1
|
Mukherjee A, Spanos C, Marston AL. Distinct roles of spindle checkpoint proteins in meiosis. Curr Biol 2024; 34:3820-3829.e5. [PMID: 39079532 PMCID: PMC7617576 DOI: 10.1016/j.cub.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Gametes are produced via meiosis, a specialized cell division associated with frequent errors that cause birth defects and infertility. Uniquely in meiosis I, homologous chromosomes segregate to opposite poles, usually requiring their linkage by chiasmata, the products of crossover recombination.1 The spindle checkpoint delays cell-cycle progression until all chromosomes are properly attached to microtubules,2 but the steps leading to the capture and alignment of chromosomes on the meiosis I spindle remain poorly understood. In budding yeast meiosis I, Mad2 and Mad3BUBR1 are equally important for spindle checkpoint delay, but biorientation of homologs on the meiosis I spindle requires Mad2, but not Mad3BUBR1.3,4 Here we reveal the distinct functions of Mad2 and Mad3BUBR1 in meiosis I chromosome segregation. Mad2 promotes the prophase to metaphase I transition, while Mad3BUBR1 associates with the TOGL1 domain of Stu1CLASP, a conserved plus-end microtubule protein that is important for chromosome capture onto the spindle. Homologous chromosome pairs that are proficient in crossover formation but fail to biorient rely on Mad3BUBR1-Stu1CLASP to ensure their efficient attachment to microtubules and segregation during meiosis I. Furthermore, we show that Mad3BUBR1-Stu1CLASP are essential to rescue the segregation of mini-chromosomes lacking crossovers. Our findings define a new pathway ensuring microtubule-dependent chromosome capture and demonstrate that spindle checkpoint proteins safeguard the fidelity of chromosome segregation both by actively promoting chromosome alignment and by delaying cell-cycle progression until this has occurred.
Collapse
Affiliation(s)
- Anuradha Mukherjee
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
2
|
Zahm JA, Harrison SC. A communication hub for phosphoregulation of kinetochore-microtubule attachment. Curr Biol 2024; 34:2308-2318.e6. [PMID: 38776904 PMCID: PMC11847324 DOI: 10.1016/j.cub.2024.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The Mps1 and Aurora B kinases regulate and monitor kinetochore attachment to spindle microtubules during cell division, ultimately ensuring accurate chromosome segregation. In yeast, the critical spindle attachment components are the Ndc80 and Dam1 complexes (Ndc80c and DASH/Dam1c, respectively). Ndc80c is a 600-Å-long heterotetramer that binds microtubules through a globular "head" at one end and centromere-proximal kinetochore components through a globular knob at the other end. Dam1c is a heterodecamer that forms a ring of 16-17 protomers around the shaft of the single kinetochore microtubule in point-centromere yeast. The ring coordinates the approximately eight Ndc80c rods per kinetochore. In published work, we showed that a site on the globular "head" of Ndc80c, including residues from both Ndc80 and Nuf2, binds a bipartite segment in the long C-terminal extension of Dam1. Results reported here show, both by in vitro binding experiments and by crystal structure determination, that the same site binds a conserved segment in the long N-terminal extension of Mps1. It also binds, less tightly, a conserved segment in the N-terminal extension of Ipl1 (yeast Aurora B). Together with results from experiments in yeast cells and from biochemical assays reported in two accompanying papers, the structures and graded affinities identify a communication hub for ensuring uniform bipolar attachment and for signaling anaphase onset.
Collapse
Affiliation(s)
- Jacob A Zahm
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Parnell EJ, Jenson EE, Miller MP. A conserved site on Ndc80 complex facilitates dynamic recruitment of Mps1 to yeast kinetochores to promote accurate chromosome segregation. Curr Biol 2024; 34:2294-2307.e4. [PMID: 38776906 PMCID: PMC11178286 DOI: 10.1016/j.cub.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other's function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2's CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this "interaction hub" exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation.
Collapse
Affiliation(s)
- Emily J Parnell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Erin E Jenson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew P Miller
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Pleuger R, Cozma C, Hohoff S, Denkhaus C, Dudziak A, Kaschani F, Kaiser M, Musacchio A, Vetter IR, Westermann S. Microtubule end-on attachment maturation regulates Mps1 association with its kinetochore receptor. Curr Biol 2024; 34:2279-2293.e6. [PMID: 38776902 DOI: 10.1016/j.cub.2024.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Faithful chromosome segregation requires that sister chromatids establish bi-oriented kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) prevents premature anaphase onset with incomplete attachments. However, how microtubule attachment and checkpoint signaling are coordinated remains unclear. The conserved kinase Mps1 initiates SAC signaling by localizing transiently to kinetochores in prometaphase and is released upon bi-orientation. Using biochemistry, structure predictions, and cellular assays, we shed light on this dynamic behavior in Saccharomyces cerevisiae. A conserved N-terminal segment of Mps1 binds the neck region of Ndc80:Nuf2, the main microtubule receptor of kinetochores. Mutational disruption of this interface, located at the backside of the paired CH domains and opposite the microtubule-binding site, prevents Mps1 localization, eliminates SAC signaling, and impairs growth. The same interface of Ndc80:Nuf2 binds the microtubule-associated Dam1 complex. We demonstrate that the error correction kinase Ipl1/Aurora B controls the competition between Dam1 and Mps1 for the same binding site. Thus, binding of the Dam1 complex to Ndc80:Nuf2 may release Mps1 from the kinetochore to promote anaphase onset.
Collapse
Affiliation(s)
- Richard Pleuger
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Christian Cozma
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Simone Hohoff
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Christian Denkhaus
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Alexander Dudziak
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany.
| |
Collapse
|
5
|
Evatt JM, Sadli AD, Rapacz BK, Chuong HH, Meyer RE, Ridenour JB, Donczew R, Dawson DS. Centromere pairing enables correct segregation of meiotic chromosomes. Curr Biol 2024; 34:2085-2093.e6. [PMID: 38670094 PMCID: PMC11111343 DOI: 10.1016/j.cub.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Proper chromosome segregation in meiosis I relies on the formation of connections between homologous chromosomes. Crossovers between homologs provide a connection that allows them to attach correctly to the meiosis I spindle. Tension is transmitted across the crossover when the partners attach to microtubules from opposing poles of the spindle. Tension stabilizes microtubule attachments that will pull the partners toward opposite poles at anaphase. Paradoxically, in many organisms, non-crossover partners segregate correctly. The mechanism by which non-crossover partners become bioriented on the meiotic spindle is unknown. Both crossover and non-crossover partners pair their centromeres early in meiosis (prophase). In budding yeast, centromere pairing is correlated with subsequent correct segregation of the partners. The mechanism by which centromere pairing, in prophase, promotes later correct attachment of the partners to the metaphase spindle is unknown. We used live cell imaging to track the biorientation process of non-crossover chromosomes. We find that centromere pairing allows the establishment of connections between the partners that allows their later interdependent attachment to the meiotic spindle using tension-sensing biorientation machinery. Because all chromosome pairs experience centromere pairing, our findings suggest that crossover chromosomes also utilize this mechanism to achieve maximal segregation fidelity.
Collapse
Affiliation(s)
- Jared M Evatt
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Asli D Sadli
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Bartosz K Rapacz
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hoa H Chuong
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Régis E Meyer
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - John B Ridenour
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rafal Donczew
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Dean S Dawson
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|
6
|
Koch LB, Spanos C, Kelly V, Ly T, Marston AL. Rewiring of the phosphoproteome executes two meiotic divisions in budding yeast. EMBO J 2024; 43:1351-1383. [PMID: 38413836 PMCID: PMC10987667 DOI: 10.1038/s44318-024-00059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
The cell cycle is ordered by a controlled network of kinases and phosphatases. To generate gametes via meiosis, two distinct and sequential chromosome segregation events occur without an intervening S phase. How canonical cell cycle controls are modified for meiosis is not well understood. Here, using highly synchronous budding yeast populations, we reveal how the global proteome and phosphoproteome change during the meiotic divisions. While protein abundance changes are limited to key cell cycle regulators, dynamic phosphorylation changes are pervasive. Our data indicate that two waves of cyclin-dependent kinase (Cdc28Cdk1) and Polo (Cdc5Polo) kinase activity drive successive meiotic divisions. These two distinct phases of phosphorylation are ensured by the meiosis-specific Spo13 protein, which rewires the phosphoproteome. Spo13 binds to Cdc5Polo to promote phosphorylation in meiosis I, particularly of substrates containing a variant of the canonical Cdc5Polo motif. Overall, our findings reveal that a master regulator of meiosis directs the activity of a kinase to change the phosphorylation landscape and elicit a developmental cascade.
