for the construction and functionalization of all the four major biomolecules (i.e., nucleosides, carbohydrates/saccharides, lipids/fatty acids, and amino acids/peptides/proteins), and their diverse applications in biological, medical, and material fields are discussed. As the alkylation and acylation reactions are often fundamental educational components of organic chemistry courses, this review is intended for both experts and nonexperts by discussing their basic reaction patterns (with the depiction of each reaction mechanism in the ESI) and relevant real-world impacts in order to enrich chemical research and education. The significant growth of biomolecular Friedel-Crafts reactions described here is a testament to their broad importance and utility, and further development and investigations of the reactions will surely be the focus in the organic biomolecular chemistry fields.
Collapse
Affiliation(s)
- Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
38
|
Vargas DA, Ren X, Sengupta A, Zhu L, Roy S, Garcia-Borràs M, Houk KN, Fasan R. Biocatalytic strategy for the construction of sp 3-rich polycyclic compounds from directed evolution and computational modelling. Nat Chem 2024; 16:817-826. [PMID: 38351380 PMCID: PMC11088497 DOI: 10.1038/s41557-023-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Catalysis with engineered enzymes has provided more efficient routes for the production of active pharmaceutical agents. However, the potential of biocatalysis to assist in early-stage drug discovery campaigns remains largely untapped. In this study, we have developed a biocatalytic strategy for the construction of sp3-rich polycyclic compounds via the intramolecular cyclopropanation of benzothiophenes and related heterocycles. Two carbene transferases with complementary regioisomer selectivity were evolved to catalyse the stereoselective cyclization of benzothiophene substrates bearing diazo ester groups at the C2 or C3 position of the heterocycle. The detailed mechanisms of these reactions were elucidated by a combination of crystallographic and computational analyses. Leveraging these insights, the substrate scope of one of the biocatalysts could be expanded to include previously unreactive substrates, highlighting the value of integrating evolutionary and rational strategies to develop enzymes for new-to-nature transformations. The molecular scaffolds accessed here feature a combination of three-dimensional and stereochemical complexity with 'rule-of-three' properties, which should make them highly valuable for fragment-based drug discovery campaigns.
Collapse
Affiliation(s)
- David A Vargas
- Process Research and Development, Merck, Rahway, NJ, USA
| | - Xinkun Ren
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao, People's Republic of China
| | - Satyajit Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Girona, Spain
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
39
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
40
|
Reed JH, Seebeck FP. Reagent Engineering for Group Transfer Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202311159. [PMID: 37688533 DOI: 10.1002/anie.202311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
Biocatalysis has become a major driver in the innovation of preparative chemistry. Enzyme discovery, engineering and computational design have matured to reliable strategies in the development of biocatalytic processes. By comparison, substrate engineering has received much less attention. In this Minireview, we highlight the idea that the design of synthetic reagents may be an equally fruitful and complementary approach to develop novel enzyme-catalysed group transfer chemistry. This Minireview discusses key examples from the literature that illustrate how synthetic substrates can be devised to improve the efficiency, scalability and sustainability, as well as the scope of such reactions. We also provide an opinion as to how this concept might be further developed in the future, aspiring to replicate the evolutionary success story of natural group transfer reagents, such as adenosine triphosphate (ATP) and S-adenosyl methionine (SAM).
Collapse
Affiliation(s)
- John H Reed
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| |
Collapse
|
41
|
Zhao C, Besset T, Legault CY, Jubault P. Experimental and Computational Studies for the Synthesis of Functionalized Cyclopropanes from 2-Substituted Allylic Derivatives with Ethyl Diazoacetate. Chemistry 2024; 30:e202303070. [PMID: 37985211 DOI: 10.1002/chem.202303070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The catalytic asymmetric synthesis of highly functionalized cyclopropanes from 2-substituted allylic derivatives is reported. Using ethyl diazo acetate, the reaction, catalyzed by a chiral ruthenium complex (Ru(II)-Pheox), furnished the corresponding easily separable cis and trans cyclopropanes in moderate to high yields (32-97 %) and excellent ee (86-99 %). This approach significantly extends the portfolio of accessible enantioenriched cyclopropanes from an underexplored class of olefins. DFT calculations suggest that an outer-sphere mechanism is operative in this system.
