1
|
Sweatman E, Bayley R, Selemane R, Higgs MR. SETD1A-dependent EME1 transcription drives PARPi sensitivity in HR deficient tumour cells. Br J Cancer 2025; 132:690-702. [PMID: 39994444 PMCID: PMC11997087 DOI: 10.1038/s41416-025-02963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Cells deficient in DNA repair factors breast cancer susceptibility 1/2 (BRCA1/2) or ataxia-telangiectasia mutated (ATM) are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Building on our previous findings, we asked how the lysine methyltransferase SETD1A contributed to PARP inhibitor-mediated cell death in these contexts and determined the mechanisms responsible. METHODS We used cervical, breast, lung and ovarian cancer cells bearing mutations in BRCA1 or ATM and depleted SETD1A using siRNA or CRISPR/Cas9. We assessed the effects of the PARPi Olaparib on cell viability, homologous recombination, and DNA repair. We assessed underlying transcriptional perturbations using RNAseq. We used The Cancer Genomics Atlas (TCGA) and DepMap to investigate patient survival and cancer cell characteristics. RESULTS Loss of SETD1A from both BRCA1-deficient and ATM-deficient cancer cells was associated with resistance to Olaparib, explained by partial restoration of homologous recombination. Mechanistically, SETD1A-dependent transcription of the crossover junction endonuclease EME1 correlated with sensitivity to Olaparib in these cells. Accordingly, when SETD1A or EME1 was lost, BRCA1 or ATM-mutated cells became resistant to Olaparib, and homologous recombination was partially restored. CONCLUSIONS Loss of SETD1A or EME1 drives cellular resistance to Olaparib in certain genetic contexts and may help explain why patients develop resistance to PARP inhibitors in the clinic.
Collapse
Affiliation(s)
- Ellie Sweatman
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Rachel Bayley
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Richad Selemane
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Martin R Higgs
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Wei J, Sun H, Huang Z, Yang L, Wu J, Zhang J, Liu M, Li M, Luo J, Wang H. Beyond interacting with Rap1: Dissecting the roles of Rif1. Int J Biol Macromol 2025; 306:141560. [PMID: 40032092 DOI: 10.1016/j.ijbiomac.2025.141560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Rap1 interacting factor 1 (Rif1), an evolutionarily conserved protein discovered in budding yeast, is crucial for controlling telomere length when it interacts with Rap1. Recent research, however, has shown that Rif1 not only controls telomere length and homeostasis, but also plays a role in transcriptional silencing, DNA replication timing, DNA replication fork protection, DNA damage repair and chromatin architecture. In this review, we summarize the current understanding of Rif1 in structure, function, and regulation, especially its relevance to cancer hallmarks. Also, we discuss its role as a regulator in the pathogenesis of disease.
Collapse
Affiliation(s)
- Jiyu Wei
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hao Sun
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhihong Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiaxing Wu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiaqi Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
3
|
Tian J, Li J, Liu F, Wang C, Sun B, Yan J, Zhu B, Qin Y, Fang S, Zhang H, Chen G. DSCC1 restrains 53BP1/RIF1 signaling at DNA double-strand breaks to promote homologous recombination repair. Cell Rep 2025; 44:115452. [PMID: 40117291 DOI: 10.1016/j.celrep.2025.115452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025] Open
Abstract
Mammalian DNA double-strand breaks (DSBs) are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). HR occurs in the S/G2 phase, while NHEJ dominates in G1 phase. 53BP1 promotes NHEJ by recruiting RIF1 to DSBs in G1, but its inhibition during S/G2 remains unclear. Here, we identify DNA replication and sister chromatid cohesion 1 (DSCC1) as a key regulator that antagonizes 53BP1/RIF1 signaling in a cell-cycle-dependent manner. ATR-mediated phosphorylation of DSCC1 at Thr181 leads to its recruitment to DSB sites and promotes HR by facilitating DNA end resection. During S/G2, E2F1-induced DSCC1 expression is phosphorylated by cyclin-dependent kinase 2 (CDK2), enabling DSCC1 to interact with 53BP1 and restrain ataxia telangiectasia mutated (ATM)-mediated 53BP1 phosphorylation, consequently preventing RIF1 recruitment. Pathologically, DSCC1 is elevated in ovarian cancer, conferring poly (ADP-ribose) polymerase (PARP) inhibitor resistance. Thus, DSCC1 plays a crucial role in DSB repair pathway choice toward HR repair during S/G2 phase, providing a potential target to optimize PARP inhibitor therapy in BRCA1/2-proficient cancers.
Collapse
Affiliation(s)
- Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiaheng Li
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China; College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Fengqi Liu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yu Qin
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Haoxing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| |
Collapse
|
4
|
Wang C, Han X, Kong S, Zhang S, Ning H, Wu F. Deciphering the mechanisms of PARP inhibitor resistance in prostate cancer: Implications for precision medicine. Biomed Pharmacother 2025; 185:117955. [PMID: 40086424 DOI: 10.1016/j.biopha.2025.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Prostate cancer is a leading malignancy among men. While early-stage prostate cancer can be effectively managed, metastatic prostate cancer remains incurable, with a median survival of 3-5 years. The primary treatment for advanced prostate cancer is androgen deprivation therapy (ADT), but resistance to ADT often leads to castrationresistant prostate cancer (CRPC), presenting a significant therapeutic challenge. The advent of precision medicine has introduced promising new treatments, including PARP inhibitors (PARPi), which target defects in DNA repair mechanisms in cancer cells. PARPi have shown efficacy in treating advanced prostate cancer, especially in patients with metastatic CRPC (mCRPC) harboring homologous recombination (HR)-associated gene mutations. Despite these advancements, resistance to PARPi remains a critical issue. Here, we explored the primary mechanisms of PARPi resistance in prostate cancer. Key resistance mechanisms include homologous recombination recovery through reverse mutations in BRCA genes, BRCA promoter demethylation, and non-degradation of mutated BRCA proteins. The tumor microenvironment and overactivation of the base excision repair pathway also play significant roles in bypassing PARPi-induced synthetic lethality. In addition, we explored the clinical implications and therapeutic strategies to overcome resistance,emphasizing the need for precision medicine approaches. Our findings highlight the need for comprehensive strategies to improve PARPi sensitivity and effectiveness,ultimately aiming to extend patient survival and improve the quality of life for those with advanced prostate cancer. As our understanding of PARPi resistance evolves, more diverse and effective individualized treatment regimens will emerge.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China
| | - Xiaoran Han
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shaoqiu Kong
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shanhua Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Hao Ning
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
5
|
Abe T, Yoshimoto Y, Matsuno S, Yoshimura A, Hirota K, Seki M. TIPIN is essential for chromosome stability and cell viability in BRCA1-deficient cells. Biochem Biophys Res Commun 2025; 752:151467. [PMID: 39955949 DOI: 10.1016/j.bbrc.2025.151467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
The mutations of breast cancer type 1 susceptibility gene (BRCA1) cause hereditary breast cancer. One of the medical revolutions of cancer therapy for BRCA1-mutated breast cancer is the drug approval of Poly (ADP-ribose) polymerase (PARP) inhibitors because of the synthetic lethal interaction between BRCA1 mutation and PARP inhibition. Here, we report another synthetic lethal interaction between BRCA1 and TIMELESS interacting protein (TIPIN), the latter of which encodes a protein involved in DNA replication, DNA damage checkpoint and sister chromatid cohesion. Cells deficient for both BRCA1 and TIPIN die due to elevated chromosomal aberrations including chromosomal breaks and radial chromosomes. The synthetic lethality of TIPIN/BRCA1-deficient cells is restored by the depletion of Tumor protein p53 binding protein 1 (53BP1), which prevents homologous recombination (HR) by its restricting DNA processing. Thus, spontaneous DNA lesions in TIPIN deficient cells could be preferentially repaired by BRCA1-mediated HR pathway. The viability of TIPIN/53BP1/BRCA1 triple mutant is lost by the depletion of Ring finger protein 8 (RNF8) E3-ubiquitin ligase, implicating that RNF8-mediated sub-HR pathway may work in a complementary manner of BRCA1 and 53BP1 pathway.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Yui Yoshimoto
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Seiya Matsuno
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Akari Yoshimura
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masayuki Seki
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
6
|
Mentani A, Maresca M, Shiriaeva A. Prime Editing: Mechanistic Insights and DNA Repair Modulation. Cells 2025; 14:277. [PMID: 39996750 PMCID: PMC11853414 DOI: 10.3390/cells14040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the DNA undergoes one of several DNA repair pathways, and these processes can be modulated with the use of inhibitors. Firstly, this review provides an overview of several DNA repair mechanisms and their modulation by known inhibitors. In addition, we summarize different published prime editors and provide a comprehensive overview of associated DNA repair mechanisms. Finally, we discuss the delivery and safety aspects of prime editing.
Collapse
Affiliation(s)
- Astrid Mentani
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Anna Shiriaeva
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| |
Collapse
|
7
|
Billing D, Sfeir A. The Role of Microhomology-Mediated End Joining (MMEJ) at Dysfunctional Telomeres. Cold Spring Harb Perspect Biol 2025; 17:a041687. [PMID: 39500624 PMCID: PMC11864110 DOI: 10.1101/cshperspect.a041687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
DNA double-strand break (DSB) repair pathways are crucial for maintaining genome stability and cell viability. However, these pathways can mistakenly recognize chromosome ends as DNA breaks, leading to adverse outcomes such as telomere fusions and malignant transformation. The shelterin complex protects telomeres from activation of DNA repair pathways by inhibiting nonhomologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). The focus of this paper is on MMEJ, an error-prone DSB repair pathway characterized by short insertions and deletions flanked by sequence homology. MMEJ is critical in mediating telomere fusions in cells lacking the shelterin complex and at critically short telomeres. Furthermore, studies suggest that MMEJ is the preferred pathway for repairing intratelomeric DSBs and facilitates escape from telomere crisis. Targeting MMEJ to prevent telomere fusions in hematologic malignancies is of potential therapeutic value.
