1
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Yang CH, Bergsma A, Drougard A, Dror E, Chandler DP, Schramek D, Triche TJ, Pospisilik JA. TRIM28-dependent developmental heterogeneity determines cancer susceptibility through distinct epigenetic states. NATURE CANCER 2025; 6:385-403. [PMID: 39856421 PMCID: PMC11864977 DOI: 10.1038/s43018-024-00900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
Mutations in cancer risk genes increase susceptibility, but not all carriers develop cancer. Indeed, while DNA mutations are necessary drivers of cancer, only a small subset of mutated cells go on to cause the disease. To date, the mechanisms underlying individual cancer susceptibility remain unclear. Here, we took advantage of a unique mouse model of intrinsic developmental heterogeneity (Trim28+/D9) to investigate whether early-life epigenetic variation influences cancer susceptibility later in life. We found that heterozygosity of Trim28 is sufficient to generate two distinct early-life epigenetic states associated with differing cancer susceptibility. These developmentally primed states exhibit differential methylation patterns at typically silenced heterochromatin, detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential, frequently mutated in human cancers and correlated with poor prognosis. This study provides genetic evidence that intrinsic developmental heterogeneity can prime individual, lifelong cancer susceptibility.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Chih-Hsiang Yang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy J Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Pediatrics, MSU College of Human Medicine, East Lansing, MI, USA
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
2
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
3
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
4
|
Begnis M, Duc J, Offner S, Grun D, Sheppard S, Rosspopoff O, Trono D. Clusters of lineage-specific genes are anchored by ZNF274 in repressive perinucleolar compartments. SCIENCE ADVANCES 2024; 10:eado1662. [PMID: 39270011 PMCID: PMC11397430 DOI: 10.1126/sciadv.ado1662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
Long known as the site of ribosome biogenesis, the nucleolus is increasingly recognized for its role in shaping three-dimensional (3D) genome organization. Still, the mechanisms governing the targeting of selected regions of the genome to nucleolus-associated domains (NADs) remain enigmatic. Here, we reveal the essential role of ZNF274, a SCAN-bearing member of the Krüppel-associated box (KRAB)-containing zinc finger protein (KZFP) family, in sequestering lineage-specific gene clusters within NADs. Ablation of ZNF274 triggers transcriptional activation across entire genomic neighborhoods-encompassing, among others, protocadherin and KZFP-encoding genes-with loss of repressive chromatin marks, altered the 3D genome architecture and de novo CTCF binding. Mechanistically, ZNF274 anchors target DNA sequences at the nucleolus and facilitates their compartmentalization via a previously uncharted function of the SCAN domain. Our findings illuminate the mechanisms underlying NAD organization and suggest that perinucleolar entrapment into repressive hubs constrains the activation of tandemly arrayed genes to enable selective expression and modulate cell differentiation programs during development.
Collapse
Affiliation(s)
- Martina Begnis
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Delphine Grun
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shaoline Sheppard
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olga Rosspopoff
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Tan J, Li Y, Li X, Zhu X, Liu L, Huang H, Wei J, Wang H, Tian Y, Wang Z, Zhang Z, Zhu B. Pramel15 facilitates zygotic nuclear DNMT1 degradation and DNA demethylation. Nat Commun 2024; 15:7310. [PMID: 39181896 PMCID: PMC11344788 DOI: 10.1038/s41467-024-51614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
In mammals, global passive demethylation contributes to epigenetic reprogramming during early embryonic development. At this stage, the majority of DNA-methyltransferase 1 (DNMT1) protein is excluded from nucleus, which is considered the primary cause. However, whether the remaining nuclear activity of DNMT1 is regulated by additional mechanisms is unclear. Here, we report that nuclear DNMT1 abundance is finetuned through proteasomal degradation in mouse zygotes. We identify a maternal factor, Pramel15, which targets DNMT1 for degradation via Cullin-RING E3 ligases. Loss of Pramel15 elevates DNMT1 levels in the zygote pronuclei, impairs zygotic DNA demethylation, and causes a stochastic gain of DNA methylation in early embryos. Thus, Pramel15 can modulate the residual level of DNMT1 in the nucleus during zygotic DNA replication, thereby ensuring efficient DNA methylation reprogramming in early embryos.