Collapse
Affiliation(s)
- Lori B Koch
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Van Kelly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Tony Ly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
7
|
Chuong HH, Evatt JM, Dawson DS. Dynamic Live Cell Imaging of Budding Yeast Meiosis. Methods Mol Biol 2024; 2818:161-169. [PMID: 39126473 DOI: 10.1007/978-1-0716-3906-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
For over a century, major advances in understanding meiosis have come from the use of microscopy-based methods. Studies using the budding yeast, Saccharomyces cerevisiae, have made important contributions to our understanding of meiosis because of the facility with which budding yeast can be manipulated as a genetic model organism. In contrast, imaging-based approaches with budding yeast have been constrained by the small size of its chromosomes. The advent of advances in fluorescent chromosome tagging techniques has made it possible to use yeast more effectively for imaging-based approaches as well. This protocol describes live cell imaging methods that can be used to monitor chromosome movements throughout meiosis in living yeast cells.
Collapse
Affiliation(s)
- Hoa H Chuong
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jared M Evatt
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Dean S Dawson
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
8
|
Villa-Consuegra S, Tallada VA, Jimenez J. Aurora B kinase erases monopolar microtubule-kinetochore arrays at the meiosis I-II transition. iScience 2023; 26:108339. [PMID: 38026180 PMCID: PMC10654595 DOI: 10.1016/j.isci.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
During meiosis, faithful chromosome segregation requires monopolar spindle microtubule-kinetochore arrays in MI to segregate homologous chromosomes, but bipolar in MII to segregate sister chromatids. Using fission yeasts, we found that the universal Aurora B kinase localizes to kinetochores in metaphase I and in the mid-spindle during anaphase I, as in mitosis; but in the absence of an intervening S phase, the importin α Imp1 propitiates its release from the spindle midzone to re-localize at kinetochores during meiotic interkinesis. We show that "error-correction" activity of kinetochore re-localized Aurora B becomes essential to erase monopolar arrangements from anaphase I, a prerequisite to satisfy the spindle assembly checkpoint (SAC) and to generate proper bipolar arrays at the onset of MII. This microtubule-kinetochore resetting activity of Aurora B at the MI-MII transition is required to prevent chromosome missegregation in meiosis II, a type of error often associated with birth defects and infertility in humans.
Collapse
Affiliation(s)
- Sergio Villa-Consuegra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Víctor A. Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| |
Collapse
|
9
|
Parnell EJ, Jenson E, Miller MP. An interaction hub on Ndc80 complex facilitates dynamic recruitment of Mps1 to yeast kinetochores to promote accurate chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566082. [PMID: 37986816 PMCID: PMC10659343 DOI: 10.1101/2023.11.07.566082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bioriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules, but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact, and regulate each other's function, remains unknown - considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2's CH domain, a component of the Ndc80 complex, in ensuring accurate chromosome segregation. Through extensive mutational analysis, we identified a conserved "interaction hub" comprising two segments in Nuf2's CH domain, forming the binding site for Mps1 within the yeast Ndc80 complex. Intriguingly, the interaction between Mps1 and the Ndc80 complex seems to be subject to regulation by competitive binding with other factors. Mutants disrupting this interaction hub exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore biorientation and accurate chromosome segregation.
Collapse
Affiliation(s)
- Emily J. Parnell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Erin Jenson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew P. Miller
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
11
|
Shah S, Mittal P, Kumar D, Mittal A, Ghosh SK. Evidence of kinesin motors involved in stable kinetochore assembly during early meiosis. Mol Biol Cell 2023; 34:ar107. [PMID: 37556230 PMCID: PMC10559306 DOI: 10.1091/mbc.e22-12-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
During mitosis, the budding yeast, kinetochores remain attached to microtubules, except for a brief period during S phase. Sister-kinetochores separate into two clusters (bilobed organization) upon stable end-on attachment to microtubules emanating from opposite spindle poles. However, in meiosis, the outer kinetochore protein (Ndc80) reassembles at the centromeres much later after prophase I, establishing new kinetochore-microtubule attachments. Perhaps due to this, despite homolog bi-orientation, we observed that the Ndc80 are linearly dispersed between spindle poles during metaphase I of meiosis. The presence of end-on attachment marker Dam1 as a cluster near each pole suggests one of the other possibilities that the pole-proximal and pole-distal kinetochores are attached end-on and laterally to the microtubules, respectively. Colocalization studies of kinetochores and kinesin motors suggest that budding yeast kinesin 5, Cin8, and Kip1 perhaps localize to the end-on attached kinetochores while kinesin 8 and Kip3 resides at all the kinetochores. Our findings, including kinesin 5 and Ndc80 coappearance after prophase I and reduced Ndc80 levels in cin8 null mutant, suggest that kinesin motors are crucial for kinetochore reassembly and stability during early meiosis. Thus, this work reports yet another meiosis specific function of kinesin motors.
Collapse
Affiliation(s)
- Seema Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Priyanka Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Anjani Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
12
|
MacKenzie A, Vicory V, Lacefield S. Meiotic cells escape prolonged spindle checkpoint activity through kinetochore silencing and slippage. PLoS Genet 2023; 19:e1010707. [PMID: 37018287 PMCID: PMC10109492 DOI: 10.1371/journal.pgen.1010707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
To prevent chromosome mis-segregation, a surveillance mechanism known as the spindle checkpoint delays the cell cycle if kinetochores are not attached to spindle microtubules, allowing the cell additional time to correct improper attachments. During spindle checkpoint activation, checkpoint proteins bind the unattached kinetochore and send a diffusible signal to inhibit the anaphase promoting complex/cyclosome (APC/C). Previous work has shown that mitotic cells with depolymerized microtubules can escape prolonged spindle checkpoint activation in a process called mitotic slippage. During slippage, spindle checkpoint proteins bind unattached kinetochores, but the cells cannot maintain the checkpoint arrest. We asked if meiotic cells had as robust of a spindle checkpoint response as mitotic cells and whether they also undergo slippage after prolonged spindle checkpoint activity. We performed a direct comparison between mitotic and meiotic budding yeast cells that signal the spindle checkpoint through two different assays. We find that the spindle checkpoint delay is shorter in meiosis I or meiosis II compared to mitosis, overcoming a checkpoint arrest approximately 150 minutes earlier in meiosis than in mitosis. In addition, cells in meiosis I escape spindle checkpoint signaling using two mechanisms, silencing the checkpoint at the kinetochore and through slippage. We propose that meiotic cells undertake developmentally-regulated mechanisms to prevent persistent spindle checkpoint activity to ensure the production of gametes.
Collapse
Affiliation(s)
- Anne MacKenzie
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Victoria Vicory
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
13
|
Cairo G, Greiwe C, Jung GI, Blengini C, Schindler K, Lacefield S. Distinct Aurora B pools at the inner centromere and kinetochore have different contributions to meiotic and mitotic chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527197. [PMID: 36778459 PMCID: PMC9915740 DOI: 10.1101/2023.02.05.527197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper chromosome segregation depends on establishment of bioriented kinetochore-microtubule attachments, which often requires multiple rounds of release and reattachment. Aurora B and C kinases phosphorylate kinetochore proteins to release tensionless attachments. Multiple pathways recruit Aurora B/C to the centromere and kinetochore. We studied how these pathways contribute to anaphase onset timing and correction of kinetochore-microtubule attachments in budding yeast meiosis and mitosis. We find that the pool localized by the Bub1/Bub3 pathway sets the normal duration of meiosis and mitosis, in differing ways. Our meiosis data suggests that disruption of this pathway leads to PP1 kinetochore localization, which dephosphorylates Cdc20 for premature anaphase onset. For error correction, the Bub1/Bub3 and COMA pathways are individually important in meiosis but compensatory in mitosis. Finally, we find that the haspin and Bub1/3 pathways function together to ensure error correction in mouse oogenesis. Our results suggest that each recruitment pathway localizes spatially distinct kinetochore-localized Aurora B/C pools that function differently between meiosis and mitosis.