Collapse
Affiliation(s)
- David Billing
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
8
|
Harter P, Marth C, Mouret-Reynier MA, Cropet C, Lorusso D, Guerra-Alía EM, Matsumoto T, Vergote I, Colombo N, Mäenpää J, Lebreton C, de Gregorio N, Mosconi AM, Rubio-Pérez MJ, Bourgeois H, Fasching PA, Cecere SC, Hardy-Bessard AC, Denschlag D, de Percin S, Hanker L, Favier L, Bauerschlag D, Desauw C, Hillemanns P, Largillier R, Sehouli J, Grenier J, Pujade-Lauraine E, Ray-Coquard I. Efficacy of subsequent therapies in patients with advanced ovarian cancer who relapse after first-line olaparib maintenance: results of the PAOLA-1/ENGOT-ov25 trial. Ann Oncol 2025; 36:185-196. [PMID: 39528049 DOI: 10.1016/j.annonc.2024.10.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The use of first-line poly(ADP-ribose) polymerase (PARP) inhibitor maintenance therapy is increasing in advanced ovarian cancer. Understanding the efficacy of first subsequent therapy (FST) in patients experiencing disease progression in the first-line setting is important to optimize postprogression treatments. We evaluated the efficacy of FST in patients from PAOLA-1/ENGOT-ov25 (NCT02477644) who received first-line olaparib maintenance. PATIENTS AND METHODS This post hoc analysis evaluated the efficacy of subsequent chemotherapy following disease progression by assessing time from FST to second subsequent therapy (SST) according to whether progression occurred during versus after first-line olaparib maintenance and FST type. A multivariate Cox model was used in the olaparib plus bevacizumab arm to identify prognostic factors influencing the efficacy of subsequent chemotherapy. RESULTS Of 806 randomized patients, 544 (67.5%) progressed and received subsequent chemotherapy. The median time from FST to SST was shorter in patients in the olaparib plus bevacizumab arm who progressed during first-line olaparib maintenance (6.1 months) than in those who progressed after first-line olaparib maintenance (11.4 months). Multivariate analysis indicated that progression after (versus during) first-line olaparib maintenance influenced time from FST to SST (hazard ratio 0.65, 95% confidence interval 0.50-0.84; P = 0.0011) independently of platinum-free interval or clinical risk. Among patients who progressed and received platinum-based chemotherapy with a PARP inhibitor as FST, the efficacy of subsequent therapies was also dependent on whether progression occurred during versus after first-line olaparib maintenance. CONCLUSIONS These results suggest that the timing of disease progression relative to first-line olaparib maintenance may impact the efficacy of subsequent platinum-based chemotherapy. Although results should be interpreted with caution, across all subgroups, including patients who received platinum-based chemotherapy with PARP inhibitor rechallenge as FST, the median time from FST to SST was longer if progression occurred after versus during first-line olaparib maintenance.
Collapse
Affiliation(s)
- P Harter
- Department of Gynaecology & Gynaecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany; Philipps University, Marburg, Germany; Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Studiengruppe, Germany
| | - C Marth
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria; Arbeitsgemeinschaft Gynäkologische Onkologie (AGO-Austria), Austria
| | - M-A Mouret-Reynier
- Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France; Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France
| | - C Cropet
- Department of Biostatistics, Centre Léon Bérard, Lyon, France
| | - D Lorusso
- Istituto Tumori Milano + Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Catholic University of Sacred Heart, Milan, Italy; Multicenter Italian Trials in Ovarian Cancer and Gynecologic Malignancies (MITO), Italy
| | - E M Guerra-Alía
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo Español de Investigación en Cáncer de Ovario (GEICO), Spain
| | - T Matsumoto
- Ehime University Hospital, Toon, Japan; Gynecologic Oncology Trial and Investigation Consortium (GOTIC), Japan
| | - I Vergote
- Department of Obstetrics and Gynaecology, University Hospital Leuven, Leuven Cancer Institute, Belgium; Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | - N Colombo
- University of Milan-Bicocca, European Institute of Oncology IRCCS, Milan, Italy; Mario Negri Gynecologic Oncology Group (MANGO), Italy
| | - J Mäenpää
- Department of Obstetrics and Gynecology and Cancer Center, Tampere University Hospital, Tampere, Finland; Nordic Society of Gynecologic Oncology (NSGO), Finland
| | - C Lebreton
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - N de Gregorio
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Studiengruppe, Germany; Universitätsklinikum Ulm, Klinik für Frauenheilkunde und Geburtshilfe, Ulm, SLK-Kliniken Heilbronn GmbH, Heilbronn, Germany
| | - A M Mosconi
- Multicenter Italian Trials in Ovarian Cancer and Gynecologic Malignancies (MITO), Italy; S.C. di Oncologia Medica Osp. S. Maria della Misericordia - AO di Perugia, Perugia, Italy
| | - M J Rubio-Pérez
- Grupo Español de Investigación en Cáncer de Ovario (GEICO), Spain; Medical Oncology Department, Hospital Reina Sofía, Córdoba, Spain
| | - H Bourgeois
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; Medical Oncology Department, Centre Jean Bernard - Clinique Victor Hugo, Le Mans, France
| | - P A Fasching
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Studiengruppe, Germany; Gynecology and Obstetrics Translational Medicine, Universitätsfrauenklinik Erlangen, Erlangen, Germany
| | - S C Cecere
- Multicenter Italian Trials in Ovarian Cancer and Gynecologic Malignancies (MITO), Italy; Department of Urology and Gynecology, Istituto Nazionale Tumori 'Fondazione G Pascale', IRCCS, Naples, Italy
| | - A-C Hardy-Bessard
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; Oncologie Médicale, Centre CARIO - HPCA, Plérin Sur Mer, Plérin, France
| | - D Denschlag
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Studiengruppe, Germany; Hochtaunuskliniken, Bad Homburg, Germany
| | - S de Percin
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; APHP - Hôpital Cochin, Paris, France
| | - L Hanker
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Studiengruppe, Germany; Universitätsklinikum Schleswig-Holstein, Klinik für Gynäkologie und Geburtshilfe, Campus Lübeck, Lübeck, Germany; Universitätsklinikum Münster, Klinik für Gynäkologie und Geburtshilfe, Münster, Germany
| | - L Favier
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; Centre Georges François Leclerc, Dijon, France
| | - D Bauerschlag
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Studiengruppe, Germany; Universitätsklinikum Schleswig-Holstein, Klinik für Gynäkologie und Geburtshilfe, Campus Kiel, Kiel, Germany
| | - C Desauw
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - P Hillemanns
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Studiengruppe, Germany; Medizinische Hochschule Hannover, Klinik für Frauenheilkunde und Geburtshilfe, Hannover, Germany
| | - R Largillier
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; Centre Azuréen de Cancérologie, Mougins, France
| | - J Sehouli
- Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) Studiengruppe, Germany; Charité - Campus-Virchow-Klinikum, Department of Gynecology with Center of Oncological Surgery Berlin, Frauenklinik, Berlin, Germany
| | - J Grenier
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; Institut du cancer Avignon-Provence, Avignon, Paris
| | - E Pujade-Lauraine
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; Association de Recherche Cancers Gynécologiques (ARCAGY) Research, Paris
| | - I Ray-Coquard
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), France; Department of Medical Oncology, Centre Léon Berard, Lyon, France.