Collapse
Affiliation(s)
- Jiajun Tan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiang Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Liping Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiahua Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hailing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Chih-Hsiang Y, Bergsma A, Drougard A, Dror E, Chandler D, Schramek D, Triche TJ, Pospisilik JA. Developmental priming of cancer susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557446. [PMID: 37745326 PMCID: PMC10515831 DOI: 10.1101/2023.09.12.557446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DNA mutations are necessary drivers of cancer, yet only a small subset of mutated cells go on to cause the disease. To date, the mechanisms that determine which rare subset of cells transform and initiate tumorigenesis remain unclear. Here, we take advantage of a unique model of intrinsic developmental heterogeneity (Trim28+/D9) and demonstrate that stochastic early life epigenetic variation can trigger distinct cancer-susceptibility 'states' in adulthood. We show that these developmentally primed states are characterized by differential methylation patterns at typically silenced heterochromatin, and that these epigenetic signatures are detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential. These same genes are frequently mutated in human cancers, and their dysregulation correlates with poor prognosis. These results provide proof-of-concept that intrinsic developmental heterogeneity can prime individual, life-long cancer risk.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yang Chih-Hsiang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - J. Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
7
|
Bianchi A, Scherer M, Zaurin R, Quililan K, Velten L, Beekman R. scTAM-seq enables targeted high-confidence analysis of DNA methylation in single cells. Genome Biol 2022; 23:229. [PMID: 36307828 PMCID: PMC9615163 DOI: 10.1186/s13059-022-02796-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Single-cell DNA methylation profiling currently suffers from excessive noise and/or limited cellular throughput. We developed scTAM-seq, a targeted bisulfite-free method for profiling up to 650 CpGs in up to 10,000 cells per experiment, with a dropout rate as low as 7%. We demonstrate that scTAM-seq can resolve DNA methylation dynamics across B-cell differentiation in blood and bone marrow, identifying intermediate differentiation states that were previously masked. scTAM-seq additionally queries surface-protein expression, thus enabling integration of single-cell DNA methylation information with cell atlas data. In summary, scTAM-seq is a high-throughput, high-confidence method for analyzing DNA methylation at single-CpG resolution across thousands of single cells.
Collapse
Affiliation(s)
- Agostina Bianchi
- grid.11478.3b0000 0004 1766 3695Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Michael Scherer
- grid.11478.3b0000 0004 1766 3695Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roser Zaurin
- grid.11478.3b0000 0004 1766 3695Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Kimberly Quililan
- grid.11478.3b0000 0004 1766 3695Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lars Velten
- grid.11478.3b0000 0004 1766 3695Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Renée Beekman
- grid.11478.3b0000 0004 1766 3695Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain ,grid.452341.50000 0004 8340 2354Centre Nacional d’Anàlisi Genòmica (CNAG), Barcelona, Spain ,grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
8
|
Mukherjee P, Park SH, Pathak N, Patino CA, Bao G, Espinosa HD. Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS NANO 2022; 16:15653-15680. [PMID: 36154011 DOI: 10.1021/acsnano.2c05494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The emerging field of cell therapy offers the potential to treat and even cure a diverse array of diseases for which existing interventions are inadequate. Recent advances in micro and nanotechnology have added a multitude of single cell analysis methods to our research repertoire. At the same time, techniques have been developed for the precise engineering and manipulation of cells. Together, these methods have aided the understanding of disease pathophysiology, helped formulate corrective interventions at the cellular level, and expanded the spectrum of available cell therapeutic options. This review discusses how micro and nanotechnology have catalyzed the development of cell sorting, cellular engineering, and single cell analysis technologies, which have become essential workflow components in developing cell-based therapeutics. The review focuses on the technologies adopted in research studies and explores the opportunities and challenges in combining the various elements of cell engineering and single cell analysis into the next generation of integrated and automated platforms that can accelerate preclinical studies and translational research.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Claxton M, Pulix M, Seah MKY, Bernardo R, Zhou P, Aljuraysi S, Liloglou T, Arnaud P, Kelsey G, Messerschmidt DM, Plagge A. Variable allelic expression of imprinted genes at the Peg13, Trappc9, Ago2 cluster in single neural cells. Front Cell Dev Biol 2022; 10:1022422. [PMID: 36313557 PMCID: PMC9596773 DOI: 10.3389/fcell.2022.1022422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic process through which genes are expressed in a parent-of-origin specific manner resulting in mono-allelic or strongly biased expression of one allele. For some genes, imprinted expression may be tissue-specific and reliant on CTCF-influenced enhancer-promoter interactions. The Peg13 imprinting cluster is associated with neurodevelopmental disorders and comprises canonical imprinted genes, which are conserved between mouse and human, as well as brain-specific imprinted genes in mouse. The latter consist of Trappc9, Chrac1 and Ago2, which have a maternal allelic expression bias of ∼75% in brain. Findings of such allelic expression biases on the tissue level raise the question of how they are reflected in individual cells and whether there is variability and mosaicism in allelic expression between individual cells of the tissue. Here we show that Trappc9 and Ago2 are not imprinted in hippocampus-derived neural stem cells (neurospheres), while Peg13 retains its strong bias of paternal allele expression. Upon analysis of single neural stem cells and in vitro differentiated neurons, we find not uniform, but variable states of allelic expression, especially for Trappc9 and Ago2. These ranged from mono-allelic paternal to equal bi-allelic to mono-allelic maternal, including biased bi-allelic transcriptional states. Even Peg13 expression deviated from its expected paternal allele bias in a small number of cells. Although the cell populations consisted of a mosaic of cells with different allelic expression states, as a whole they reflected bulk tissue data. Furthermore, in an attempt to identify potential brain-specific regulatory elements across the Trappc9 locus, we demonstrate tissue-specific and general silencer activities, which might contribute to the regulation of its imprinted expression bias.