Collapse
Affiliation(s)
- Gisela Cairo
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| | - Cora Greiwe
- Indiana University, Department of Biology, Bloomington, IN USA
| | - Gyu Ik Jung
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | | | - Karen Schindler
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | - Soni Lacefield
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| |
Collapse
|
14
|
Meyer RE, Sartin A, Gish M, Harsha J, Wilkie E, Haworth D, LaVictoire R, Alberola I, Chuong HH, Gorbsky GJ, Dawson DS. Polyploid yeast are dependent on elevated levels of Mps1 for successful chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523325. [PMID: 36712123 PMCID: PMC9882063 DOI: 10.1101/2023.01.09.523325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tumor cell lines with elevated chromosome numbers frequently have correlated elevations of Mps1 expression and these tumors are more dependent on Mps1 activity for their survival than control cell lines. Mps1 is a conserved kinase involved in controlling aspects of chromosome segregation in mitosis and meiosis. The mechanistic explanation for the Mps1-addiction of aneuploid cells is unknown. To address this question, we explored Mps1-dependence in yeast cells with increased sets of chromosomes. These experiments revealed that in yeast, increasing ploidy leads to delays and failures in orienting chromosomes on the mitotic spindle. Yeast cells with elevated numbers of chromosomes proved vulnerable to reductions of Mps1 activity. Cells with reduced Mps1 activity exhibit an extended prometaphase with longer spindles and delays in orienting the chromosomes. One known role of Mps1 is in recruiting Bub1 to the kinetochore in meiosis. We found that the Mps1-addiction of polyploid yeast cells is due in part to its role in Bub1 recruitment. Together, the experiments presented here demonstrate that increased ploidy renders cells more dependent on Mps1 for orienting chromosomes on the spindle. The phenomenon described here may be relevant in understanding why hyper-diploid cancer cells exhibit elevated reliance on Mps1 expression for successful chromosome segregation.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Ashlea Sartin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Madeline Gish
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Jillian Harsha
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Emily Wilkie
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Dawson Haworth
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Rebecca LaVictoire
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Isabel Alberola
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Hoa H Chuong
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Gary J Gorbsky
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| |
Collapse
|
15
|
MacKenzie A, Vicory V, Lacefield S. Meiotic Cells Escape Prolonged Spindle Checkpoint Activity Through Premature Silencing and Slippage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522494. [PMID: 36711621 PMCID: PMC9881877 DOI: 10.1101/2023.01.02.522494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To prevent chromosome mis-segregation, a surveillance mechanism known as the spindle checkpoint delays the cell cycle if kinetochores are not attached to spindle microtubules, allowing the cell additional time to correct improper attachments. During spindle checkpoint activation, checkpoint proteins bind the unattached kinetochore and send a diffusible signal to inhibit the anaphase promoting complex/cyclosome (APC/C). Previous work has shown that mitotic cells with depolymerized microtubules can escape prolonged spindle checkpoint activation in a process called mitotic slippage. During slippage, spindle checkpoint proteins bind unattached kinetochores, but the cells cannot maintain the checkpoint arrest. We asked if meiotic cells had as robust of a spindle checkpoint response as mitotic cells and whether they also undergo slippage after prolonged spindle checkpoint activity. We performed a direct comparison between mitotic and meiotic budding yeast cells that signal the spindle checkpoint due to a lack of either kinetochore-microtubule attachments or due to a loss of tension-bearing attachments. We find that the spindle checkpoint is not as robust in meiosis I or meiosis II compared to mitosis, overcoming a checkpoint arrest approximately 150 minutes earlier in meiosis. In addition, cells in meiosis I escape spindle checkpoint signaling using two mechanisms, silencing the checkpoint at the kinetochore and through slippage. We propose that meiotic cells undertake developmentally-regulated mechanisms to prevent persistent spindle checkpoint activity to ensure the production of gametes. AUTHOR SUMMARY Mitosis and meiosis are the two major types of cell divisions. Mitosis gives rise to genetically identical daughter cells, while meiosis is a reductional division that gives rise to gametes. Cell cycle checkpoints are highly regulated surveillance mechanisms that prevent cell cycle progression when circumstances are unfavorable. The spindle checkpoint promotes faithful chromosome segregation to safeguard against aneuploidy, in which cells have too many or too few chromosomes. The spindle checkpoint is activated at the kinetochore and then diffuses to inhibit cell cycle progression. Although the checkpoint is active in both mitosis and meiosis, most studies involving checkpoint regulation have been performed in mitosis. By activating the spindle checkpoint in both mitosis and meiosis in budding yeast, we show that cells in meiosis elicit a less persistent checkpoint signal compared to cells in mitosis. Further, we show that cells use distinct mechanisms to escape the checkpoint in mitosis and meiosis I. While cells in mitosis and meiosis II undergo anaphase onset while retaining checkpoint proteins at the kinetochore, cells in meiosis I prematurely lose checkpoint protein localization at the kinetochore. If the mechanism to remove the checkpoint components from the kinetochore is disrupted, meiosis I cells can still escape checkpoint activity. Together, these results highlight that cell cycle checkpoints are differentially regulated during meiosis to avoid long delays and to allow gametogenesis.
Collapse
Affiliation(s)
- Anne MacKenzie
- Department of Biology, Indiana University, Bloomington, IN USA
| | - Victoria Vicory
- Department of Biology, Indiana University, Bloomington, IN USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN USA,Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH USA,To whom correspondence should be addressed to Soni Lacefield:
| |
Collapse
|
16
|
Luo H, Wang J, Goes JI, Gomes HDR, Al-Hashmi K, Tobias C, Koerting C, Lin S. A grazing-driven positive nutrient feedback loop and active sexual reproduction underpin widespread Noctiluca green tides. ISME COMMUNICATIONS 2022; 2:103. [PMID: 37938758 PMCID: PMC9723592 DOI: 10.1038/s43705-022-00187-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2023]
Abstract
The mixoplankton green Noctiluca scintillans (gNoctiluca) is known to form extensive green tides in tropical coastal ecosystems prone to eutrophication. In the Arabian Sea, their recent appearance and annual recurrence have upended an ecosystem that was once exclusively dominated by diatoms. Despite evidence of strong links to eutrophication, hypoxia and warming, the mechanisms underlying outbreaks of this mixoplanktonic dinoflagellate remain uncertain. Here we have used eco-physiological measurements and transcriptomic profiling to ascribe gNoctiluca's explosive growth during bloom formation to the form of sexual reproduction that produces numerous gametes. Rapid growth of gNoctiluca coincided with active ammonium and phosphate release from gNoctiluca cells, which exhibited high transcriptional activity of phagocytosis and metabolism generating ammonium. This grazing-driven nutrient flow ostensibly promotes the growth of phytoplankton as prey and offers positive support successively for bloom formation and maintenance. We also provide the first evidence that the host gNoctiluca cell could be manipulating growth of its endosymbiont population in order to exploit their photosynthetic products and meet critical energy needs. These findings illuminate gNoctiluca's little known nutritional and reproductive strategies that facilitate its ability to form intense and expansive gNoctiluca blooms to the detriment of regional water, food and the socio-economic security in several tropical countries.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, China
| | - Joaquim I Goes
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, NY, 10964, USA.
| | - Helga do R Gomes
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, NY, 10964, USA
| | - Khalid Al-Hashmi
- Department of Marine Sciences and Fisheries, Sultan Qaboos University, Muscat, Oman
| | - Craig Tobias
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Claudia Koerting
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, China.
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
17
|
de Regt AK, Clark CJ, Asbury CL, Biggins S. Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments. Nat Commun 2022; 13:2152. [PMID: 35443757 PMCID: PMC9021268 DOI: 10.1038/s41467-022-29542-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation requires sister kinetochores to attach microtubules emanating from opposite spindle poles. Proper attachments come under tension and are stabilized, but defective attachments lacking tension are released, giving another chance for correct attachments to form. This error correction process depends on Aurora B kinase, which phosphorylates kinetochores to destabilize their microtubule attachments. However, the mechanism by which Aurora B distinguishes tense versus relaxed kinetochores remains unclear because it is difficult to detect kinase-triggered detachment and to manipulate kinetochore tension in vivo. To address these challenges, we apply an optical trapping-based assay using soluble Aurora B and reconstituted kinetochore-microtubule attachments. Strikingly, the tension on these attachments suppresses their Aurora B-triggered release, suggesting that tension-dependent changes in the conformation of kinetochores can regulate Aurora B activity or its outcome. Our work uncovers the basis for a key mechano-regulatory event that ensures accurate segregation and may inform studies of other mechanically regulated enzymes.
Collapse
Affiliation(s)
- Anna K de Regt
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cordell J Clark
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
18
|
Sarangapani KK, Koch LB, Nelson CR, Asbury CL, Biggins S. Kinetochore-bound Mps1 regulates kinetochore-microtubule attachments via Ndc80 phosphorylation. J Cell Biol 2021; 220:e202106130. [PMID: 34647959 PMCID: PMC8641409 DOI: 10.1083/jcb.202106130] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Dividing cells detect and correct erroneous kinetochore-microtubule attachments during mitosis, thereby avoiding chromosome missegregation. The Aurora B kinase phosphorylates microtubule-binding elements specifically at incorrectly attached kinetochores, promoting their release and providing another chance for proper attachments to form. However, growing evidence suggests that the Mps1 kinase is also required for error correction. Here we directly examine how Mps1 activity affects kinetochore-microtubule attachments using a reconstitution-based approach that allows us to separate its effects from Aurora B activity. When endogenous Mps1 that copurifies with kinetochores is activated in vitro, it weakens their attachments to microtubules via phosphorylation of Ndc80, a major microtubule-binding protein. This phosphorylation contributes to error correction because phospho-deficient Ndc80 mutants exhibit genetic interactions and segregation defects when combined with mutants in other error correction pathways. In addition, Mps1 phosphorylation of Ndc80 is stimulated on kinetochores lacking tension. These data suggest that Mps1 provides an additional mechanism for correcting erroneous kinetochore-microtubule attachments, complementing the well-known activity of Aurora B.