| |
Collapse
|
9
|
Kabrani E, Rahjouei A, Berruezo-Llacuna M, Ebeling S, Saha T, Altwasser R, Delgado-Benito V, Pavri R, Di Virgilio M. RIF1 integrates DNA repair and transcriptional requirements during the establishment of humoral immune responses. Nat Commun 2025; 16:777. [PMID: 39824820 PMCID: PMC11742068 DOI: 10.1038/s41467-025-56166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The establishment of protective immune responses relies on the ability of terminally differentiated B cells to secrete a broad variety of antigen-specific antibodies with different effector functions. RIF1 is a multifunctional protein that promotes antibody isotype diversification via its DNA end protection activity during class switch recombination. In this study, we showed that RIF1 ablation resulted in increased plasmablast formation ex vivo and enhanced terminal differentiation into plasma cells upon immunization. Mechanistically, this phenotype is independent from RIF1's role in DNA repair and class switch recombination, and reflects its ability to modulate the transcriptional status of a subset of BLIMP1 target genes. Therefore, here we show that, in addition to promoting antibody diversification, RIF1 fine-tunes the kinetics of late B cell differentiation, thus providing an additional layer of control in the establishment of humoral immunity.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Ali Rahjouei
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, and Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Maria Berruezo-Llacuna
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Svenja Ebeling
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Freie Universität Berlin, 14195, Berlin, Germany
| | - Tannishtha Saha
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Freie Universität Berlin, 14195, Berlin, Germany
| | - Robert Altwasser
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Veronica Delgado-Benito
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Rushad Pavri
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michela Di Virgilio
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
10
|
Koo ASH, Jia W, Kim SH, Scalf M, Boos CE, Chen Y, Wang D, Voter AF, Bajaj A, Smith LM, Keck JL, Bakkenist CJ, Guo L, Tibbetts RS. Alternative splicing modulates chromatin interactome and phase separation of the RIF1 C-terminal domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.619708. [PMID: 39553946 PMCID: PMC11565852 DOI: 10.1101/2024.10.29.619708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
RIF1 (RAP1 interacting factor) fulfills diverse roles in DNA double-strand break repair, DNA replication, and nuclear organization. RIF1 is expressed as two splice variants, RIF1-Long (RIF1-L) and RIF1-Short (RIF1-S), from the alternative splicing (AS) of Exon 32 (Ex32) which encodes a 26 aa Ser/Lys-rich cassette peptide in the RIF1 C-terminal domain (CTD). Here we demonstrate that Ex32 inclusion was repressed by DNA damage and oncogenesis but peaked at G2/M phase of the cell cycle. Ex32 splice-in was catalyzed by positive regulators including SRSF1, which bound to Ex32 directly, and negative regulators such as PTBP1 and SRSF3. Isoform proteomics revealed enhanced association of RIF1-L with MDC1, whose recruitment to IR-induced foci was strengthened by RIF1-L. RIF1-L and RIF1-S also exhibited unique phase separation and chromatin-binding characteristics that were regulated by CDK1-dependent CTD phosphorylation. These combined findings suggest that regulated AS affects multiple aspects of RIF1 function in genome protection and organization.
Collapse
Affiliation(s)
- Adenine Si-Hui Koo
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Weiyan Jia
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Sang Hwa Kim
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Claire E. Boos
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew F. Voter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | - Aditya Bajaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Randal S. Tibbetts
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
11
|
Boucher MJ, Banerjee S, Joshi MB, Wei AL, Huang MY, Lei S, Ciranni M, Condon A, Langen A, Goddard TD, Caradonna I, Goranov AI, Homer CM, Mortensen Y, Petnic S, Reilly MC, Xiong Y, Susa KJ, Pastore VP, Zaro BW, Madhani HD. Phenotypic landscape of a fungal meningitis pathogen reveals its unique biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619677. [PMID: 39484549 PMCID: PMC11526942 DOI: 10.1101/2024.10.22.619677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cryptococcus neoformans is the most common cause of fungal meningitis and the top-ranked W.H.O. priority fungal pathogen. Only distantly related to model fungi, C. neoformans is also a powerful experimental system for exploring conserved eukaryotic mechanisms lost from specialist model yeast lineages. To decipher its biology globally, we constructed 4328 gene deletions and measured-with exceptional precision--the fitness of each mutant under 141 diverse growth-limiting in vitro conditions and during murine infection. We defined functional modules by clustering genes based on their phenotypic signatures. In-depth studies leveraged these data in two ways. First, we defined and investigated new components of key signaling pathways, which revealed animal-like pathways/components not predicted from studies of model yeasts. Second, we identified environmental adaptation mechanisms repurposed to promote mammalian virulence by C. neoformans, which lacks a known animal reservoir. Our work provides an unprecedented resource for deciphering a deadly human pathogen.
Collapse
Affiliation(s)
- Michael J Boucher
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sanjita Banerjee
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Meenakshi B Joshi
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Angela L Wei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Manning Y Huang
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Susan Lei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Massimiliano Ciranni
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Andrew Condon
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Andreas Langen
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Thomas D Goddard
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Ippolito Caradonna
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Alexi I Goranov
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Christina M Homer
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Yassaman Mortensen
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sarah Petnic
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Morgann C Reilly
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Ying Xiong
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Katherine J Susa
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Vito Paolo Pastore
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Balyn W Zaro
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Lam SY, van der Lugt R, Cerutti A, Yalçin Z, Thouin AM, Simonetta M, Jacobs JJL. OTUD5 promotes end-joining of deprotected telomeres by promoting ATM-dependent phosphorylation of KAP1 S824. Nat Commun 2024; 15:8960. [PMID: 39420004 PMCID: PMC11486905 DOI: 10.1038/s41467-024-53404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Appropriate repair of damaged DNA and the suppression of DNA damage responses at telomeres are essential to preserve genome stability. DNA damage response (DDR) signaling consists of cascades of kinase-driven phosphorylation events, fine-tuned by proteolytic and regulatory ubiquitination. It is not fully understood how crosstalk between these two major classes of post-translational modifications impact DNA repair at deprotected telomeres. Hence, we performed a functional genetic screen to search for ubiquitin system factors that promote KAP1S824 phosphorylation, a robust DDR marker at deprotected telomeres. We identified that the OTU family deubiquitinase (DUB) OTUD5 promotes KAP1S824 phosphorylation by facilitating ATM activation, through stabilization of the ubiquitin ligase UBR5 that is required for DNA damage-induced ATM activity. Loss of OTUD5 impairs KAP1S824 phosphorylation, which suppresses end-joining mediated DNA repair at deprotected telomeres and at DNA breaks in heterochromatin. Moreover, we identified an unexpected role for the heterochromatin factor KAP1 in suppressing DNA repair at telomeres. Altogether our work reveals an important role for OTUD5 and KAP1 in relaying DDR-dependent kinase signaling to the control of DNA repair at telomeres and heterochromatin.
Collapse
Affiliation(s)
- Shiu Yeung Lam
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruben van der Lugt
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aurora Cerutti
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Zeliha Yalçin
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alexander M Thouin
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marco Simonetta
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Shah SB, Li Y, Li S, Hu Q, Wu T, Shi Y, Nguyen T, Ive I, Shi L, Wang H, Wu X. 53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR). Nat Commun 2024; 15:8648. [PMID: 39368985 PMCID: PMC11455893 DOI: 10.1038/s41467-024-52916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] Open
Abstract
Break-induced replication (BIR) is mutagenic, and thus its use requires tight regulation, yet the underlying mechanisms remain elusive. Here we uncover an important role of 53BP1 in suppressing BIR after end resection at double strand breaks (DSBs), distinct from its end protection activity, providing insight into the mechanisms governing BIR regulation and DSB repair pathway selection. We demonstrate that loss of 53BP1 induces BIR-like hyperrecombination, in a manner dependent on Polα-primase-mediated end fill-in DNA synthesis on single-stranded DNA (ssDNA) overhangs at DSBs, leading to PCNA ubiquitination and PIF1 recruitment to activate BIR. On broken replication forks, where BIR is required for repairing single-ended DSBs (seDSBs), SMARCAD1 displaces 53BP1 to facilitate the localization of ubiquitinated PCNA and PIF1 to DSBs for BIR activation. Hyper BIR associated with 53BP1 deficiency manifests template switching and large deletions, underscoring another aspect of 53BP1 in suppressing genome instability. The synthetic lethal interaction between the 53BP1 and BIR pathways provides opportunities for targeted cancer treatment.
Collapse
Affiliation(s)
- Sameer Bikram Shah
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Youhang Li
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- College of Life Science, Capital Normal University, Beijing, 100037, China
| | - Shibo Li
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Qing Hu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tong Wu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yanmeng Shi
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tran Nguyen
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Isaac Ive
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Linda Shi
- The Institute of Engineering in Medicine, University of California, San Diego, California, 92093, USA
| | - Hailong Wang
- College of Life Science, Capital Normal University, Beijing, 100037, China
| | - Xiaohua Wu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
15
|
Shah SB, Li Y, Li S, Hu Q, Wu T, Shi Y, Nguyen T, Ive I, Shi L, Wang H, Wu X. 53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612483. [PMID: 39314326 PMCID: PMC11419065 DOI: 10.1101/2024.09.11.612483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Break-induced replication (BIR) is mutagenic, and thus its use requires tight regulation, yet the underlying mechanisms remain elusive. Here we uncover an important role of 53BP1 in suppressing BIR after end resection at double strand breaks (DSBs), distinct from its end protection activity, providing insight into the mechanisms governing BIR regulation and DSB repair pathway selection. We demonstrate that loss of 53BP1 induces BIR-like hyperrecombination, in a manner dependent on Polα-primase-mediated end fill-in DNA synthesis on single-stranded DNA (ssDNA) overhangs at DSBs, leading to PCNA ubiquitination and PIF1 recruitment to activate BIR. On broken replication forks, where BIR is required for repairing single-ended DSBs (seDSBs), SMARCAD1 displaces 53BP1 to facilitate the localization of ubiquitinated PCNA and PIF1 to DSBs for BIR activation. Hyper BIR associated with 53BP1 deficiency manifests template switching and large deletions, underscoring another aspect of 53BP1 in suppressing genome instability. The synthetic lethal interaction between the 53BP1 and BIR pathways provides opportunities for targeted cancer treatment.