Collapse
Affiliation(s)
- Michael Claxton
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michela Pulix
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michelle K. Y. Seah
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ralph Bernardo
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Peng Zhou
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sultan Aljuraysi
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Triantafillos Liloglou
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Daniel M. Messerschmidt
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Antonius Plagge
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Maternal genetic factors in the development of congenital heart defects. Curr Opin Genet Dev 2022; 76:101961. [PMID: 35882070 DOI: 10.1016/j.gde.2022.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/24/2022]
Abstract
Congenital heart defects (CHDs) are among the most common, serious birth defects. However, the cause of CHDs is unknown for approximately half of affected individuals and there are few prevention strategies. Although not extensively investigated, maternal genes may contribute to CHD etiology by modifying the effects of maternal exposures (e.g. medications, nutrients), contributing to maternal phenotypes that are associated with an increased risk of CHDs in offspring (e.g. diabetes), or acting as maternal effect genes. Since maternal genes could serve as a target for the primary prevention of CHDs, efforts to further define the contribution of the maternal genome to CHD etiology are warranted.
Collapse
|
11
|
Cai Z, Long T, Zhao Y, Lin R, Wang Y. Epigenetic Regulation in Knee Osteoarthritis. Front Genet 2022; 13:942982. [PMID: 35873487 PMCID: PMC9304589 DOI: 10.3389/fgene.2022.942982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a complicated disease with both hereditary and environmental causes. Despite an increase in reports of possible OA risk loci, it has become clear that genetics is not the sole cause of osteoarthritis. Epigenetics, which can be triggered by environmental influences and result in transcriptional alterations, may have a role in OA pathogenesis. The majority of recent research on the epigenetics of OA has been focused on DNA methylation, histone modification, and non-coding RNAs. However, this study will explore epigenetic regulation in OA at the present stage. How genetics, environmental variables, and epigenetics interact will be researched, shedding light for future studies. Their possible interaction and control processes open up new avenues for the development of innovative osteoarthritis treatment and diagnostic techniques.
Collapse
Affiliation(s)
| | - Teng Long
- *Correspondence: Teng Long, ; You Wang,
| | | | | | - You Wang
- *Correspondence: Teng Long, ; You Wang,
| |
Collapse
|
12
|
Gabrieli T, Michaeli Y, Avraham S, Torchinsky D, Margalit S, Schütz L, Juhasz M, Coruh C, Arbib N, Zhou ZS, Law JA, Weinhold E, Ebenstein Y. Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic Acids Res 2022; 50:e92. [PMID: 35657088 PMCID: PMC9458417 DOI: 10.1093/nar/gkac460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
DNA methylation, specifically, methylation of cytosine (C) nucleotides at the 5-carbon position (5-mC), is the most studied and significant epigenetic modification. Here we developed a chemoenzymatic procedure to fluorescently label non-methylated cytosines in CpG context, allowing epigenetic profiling of single DNA molecules spanning hundreds of thousands of base pairs. We used a CpG methyltransferase with a synthetic S-adenosyl-l-methionine cofactor analog to transfer an azide to cytosines instead of the natural methyl group. A fluorophore was then clicked onto the DNA, reporting on the amount and position of non-methylated CpGs. We found that labeling efficiency was increased up to 2-fold by the addition of a nucleosidase, presumably by degrading the inactive by-product of the cofactor after labeling, preventing its inhibitory effect. We used the method to determine the decline in global DNA methylation in a chronic lymphocytic leukemia patient and then performed whole-genome methylation mapping of the model plant Arabidopsis thaliana. Our genome maps show high concordance with published bisulfite sequencing methylation maps. Although mapping resolution is limited by optical detection to 500–1000 bp, the labeled DNA molecules produced by this approach are hundreds of thousands of base pairs long, allowing access to long repetitive and structurally variable genomic regions.
Collapse
Affiliation(s)
- Tslil Gabrieli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Avraham
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dmitry Torchinsky
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sapir Margalit
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Leonie Schütz
- Institute of Organic Chemistry, RWTH Aachen University, D-52056Aachen, Germany
| | - Matyas Juhasz
- Institute of Organic Chemistry, RWTH Aachen University, D-52056Aachen, Germany
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nissim Arbib
- Department of Obstetrics and Gynecology, Meir Hospital, Kfar Saba, Israel & Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts02115, USA
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, D-52056Aachen, Germany
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
scTEM-seq: Single-cell analysis of transposable element methylation to link global epigenetic heterogeneity with transcriptional programs. Sci Rep 2022; 12:5776. [PMID: 35388081 PMCID: PMC8986802 DOI: 10.1038/s41598-022-09765-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Global changes in DNA methylation are observed in development and disease, and single-cell analyses are highlighting the heterogeneous regulation of these processes. However, technical challenges associated with single-cell analysis of DNA methylation limit these studies. We present single-cell transposable element methylation sequencing (scTEM-seq) for cost-effective estimation of average DNA methylation levels. By targeting high-copy SINE Alu elements, we achieve amplicon bisulphite sequencing with thousands of loci covered in each scTEM-seq library. Parallel transcriptome analysis is also performed to link global DNA methylation estimates with gene expression. We apply scTEM-seq to KG1a acute myeloid leukaemia (AML) cells, and primary AML cells. Our method reveals global DNA methylation heterogeneity induced by decitabine treatment of KG1a cells associated with altered expression of immune process genes. We also compare global DNA methylation estimates to expression of transposable elements and find a predominance of negative correlations. Finally, we observe co-ordinated upregulation of many transposable elements in a sub-set of decitabine treated cells. By linking global DNA methylation heterogeneity with transcription, scTEM-seq will refine our understanding of epigenetic regulation in cancer and beyond.