Collapse
Affiliation(s)
| | - Lori B. Koch
- Howard Hughes Medical Institute, Chevy Chase, MD
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA
| | - Christian R. Nelson
- Howard Hughes Medical Institute, Chevy Chase, MD
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Charles L. Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, WA
| | - Sue Biggins
- Howard Hughes Medical Institute, Chevy Chase, MD
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
19
|
Sato M, Kakui Y, Toya M. Tell the Difference Between Mitosis and Meiosis: Interplay Between Chromosomes, Cytoskeleton, and Cell Cycle Regulation. Front Cell Dev Biol 2021; 9:660322. [PMID: 33898463 PMCID: PMC8060462 DOI: 10.3389/fcell.2021.660322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
Meiosis is a specialized style of cell division conserved in eukaryotes, particularly designed for the production of gametes. A huge number of studies to date have demonstrated how chromosomes behave and how meiotic events are controlled. Yeast substantially contributed to the understanding of the molecular mechanisms of meiosis in the past decades. Recently, evidence began to accumulate to draw a perspective landscape showing that chromosomes and microtubules are mutually influenced: microtubules regulate chromosomes, whereas chromosomes also regulate microtubule behaviors. Here we focus on lessons from recent advancement in genetical and cytological studies of the fission yeast Schizosaccharomyces pombe, revealing how chromosomes, cytoskeleton, and cell cycle progression are organized and particularly how these are differentiated in mitosis and meiosis. These studies illuminate that meiosis is strategically designed to fulfill two missions: faithful segregation of genetic materials and production of genetic diversity in descendants through elaboration by meiosis-specific factors in collaboration with general factors.
Collapse
Affiliation(s)
- Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
20
|
Meyer RE, Tipton AR, LaVictoire R, Gorbsky GJ, Dawson DS. Mps1 promotes poleward chromosome movements in meiotic prometaphase. Mol Biol Cell 2021; 32:1020-1032. [PMID: 33788584 PMCID: PMC8101486 DOI: 10.1091/mbc.e20-08-0525-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In prophase of meiosis I, homologous chromosomes pair and become connected by cross-overs. Chiasmata, the connections formed by cross-overs, enable the chromosome pair, called a bivalent, to attach as a single unit to the spindle. When the meiotic spindle forms in prometaphase, most bivalents are associated with one spindle pole and then go through a series of oscillations on the spindle, attaching to and detaching from microtubules until the partners of the bivalent become bioriented—attached to microtubules from opposite sides of the spindle. The conserved kinase, Mps1, is essential for the bivalents to be pulled by microtubules across the spindle in prometaphase. Here we show that MPS1 is needed for efficient triggering of the migration of microtubule-attached kinetochores toward the poles and promotes microtubule depolymerization. Our data support the model Mps1 acts at the kinetochore to coordinate the successful attachment of a microtubule and the triggering of microtubule depolymerization to then move the chromosome.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Aaron R Tipton
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Rebecca LaVictoire
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Gary J Gorbsky
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
21
|
Cairo G, MacKenzie AM, Lacefield S. Differential requirement for Bub1 and Bub3 in regulation of meiotic versus mitotic chromosome segregation. J Cell Biol 2020; 219:133770. [PMID: 32328625 PMCID: PMC7147105 DOI: 10.1083/jcb.201909136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/02/2020] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Accurate chromosome segregation depends on the proper attachment of kinetochores to spindle microtubules before anaphase onset. The Ipl1/Aurora B kinase corrects improper attachments by phosphorylating kinetochore components and so releasing aberrant kinetochore–microtubule interactions. The localization of Ipl1 to kinetochores in budding yeast depends upon multiple pathways, including the Bub1–Bub3 pathway. We show here that in meiosis, Bub3 is crucial for correction of attachment errors. Depletion of Bub3 results in reduced levels of kinetochore-localized Ipl1 and concomitant massive chromosome missegregation caused by incorrect chromosome–spindle attachments. Depletion of Bub3 also results in shorter metaphase I and metaphase II due to premature localization of protein phosphatase 1 (PP1) to kinetochores, which antagonizes Ipl1-mediated phosphorylation. We propose a new role for the Bub1–Bub3 pathway in maintaining the balance between kinetochore localization of Ipl1 and PP1, a balance that is essential for accurate meiotic chromosome segregation and timely anaphase onset.
Collapse
Affiliation(s)
- Gisela Cairo
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
22
|
Wellard SR, Schindler K, Jordan PW. Aurora B and C kinases regulate chromosome desynapsis and segregation during mouse and human spermatogenesis. J Cell Sci 2020; 133:jcs248831. [PMID: 33172986 PMCID: PMC7725601 DOI: 10.1242/jcs.248831] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Precise control of chromosome dynamics during meiosis is critical for fertility. A gametocyte undergoing meiosis coordinates formation of the synaptonemal complex (SC) to promote efficient homologous chromosome recombination. Subsequent disassembly of the SC occurs prior to segregation of homologous chromosomes during meiosis I. We examined the requirements of the mammalian Aurora kinases (AURKA, AURKB and AURKC) during SC disassembly and chromosome segregation using a combination of chemical inhibition and gene deletion approaches. We find that both mouse and human spermatocytes fail to disassemble SC lateral elements when the kinase activity of AURKB and AURKC are chemically inhibited. Interestingly, both Aurkb conditional knockout and Aurkc knockout mouse spermatocytes successfully progress through meiosis, and the mice are fertile. In contrast, Aurkb, Aurkc double knockout spermatocytes fail to coordinate disassembly of SC lateral elements with chromosome condensation and segregation, resulting in delayed meiotic progression. In addition, deletion of Aurkb and Aurkc leads to an accumulation of metaphase spermatocytes, chromosome missegregation and aberrant cytokinesis. Collectively, our data demonstrate that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stephen R Wellard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Rogers CM, Sanders E, Nguyen PA, Smith-Kinnaman W, Mosley AL, Bochman ML. The Genetic and Physical Interactomes of the Saccharomyces cerevisiae Hrq1 Helicase. G3 (BETHESDA, MD.) 2020; 10:4347-4357. [PMID: 33115721 PMCID: PMC7718736 DOI: 10.1534/g3.120.401864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 01/03/2023]
Abstract
The human genome encodes five RecQ helicases (RECQL1, BLM, WRN, RECQL4, and RECQL5) that participate in various processes underpinning genomic stability. Of these enzymes, the disease-associated RECQL4 is comparatively understudied due to a variety of technical challenges. However, Saccharomyces cerevisiae encodes a functional homolog of RECQL4 called Hrq1, which is more amenable to experimentation and has recently been shown to be involved in DNA inter-strand crosslink (ICL) repair and telomere maintenance. To expand our understanding of Hrq1 and the RecQ4 subfamily of helicases in general, we took a multi-omics approach to define the Hrq1 interactome in yeast. Using synthetic genetic array analysis, we found that mutations of genes involved in processes such as DNA repair, chromosome segregation, and transcription synthetically interact with deletion of HRQ1 and the catalytically inactive hrq1-K318A allele. Pull-down of tagged Hrq1 and mass spectrometry identification of interacting partners similarly underscored links to these processes and others. Focusing on transcription, we found that hrq1 mutant cells are sensitive to caffeine and that mutation of HRQ1 alters the expression levels of hundreds of genes. In the case of hrq1-K318A, several of the most highly upregulated genes encode proteins of unknown function whose expression levels are also increased by DNA ICL damage. Together, our results suggest a heretofore unrecognized role for Hrq1 in transcription, as well as novel members of the Hrq1 ICL repair pathway. These data expand our understanding of RecQ4 subfamily helicase biology and help to explain why mutations in human RECQL4 cause diseases of genomic instability.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Elsbeth Sanders
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Phoebe A Nguyen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Whitney Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
24
|
Establishing correct kinetochore-microtubule attachments in mitosis and meiosis. Essays Biochem 2020; 64:277-287. [PMID: 32406497 DOI: 10.1042/ebc20190072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
Faithful chromosome segregation in mitosis and meiosis requires that chromosomes properly attach to spindle microtubules. Initial kinetochore-microtubule attachments are often incorrect and rely on error correction mechanisms to release improper attachments, allowing the formation of new attachments. Aurora B kinase and, in mammalian germ cells, Aurora C kinase function as the enzymatic component of the Chromosomal Passenger Complex (CPC), which localizes to the inner centromere/kinetochore and phosphorylates kinetochore proteins for microtubule release during error correction. In this review, we discuss recent findings of the molecular pathways that regulate the chromosomal localization of Aurora B and C kinases in human cell lines, mice, fission yeast, and budding yeast. We also discuss differences in the importance of localization pathways between mitosis and meiosis.