Collapse
Affiliation(s)
- Sameer Bikram Shah
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Youhang Li
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- College of Life Science, Capital Normal University, Beijing 100037, China
| | - Shibo Li
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Qing Hu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tong Wu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yanmeng Shi
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tran Nguyen
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isaac Ive
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linda Shi
- The Institute of Engineering in Medicine, University of California, San Diego, California 92093, USA
| | - Hailong Wang
- College of Life Science, Capital Normal University, Beijing 100037, China
| | - Xiaohua Wu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
17
|
Sun Y, Patterson-Fortin J, Han S, Li Z, Nowicka Z, Hirohashi Y, Kilgas S, Yi JK, Spektor A, Fendler W, Konstantinopoulos PA, Chowdhury D. 53BP1 loss elicits cGAS-STING-dependent antitumor immunity in ovarian and pancreatic cancer. Nat Commun 2024; 15:6676. [PMID: 39107288 PMCID: PMC11303708 DOI: 10.1038/s41467-024-50999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
53BP1 nucleates the anti-end resection machinery at DNA double-strand breaks, thereby countering BRCA1 activity. Loss of 53BP1 leads to DNA end processing and homologous recombination in BRCA1-deficient cells. Consequently, BRCA1-mutant tumors, typically sensitive to PARP inhibitors (PARPi), become resistant in the absence of 53BP1. Here, we demonstrate that the 'leaky' DNA end resection in the absence of 53BP1 results in increased micronuclei and cytoplasmic double-stranded DNA, leading to activation of the cGAS-STING pathway and pro-inflammatory signaling. This enhances CD8+ T cell infiltration, activates macrophages and natural killer cells, and impedes tumor growth. Loss of 53BP1 correlates with a response to immune checkpoint blockade (ICB) and improved overall survival. Immunohistochemical assessment of 53BP1 in two malignancies, high grade serous ovarian cancer and pancreatic ductal adenocarcinoma, which are refractory to ICBs, reveals that lower 53BP1 levels correlate with an increased adaptive and innate immune response. Finally, BRCA1-deficient tumors that develop resistance to PARPi due to the loss of 53BP1 are susceptible to ICB. Therefore, we conclude that 53BP1 is critical for tumor immunogenicity and underpins the response to ICB. Our results support including 53BP1 expression as an exploratory biomarker in ICB trials for malignancies typically refractory to immunotherapy.
Collapse
MESH Headings
- Tumor Suppressor p53-Binding Protein 1/metabolism
- Tumor Suppressor p53-Binding Protein 1/genetics
- Female
- Nucleotidyltransferases/metabolism
- Nucleotidyltransferases/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Humans
- Animals
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Mice
- Cell Line, Tumor
- DNA Breaks, Double-Stranded
- BRCA1 Protein/metabolism
- BRCA1 Protein/genetics
- Signal Transduction
- CD8-Positive T-Lymphocytes/immunology
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Mice, Inbred C57BL
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice, Knockout
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Immunity, Innate
Collapse
Affiliation(s)
- Yajie Sun
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jeffrey Patterson-Fortin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sen Han
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Yuna Hirohashi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jae Kyo Yi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander Spektor
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Djerir B, Marois I, Dubois JC, Findlay S, Morin T, Senoussi I, Cappadocia L, Orthwein A, Maréchal A. An E3 ubiquitin ligase localization screen uncovers DTX2 as a novel ADP-ribosylation-dependent regulator of DNA double-strand break repair. J Biol Chem 2024; 300:107545. [PMID: 38992439 PMCID: PMC11345397 DOI: 10.1016/j.jbc.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
DNA double-strand breaks (DSBs) elicit an elaborate response to signal damage and trigger repair via two major pathways: nonhomologous end-joining (NHEJ), which functions throughout the interphase, and homologous recombination (HR), restricted to S/G2 phases. The DNA damage response relies, on post-translational modifications of nuclear factors to coordinate the mending of breaks. Ubiquitylation of histones and chromatin-associated factors regulates DSB repair and numerous E3 ubiquitin ligases are involved in this process. Despite significant progress, our understanding of ubiquitin-mediated DNA damage response regulation remains incomplete. Here, we have performed a localization screen to identify RING/U-box E3 ligases involved in genome maintenance. Our approach uncovered 7 novel E3 ligases that are recruited to microirradiation stripes, suggesting potential roles in DNA damage signaling and repair. Among these factors, the DELTEX family E3 ligase DTX2 is rapidly mobilized to lesions in a poly ADP-ribosylation-dependent manner. DTX2 is recruited and retained at DSBs via its WWE and DELTEX conserved C-terminal domains. In cells, both domains are required for optimal binding to mono and poly ADP-ribosylated proteins with WWEs playing a prominent role in this process. Supporting its involvement in DSB repair, DTX2 depletion decreases HR efficiency and moderately enhances NHEJ. Furthermore, DTX2 depletion impeded BRCA1 foci formation and increased 53BP1 accumulation at DSBs, suggesting a fine-tuning role for this E3 ligase in repair pathway choice. Finally, DTX2 depletion sensitized cancer cells to X-rays and PARP inhibition and these susceptibilities could be rescued by DTX2 reexpression. Altogether, our work identifies DTX2 as a novel ADP-ribosylation-dependent regulator of HR-mediated DSB repair.
Collapse
Affiliation(s)
- Billel Djerir
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Isabelle Marois
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Christophe Dubois
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montréal, Quebec, Canada
| | - Théo Morin
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Issam Senoussi
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Laurent Cappadocia
- Faculty of Sciences, Department of Chemistry, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montréal, Quebec, Canada; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
19
|
Yalçin Z, Lam SY, Peuscher MH, van der Torre J, Zhu S, Iyengar PV, Salas-Lloret D, de Krijger I, Moatti N, van der Lugt R, Falcone M, Cerutti A, Bleijerveld OB, Hoekman L, González-Prieto R, Jacobs JJL. UBE2D3 facilitates NHEJ by orchestrating ATM signalling through multi-level control of RNF168. Nat Commun 2024; 15:5032. [PMID: 38866770 PMCID: PMC11169547 DOI: 10.1038/s41467-024-49431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Maintenance of genome integrity requires tight control of DNA damage response (DDR) signalling and repair, with phosphorylation and ubiquitination representing key elements. How these events are coordinated to achieve productive DNA repair remains elusive. Here we identify the ubiquitin-conjugating enzyme UBE2D3 as a regulator of ATM kinase-induced DDR that promotes non-homologous end-joining (NHEJ) at telomeres. UBE2D3 contributes to DDR-induced chromatin ubiquitination and recruitment of the NHEJ-promoting factor 53BP1, both mediated by RNF168 upon ATM activation. Additionally, UBE2D3 promotes NHEJ by limiting RNF168 accumulation and facilitating ATM-mediated phosphorylation of KAP1-S824. Mechanistically, defective KAP1-S824 phosphorylation and telomeric NHEJ upon UBE2D3-deficiency are linked to RNF168 hyperaccumulation and aberrant PP2A phosphatase activity. Together, our results identify UBE2D3 as a multi-level regulator of NHEJ that orchestrates ATM and RNF168 activities. Moreover, they reveal a negative regulatory circuit in the DDR that is constrained by UBE2D3 and consists of RNF168- and phosphatase-mediated restriction of KAP1 phosphorylation.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Shiu Yeung Lam
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Marieke H Peuscher
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jaco van der Torre
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Sha Zhu
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Prasanna V Iyengar
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Inge de Krijger
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Nathalie Moatti
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Ruben van der Lugt
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Mattia Falcone
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Aurora Cerutti
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
- Andalusian Center for Molecular Biology and regenerative Medicine (CABIMER), Universidad de Sevilla-CSIC-Universidad-Pablo de Olavide, Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F, Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr) 2024; 47:717-732. [PMID: 38095764 DOI: 10.1007/s13402-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Andrea D'Alessandro
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Patrizia Morciano
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università Degli Studi dell'Aquila, 67100, L'Aquila, Italy
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100, L'Aquila, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
21
|
Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, Mao Z. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ 2024; 31:792-803. [PMID: 38664591 PMCID: PMC11164703 DOI: 10.1038/s41418-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyi Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Qian
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
22
|
Wu S, Yao X, Sun W, Jiang K, Hao J. Exploration of poly (ADP-ribose) polymerase inhibitor resistance in the treatment of BRCA1/2-mutated cancer. Genes Chromosomes Cancer 2024; 63:e23243. [PMID: 38747337 DOI: 10.1002/gcc.23243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Breast cancer susceptibility 1/2 (BRCA1/2) genes play a crucial role in DNA damage repair, yet mutations in these genes increase the susceptibility to tumorigenesis. Exploiting the synthetic lethality mechanism between BRCA1/2 mutations and poly(ADP-ribose) polymerase (PARP) inhibition has led to the development and clinical approval of PARP inhibitor (PARPi), representing a milestone in targeted therapy for BRCA1/2 mutant tumors. This approach has paved the way for leveraging synthetic lethality in tumor treatment strategies. Despite the initial success of PARPis, resistance to these agents diminishes their efficacy in BRCA1/2-mutant tumors. Investigations into PARPi resistance have identified replication fork stability and homologous recombination repair as key factors sensitive to PARPis. Additionally, studies suggest that replication gaps may also confer sensitivity to PARPis. Moreover, emerging evidence indicates a correlation between PARPi resistance and cisplatin resistance, suggesting a potential overlap in the mechanisms underlying resistance to both agents. Given these findings, it is imperative to explore the interplay between replication gaps and PARPi resistance, particularly in the context of platinum resistance. Understanding the impact of replication gaps on PARPi resistance may offer insights into novel therapeutic strategies to overcome resistance mechanisms and enhance the efficacy of targeted therapies in BRCA1/2-mutant tumors.