Collapse
|
14
|
Abstract
Maternal effect genes (MEGs) encode factors (e.g., RNA) that are present in the oocyte and required for early embryonic development. Hence, while these genes and gene products are of maternal origin, their phenotypic consequences result from effects on the embryo. The first mammalian MEGs were identified in the mouse in 2000 and were associated with early embryonic loss in the offspring of homozygous null females. In humans, the first MEG was identified in 2006, in women who had experienced a range of adverse reproductive outcomes, including hydatidiform moles, spontaneous abortions, and stillbirths. Over 80 mammalian MEGs have subsequently been identified, including several that have been associated with phenotypes in humans. In general, pathogenic variants in MEGs or the absence of MEG products are associated with a spectrum of adverse outcomes, which in humans range from zygotic cleavage failure to offspring with multi-locus imprinting disorders. Although less established, there is also evidence that MEGs are associated with structural birth defects (e.g., craniofacial malformations, congenital heart defects). This review provides an updated summary of mammalian MEGs reported in the literature through early 2021, as well as an overview of the evidence for a link between MEGs and structural birth defects.
Collapse
|
15
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:111-136. [PMID: 36350508 PMCID: PMC9815518 DOI: 10.1007/978-3-031-11454-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosine methylation at the C5-position-generating 5-methylcytosine (5mC)-is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80%) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation and genetic alterations in enzymes and regulators involved in DNA methylation are associated with various human diseases, including cancer and developmental disorders. In mammals, DNA methylation is mediated by two families of DNA methyltransferases (Dnmts), namely Dnmt1 and Dnmt3 proteins. Over the last three decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and human diseases.
Collapse
|
17
|
Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol 2021; 39:825-835. [PMID: 33846645 PMCID: PMC7611252 DOI: 10.1038/s41587-021-00869-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
In contrast to single-cell approaches for measuring gene expression and DNA accessibility, single-cell methods for analyzing histone modifications are limited by low sensitivity and throughput. Here, we combine the CUT&Tag technology, developed to measure bulk histone modifications, with droplet-based single-cell library preparation to produce high-quality single-cell data on chromatin modifications. We apply single-cell CUT&Tag (scCUT&Tag) to tens of thousands of cells of the mouse central nervous system and probe histone modifications characteristic of active promoters, enhancers and gene bodies (H3K4me3, H3K27ac and H3K36me3) and inactive regions (H3K27me3). These scCUT&Tag profiles were sufficient to determine cell identity and deconvolute regulatory principles such as promoter bivalency, spreading of H3K4me3 and promoter-enhancer connectivity. We also used scCUT&Tag to investigate the single-cell chromatin occupancy of transcription factor OLIG2 and the cohesin complex component RAD21. Our results indicate that analysis of histone modifications and transcription factor occupancy at single-cell resolution provides unique insights into epigenomic landscapes in the central nervous system.
Collapse
Affiliation(s)
- Marek Bartosovic
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden,Corresponding authors: ,
| | - Mukund Kabbe
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, 171 77 Stockholm, Sweden,Corresponding authors: ,
| |
Collapse
|
18
|
DNA methylation studies in cattle. J Appl Genet 2021; 62:121-136. [PMID: 33400132 DOI: 10.1007/s13353-020-00604-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Investigation of the role of epigenetics in cattle breeding is gaining importance. DNA methylation represents an epigenetic modification which is essential for genomic stability and maintenance of development. Recently, DNA methylation research in cattle has intensified. The studies focus on the definition of methylomes in various organs and tissues in relation to the expression of genes underlying economically important traits, and explore methylome changes under developmental, environmental, disease, and diet influences. The investigations further characterize the methylation patterns of gametes in connection with their quality, and study methylome alterations in the developing naturally or assisted produced zygotes, embryos, and fetuses, considering their viability. A wide array of technologies developed for accurate and precise analysis of DNA methylation patterns is employed for both single-gene and genome-wide studies. Overall, the research is directed towards the identification of single methylation markers or their combinations which may be useful in the selection and breeding of animals to ensure cattle improvement.