Collapse
|
25
|
Berthezene J, Reyes C, Li T, Coulon S, Bernard P, Gachet Y, Tournier S. Aurora B and condensin are dispensable for chromosome arm and telomere separation during meiosis II. Mol Biol Cell 2020; 31:889-905. [PMID: 32101485 PMCID: PMC7185977 DOI: 10.1091/mbc.e20-01-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mitosis, while the importance of kinetochore (KT)-microtubule (MT) attachment has been known for many years, increasing evidence suggests that telomere dysfunctions also perturb chromosome segregation by contributing to the formation of chromatin bridges at anaphase. Recent evidence suggests that Aurora B kinase ensures proper chromosome segregation during mitosis not only by controlling KT-MT attachment but also by regulating telomere and chromosome arm separation. However, whether and how Aurora B governs telomere separation during meiosis has remained unknown. Here, we show that fission yeast Aurora B localizes at telomeres during meiosis I and promotes telomere separation independently of the meiotic cohesin Rec8. In meiosis II, Aurora B controls KT-MT attachment but appears dispensable for telomere and chromosome arm separation. Likewise, condensin activity is nonessential in meiosis II for telomere and chromosome arm separation. Thus, in meiosis, the requirements for Aurora B are distinct at centromeres and telomeres, illustrating the critical differences in the control of chromosome segregation between mitosis and meiosis II.
Collapse
Affiliation(s)
- Julien Berthezene
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Céline Reyes
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Tong Li
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, 13273 Marseille, France
| | - Pascal Bernard
- CNRS-Laboratory of Biology and Modelling of the Cell, UMR 5239, 69364 Lyon, France.,ENS de Lyon, Université Lyon, F-69007 Lyon, France
| | - Yannick Gachet
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sylvie Tournier
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
26
|
Meyer RE, Dawson DS. Better safe than sorry-preventing mitotic segregation of meiotic chromosomes. Genes Dev 2020; 34:147-148. [PMID: 32015052 PMCID: PMC7000914 DOI: 10.1101/gad.336164.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distinctive segregation patterns of chromosomes in mitosis and meiosis are dictated in part by the kinetochores, the structures on chromosomes that attach them to the microtubules of the spindle. Inappropriate mitosis-like chromosome segregation in meiosis leads to gametes with incorrect chromosome numbers. New findings by Chen and colleagues (pp. 209-225) in this issue of Genes & Development reveal how cells restructure their kinetochores when they enter meiosis. Their results describe an interconnected set of mechanisms that provides multiple layers of protection from the carryover of mitotic chromosome segregation patterns into meiotic cells.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
27
|
Chen J, Liao A, Powers EN, Liao H, Kohlstaedt LA, Evans R, Holly RM, Kim JK, Jovanovic M, Ünal E. Aurora B-dependent Ndc80 degradation regulates kinetochore composition in meiosis. Genes Dev 2020; 34:209-225. [PMID: 31919192 PMCID: PMC7000919 DOI: 10.1101/gad.333997.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
The kinetochore complex is a conserved machinery that connects chromosomes to spindle microtubules. During meiosis, the kinetochore is restructured to accommodate a specialized chromosome segregation pattern. In budding yeast, meiotic kinetochore remodeling is mediated by the temporal changes in the abundance of a single subunit called Ndc80. We previously described the regulatory events that control the timely synthesis of Ndc80. Here, we report that Ndc80 turnover is also tightly regulated in meiosis: Ndc80 degradation is active in meiotic prophase, but not in metaphase I. Ndc80 degradation depends on the ubiquitin ligase APCAma1 and is mediated by the proteasome. Importantly, Aurora B-dependent Ndc80 phosphorylation, a mark that has been previously implicated in correcting erroneous microtubule-kinetochore attachments, is essential for Ndc80 degradation in a microtubule-independent manner. The N terminus of Ndc80, including a 27-residue sequence and Aurora B phosphorylation sites, is both necessary and sufficient for kinetochore protein degradation. Finally, defects in Ndc80 turnover predispose meiotic cells to chromosome mis-segregation. Our study elucidates the mechanism by which meiotic cells modulate their kinetochore composition through regulated Ndc80 degradation, and demonstrates that Aurora B-dependent regulation of kinetochores extends beyond altering microtubule attachments.
Collapse
Affiliation(s)
- Jingxun Chen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andrew Liao
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Emily N Powers
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Hanna Liao
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Lori A Kohlstaedt
- UC Berkeley QB3 Proteomics Facility, University of California at Berkeley, Berkeley, California 94720, USA
| | - Rena Evans
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ryan M Holly
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jenny Kim Kim
- Department of Biology, Columbia University, New York City, New York 10027, USA
| | - Marko Jovanovic
- Department of Biology, Columbia University, New York City, New York 10027, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Sherwin D, Wang Y. The Opposing Functions of Protein Kinases and Phosphatases in Chromosome Bipolar Attachment. Int J Mol Sci 2019; 20:ijms20246182. [PMID: 31817904 PMCID: PMC6940769 DOI: 10.3390/ijms20246182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 01/17/2023] Open
Abstract
Accurate chromosome segregation during cell division is essential to maintain genome integrity in all eukaryotic cells, and chromosome missegregation leads to aneuploidy and therefore represents a hallmark of many cancers. Accurate segregation requires sister kinetochores to attach to microtubules emanating from opposite spindle poles, known as bipolar attachment or biorientation. Recent studies have uncovered several mechanisms critical to chromosome bipolar attachment. First, a mechanism exists to ensure that the conformation of sister centromeres is biased toward bipolar attachment. Second, the phosphorylation of some kinetochore proteins destabilizes kinetochore attachment to facilitate error correction, but a protein phosphatase reverses this phosphorylation. Moreover, the activity of the spindle assembly checkpoint is regulated by kinases and phosphatases at the kinetochore, and this checkpoint prevents anaphase entry in response to faulty kinetochore attachment. The fine-tuned kinase/phosphatase balance at kinetochores is crucial for faithful chromosome segregation during both mitosis and meiosis. Here, we discuss the function and regulation of protein phosphatases in the establishment of chromosome bipolar attachment with a focus on the model organism budding yeast.
Collapse
Affiliation(s)
| | - Yanchang Wang
- Correspondence: ; Tel.: +1-850-644-0402; Fax: +1-850-644-5781
| |
Collapse
|
29
|
Zhang X, Hooykaas PJJ. The Agrobacterium VirD5 protein hyperactivates the mitotic Aurora kinase in host cells. THE NEW PHYTOLOGIST 2019; 222:1551-1560. [PMID: 30667529 PMCID: PMC6667905 DOI: 10.1111/nph.15700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/13/2019] [Indexed: 06/08/2023]
Abstract
Aided by translocated virulence proteins, Agrobacterium tumefaciens transforms plant cells with oncogenic T-DNA. In the host cells the virulence protein VirD5 moves to the nucleus, where it becomes localized at the kinetochores, and disturbs faithful chromosome segregation, but the molecular mechanism underlying this remains unknown. To gain more insight, we screened amongst the kinetochore proteins for VirD5 interactors using bimolecular fluorescence complementation assays, and tested chromosome segregation in yeast cells. We found that VirD5 interacts with the conserved mitotic Aurora kinase Ipl1 in yeast and likewise with plant Aurora kinases. In vitro VirD5 was found to stimulate the activity of Ipl1. Phosphorylation of substrates by Ipl1 in vivo is known to result in the detachment between kinetochore and spindle microtubule. This is necessary for error correction, but increased Ipl1/Aurora kinase activity is known to cause spindle instability, explaining enhanced chromosome mis-segregation seen in the presence of VirD5. That activation of the Ipl1/Aurora kinase at least partially underlies the toxicity of VirD5 became apparent by artificial boosting the activity of the specific counteracting phosphatase Glc7 in vivo, which relieved the toxicity. These findings reveal a novel mechanism by which a pathogenic bacterium manipulates host cells.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Molecular and Developmental GeneticsInstitute of BiologyLeiden UniversitySylviusweg 72Leiden2333BEthe Netherlands
| | - Paul J. J. Hooykaas
- Department of Molecular and Developmental GeneticsInstitute of BiologyLeiden UniversitySylviusweg 72Leiden2333BEthe Netherlands
| |
Collapse
|
30
|
Kurdzo EL, Chuong HH, Evatt JM, Dawson DS. A ZIP1 separation-of-function allele reveals that centromere pairing drives meiotic segregation of achiasmate chromosomes in budding yeast. PLoS Genet 2018; 14:e1007513. [PMID: 30091974 PMCID: PMC6103513 DOI: 10.1371/journal.pgen.1007513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/21/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022] Open
Abstract
In meiosis I, homologous chromosomes segregate away from each other-the first of two rounds of chromosome segregation that allow the formation of haploid gametes. In prophase I, homologous partners become joined along their length by the synaptonemal complex (SC) and crossovers form between the homologs to generate links called chiasmata. The chiasmata allow the homologs to act as a single unit, called a bivalent, as the chromosomes attach to the microtubules that will ultimately pull them away from each other at anaphase I. Recent studies, in several organisms, have shown that when the SC disassembles at the end of prophase, residual SC proteins remain at the homologous centromeres providing an additional link between the homologs. In budding yeast, this centromere pairing is correlated with improved segregation of the paired partners in anaphase. However, the causal relationship of prophase centromere pairing and subsequent disjunction in anaphase has been difficult to demonstrate as has been the relationship between SC assembly and the assembly of the centromere pairing apparatus. Here, a series of in-frame deletion mutants of the SC component Zip1 were used to address these questions. The identification of a separation-of-function allele that disrupts centromere pairing, but not SC assembly, has made it possible to demonstrate that centromere pairing and SC assembly have mechanistically distinct features and that the centromere pairing function of Zip1 drives disjunction of the paired partners in anaphase I.