Collapse
Affiliation(s)
- Shuyi Wu
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Xuanjie Yao
- The Fourth Clinical Medical College, Zhejiang Chinese Medicine University, HangZhou, China
| | - Weiwei Sun
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Kaitao Jiang
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Jie Hao
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| |
Collapse
|
23
|
Singh A, Singhal C, Sharma AK, Khurana P. An auxin regulated Universal stress protein (TaUSP_3B-1) interacts with TaGolS and provides tolerance under drought stress and ER stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14390. [PMID: 38899466 DOI: 10.1111/ppl.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
A previously identified wheat drought stress responsive Universal stress protein, TaUSP_3B-1 has been found to work in an auxin dependent manner in the plant root tissues in the differentiation zone. We also found a novel interacting partner, TaGolS, which physically interacts with TaUSP_3B-1 and colocalizes in the endoplasmic reticulum. TaGolS is a key enzyme in the RFO (Raffinose oligosaccharides) biosynthesis which is well reported to provide tolerance under water deficit conditions. TaUSP_3B-1 overexpression lines showed an early flowering phenotype under drought stress which might be attributed to the increased levels of AtTPPB and AtTPS transcripts under drought stress. Moreover, at the cellular levels ER stress induced TaUSP_3B-1 transcription and provides tolerance in both adaptive and acute ER stress via less ROS accumulation in the overexpression lines. TaUSP_3B-1 overexpression plants had increased silique numbers and a denser root architecture as compared to the WT plants under drought stress.
Collapse
Affiliation(s)
- Arunima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Chanchal Singhal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
24
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. CDK-independent role of D-type cyclins in regulating DNA mismatch repair. Mol Cell 2024; 84:1224-1242.e13. [PMID: 38458201 PMCID: PMC10997477 DOI: 10.1016/j.molcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel J Laverty
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cortt G Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged 6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
25
|
Kordowitzki P, Graczyk S, Mechsner S, Sehouli J. Shedding Light on the Interaction Between Rif1 and Telomeres in Ovarian Cancer. Aging Dis 2024; 15:535-545. [PMID: 37548940 PMCID: PMC10917528 DOI: 10.14336/ad.2023.0716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/16/2023] [Indexed: 08/08/2023] Open
Abstract
Ovarian cancer, more precisely high-grade serous ovarian cancer, is one of the most lethal age-independent gynecologic malignancies in women worldwide, regardless of age. There is mounting evidence that there is a link between telomeres and the RIF1 protein and the proliferation of cancer cells. Telomeres are hexameric (TTAGGG) tandem repeats at the tip of chromosomes that shorten as somatic cells divide, limiting cell proliferation and serving as an important barrier in preventing cancer. RIF1 (Replication Time Regulation Factor 1) plays, among other factors, an important role in the regulation of telomere length. Interestingly, RIF1 appears to influence the DNA double-strand break (DSB) repair pathway. However, detailed knowledge regarding the interplay between RIF1 and telomeres and their degree of engagement in epithelial ovarian cancer (EOC) is still elusive, despite the fact that such knowledge could be of relevance in clinical practice to find novel biomarkers. In this review, we provide an update of recent literature to elucidate the relation between telomere biology and the RIF1 protein during the development of ovarian cancer in women.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
- Department of Gynecology including Center of oncological surgery (CVK) and Department of Gynaecology (CBF), European Competence Center for Ovarian Cancer, Charite, Berlin, Germany.
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Sylvia Mechsner
- Department of Gynecology including Center of oncological surgery (CVK) and Department of Gynaecology (CBF), European Competence Center for Ovarian Cancer, Charite, Berlin, Germany.
| | - Jalid Sehouli
- Department of Gynecology including Center of oncological surgery (CVK) and Department of Gynaecology (CBF), European Competence Center for Ovarian Cancer, Charite, Berlin, Germany.
| |
Collapse
|
26
|
He J, Huang C, Guo Y, Deng R, Li L, Chen R, Wang Y, Huang J, Zheng J, Zhao X, Yu J. PTEN-mediated dephosphorylation of 53BP1 confers cellular resistance to DNA damage in cancer cells. Mol Oncol 2024; 18:580-605. [PMID: 38060346 PMCID: PMC10920079 DOI: 10.1002/1878-0261.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Homologous recombination (HR) repair for DNA double-strand breaks (DSBs) is critical for maintaining genome stability and conferring the resistance of tumor cells to chemotherapy. Nuclear PTEN which contains both phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein phosphatase plays a key role in HR repair, but the underlying mechanism remains largely elusive. We find that SUMOylated PTEN promotes HR repair but represses nonhomologous end joining (NHEJ) repair by directly dephosphorylating TP53-binding protein 1 (53BP1). During DNA damage responses (DDR), tumor suppressor ARF (p14ARF) was phosphorylated and then interacted efficiently with PTEN, thus promoting PTEN SUMOylation as an atypical SUMO E3 ligase. Interestingly, SUMOylated PTEN was subsequently recruited to the chromatin at DSB sites. This was because SUMO1 that was conjugated to PTEN was recognized and bound by the SUMO-interacting motif (SIM) of breast cancer type 1 susceptibility protein (BRCA1), which has been located to the core of 53BP1 foci on chromatin during S/G2 stage. Furthermore, these chromatin-loaded PTEN directly and specifically dephosphorylated phosphothreonine-543 (pT543) of 53BP1, resulting in the dissociation of the 53BP1 complex, which facilitated DNA end resection and ongoing HR repair. SUMOylation-site-mutated PTENK254R mice also showed decreased DNA damage repair in vivo. Blocking the PTEN SUMOylation pathway with either a SUMOylation inhibitor or a p14ARF(2-13) peptide sensitized tumor cells to chemotherapy. Our study therefore provides a new mechanistic understanding of PTEN in HR repair and clinical intervention of chemoresistant tumors.
Collapse
Affiliation(s)
- Jianfeng He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Yanmin Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
27
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. D-type cyclins regulate DNA mismatch repair in the G1 and S phases of the cell cycle, maintaining genome stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575420. [PMID: 38260436 PMCID: PMC10802603 DOI: 10.1101/2024.01.12.575420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V. Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A. Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B. Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W. Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A. Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Cortt G. Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S. Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Szeged, H-6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D. Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
28
|
Schwarz B, Matejka N, Rudigkeit S, Sammer M, Reindl J. Chromatin Organization after High-LET Irradiation Revealed by Super-Resolution STED Microscopy. Int J Mol Sci 2024; 25:628. [PMID: 38203799 PMCID: PMC10779204 DOI: 10.3390/ijms25010628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Ion-radiation-induced DNA double-strand breaks can lead to severe cellular damage ranging from mutations up to direct cell death. The interplay between the chromatin surrounding the damage and the proteins responsible for damage recognition and repair determines the efficiency and outcome of DNA repair. The chromatin is organized in three major functional compartments throughout the interphase: the chromatin territories, the interchromatin compartment, and the perichromatin lying in between. In this study, we perform correlation analysis using super-resolution STED images of chromatin; splicing factor SC35, as an interchromatin marker; and the DNA repair factors 53BP1, Rad51, and γH2AX in carbon-ion-irradiated human HeLa cells. Chromatin and interchromatin overlap only in protruding chromatin branches, which is the same for the correlation between chromatin and 53BP1. In contrast, between interchromatin and 53BP1, a gap of (270 ± 40) nm is visible. Rad51 shows overlap with decondensed euchromatic regions located at the borders of condensed heterochromatin with further correlation with γH2AX. We conclude that the DNA damage is repaired in decondensed DNA loops in the perichromatin, located in the periphery of the DNA-dense chromatin compartments containing the heterochromatin. Proteins like γH2AX and 53BP1 serve as supporters of the chromatin structure.
Collapse
|
29
|
Kabrani E, Saha T, Di Virgilio M. DNA repair and antibody diversification: the 53BP1 paradigm. Trends Immunol 2023; 44:782-791. [PMID: 37640588 DOI: 10.1016/j.it.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Freie Universität Berlin, Berlin 14195, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
30
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
31
|
Fu J, Zhou S, Xu H, Liao L, Shen H, Du P, Zheng X. ATM-ESCO2-SMC3 axis promotes 53BP1 recruitment in response to DNA damage and safeguards genome integrity by stabilizing cohesin complex. Nucleic Acids Res 2023; 51:7376-7391. [PMID: 37377435 PMCID: PMC10415120 DOI: 10.1093/nar/gkad533] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
53BP1 is primarily known as a key regulator in DNA double-strand break (DSB) repair. However, the mechanism of DSB-triggered cohesin modification-modulated chromatin structure on the recruitment of 53BP1 remains largely elusive. Here, we identified acetyltransferase ESCO2 as a regulator for DSB-induced cohesin-dependent chromatin structure dynamics, which promotes 53BP1 recruitment. Mechanistically, in response to DNA damage, ATM phosphorylates ESCO2 S196 and T233. MDC1 recognizes phosphorylated ESCO2 and recruits ESCO2 to DSB sites. ESCO2-mediated acetylation of SMC3 stabilizes cohesin complex conformation and regulates the chromatin structure at DSB breaks, which is essential for the recruitment of 53BP1 and the formation of 53BP1 microdomains. Furthermore, depletion of ESCO2 in both colorectal cancer cells and xenografted nude mice sensitizes cancer cells to chemotherapeutic drugs. Collectively, our results reveal a molecular mechanism for the ATM-ESCO2-SMC3 axis in DSB repair and genome integrity maintenance with a vital role in chemotherapy response in colorectal cancer.