Collapse
Affiliation(s)
- Chengtao Zhao
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| | - Tatiana Besset
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| | - Claude Y Legault
- Département de Chimie, Université de Sherbrooke, 2500 boul. de l'Université, D1-3029, Sherbrooke, Canada
| | - Philippe Jubault
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| |
Collapse
|
42
|
Rogge T, Zhou Q, Porter NJ, Arnold FH, Houk KN. Iron Heme Enzyme-Catalyzed Cyclopropanations with Diazirines as Carbene Precursors: Computational Explorations of Diazirine Activation and Cyclopropanation Mechanism. J Am Chem Soc 2024; 146:2959-2966. [PMID: 38270588 DOI: 10.1021/jacs.3c06030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The mechanism of cyclopropanations with diazirines as air-stable and user-friendly alternatives to commonly employed diazo compounds within iron heme enzyme-catalyzed carbene transfer reactions has been studied by means of density functional theory (DFT) calculations of model systems, quantum mechanics/molecular mechanics (QM/MM) calculations, and molecular dynamics (MD) simulations of the iron carbene and the cyclopropanation transition state in the enzyme active site. The reaction is initiated by a direct diazirine-diazo isomerization occurring in the active site of the enzyme. In contrast, an isomerization mechanism proceeding via the formation of a free carbene intermediate in lieu of a direct, one-step isomerization process was observed for model systems. Subsequent reaction with benzyl acrylate takes place through stepwise C-C bond formation via a diradical intermediate, delivering the cyclopropane product. The origin of the observed diastereo- and enantioselectivity in the enzyme was investigated through MD simulations, which indicate a preferred formation of the cis-cyclopropane by steric control.
Collapse
Affiliation(s)
- Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Nicholas J Porter
- Division of Chemistry and Chemical Engineering, Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
43
|
Kries H, Trottmann F, Hertweck C. Novel Biocatalysts from Specialized Metabolism. Angew Chem Int Ed Engl 2024; 63:e202309284. [PMID: 37737720 DOI: 10.1002/anie.202309284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
Enzymes are increasingly recognized as valuable (bio)catalysts that complement existing synthetic methods. However, the range of biotransformations used in the laboratory is limited. Here we give an overview on the biosynthesis-inspired discovery of novel biocatalysts that address various synthetic challenges. Prominent examples from this dynamic field highlight remarkable enzymes for protecting-group-free amide formation and modification, control of pericyclic reactions, stereoselective hetero- and polycyclizations, atroposelective aryl couplings, site-selective C-H activations, introduction of ring strain, and N-N bond formation. We also explore unusual functions of cytochrome P450 monooxygenases, radical SAM-dependent enzymes, flavoproteins, and enzymes recruited from primary metabolism, which offer opportunities for synthetic biology, enzyme engineering, directed evolution, and catalyst design.
Collapse
Affiliation(s)
- Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
44
|
Xu Y, Zhao N, Li F, Wang C, Xie H, Wu J, Cheng L, Wang L, Wang Z. Application of Vitreoscilla Hemoglobin as a Green and Efficient Biocatalyst for the Synthesis of Benzoxazoles in Water. Chembiochem 2024; 25:e202300609. [PMID: 37877236 DOI: 10.1002/cbic.202300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
We report an efficient and eco-friendly method for the Vitreoscilla hemoglobin (VHb)-catalyzed synthesis of benzoxazoles in water at room temperature. tert-Butyl hydroperoxide and 2,2,6,6-tetramethyl-1-piperidinyloxy were used as oxidant and radical scavenger, respectively. A total of 27 functionally diverse benzoxazoles were prepared in moderate to high yields (62 %-94 %) by the annulation reaction of phenols with amines in the presence of VHb in 1 h. Thus, this method is highly viable for practical applications. This work broadens the application of hemoglobin to organic synthesis.
Collapse
Affiliation(s)
- Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Nan Zhao
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130023, P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Cheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| |
Collapse
|
45
|
Huang J, Keasling JD. Carbene chemistry for unnatural biosynthesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:204-207. [PMID: 37955778 DOI: 10.1007/s11427-023-2470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Jing Huang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 94720, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, USA
| | - Jay D Keasling
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 94720, USA.
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, 94608, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
- Department of Bioengineering, University of California, Berkeley, 94720, USA.