Collapse
Affiliation(s)
- Emily L. Kurdzo
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Hoa H. Chuong
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Jared M. Evatt
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Dean S. Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- * E-mail:
| |
Collapse
|
31
|
Meyer RE, Brown J, Beck L, Dawson DS. Mps1 promotes chromosome meiotic chromosome biorientation through Dam1. Mol Biol Cell 2017; 29:479-489. [PMID: 29237818 PMCID: PMC6014172 DOI: 10.1091/mbc.e17-08-0503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 11/11/2022] Open
Abstract
During meiosis, chromosomes attach to microtubules at their kinetochores and are moved by microtubule depolymerization. The Mps1 kinase is essential for this process. Phosphorylation of Dam1 by Mps1 allows kinetochores to move processively poleward along microtubules during the biorientation process. In budding yeast meiosis, homologous chromosomes become linked by chiasmata and then move back and forth on the spindle until they are bioriented, with the kinetochores of the partners attached to microtubules from opposite spindle poles. Certain mutations in the conserved kinase, Mps1, result in catastrophic meiotic segregation errors but mild mitotic defects. We tested whether Dam1, a known substrate of Mps1, was necessary for its critical meiotic role. We found that kinetochore–microtubule attachments are established even when Dam1 is not phosphorylated by Mps1, but that Mps1 phosphorylation of Dam1 sustains those connections. But the meiotic defects when Dam1 is not phosphorylated are not nearly as catastrophic as when Mps1 is inactivated. The results demonstrate that one meiotic role of Mps1 is to stabilize connections that have been established between kinetochores and microtubles by phosphorylating Dam1.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jamin Brown
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Lindsay Beck
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
32
|
Marston AL, Wassmann K. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis. Front Cell Dev Biol 2017; 5:109. [PMID: 29322045 PMCID: PMC5733479 DOI: 10.3389/fcell.2017.00109] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022] Open
Abstract
Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid.
Collapse
Affiliation(s)
- Adele L Marston
- Wellcome Centre for Cell Biology, Institute for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Katja Wassmann
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, UMR7622, Paris, France.,Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR7622 Developmental Biology Lab, Paris, France
| |
Collapse
|
33
|
Virulence protein VirD5 of Agrobacterium tumefaciens binds to kinetochores in host cells via an interaction with Spt4. Proc Natl Acad Sci U S A 2017; 114:10238-10243. [PMID: 28874565 DOI: 10.1073/pnas.1706166114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterium Agrobacterium tumefaciens causes crown gall tumor formation in plants. During infection the bacteria translocate an oncogenic piece of DNA (transferred DNA, T-DNA) into plant cells at the infection site. A number of virulence proteins are cotransported into host cells concomitantly with the T-DNA to effectuate transformation. Using yeast as a model host, we find that one of these proteins, VirD5, localizes to the centromeres/kinetochores in the nucleus of the host cells by its interaction with the conserved protein Spt4. VirD5 promotes chromosomal instability as seen by the high-frequency loss of a minichromosome in yeast. By using both yeast and plant cells with a chromosome that was specifically marked by a lacO repeat, chromosome segregation errors and the appearance of aneuploid cells due to the presence of VirD5 could be visualized in vivo. Thus, VirD5 is a prokaryotic virulence protein that interferes with mitosis.
Collapse
|
34
|
Jonak K, Zagoriy I, Oz T, Graf P, Rojas J, Mengoli V, Zachariae W. APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast. Cell Cycle 2017; 16:1145-1152. [PMID: 28514186 DOI: 10.1080/15384101.2017.1320628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to "deprotect" Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/CCdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.
Collapse
Affiliation(s)
- Katarzyna Jonak
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Ievgeniia Zagoriy
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Tugce Oz
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Peter Graf
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Julie Rojas
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Valentina Mengoli
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Wolfgang Zachariae
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| |
Collapse
|
35
|
Katsumata K, Nishi E, Afrin S, Narusawa K, Yamamoto A. Position matters: multiple functions of LINC-dependent chromosome positioning during meiosis. Curr Genet 2017; 63:1037-1052. [PMID: 28493118 DOI: 10.1007/s00294-017-0699-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/14/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
Abstract
Chromosome positioning is crucial for multiple chromosomal events, including DNA replication, repair, and recombination. The linker of nucleoskeleton and cytoskeleton (LINC) complexes, which consist of conserved nuclear membrane proteins, were shown to control chromosome positioning and facilitate various biological processes by interacting with the cytoskeleton. However, the precise functions and regulation of LINC-dependent chromosome positioning are not fully understood. During meiosis, the LINC complexes induce clustering of telomeres, forming the bouquet chromosome arrangement, which promotes homologous chromosome pairing. In fission yeast, the bouquet forms through LINC-dependent clustering of telomeres at the spindle pole body (SPB, the centrosome equivalent in fungi) and detachment of centromeres from the SPB-localized LINC. It was recently found that, in fission yeast, the bouquet contributes to formation of the spindle and meiotic centromeres, in addition to homologous chromosome pairing, and that centromere detachment is linked to telomere clustering, which is crucial for proper spindle formation. Here, we summarize these findings and show that the bouquet chromosome arrangement also contributes to nuclear fusion during karyogamy. The available evidence suggests that these functions are universal among eukaryotes. The findings demonstrate that LINC-dependent chromosome positioning performs multiple functions and controls non-chromosomal as well as chromosomal events, and that the chromosome positioning is stringently regulated for its functions. Thus, chromosome positioning plays a much broader role and is more strictly regulated than previously thought.
Collapse
Affiliation(s)
- Kazuhiro Katsumata
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Eriko Nishi
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Sadia Afrin
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Kaoru Narusawa
- Department of Chemistry, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ayumu Yamamoto
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Chemistry, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
36
|
Alanazi H, Canul AJ, Garman A, Quimby J, Vasdekis AE. Robust microbial cell segmentation by optical-phase thresholding with minimal processing requirements. Cytometry A 2017; 91:443-449. [PMID: 28371011 PMCID: PMC6585648 DOI: 10.1002/cyto.a.23099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-throughput imaging with single-cell resolution has enabled remarkable discoveries in cell physiology and Systems Biology investigations. A common, and often the most challenging step in all such imaging implementations, is the ability to segment multiple images to regions that correspond to individual cells. Here, a robust segmentation strategy for microbial cells using Quantitative Phase Imaging is reported. The proposed method enables a greater than 99% yeast cell segmentation success rate, without any computationally-intensive, post-acquisition processing. We also detail how the method can be expanded to bacterial cell segmentation with 98% success rates with substantially reduced processing requirements in comparison to existing methods. We attribute this improved performance to the remarkably uniform background, elimination of cell-to-cell and intracellular optical artifacts, and enhanced signal-to-background ratio-all innate properties of imaging in the optical-phase domain. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- H. Alanazi
- Department of PhysicsUniversity of IdahoMoscowIdaho83844
| | - A. J. Canul
- Department of PhysicsUniversity of IdahoMoscowIdaho83844
| | - A. Garman
- Department of PhysicsUniversity of IdahoMoscowIdaho83844
| | - J. Quimby
- Department of PhysicsUniversity of IdahoMoscowIdaho83844
| | - A. E. Vasdekis
- Department of PhysicsUniversity of IdahoMoscowIdaho83844
| |
Collapse
|
37
|
Zheng H, Wu H, Pan X, Jin W, Li X. Aberrant Meiotic Modulation Partially Contributes to the Lower Germination Rate of Pollen Grains in Maize (Zea mays L.) Under Low Nitrogen Supply. PLANT & CELL PHYSIOLOGY 2017; 58:342-353. [PMID: 28007967 DOI: 10.1093/pcp/pcw195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Pollen germination is an essential step towards successful pollination during maize reproduction. How low niutrogen (N) affects pollen germination remains an interesting biological question to be addressed. We found that only low N resulted in a significantly lower germination rate of pollen grains after 4 weeks of low N, phosphorus or potassium treatment in maize production. Importantly, cytological analysis showed 7-fold more micronuclei in male meiocytes under the low N treatment than in the control, indicating that the lower germination rate of pollen grains was partially due to numerous chromosome loss events resulting from preceding meiosis. The appearance of 10 bivalents in the control and low N cells at diakinesis suggested that chromosome pairing and recombination in meiosis I was not affected by low N. Further gene expression analysis revealed dramatic down-regulation of Nuclear Division Cycle 80 (Ndc80) and Regulator of Chromosome Condensation 1 (Rcc1-1) expression and up-regulation of Cell Division Cycle 20 (Cdc20-1) expression, although no significant difference in the expression level of kinetochore foundation proteins Centromeric Histone H3 (Cenh3) and Centromere Protein C (Cenpc) and cohesion regulators Recombination 8 (Rec8) and Shugoshin (Sgo1) was observed. Aberrant modulation of three key meiotic regulators presumably resulted in a high likelihood of erroneous chromosome segregation, as testified by pronounced lagging chromosomes at anaphase I or cell cycle disruption at meiosis II. Thus, we proposed a cytogenetic mechanism whereby low N affects male meiosis and causes a higher chromosome loss frequency and eventually a lower germination rate of pollen grains in a staple crop plant.