Collapse
Affiliation(s)
- Jianfeng Fu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Siru Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Huilin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Liming Liao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Centre for Life Sciences, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Centre for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
32
|
Yin S, Liu L, Gan W. PRMT1 and PRMT5: on the road of homologous recombination and non-homologous end joining. GENOME INSTABILITY & DISEASE 2023; 4:197-209. [PMID: 37663901 PMCID: PMC10470524 DOI: 10.1007/s42764-022-00095-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 09/05/2023]
Abstract
DNA double-strand breaks (DSBs) are widely accepted to be the most deleterious form of DNA lesions that pose a severe threat to genome integrity. Two predominant pathways are responsible for repair of DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR relies on a template to faithfully repair breaks, while NHEJ is a template-independent and error-prone repair mechanism. Multiple layers of regulation have been documented to dictate the balance between HR and NHEJ, such as cell cycle and post-translational modifications (PTMs). Arginine methylation is one of the most common PTMs, which is catalyzed by protein arginine methyltransferases (PRMTs). PRMT1 and PRMT5 are the predominate PRMTs that promote asymmetric dimethylarginine and symmetric dimethylarginine, respectively. They have emerged to be crucial regulators of DNA damage repair. In this review, we summarize current understanding and unaddressed questions of PRMT1 and PRMT5 in regulation of HR and NHEJ, providing insights into their roles in DSB repair pathway choice and the potential of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
33
|
Bhin J, Paes Dias M, Gogola E, Rolfs F, Piersma SR, de Bruijn R, de Ruiter JR, van den Broek B, Duarte AA, Sol W, van der Heijden I, Andronikou C, Kaiponen TS, Bakker L, Lieftink C, Morris B, Beijersbergen RL, van de Ven M, Jimenez CR, Wessels LFA, Rottenberg S, Jonkers J. Multi-omics analysis reveals distinct non-reversion mechanisms of PARPi resistance in BRCA1- versus BRCA2-deficient mammary tumors. Cell Rep 2023; 42:112538. [PMID: 37209095 DOI: 10.1016/j.celrep.2023.112538] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023] Open
Abstract
BRCA1 and BRCA2 both function in DNA double-strand break repair by homologous recombination (HR). Due to their HR defect, BRCA1/2-deficient cancers are sensitive to poly(ADP-ribose) polymerase inhibitors (PARPis), but they eventually acquire resistance. Preclinical studies yielded several PARPi resistance mechanisms that do not involve BRCA1/2 reactivation, but their relevance in the clinic remains elusive. To investigate which BRCA1/2-independent mechanisms drive spontaneous resistance in vivo, we combine molecular profiling with functional analysis of HR of matched PARPi-naive and PARPi-resistant mouse mammary tumors harboring large intragenic deletions that prevent reactivation of BRCA1/2. We observe restoration of HR in 62% of PARPi-resistant BRCA1-deficient tumors but none in the PARPi-resistant BRCA2-deficient tumors. Moreover, we find that 53BP1 loss is the prevalent resistance mechanism in HR-proficient BRCA1-deficient tumors, whereas resistance in BRCA2-deficient tumors is mainly induced by PARG loss. Furthermore, combined multi-omics analysis identifies additional genes and pathways potentially involved in modulating PARPi response.
Collapse
Affiliation(s)
- Jinhyuk Bhin
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Department of Biomedical System Informatics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Mariana Paes Dias
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ewa Gogola
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Frank Rolfs
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; OncoProteomics Laboratory, Department Medical Oncology, Amsterdam UMC, 1081HV Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department Medical Oncology, Amsterdam UMC, 1081HV Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Julian R de Ruiter
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Bram van den Broek
- Division of Cell Biology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Alexandra A Duarte
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Wendy Sol
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ingrid van der Heijden
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Christina Andronikou
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3088 Bern, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Taina S Kaiponen
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3088 Bern, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Lara Bakker
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department Medical Oncology, Amsterdam UMC, 1081HV Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| | - Sven Rottenberg
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3088 Bern, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Robertson CM, Xue Y, Chowdhury S, Maringele L. A CDK-Dependent Phosphorylation of a Novel Domain of Rif1 Regulates its Function during Telomere Damage and Other Types of Stress. Mol Cell Biol 2023; 43:185-199. [PMID: 37140180 PMCID: PMC10184589 DOI: 10.1080/10985549.2023.2193768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Rif1 mediates telomere length, DNA replication, and DNA damage responses in budding yeast. Previous work identified several posttranslational modifications of Rif1, however none of these was shown to mediate the molecular or cellular responses to DNA damage, including telomere damage. We searched for such modifications using immunoblotting methods and the cdc13-1 and tlc1Δ models of telomere damage. We found that Rif1 is phosphorylated during telomere damage, and that serines 57 and 110 within a novel phospho-gate domain (PGD) of Rif1 are important for this modification, in cdc13-1 cells. The phosphorylation of Rif1 appeared to inhibit its accumulation on damaged chromosomes and the proliferation of cells with telomere damage. Moreover, we found that checkpoint kinases were upstream of this Rif1 phosphorylation and that the Cdk1 activity was essential for maintaining it. Apart from telomere damage, S57 and S110 were essential for Rif1 phosphorylation during the treatment of cells with genotoxic agents or during mitotic stress. We propose a speculative "Pliers" model to explain the role of the PGD phosphorylation during telomere and other types of damage.
Collapse
Affiliation(s)
- Cameron M Robertson
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yuan Xue
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Shobir Chowdhury
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Maringele
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Saha G, Roy S, Basu M, Ghosh MK. USP7 - a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188903. [PMID: 37127084 DOI: 10.1016/j.bbcan.2023.188903] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Over the course of three decades of study, the deubiquitinase Herpesvirus associated Ubiquitin-Specific Protease/Ubiquitin-Specific Protease 7 (HAUSP/USP7) has gradually come to be recognized as a crucially important molecule in cellular physiology. The fact that USP7 is overexpressed in a number of cancers, including breast, prostate, colorectal, and lung cancers, supports the idea that USP7 is also an important regulator of tumorigenesis. In this review, we discuss USP7's function in relation to the cancer hallmarks described by Hanahan and Weinberg. This post-translational modifier can support increased proliferation, block unfavorable growth signals, stop cell death, and support an unstable cellular genome by manipulating key players in the pertinent signalling circuit. It is interesting to note that USP7 also aids in the stabilization of molecules that support angiogenesis and metastasis. Targeting USP7 has now emerged as a crucial component of USP7 research because pharmacological inhibition of USP7 supports p53-mediated cell cycle arrest and apoptosis. Efficacious USP7 inhibition is currently being investigated in both synthetic and natural compounds, but issues with selectivity and a lack of co-crystal structure have hindered USP7 inhibition from being tested in clinical settings. Moreover, the development of new, more effective USP7 inhibitors and their encouraging implications by numerous groups give us a glimmer of hope for USP7-targeting medications as effective substitutes for hazardous cancer chemotherapeutics.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Srija Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Kolkata, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India.
| |
Collapse
|
36
|
Carnie CJ, Armstrong L, Sebesta M, Ariza A, Wang X, Graham E, Zhu K, Ahel D. ERCC6L2 mitigates replication stress and promotes centromere stability. Cell Rep 2023; 42:112329. [PMID: 37014751 PMCID: PMC12003248 DOI: 10.1016/j.celrep.2023.112329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Structurally complex genomic regions, such as centromeres, are inherently difficult to duplicate. The mechanism behind centromere inheritance is not well understood, and one of the key questions relates to the reassembly of centromeric chromatin following DNA replication. Here, we define ERCC6L2 as a key regulator of this process. ERCC6L2 accumulates at centromeres and promotes deposition of core centromeric factors. Interestingly, ERCC6L2-/- cells show unrestrained replication of centromeric DNA, likely caused by the erosion of centromeric chromatin. Beyond centromeres, ERCC6L2 facilitates replication at genomic repeats and non-canonical DNA structures. Notably, ERCC6L2 interacts with the DNA-clamp PCNA through an atypical peptide, presented here in a co-crystal structure. Finally, ERCC6L2 also restricts DNA end resection, acting independently of the 53BP1-REV7-Shieldin complex. We propose a mechanistic model, which reconciles seemingly distinct functions of ERCC6L2 in DNA repair and DNA replication. These findings provide a molecular context for studies linking ERCC6L2 to human disease.
Collapse
Affiliation(s)
| | - Lucy Armstrong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Marek Sebesta
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Xiaomeng Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
37
|
Wang SSY, Jie YE, Cheng SW, Ling GL, Ming HVY. PARP Inhibitors in Breast and Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15082357. [PMID: 37190285 DOI: 10.3390/cancers15082357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are one of the most successful examples of clinical translation of targeted therapies in medical oncology, and this has been demonstrated by their effective management of BRCA1/BRCA2 mutant cancers, most notably in breast and ovarian cancers. PARP inhibitors target DNA repair pathways that BRCA1/2-mutant tumours are dependent upon. Inhibition of the key components of these pathways leads to DNA damage triggering subsequent critical levels of genomic instability, mitotic catastrophe and cell death. This ultimately results in a synthetic lethal relationship between BRCA1/2 and PARP, which underpins the effectiveness of PARP inhibitors. Despite the early and dramatic response seen with PARP inhibitors, patients receiving them often develop treatment resistance. To date, data from both clinical and preclinical studies have highlighted multiple resistance mechanisms to PARP inhibitors, and only by understanding these mechanisms are we able to overcome the challenges. The focus of this review is to summarise the underlying mechanisms underpinning treatment resistance to PARP inhibitors and to aid both clinicians and scientists to develop better clinically applicable assays to better select patients who would derive the greatest benefit as well as develop new novel/combination treatment strategies to overcome these mechanisms of resistance. With a better understanding of PARP inhibitor resistance mechanisms, we would not only be able to identify a subset of patients who are unlikely to benefit from therapy but also to sequence our treatment paradigm to avoid and overcome these resistance mechanisms.