Collapse
|
19
|
Men S, Yu Y. Prospects for Use of Single-Cell Sequencing to Assess DNA Methylation in Asthma. Med Sci Monit 2020; 26:e925514. [PMID: 33009362 PMCID: PMC7539641 DOI: 10.12659/msm.925514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Asthma is a complex disease with an increasing prevalence rate caused by the interaction of multiple genetically inherited and environmental factors. Epigenetics link genetic susceptibility and environmental factors. DNA methylation is an epigenetic modification that plays a crucial role in the regulation of growth and development, gene expression, and disease. Relatively little is known about DNA methylation in asthma, with few studies to date using single-cell sequencing to analyze the molecular mechanism by which DNA methylation regulates asthma. Cells with similar phenotypes may be heterogeneous in function and transcription, as may their genetic information. Although multi-omics methods, such as studies of the genome, transcriptome, and epigenome, can be used to evaluate biological processes, these methods are applicable only to groups of cells or tissues and provide averages that may obscure direct correlations among multiple layers of data. Single-cell sequencing technology can clarify the methylation and expression of genes in different populations of cells, in contrast to traditional multi-omics sequencing, which can determine only average values of cell populations. Single-cell sequence can therefore better reflect the pathogenesis of asthma, as it can clarify the function and regulatory mechanism of DNA methylation in asthma, and detect new genes and molecular markers that may become therapeutic targets in this disease.
Collapse
|
20
|
Xing QR, Farran CAE, Zeng YY, Yi Y, Warrier T, Gautam P, Collins JJ, Xu J, Dröge P, Koh CG, Li H, Zhang LF, Loh YH. Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility. Genome Res 2020; 30:1027-1039. [PMID: 32699019 PMCID: PMC7397874 DOI: 10.1101/gr.257840.119] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Joint profiling of transcriptome and chromatin accessibility within single cells allows for the deconstruction of the complex relationship between transcriptional states and upstream regulatory programs determining different cell fates. Here, we developed an automated method with high sensitivity, assay for single-cell transcriptome and accessibility regions (ASTAR-seq), for simultaneous measurement of whole-cell transcriptome and chromatin accessibility within the same single cell. To show the utility of ASTAR-seq, we profiled 384 mESCs under naive and primed pluripotent states as well as a two-cell like state, 424 human cells of various lineage origins (BJ, K562, JK1, and Jurkat), and 480 primary cord blood cells undergoing erythroblast differentiation. With the joint profiles, we configured the transcriptional and chromatin accessibility landscapes of discrete cell states, uncovered linked sets of cis-regulatory elements and target genes unique to each state, and constructed interactome and transcription factor (TF)–centered upstream regulatory networks for various cell states.
Collapse
Affiliation(s)
- Qiao Rui Xing
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Chadi A El Farran
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ying Ying Zeng
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yao Yi
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Tushar Warrier
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Pradeep Gautam
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Jian Xu
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.,Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Li-Feng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
21
|
Peng A, Mao X, Zhong J, Fan S, Hu Y. Single-Cell Multi-Omics and Its Prospective Application in Cancer Biology. Proteomics 2020; 20:e1900271. [PMID: 32223079 DOI: 10.1002/pmic.201900271] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/29/2020] [Indexed: 01/24/2023]
Abstract
In recent years, the emergence of single-cell omics technologies, which can profile genomics, transcriptomics, epigenomics, and proteomics, has provided unprecedented insights into characteristics of cancer, enabling higher resolution and accuracy to decipher the cellular and molecular mechanisms relating to tumorigenesis, evolution, metastasis, and immune responses. Single-cell multi-omics technologies, which are developed based on the combination of multiple single-cell mono-omics technologies, can simultaneously analyze RNA expression, single nucleotide polymorphism, epigenetic modification, or protein abundance, enabling the in-depth understanding of gene expression regulatory mechanisms. In this review, the state-of-the-art single-cell multi-omics technologies are summarized and the prospects of their application in cancer biology are discussed.
Collapse
Affiliation(s)
- Anghui Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiawei Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shuxin Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510000, China
| |
Collapse
|
22
|
Tan JHL, Wollmann H, van Pelt AMM, Kaldis P, Messerschmidt DM. Infertility-Causing Haploinsufficiency Reveals TRIM28/KAP1 Requirement in Spermatogonia. Stem Cell Reports 2020; 14:818-827. [PMID: 32302554 PMCID: PMC7220855 DOI: 10.1016/j.stemcr.2020.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
Spermatogenesis relies on exquisite stem cell homeostasis, the carefully balanced self-renewal and differentiation of spermatogonial stem cells (SSCs). Disturbing this equilibrium will likely manifest through sub- or infertility, a global health issue with often idiopathic presentation. In this respect, disease phenotypes caused by haploinsufficiency of otherwise vital developmental genes are of particular interest. Here, we show that mice heterozygous for Trim28, an essential epigenetic regulator, suffer gradual testicular degeneration. Contrary to previous reports we detect Trim28 expression in spermatogonia, albeit at low levels. Further reduction through Trim28 heterozygosity increases the propensity of SSCs to differentiate at the cost of self-renewal. TRIM28/KAP1 haploinsufficiency causes testicular degeneration and infertility TRIM28/KAP1 is expressed in spermatogonia stem cell compartment Stem cell homeostasis in the testis is dependent on proper TRIM28/KAP1 levels
Collapse
Affiliation(s)
- Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Daniel M Messerschmidt
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore.