Collapse
Affiliation(s)
- Hongyan Zheng
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Huamao Wu
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoying Pan
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Weiwei Jin
- The National Maize Center, and Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xuexian Li
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Meiotic Centromere Coupling and Pairing Function by Two Separate Mechanisms in Saccharomyces cerevisiae. Genetics 2016; 205:657-671. [PMID: 27913618 DOI: 10.1534/genetics.116.190264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022] Open
Abstract
In meiosis I, chromosomes become paired with their homologous partners and then are pulled toward opposite poles of the spindle. In the budding yeast, Saccharomyces cerevisiae, in early meiotic prophase, centromeres are observed to associate in pairs in a homology-independent manner; a process called centromere coupling. Later, as homologous chromosomes align, their centromeres associate in a process called centromere pairing. The synaptonemal complex protein Zip1 is necessary for both types of centromere association. We aimed to test the role of centromere coupling in modulating recombination at centromeres, and to test whether the two types of centromere associations depend upon the same sets of genes. The zip1-S75E mutation, which blocks centromere coupling but no other known functions of Zip1, was used to show that in the absence of centromere coupling, centromere-proximal recombination was unchanged. Further, this mutation did not diminish centromere pairing, demonstrating that these two processes have different genetic requirements. In addition, we tested other synaptonemal complex components, Ecm11 and Zip4, for their contributions to centromere pairing. ECM11 was dispensable for centromere pairing and segregation of achiasmate partner chromosomes; while ZIP4 was not required for centromere pairing during pachytene, but was required for proper segregation of achiasmate chromosomes. These findings help differentiate the two mechanisms that allow centromeres to interact in meiotic prophase, and illustrate that centromere pairing, which was previously shown to be necessary to ensure disjunction of achiasmate chromosomes, is not sufficient for ensuring their disjunction.
Collapse
|
39
|
A Taz1- and Microtubule-Dependent Regulatory Relationship between Telomere and Centromere Positions in Bouquet Formation Secures Proper Meiotic Divisions. PLoS Genet 2016; 12:e1006304. [PMID: 27611693 PMCID: PMC5017736 DOI: 10.1371/journal.pgen.1006304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
During meiotic prophase, telomeres cluster, forming the bouquet chromosome arrangement, and facilitate homologous chromosome pairing. In fission yeast, bouquet formation requires switching of telomere and centromere positions. Centromeres are located at the spindle pole body (SPB) during mitotic interphase, and upon entering meiosis, telomeres cluster at the SPB, followed by centromere detachment from the SPB. Telomere clustering depends on the formation of the microtubule-organizing center at telomeres by the linker of nucleoskeleton and cytoskeleton complex (LINC), while centromere detachment depends on disassembly of kinetochores, which induces meiotic centromere formation. However, how the switching of telomere and centromere positions occurs during bouquet formation is not fully understood. Here, we show that, when impaired telomere interaction with the LINC or microtubule disruption inhibited telomere clustering, kinetochore disassembly-dependent centromere detachment and accompanying meiotic centromere formation were also inhibited. Efficient centromere detachment required telomere clustering-dependent SPB recruitment of a conserved telomere component, Taz1, and microtubules. Furthermore, when artificial SPB recruitment of Taz1 induced centromere detachment in telomere clustering-defective cells, spindle formation was impaired. Thus, detachment of centromeres from the SPB without telomere clustering causes spindle impairment. These findings establish novel regulatory mechanisms, which prevent concurrent detachment of telomeres and centromeres from the SPB during bouquet formation and secure proper meiotic divisions. Meiosis is a type of cell division, that generates haploid gametes and is essential for sexual reproduction. During meiosis, telomeres cluster on a small region of the nuclear periphery, forming a conserved chromosome arrangement referred to as the “bouquet”. Because the bouquet arrangement facilitates homologous chromosome pairing, which is essential for proper meiotic chromosome segregation, it is of great importance to understand how the bouquet arrangement is formed. In fission yeast, the bouquet arrangement requires switching of telomere and centromere positions. During mitosis, centromeres are located at the fungal centrosome called the spindle pole body (SPB). Upon entering meiosis, telomeres cluster at the SPB, and centromeres become detached from the SPB, forming the bouquet arrangement. In this study, we show that centromere detachment is linked with telomere clustering. When telomere clustering was inhibited, centromere detachment was also inhibited. This regulatory relationship depended on a conserved telomere component, Taz1, and microtubules. Furthermore, we show that the regulatory relationship is crucial for proper meiotic divisions when telomere clustering is defective. Our findings reveal a hitherto unknown regulatory relationship between meiotic telomere and centromere positions in bouquet formation, which secures proper meiotic divisions.
Collapse
|
40
|
The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells. Microbiol Spectr 2016; 2. [PMID: 25541598 DOI: 10.1128/microbiolspec.plas-0003-2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.
Collapse
|
41
|
Huang CJ, Wu D, Khan FA, Huo LJ. The SUMO Protease SENP3 Orchestrates G2-M Transition and Spindle Assembly in Mouse Oocytes. Sci Rep 2015; 5:15600. [PMID: 26493771 PMCID: PMC4616058 DOI: 10.1038/srep15600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022] Open
Abstract
Oocyte meiosis is a transcription quiescence process and the cell-cycle progression is coordinated by multiple post-translational modifications, including SUMOylation. SENP3 an important deSUMOylation protease has been intensively studied in ribosome biogenesis and oxidative stress. However, the roles of SENP3 in cell-cycle regulation remain enigmatic, particularly for oocyte meiotic maturation. Here, we found that SENP3 co-localized with spindles during oocyte meiosis and silencing of SENP3 severely compromised the M phase entry (germinal vesicle breakdown, GVBD) and first polar body extrusion (PBI). The failure in polar body extrusion was due to the dysfunction of γ-tubulin that caused defective spindle morphogenesis. SENP3 depletion led to mislocalization and a substantial loss of Aurora A (an essential protein for MTOCs localization and spindle dynamics) while irregularly dispersed distribution of Bora (a binding partner and activator of Aurora A) in cytoplasm instead of concentrating at spindles. The SUMO-2/3 but not SUMO-1 conjugates were globally decreased by SENP3 RNAi. Additionally, the spindle assembly checkpoint remained functional upon SENP3 RNAi. Our findings renew the picture of SENP3 function by exploring its role in meiosis resumption, spindle assembly and following polar body emission during mouse oocyte meiotic maturation, which is potentially due to its proteolytic activity that facilitate SUMO-2/3 maturation.
Collapse
Affiliation(s)
- Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
42
|
Kakui Y, Sato M. Differentiating the roles of microtubule-associated proteins at meiotic kinetochores during chromosome segregation. Chromosoma 2015; 125:309-20. [PMID: 26383111 DOI: 10.1007/s00412-015-0541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
Meiosis is a specialised cell division process for generating gametes. In contrast to mitosis, meiosis involves recombination followed by two consecutive rounds of cell division, meiosis I and II. A vast field of research has been devoted to understanding the differences between mitotic and meiotic cell divisions from the viewpoint of chromosome behaviour. For faithful inheritance of paternal and maternal genetic information to offspring, two events are indispensable: meiotic recombination, which generates a physical link between homologous chromosomes, and reductional segregation, in which homologous chromosomes move towards opposite poles, thereby halving the ploidy. The cytoskeleton and its regulators play specialised roles in meiosis to accomplish these divisions. Recent studies have shown that microtubule-associated proteins (MAPs), including tumour overexpressed gene (TOG), play unique roles during meiosis. Furthermore, the conserved mitotic protein kinase Polo modulates MAP localisation in meiosis I. As Polo is a well-known regulator of reductional segregation in meiosis, the evidence suggests that Polo constitutes a plausible link between meiosis-specific MAP functions and reductional segregation. Here, we review the latest findings on how the localisation and regulation of MAPs in meiosis differ from those in mitosis, and we discuss conservation of the system between yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Chromosome Segregation Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo, 162-0056, Japan.
| |
Collapse
|
43
|
Huang CJ, Wu D, Khan FA, Huo LJ. DeSUMOylation: An Important Therapeutic Target and Protein Regulatory Event. DNA Cell Biol 2015; 34:652-60. [PMID: 26309017 DOI: 10.1089/dna.2015.2933] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of the process of small ubiquitin-like modifier (SUMO)-mediated post-translational modification of targets (SUMOylation) in early 1990s proved to be a significant step ahead in understanding mechanistic regulation of proteins and their functions in diverse life processes at the cellular level. The critical step in reversing the SUMOylation pathway is its ability to be dynamically deSUMOylated by SUMO/sentrin-specific protease (SENP). This review is intended to give a brief introduction about the process of SUMOylation, different mammalian deSUMOylating enzymes with special emphasis on their regulation of ribosome biogenesis at the molecular level, and its emerging roles in mitochondrial dynamics that might reveal usefulness of SENPs for therapeutic applications.