Collapse
Affiliation(s)
- Samuel S Y Wang
- Medical Oncology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Yeo Ee Jie
- Medical Oncology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Sim Wey Cheng
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Goh Liuh Ling
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | | |
Collapse
|
38
|
Rai R, Biju K, Sun W, Sodeinde T, Al-Hiyasat A, Morgan J, Ye X, Li X, Chen Y, Chang S. Homology directed telomere clustering, ultrabright telomere formation and nuclear envelope rupture in cells lacking TRF2 B and RAP1. Nat Commun 2023; 14:2144. [PMID: 37059728 PMCID: PMC10104862 DOI: 10.1038/s41467-023-37761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
Double-strand breaks (DSBs) due to genotoxic stress represent potential threats to genome stability. Dysfunctional telomeres are recognized as DSBs and are repaired by distinct DNA repair mechanisms. RAP1 and TRF2 are telomere binding proteins essential to protect telomeres from engaging in homology directed repair (HDR), but how this occurs remains unclear. In this study, we examined how the basic domain of TRF2 (TRF2B) and RAP1 cooperate to repress HDR at telomeres. Telomeres lacking TRF2B and RAP1 cluster into structures termed ultrabright telomeres (UTs). HDR factors localize to UTs, and UT formation is abolished by RNaseH1, DDX21 and ADAR1p110, suggesting that they contain DNA-RNA hybrids. Interaction between the BRCT domain of RAP1 and KU70/KU80 is also required to repress UT formation. Expressing TRF2∆B in Rap1-/- cells resulted in aberrant lamin A localization in the nuclear envelope and dramatically increased UT formation. Expressing lamin A phosphomimetic mutants induced nuclear envelope rupturing and aberrant HDR-mediated UT formation. Our results highlight the importance of shelterin and proteins in the nuclear envelope in repressing aberrant telomere-telomere recombination to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
| | - Kevin Biju
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wenqi Sun
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Amer Al-Hiyasat
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Jaida Morgan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Xianwen Ye
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Xueqing Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
39
|
Huang J, Wu C, Kloeber JA, Gao H, Gao M, Zhu Q, Chang Y, Zhao F, Guo G, Luo K, Dai H, Liu S, Huang Q, Kim W, Zhou Q, Zhu S, Wu Z, Tu X, Yin P, Deng M, Wang L, Yuan J, Lou Z. SLFN5-mediated chromatin dynamics sculpt higher-order DNA repair topology. Mol Cell 2023; 83:1043-1060.e10. [PMID: 36854302 PMCID: PMC10467573 DOI: 10.1016/j.molcel.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/23/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.
Collapse
Affiliation(s)
- Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chenming Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yiming Chang
- Jinzhou Medical University, Shanghai East Hospital, Shanghai 200120, China
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haiming Dai
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sijia Liu
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Qiru Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Yuan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200092, China.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Lebdy R, Patouillard J, Larroque M, Urbach S, Abou Merhi R, Larroque C, Ribeyre C. The organizer of chromatin topology RIF1 ensures cellular resilience to DNA replication stress. Life Sci Alliance 2023; 6:e202101186. [PMID: 36746532 PMCID: PMC9906048 DOI: 10.26508/lsa.202101186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic genomes are duplicated from thousands of replication origins that fire sequentially forming a defined spatiotemporal pattern of replication clusters. The temporal order of DNA replication is determined by chromatin architecture and, more specifically, by chromatin contacts that are stabilized by RIF1. Here, we show that RIF1 localizes near newly synthesized DNA. In cells exposed to the DNA replication inhibitor aphidicolin, suppression of RIF1 markedly decreased the efficacy of isolation of proteins on nascent DNA, suggesting that the isolation of proteins on nascent DNA procedure is biased by chromatin topology. RIF1 was required to limit the accumulation of DNA lesions induced by aphidicolin treatment and promoted the recruitment of cohesins in the vicinity of nascent DNA. Collectively, the data suggest that the stabilization of chromatin topology by RIF1 limits replication-associated genomic instability.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine, CNRS UMR9002, Université de Montpellier, Montpellier, France
- Doctoral School of Sciences and Technology-DSST, Rafic Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Julie Patouillard
- Institut de Génétique Humaine, CNRS UMR9002, Université de Montpellier, Montpellier, France
| | | | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Raghida Abou Merhi
- Doctoral School of Sciences and Technology-DSST, Rafic Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Christian Larroque
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS UMR9002, Université de Montpellier, Montpellier, France
| |
Collapse
|
41
|
Kanoh Y, Ueno M, Hayano M, Kudo S, Masai H. Aberrant association of chromatin with nuclear periphery induced by Rif1 leads to mitotic defect. Life Sci Alliance 2023; 6:e202201603. [PMID: 36750367 PMCID: PMC9909590 DOI: 10.26508/lsa.202201603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The architecture and nuclear location of chromosomes affect chromatin events. Rif1, a crucial regulator of replication timing, recognizes G-quadruplex and inhibits origin firing over the 50-100-kb segment in fission yeast, Schizosaccharomyces pombe, leading us to postulate that Rif1 may generate chromatin higher order structures inhibitory for initiation. However, the effects of Rif1 on chromatin localization in nuclei have not been known. We show here that Rif1 overexpression causes growth inhibition and eventually, cell death in fission yeast. Chromatin-binding activity of Rif1, but not recruitment of phosphatase PP1, is required for growth inhibition. Overexpression of a PP1-binding site mutant of Rif1 does not delay the S-phase, but still causes cell death, indicating that cell death is caused not by S-phase problems but by issues in other phases of the cell cycle, most likely the M-phase. Indeed, Rif1 overexpression generates cells with unequally segregated chromosomes. Rif1 overexpression relocates chromatin near nuclear periphery in a manner dependent on its chromatin-binding ability, and this correlates with growth inhibition. Thus, coordinated progression of S- and M-phases may require regulated Rif1-mediated chromatin association with the nuclear periphery.
Collapse
Affiliation(s)
- Yutaka Kanoh
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Motoshi Hayano
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Satomi Kudo
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
42
|
Ma J, Zhou Y, Pan P, Yu H, Wang Z, Li LL, Wang B, Yan Y, Pan Y, Ye Q, Liu T, Feng X, Xu S, Wang K, Wang X, Jian Y, Ma B, Fan Y, Gao Y, Huang H, Li L. TRABID overexpression enables synthetic lethality to PARP inhibitor via prolonging 53BP1 retention at double-strand breaks. Nat Commun 2023; 14:1810. [PMID: 37002234 PMCID: PMC10066190 DOI: 10.1038/s41467-023-37499-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
53BP1 promotes nonhomologous end joining (NHEJ) over homologous recombination (HR) repair by mediating inactivation of DNA end resection. Ubiquitination plays an important role in regulating dissociation of 53BP1 from DNA double-strand breaks (DSBs). However, how this process is regulated remains poorly understood. Here, we demonstrate that TRABID deubiquitinase binds to 53BP1 at endogenous level and regulates 53BP1 retention at DSB sites. TRABID deubiquitinates K29-linked polyubiquitination of 53BP1 mediated by E3 ubiquitin ligase SPOP and prevents 53BP1 dissociation from DSBs, consequently inducing HR defects and chromosomal instability. Prostate cancer cells with TRABID overexpression exhibit a high sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors. Our work shows that TRABID facilitates NHEJ repair over HR during DNA repair by inducing prolonged 53BP1 retention at DSB sites, suggesting that TRABID overexpression may predict HR deficiency and the potential therapeutic use of PARP inhibitors in prostate cancer.
Collapse
Affiliation(s)
- Jian Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Yingke Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Penglin Pan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Lei Lily Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Bing Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Qi Ye
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Xiaoyu Feng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| |
Collapse
|
43
|
Liu C, Yu P, Ren Z, Yao F, Wang L, Hu G, Li P, Zhao Q. Rif1 Regulates Self-Renewal and Impedes Mesendodermal Differentiation of Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10525-1. [PMID: 36971904 PMCID: PMC10366267 DOI: 10.1007/s12015-023-10525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Background
RAP1 interacting factor 1 (Rif1) is highly expressed in mice embryos and mouse embryonic stem cells (mESCs). It plays critical roles in telomere length homeostasis, DNA damage, DNA replication timing and ERV silencing. However, whether Rif1 regulates early differentiation of mESC is still unclear.
Methods
In this study, we generated a Rif1 conditional knockout mouse embryonic stem (ES) cell line based on Cre-loxP system. Western blot, flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), RNA high-throughput sequencing (RNA-Seq), chromatin immunoprecipitation followed high-throughput sequencing (ChIP-Seq), chromatin immunoprecipitation quantitative PCR (ChIP-qPCR), immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment.
Results
Rif1 plays important roles in self-renewal and pluripotency of mESCs and loss of Rif1 promotes mESC differentiation toward the mesendodermal germ layers. We further show that Rif1 interacts with histone H3K27 methyltransferase EZH2, a subunit of PRC2, and regulates the expression of developmental genes by directly binding to their promoters. Rif1 deficiency reduces the occupancy of EZH2 and H3K27me3 on mesendodermal gene promoters and activates ERK1/2 activities.