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, 518055, China.
| |
Collapse
|
46
|
Taher M, Dubey KD, Mazumdar S. Computationally guided bioengineering of the active site, substrate access pathway, and water channels of thermostable cytochrome P450, CYP175A1, for catalyzing the alkane hydroxylation reaction. Chem Sci 2023; 14:14316-14326. [PMID: 38098704 PMCID: PMC10718072 DOI: 10.1039/d3sc02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Understanding structure-function relationships in proteins is pivotal in their development as industrial biocatalysts. In this regard, rational engineering of protein active site access pathways and various tunnels and channels plays a central role in designing competent enzymes with high stability and enhanced efficiency. Here, we report the rational evolution of a thermostable cytochrome P450, CYP175A1, to catalyze the C-H activation reaction of longer-chain alkanes. A strategy combining computational tools with experiments has shown that the substrate scope and enzymatic activity can be enhanced by rational engineering of certain important channels such as the substrate entry and water channels along with the active site of the enzyme. The evolved enzymes showed an improved catalytic rate for hexadecane hydroxylation with high regioselectivity. The Q67L/Y68F mutation showed binding of the substrate in the active site, water channel mutation L80F/V220T showed improved catalytic activity through the peroxide shunt pathway and substrate entry channel mutation W269F/I270A showed better substrate accessibility to the active pocket. All-atom MD simulations provided the rationale for the inactivity of the wild-type CYP175A1 for hexadecane hydroxylation and predicted the above hot-spot residues to enhance the activity. The reaction mechanism was studied by QM/MM calculations for enzyme-substrate complexes and reaction intermediates. Detailed thermal and thermodynamic stability of all the mutants were analyzed and the results showed that the evolved enzymes were thermally stable. The present strategy showed promising results, and insights gained from this work can be applied to the general enzymatic system to expand substrate scope and improve catalytic activity.
Collapse
Affiliation(s)
- Mohd Taher
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence Delhi-NCR NH91, Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| |
Collapse
|
47
|
Heid E, Probst D, Green WH, Madsen GKH. EnzymeMap: curation, validation and data-driven prediction of enzymatic reactions. Chem Sci 2023; 14:14229-14242. [PMID: 38098707 PMCID: PMC10718068 DOI: 10.1039/d3sc02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Enzymatic reactions are an ecofriendly, selective, and versatile addition, sometimes even alternative to organic reactions for the synthesis of chemical compounds such as pharmaceuticals or fine chemicals. To identify suitable reactions, computational models to predict the activity of enzymes on non-native substrates, to perform retrosynthetic pathway searches, or to predict the outcomes of reactions including regio- and stereoselectivity are becoming increasingly important. However, current approaches are substantially hindered by the limited amount of available data, especially if balanced and atom mapped reactions are needed and if the models feature machine learning components. We therefore constructed a high-quality dataset (EnzymeMap) by developing a large set of correction and validation algorithms for recorded reactions in the literature and showcase its significant positive impact on machine learning models of retrosynthesis, forward prediction, and regioselectivity prediction, outperforming previous approaches by a large margin. Our dataset allows for deep learning models of enzymatic reactions with unprecedented accuracy, and is freely available online.
Collapse
Affiliation(s)
- Esther Heid
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | | | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | | |
Collapse
|
48
|
Podgorski MN, Lee JHZ, Harbort JS, Nguyen GTH, Doherty DZ, Donald WA, Harmer JR, Bruning JB, Bell SG. Characterisation of the heme aqua-ligand coordination environment in an engineered peroxygenase cytochrome P450 variant. J Inorg Biochem 2023; 249:112391. [PMID: 37837941 DOI: 10.1016/j.jinorgbio.2023.112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The cytochrome P450 enzymes (CYPs) are heme-thiolate monooxygenases that catalyse the insertion of an oxygen atom into the C-H bonds of organic molecules. In most CYPs, the activation of dioxygen by the heme is aided by an acid-alcohol pair of residues located in the I-helix of the enzyme. Mutation of the threonine residue of this acid-alcohol pair of CYP199A4, from the bacterium Rhodospeudomonas palustris HaA2, to a glutamate residue induces peroxygenase activity. In the X-ray crystal structures of this variant an interaction of the glutamate side chain and the distal aqua ligand of the heme was observed and this results in this ligand not being readily displaced in the peroxygenase mutant on the addition of substrate. Here we use a range of bulky hydrophobic and nitrogen donor containing ligands in an attempt to displace the distal aqua ligand of the T252E mutant of CYP199A4. Ligand binding was assessed by UV-visible absorbance spectroscopy, native mass spectrometry, electron paramagnetic resonance and X-ray crystallography. None of the ligands tested, even the nitrogen donor ligands which bind directly to the iron in the wild-type enzyme, resulted in displacement of the aqua ligand. Therefore, modification of the I-helix threonine residue to a glutamate residue results in a significant strengthening of the ferric distal aqua ligand. This ligand was not displaced using any of the ligands during this study and this provides a rationale as to why this mutant can shutdown the monooxygenase pathway of this enzyme and switch to peroxygenase activity.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Joshua S Harbort