Collapse
Affiliation(s)
- Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| |
Collapse
|
44
|
Dynamic localization of Mps1 kinase to kinetochores is essential for accurate spindle microtubule attachment. Proc Natl Acad Sci U S A 2015; 112:E4546-55. [PMID: 26240331 DOI: 10.1073/pnas.1508791112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a conserved signaling pathway that monitors faithful chromosome segregation during mitosis. As a core component of SAC, the evolutionarily conserved kinase monopolar spindle 1 (Mps1) has been implicated in regulating chromosome alignment, but the underlying molecular mechanism remains unclear. Our molecular delineation of Mps1 activity in SAC led to discovery of a previously unidentified structural determinant underlying Mps1 function at the kinetochores. Here, we show that Mps1 contains an internal region for kinetochore localization (IRK) adjacent to the tetratricopeptide repeat domain. Importantly, the IRK region determines the kinetochore localization of inactive Mps1, and an accumulation of inactive Mps1 perturbs accurate chromosome alignment and mitotic progression. Mechanistically, the IRK region binds to the nuclear division cycle 80 complex (Ndc80C), and accumulation of inactive Mps1 at the kinetochores prevents a dynamic interaction between Ndc80C and spindle microtubules (MTs), resulting in an aberrant kinetochore attachment. Thus, our results present a previously undefined mechanism by which Mps1 functions in chromosome alignment by orchestrating Ndc80C-MT interactions and highlight the importance of the precise spatiotemporal regulation of Mps1 kinase activity and kinetochore localization in accurate mitotic progression.
Collapse
|
45
|
Meyer RE, Chuong HH, Hild M, Hansen CL, Kinter M, Dawson DS. Ipl1/Aurora-B is necessary for kinetochore restructuring in meiosis I in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:2986-3000. [PMID: 26157162 PMCID: PMC4551314 DOI: 10.1091/mbc.e15-01-0032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022] Open
Abstract
In mitosis, the centromeres of sister chromosomes are pulled toward opposite poles of the spindle. In meiosis I, the opposite is true: the sister centromeres move together to the same pole, and the homologous chromosomes are pulled apart. This change in segregation patterns demands that between the final mitosis preceding meiosis and the first meiotic division, the kinetochores must be restructured. In budding yeast, unlike mammals, kinetochores are largely stable throughout the mitotic cycle. In contrast, previous work with budding and fission yeast showed that some outer kinetochore proteins are lost in early meiosis. We use quantitative mass spectrometry methods and imaging approaches to explore the kinetochore restructuring process that occurs in meiosis I in budding yeast. The Ndc80 outer kinetochore complex, but not other subcomplexes, is shed upon meiotic entry. This shedding is regulated by the conserved protein kinase Ipl1/Aurora-B and promotes the subsequent assembly of a kinetochore that will confer meiosis-specific segregation patterns on the chromosome.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Hoa H Chuong
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Marrett Hild
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Christina L Hansen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Michael Kinter
- Program in Free Radical Biology and Aging, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
46
|
Kurdzo EL, Dawson DS. Centromere pairing--tethering partner chromosomes in meiosis I. FEBS J 2015; 282:2458-70. [PMID: 25817724 PMCID: PMC4490064 DOI: 10.1111/febs.13280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/10/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
Abstract
In meiosis, homologous chromosomes face the obstacle of finding, holding onto and segregating away from their partner chromosome. There is increasing evidence, in a diverse range of organisms, that centromere–centromere interactions that occur in late prophase are an important mechanism in ensuring segregation fidelity. Centromere pairing appears to initiate when homologous chromosomes synapse in meiotic prophase. Structural proteins of the synaptonemal complex have been shown to help mediate centromere pairing, but how the structure that maintains centromere pairing differs from the structure of the synaptonemal complex along the chromosomal arms remains unknown. When the synaptonemal complex proteins disassemble from the chromosome arms in late prophase, some of these synaptonemal complex components persist at the centromeres. In yeast and Drosophila these centromere-pairing behaviors promote the proper segregation of chromosome partners that have failed to become linked by chiasmata. Recent studies of mouse spermatocytes have described centromere pairing behaviors that are similar in several respects to what has been described in the fly and yeast systems. In humans, chromosomes that fail to experience crossovers in meiosis are error-prone and are a major source of aneuploidy. The finding that centromere pairing is a conserved phenomenon raises the possibility that it may play a role in promoting the segregation fidelity of non-exchange chromosome pairs in humans.
Collapse
Affiliation(s)
- Emily L Kurdzo
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Health Science Center, OK, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Health Science Center, OK, USA
| |
Collapse
|
47
|
Abstract
During eukaryotic cell division, chromosomes must be precisely partitioned to daughter cells. This relies on a mechanism to move chromosomes in defined directions within the parental cell. While sister chromatids are segregated from one another in mitosis and meiosis II, specific adaptations enable the segregation of homologous chromosomes during meiosis I to reduce ploidy for gamete production. Many of the factors that drive these directed chromosome movements are known, and their molecular mechanism has started to be uncovered. Here we review the mechanisms of eukaryotic chromosome segregation, with a particular emphasis on the modifications that ensure the segregation of homologous chromosomes during meiosis I.
Collapse
Affiliation(s)
- Eris Duro
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
48
|
Ohkura H. Meiosis: an overview of key differences from mitosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a015859. [PMID: 25605710 DOI: 10.1101/cshperspect.a015859] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Meiosis is the specialized cell division that generates gametes. In contrast to mitosis, molecular mechanisms and regulation of meiosis are much less understood. Meiosis shares mechanisms and regulation with mitosis in many aspects, but also has critical differences from mitosis. This review highlights these differences between meiosis and mitosis. Recent studies using various model systems revealed differences in a surprisingly wide range of aspects, including cell-cycle regulation, recombination, postrecombination events, spindle assembly, chromosome-spindle interaction, and chromosome segregation. Although a great degree of diversity can be found among organisms, meiosis-specific processes, and regulation are generally conserved.
Collapse
Affiliation(s)
- Hiroyuki Ohkura
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
49
|
Gorbsky GJ. The spindle checkpoint and chromosome segregation in meiosis. FEBS J 2015; 282:2471-87. [PMID: 25470754 DOI: 10.1111/febs.13166] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022]
Abstract
The spindle checkpoint is a key regulator of chromosome segregation in mitosis and meiosis. Its function is to prevent precocious anaphase onset before chromosomes have achieved bipolar attachment to the spindle. The spindle checkpoint comprises a complex set of signaling pathways that integrate microtubule dynamics, biomechanical forces at the kinetochores, and intricate regulation of protein interactions and post-translational modifications. Historically, many key observations that gave rise to the initial concepts of the spindle checkpoint were made in meiotic systems. In contrast with mitosis, the two distinct chromosome segregation events of meiosis present a special challenge for the regulation of checkpoint signaling. Preservation of fidelity in chromosome segregation in meiosis, controlled by the spindle checkpoint, also has a significant impact in human health. This review highlights the contributions from meiotic systems in understanding the spindle checkpoint as well as the role of checkpoint signaling in controlling the complex divisions of meiosis.
Collapse
Affiliation(s)
- Gary J Gorbsky
- Cell Cycle & Cancer Biology, Oklahoma Medical Research Foundation, OK, USA
| |
Collapse
|
50
|
Lee S, Bolanos-Garcia VM. The dynamics of signal amplification by macromolecular assemblies for the control of chromosome segregation. Front Physiol 2014; 5:368. [PMID: 25324779 PMCID: PMC4179342 DOI: 10.3389/fphys.2014.00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/07/2014] [Indexed: 11/13/2022] Open
Abstract
The control of chromosome segregation relies on the spindle assembly checkpoint (SAC), a complex regulatory system that ensures the high fidelity of chromosome segregation in higher organisms by delaying the onset of anaphase until each chromosome is properly bi-oriented on the mitotic spindle. Central to this process is the establishment of multiple yet specific protein-protein interactions in a narrow time-space window. Here we discuss the highly dynamic nature of multi-protein complexes that control chromosome segregation in which an intricate network of weak but cooperative interactions modulate signal amplification to ensure a proper SAC response. We also discuss the current structural understanding of the communication between the SAC and the kinetochore; how transient interactions can regulate the assembly and disassembly of the SAC as well as the challenges and opportunities for the definition and the manipulation of the flow of information in SAC signaling.
Collapse
Affiliation(s)
- Semin Lee
- Center for Biomedical Informatics, Harvard Medical School, Harvard University Boston, MA, USA
| | - Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University Oxford, UK
| |
Collapse
|