Conclusion
Rif1 is a key factor in regulating the pluripotency, self-renewal, and lineage specification of mESCs. Our research provides new insights into the key roles of Rif1 in connecting epigenetic regulations and signaling pathways for cell fate determination and lineage specification of mESCs.
Graphical abstract
Collapse
|
44
|
Zhang Z, Samsa WE, De Y, Zhang F, Reizes O, Almasan A, Gong Z. HDGFRP3 interaction with 53BP1 promotes DNA double-strand break repair. Nucleic Acids Res 2023; 51:2238-2256. [PMID: 36794849 PMCID: PMC10018360 DOI: 10.1093/nar/gkad073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
The 53BP1-dependent end-joining pathway plays a critical role in double-strand break (DSB) repair. However, the regulators of 53BP1 in chromatin remain incompletely characterized. In this study, we identified HDGFRP3 (hepatoma-derived growth factor related protein 3) as a 53BP1-interacting protein. The HDGFRP3-53BP1 interaction is mediated by the PWWP domain of HDGFRP3 and the Tudor domain of 53BP1. Importantly, we observed that the HDGFRP3-53BP1 complex co-localizes with 53BP1 or γH2AX at sites of DSB and participates in the response to DNA damage repair. Loss of HDGFRP3 impairs classical non-homologous end-joining repair (NHEJ), curtails the accumulation of 53BP1 at DSB sites, and enhances DNA end-resection. Moreover, the HDGFRP3-53BP1 interaction is required for cNHEJ repair, 53BP1 recruitment at DSB sites, and inhibition of DNA end resection. In addition, loss of HDGFRP3 renders BRCA1-deficient cells resistant to PARP inhibitors by facilitating end-resection in BRCA1 deficient cells. We also found that the interaction of HDGFRP3 with methylated H4K20 was dramatically decreased; in contrast, the 53BP1-methylated H4K20 interaction was increased after ionizing radiation, which is likely regulated by protein phosphorylation and dephosphorylation. Taken together, our data reveal a dynamic 53BP1-methylated H4K20-HDGFRP3 complex that regulates 53BP1 recruitment at DSB sites, providing new insights into our understanding of the regulation of 53BP1-mediated DNA repair pathway.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Yanyan De
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Fan Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
45
|
Chauhan VP, Sharp PA, Langer R. Altered DNA repair pathway engagement by engineered CRISPR-Cas9 nucleases. Proc Natl Acad Sci U S A 2023; 120:e2300605120. [PMID: 36881621 PMCID: PMC10242711 DOI: 10.1073/pnas.2300605120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
CRISPR-Cas9 introduces targeted DNA breaks that engage competing DNA repair pathways, producing a spectrum of imprecise insertion/deletion mutations (indels) and precise templated mutations (precise edits). The relative frequencies of these pathways are thought to primarily depend on genomic sequence and cell state contexts, limiting control over mutational outcomes. Here, we report that engineered Cas9 nucleases that create different DNA break structures engage competing repair pathways at dramatically altered frequencies. We accordingly designed a Cas9 variant (vCas9) that produces breaks which suppress otherwise dominant nonhomologous end-joining (NHEJ) repair. Instead, breaks created by vCas9 are predominantly repaired by pathways utilizing homologous sequences, specifically microhomology-mediated end-joining (MMEJ) and homology-directed repair (HDR). Consequently, vCas9 enables efficient precise editing through HDR or MMEJ while suppressing indels caused by NHEJ in dividing and nondividing cells. These findings establish a paradigm of targeted nucleases custom-designed for specific mutational applications.
Collapse
Affiliation(s)
- Vikash P. Chauhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Phillip A. Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
46
|
Zhang C, Chen L, Sun L, Jin H, Ren K, Liu S, Qian Y, Li S, Li F, Zhu C, Zhao Y, Liu H, Liu Y. BMAL1 collaborates with CLOCK to directly promote DNA double-strand break repair and tumor chemoresistance. Oncogene 2023; 42:967-979. [PMID: 36725890 PMCID: PMC10038804 DOI: 10.1038/s41388-023-02603-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Accumulating evidence indicates a correlation between circadian dysfunction and genomic instability. However, whether the circadian machinery directly regulates DNA damage repair, especially in double-strand breaks (DSBs), remains poorly understood. Here, we report that in response to DSBs, BMAL1 is activated by ATM-mediated phosphorylation at S183. Phosphorylated BMAL1 is then localized to DNA damage sites, where it facilitates acetylase CLOCK to load in the chromatin, regulating the acetylation of histone H4 (H4Ac) at DSB sites. In this way, the BMAL1-CLOCK-H4Ac axis promotes the DNA end-resection to generate single-stranded DNA (ssDNA) and the subsequent homologous recombination (HR). BMAL1 deficient cells display defective HR, accumulation of unrepaired DSBs and genome instability. Accordingly, depletion of BMAL1 significantly enhances the sensitivity of adrenocortical carcinoma (ACC) to DNA damage-based therapy in vitro and in vivo. These findings uncover non-canonical function of BMAL1 and CLOCK in HR-mediated DSB repair, which may have an implication in cancer therapeutics.
Collapse
Affiliation(s)
- Canfeng Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Liping Chen
- The Center for Medical Research, The First People's Hospital of Nanning City, Nanning, 530021, China
| | - Lu Sun
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Heping Jin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Kai Ren
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shiqi Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Yongyu Qian
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fangping Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chengming Zhu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510006, China
| | - Yan Liu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
47
|
Veneziani AC, Scott C, Wakefield MJ, Tinker AV, Lheureux S. Fighting resistance: post-PARP inhibitor treatment strategies in ovarian cancer. Ther Adv Med Oncol 2023; 15:17588359231157644. [PMID: 36872947 PMCID: PMC9983116 DOI: 10.1177/17588359231157644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a therapeutic milestone in the management of epithelial ovarian cancer. The concept of 'synthetic lethality' is exploited by PARPi in tumors with defects in DNA repair pathways, particularly homologous recombination deficiency. The use of PARPis has been increasing since its approval as maintenance therapy, particularly in the first-line setting. Therefore, resistance to PARPi is an emerging issue in clinical practice. It brings an urgent need to elucidate and identify the mechanisms of PARPi resistance. Ongoing studies address this challenge and investigate potential therapeutic strategies to prevent, overcome, or re-sensitize tumor cells to PARPi. This review aims to summarize the mechanisms of resistance to PARPi, discuss emerging strategies to treat patients post-PARPi progression, and discuss potential biomarkers of resistance.
Collapse
Affiliation(s)
- Ana C. Veneziani
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical
Research, Parkville, VIC, Australia
- Department of Medical Biology, University of
Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC,
Australia
- Sir Peter MacCallum Department of Oncology,
Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | - Stephanie Lheureux
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5B 2M9,
Canada
| |
Collapse
|
48
|
Kong N, Liu Z, Chan YW. RIF1 suppresses the formation of single-stranded ultrafine anaphase bridges via protein phosphatase 1. Cell Rep 2023; 42:112032. [PMID: 36719798 DOI: 10.1016/j.celrep.2023.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Resolution of ultrafine anaphase bridges (UFBs) must be completed before cytokinesis to ensure sister-chromatid disjunction. RIF1 is involved in UFB resolution by a mechanism that is not yet clear. Here, we show that RIF1 functions in mitosis to inhibit the formation of 53BP1 nuclear bodies and micronuclei. Meanwhile, RIF1 localizes on PICH-coated double-stranded UFBs but not on RPA-coated single-stranded UFBs. Depletion of RIF1 leads to an elevated level of RPA-coated UFBs, in a BLM-dependent manner. RIF1 interacts with all three isoforms of protein phosphatase 1 (PP1) at its CI domain in anaphase when CDK1 activity declines. CDK1 negatively regulates RIF1-PP1 interaction via the CIII domain of RIF1. Importantly, depletion of PP1 phenocopies RIF1 depletion, and phosphorylation-resistant mutant of PICH shows reduced interaction with the BTR complex and bypasses the need of RIF1 in preventing the formation of single-stranded UFBs. Overall, our data show that PP1 is the effector of RIF1 in UFB resolution.
Collapse
Affiliation(s)
- Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zeyuan Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
49
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 337] [Impact Index Per Article: 168.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
50
|
Mirman Z, Cai S, de Lange T. CST/Polα/primase-mediated fill-in synthesis at DSBs. Cell Cycle 2023; 22:379-389. [PMID: 36205622 PMCID: PMC9879193 DOI: 10.1080/15384101.2022.2123886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) pose a major threat to the genome, so the efficient repair of such breaks is essential. DSB processing and repair is affected by 53BP1, which has been proposed to determine repair pathway choice and/or promote repair fidelity. 53BP1 and its downstream effectors, RIF1 and shieldin, control 3' overhang length, and the mechanism has been a topic of intensive research. Here, we highlight recent evidence that 3' overhang control by 53BP1 occurs through fill-in synthesis of resected DSBs by CST/Polα/primase. We focus on the crucial role of fill-in synthesis in BRCA1-deficient cells treated with PARPi and discuss the notion of fill-in synthesis in other specialized settings and in the repair of random DSBs. We argue that - in addition to other determinants - repair pathway choice may be influenced by the DNA sequence at the break which can impact CST binding and therefore the deployment of Polα/primase fill-in.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, HHMI, Boston, MA, USA
| | - Sarah Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
- Laboratory for Molecular Electron Microscopy, The Rockefeller University, New York, NY
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|