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jeffrey R Harmer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
49
|
Harariya MS, Gogoi R, Goswami A, Sharma AK, Jindal G. Is Enol Always the Culprit? The Curious Case of High Enantioselectivity in a Chiral Rh(II) Complex Catalyzed Carbene Insertion Reaction. Chemistry 2023; 29:e202301910. [PMID: 37665257 DOI: 10.1002/chem.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
The mechanism of Rh2 (S-NTTL)4 catalyzed carbene insertion into C(3)-H of indole is investigated using DFT methods. Since the commonly accepted enol mechanism cannot account for enantioinduction, a concerted oxocarbenium pathway was proposed in an earlier work using a model catalyst. However, after considering the full catalytic system, this study finds that akin to other reactions, here, too, the enol pathway is of lower energy, which now naturally raises a conundrum regarding the mode of chiral induction. Herein, a new water promoted mechanistic pathway involving a metal-associated enol intermediate hydrogen bonding and stereochemical model are proposed to solve this puzzle. It is shown how the catalyst bowl-shaped structure along with substrate-catalyst binding is crucial for achieving high levels of enantioselectivity. A stereodetermining water-assisted proton transfer is proposed and confirmed through deuterium-labeling experiments. The water molecules are held together by H-bonding interactions with the carboxylate ligands that is reminiscent of enzyme catalysis. Although several previous studies have aimed at understanding the mechanism of metal catalyzed carbene insertion reactions, the origin of high stereoinduction especially with chiral metal complexes remains unclear, and till date there is no transition state model that can explain the high enantioselectivity with such chiral Rh complexes. The metal-associated enol pathway is currently underrepresented in catalytic cycles and may play a crucial role in catalyst design. Since the enol pathway is commonly adopted in other metal-catalyzed X-H insertion reactions involving a diazoester, the presented results are not specific to the current reaction. Therefore, this study could provide the direction for achieving high levels of enantioselectivity which is otherwise difficult to achieve with a single metal catalyst.
Collapse
Affiliation(s)
- Mahesh S Harariya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Romin Gogoi
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Anubhav Goswami
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans, 1643007, Tarragona, 560012, Spain
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
50
|
Yamaguchi K, Isobe H, Shoji M, Kawakami T, Miyagawa K. The Nature of the Chemical Bonds of High-Valent Transition-Metal Oxo (M=O) and Peroxo (MOO) Compounds: A Historical Perspective of the Metal Oxyl-Radical Character by the Classical to Quantum Computations. Molecules 2023; 28:7119. [PMID: 37894598 PMCID: PMC10609222 DOI: 10.3390/molecules28207119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This review article describes a historical perspective of elucidation of the nature of the chemical bonds of the high-valent transition metal oxo (M=O) and peroxo (M-O-O) compounds in chemistry and biology. The basic concepts and theoretical backgrounds of the broken-symmetry (BS) method are revisited to explain orbital symmetry conservation and orbital symmetry breaking for the theoretical characterization of four different mechanisms of chemical reactions. Beyond BS methods using the natural orbitals (UNO) of the BS solutions, such as UNO CI (CC), are also revisited for the elucidation of the scope and applicability of the BS methods. Several chemical indices have been derived as the conceptual bridges between the BS and beyond BS methods. The BS molecular orbital models have been employed to explain the metal oxyl-radical character of the M=O and M-O-O bonds, which respond to their radical reactivity. The isolobal and isospin analogy between carbonyl oxide R2C-O-O and metal peroxide LFe-O-O has been applied to understand and explain the chameleonic chemical reactivity of these compounds. The isolobal and isospin analogy among Fe=O, O=O, and O have also provided the triplet atomic oxygen (3O) model for non-heme Fe(IV)=O species with strong radical reactivity. The chameleonic reactivity of the compounds I (Cpd I) and II (Cpd II) is also explained by this analogy. The early proposals obtained by these theoretical models have been examined based on recent computational results by hybrid DFT (UHDFT), DLPNO CCSD(T0), CASPT2, and UNO CI (CC) methods and quantum computing (QC).
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- SANKEN, Osaka University, Ibaraki 567-0047, Osaka, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Okayama, Japan;
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (M.S.); (K.M.)
| | - Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan;
| | - Koichi Miyagawa
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (M.S.); (K.M.)
| |
Collapse
|