| |
Collapse
|
23
|
Xu X, Wang J, Wu L, Guo J, Song Y, Tian T, Wang W, Zhu Z, Yang C. Microfluidic Single-Cell Omics Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903905. [PMID: 31544338 DOI: 10.1002/smll.201903905] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Indexed: 05/27/2023]
Abstract
The commonly existing cellular heterogeneity plays a critical role in biological processes such as embryonic development, cell differentiation, and disease progress. Single-cell omics-based heterogeneous studies have great significance for identifying different cell populations, discovering new cell types, revealing informative cell features, and uncovering significant interrelationships between cells. Recently, microfluidics has evolved to be a powerful technology for single-cell omics analysis due to its merits of throughput, sensitivity, and accuracy. Herein, the recent advances of microfluidic single-cell omics analysis, including different microfluidic platform designs, lysis strategies, and omics analysis techniques, are reviewed. Representative applications of microfluidic single-cell omics analysis in complex biological studies are then summarized. Finally, a few perspectives on the future challenges and development trends of microfluidic-assisted single-cell omics analysis are discussed.
Collapse
Affiliation(s)
- Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Junxia Wang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingjing Guo
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tian Tian
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
24
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
25
|
Liang F, Lv K, Wang Y, Yuan Y, Lu L, Feng Q, Jing X, Wang H, Liu C, Rayner S, Ling S, Chen H, Wan Y, Zhou W, He L, Wu B, Qu L, Chen S, Xiong J, Li Y. Personalized Epigenome Remodeling Under Biochemical and Psychological Changes During Long-Term Isolation Environment. Front Physiol 2019; 10:932. [PMID: 31417412 PMCID: PMC6684777 DOI: 10.3389/fphys.2019.00932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
It has been reported that several aspects of human health could be disturbed during a long-term isolated environment (for instance, the Mars-500 mission), including psychiatric disorders, circadian disruption, temporal dynamics of gut microbiota, immune responses, and physical-activity-related neuromuscular performance. Nevertheless, the mechanisms underlying these disturbances and the interactions among different aspects of human adaptation to extreme environments remain to be elucidated. Epigenetic features, like DNA methylation, might be a linking mechanism that explains the involvement of environmental factors between the human genome and the outcome of health. We conducted an exploration of personalized longitudinal DNA methylation patterns of the peripheral whole blood cells, profiling six subjects across six sampling points in the Mars-500 mission. Specifically, we developed a Personalized Epigenetic-Phenotype Synchronization Analysis (PeSa) algorithm to explore glucose- and mood-state-synchronized DNA methylation sites, focusing on finding the dynamic associations between epigenetic patterns and phenotypes in each individual, and exploring the underling epigenetic connections between glucose and mood-state disturbance. Results showed that DMPs (differentially methylated-probes) were significantly enriched in pathways related to glucose metabolism (Type II diabetes mellitus pathway), mood state (Long-term depression) and circadian rhythm (Circadian entrainment pathway) during the mission. Furthermore, our data revealed individualized glucose-synchronized and mood-state-synchronized DNA methylation sites, and PTPRN2 was found to be associated with both glucose and mood state disturbances across all six subjects. Our findings suggest that personalized phenotype-synchronized epigenetic features could reflect the effects on the human body, including the disturbances of glucose and mood-states. The association analysis of DNA methylation and phenotypes, like the PeSa analysis, could provide new possibilities in understanding the intrinsic relationship between phenotypic changes of the human body adapting to long-term isolation environmental factors.
Collapse
Affiliation(s)
- Fengji Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Yue Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yanhong Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Liang Lu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qiang Feng
- Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Xiaolu Jing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Honghui Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Changning Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yumin Wan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wanlong Zhou
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Li He
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bin Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shanguang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianghui Xiong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,Lab of Epigenetics and Health Prediction, SPACEnter Space Science and Technology Institute, Shenzhen, China
| |
Collapse
|
26
|
Seah MKY, Wang Y, Goy PA, Loh HM, Peh WJ, Low DHP, Han BY, Wong E, Leong EL, Wolf G, Mzoughi S, Wollmann H, Macfarlan TS, Guccione E, Messerschmidt DM. The KRAB-zinc-finger protein ZFP708 mediates epigenetic repression at RMER19B retrotransposons. Development 2019; 146:dev.170266. [PMID: 30846446 PMCID: PMC6803371 DOI: 10.1242/dev.170266] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
Global epigenetic reprogramming is vital to purge germ cell-specific epigenetic features to establish the totipotent state of the embryo. This process transpires to be carefully regulated and is not an undirected, radical erasure of parental epigenomes. The TRIM28 complex has been shown to be crucial in embryonic epigenetic reprogramming by regionally opposing DNA demethylation to preserve vital parental information to be inherited from germline to soma. Yet the DNA-binding factors guiding this complex to specific targets are largely unknown. Here, we uncover and characterize a novel, maternally expressed, TRIM28-interacting KRAB zinc-finger protein: ZFP708. It recruits the repressive TRIM28 complex to RMER19B retrotransposons to evoke regional heterochromatin formation. ZFP708 binding to these hitherto unknown TRIM28 targets is DNA methylation and H3K9me3 independent. ZFP708 mutant mice are viable and fertile, yet embryos fail to inherit and maintain DNA methylation at ZFP708 target sites. This can result in activation of RMER19B-adjacent genes, while ectopic expression of ZFP708 results in transcriptional repression. Finally, we describe the evolutionary conservation of ZFP708 in mice and rats, which is linked to the conserved presence of the targeted RMER19B retrotransposons in these species. Summary: Analysis of the function and targets of a maternal KRAB-zinc-finger protein, ZFP708, found to specifically mediate maintenance of DNA methylation at a subset of LTR retrotransposons during embryonic epigenetic reprogramming.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Developmental Epigenetics and Disease Group, IMCB, A*STAR, 138673, Singapore
| | - Yaju Wang
- Developmental Epigenetics and Disease Group, IMCB, A*STAR, 138673, Singapore
| | - Pierre-Alexis Goy
- Methyltransferases in Development and Disease Group, IMCB, A*STAR, 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore
| | - Hui Mun Loh
- Developmental Epigenetics and Disease Group, IMCB, A*STAR, 138673, Singapore
| | - Wen Jun Peh
- Developmental Epigenetics and Disease Group, IMCB, A*STAR, 138673, Singapore
| | - Diana H P Low
- Methyltransferases in Development and Disease Group, IMCB, A*STAR, 138673, Singapore
| | - Brenda Y Han
- Methyltransferases in Development and Disease Group, IMCB, A*STAR, 138673, Singapore
| | - Esther Wong
- KOre - Knock Out resource, IMB, A*STAR, 138648, Singapore
| | - Ei Leen Leong
- KOre - Knock Out resource, IMB, A*STAR, 138648, Singapore
| | - Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Slim Mzoughi
- Methyltransferases in Development and Disease Group, IMCB, A*STAR, 138673, Singapore
| | - Heike Wollmann
- NGS Unit of DNA Sequencing Facility, IMCB, A*STAR, 138673, Singapore
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, IMCB, A*STAR, 138673, Singapore
| | | |
Collapse
|
27
|
Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin SH, Yuan GC, Chen M, Guo G. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 2019; 172:1091-1107.e17. [PMID: 29474909 DOI: 10.1016/j.cell.2018.02.001] [Citation(s) in RCA: 912] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/15/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies are poised to reshape the current cell-type classification system. However, a transcriptome-based single-cell atlas has not been achieved for complex mammalian systems. Here, we developed Microwell-seq, a high-throughput and low-cost scRNA-seq platform using simple, inexpensive devices. Using Microwell-seq, we analyzed more than 400,000 single cells covering all of the major mouse organs and constructed a basic scheme for a mouse cell atlas (MCA). We reveal a single-cell hierarchy for many tissues that have not been well characterized previously. We built a web-based "single-cell MCA analysis" pipeline that accurately defines cell types based on single-cell digital expression. Our study demonstrates the wide applicability of the Microwell-seq technology and MCA resource.
Collapse
Affiliation(s)
- Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China.
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Yincong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310003, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Assieh Saadatpour
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Daosheng Huang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yang Xu
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wentao Huang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengmeng Jiang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Jiang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Jie Mao
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yao Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenyu Lu
- Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yibin Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tiefeng Li
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - He Huang
- Institute of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Stuart H Orkin
- Division of Pediatric Hematology/Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310003, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Wang N, Zheng J, Chen Z, Liu Y, Dura B, Kwak M, Xavier-Ferrucio J, Lu YC, Zhang M, Roden C, Cheng J, Krause DS, Ding Y, Fan R, Lu J. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat Commun 2019; 10:95. [PMID: 30626865 PMCID: PMC6327095 DOI: 10.1038/s41467-018-07981-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/26/2018] [Indexed: 12/31/2022] Open
Abstract
Measuring multiple omics profiles from the same single cell opens up the opportunity to decode molecular regulation that underlies intercellular heterogeneity in development and disease. Here, we present co-sequencing of microRNAs and mRNAs in the same single cell using a half-cell genomics approach. This method demonstrates good robustness (~95% success rate) and reproducibility (R2 = 0.93 for both microRNAs and mRNAs), yielding paired half-cell microRNA and mRNA profiles, which we can independently validate. By linking the level of microRNAs to the expression of predicted target mRNAs across 19 single cells that are phenotypically identical, we observe that the predicted targets are significantly anti-correlated with the variation of abundantly expressed microRNAs. This suggests that microRNA expression variability alone may lead to non-genetic cell-to-cell heterogeneity. Genome-scale analysis of paired microRNA-mRNA co-profiles further allows us to derive and validate regulatory relationships of cellular pathways controlling microRNA expression and intercellular variability.
Collapse
Affiliation(s)
- Nayi Wang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA
| | - Ji Zheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA
- Department of Urology, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA
| | - Yang Liu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA
| | - Burak Dura
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Minsuk Kwak
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Juliana Xavier-Ferrucio
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Miaomiao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Urology, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
- School of Medicine, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
| | - Christine Roden
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA
| | - Jijun Cheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ye Ding
- Wadworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA.
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT, 06520, USA.
- Yale Center for RNA Science and Medicine, New Haven, CT, 06520, USA.
- Yale Cooperative Center of Excellence in Hematology, New Haven, CT, 06520, USA.
| |
Collapse
|
29
|
Liu Z, Wang Z, Jia E, Ouyang T, Pan M, Lu J, Ge Q, Bai Y. Analysis of genome-wide in cell free DNA methylation: progress and prospect. Analyst 2019; 144:5912-5922. [DOI: 10.1039/c9an00935c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we focus on the detection methods of cfDNA methylation based on NGS and the latest progress.
Collapse
Affiliation(s)
- Zhiyu Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Zexin Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Tinglan Ouyang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Min Pan
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Jiafeng Lu
- Center of Reproduction and Genetics
- Affiliated Suzhou Hospital of Nanjing Medical University
- Suzhou Municipal Hospital
- Suzhou 215002
- China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
30
|
Plusa B, Hadjantonakis AK. (De)constructing the blastocyst: Lessons in self-organization from the mouse. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.coisb.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Campbell JM, Balhoff JB, Landwehr GM, Rahman SM, Vaithiyanathan M, Melvin AT. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research. Int J Mol Sci 2018; 19:E2731. [PMID: 30213089 PMCID: PMC6164778 DOI: 10.3390/ijms19092731] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in microfluidic devices, nanoparticle chemistry, fluorescent microscopy, and biochemical techniques such as genetic identification and antibody capture have provided easier and more sensitive platforms for detecting and diagnosing diseases as well as providing new fundamental insight into disease progression. These advancements have led to the development of new technology and assays capable of easy and early detection of pathogenicity as well as the enhancement of the drug discovery and development pipeline. While some studies have focused on treatment, many of these technologies have found initial success in laboratories as a precursor for clinical applications. This review highlights the current and future progress of microfluidic techniques geared toward the timely and inexpensive diagnosis of disease including technologies aimed at high-throughput single cell analysis for drug development. It also summarizes novel microfluidic approaches to characterize fundamental cellular behavior and heterogeneity.
Collapse
Affiliation(s)
- Joshua M Campbell
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Joseph B Balhoff
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Grant M Landwehr
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Sharif M Rahman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
32
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
SanMiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 2018; 99:252-262. [PMID: 29462489 PMCID: PMC6044325 DOI: 10.1093/biolre/ioy036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
DNA methylation is an essential epigenetic mark crucial for normal mammalian development. This modification controls the expression of a unique class of genes, designated as imprinted, which are expressed monoallelically and in a parent-of-origin-specific manner. Proper parental allele-specific DNA methylation at imprinting control regions (ICRs) is necessary for appropriate imprinting. Processes that deregulate DNA methylation of imprinted loci cause disease in humans. DNA methylation patterns dramatically change during mammalian development: first, the majority of the genome, with the exception of ICRs, is demethylated after fertilization, and subsequently undergoes genome-wide de novo DNA methylation. Secondly, after primordial germ cells are specified in the embryo, another wave of demethylation occurs, with ICR demethylation occurring late in the process. Lastly, ICRs reacquire DNA methylation imprints in developing germ cells. We describe the past discoveries and current literature defining these crucial dynamics in relation to imprinted genes and the rest of the genome.
Collapse
Affiliation(s)
- Jennifer M SanMiguel
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Hon CC, Shin JW, Carninci P, Stubbington MJT. The Human Cell Atlas: Technical approaches and challenges. Brief Funct Genomics 2018; 17:283-294. [PMID: 29092000 PMCID: PMC6063304 DOI: 10.1093/bfgp/elx029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Human Cell Atlas is a large, international consortium that aims to identify and describe every cell type in the human body. The comprehensive cellular maps that arise from this ambitious effort have the potential to transform many aspects of fundamental biology and clinical practice. Here, we discuss the technical approaches that could be used today to generate such a resource and also the technical challenges that will be encountered.
Collapse
Affiliation(s)
- Chung-Chau Hon
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Jay W Shin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
35
|
Abstract
Single-cell multiomics technologies typically measure multiple types of molecule from the same individual cell, enabling more profound biological insight than can be inferred by analyzing each molecular layer from separate cells. These single-cell multiomics technologies can reveal cellular heterogeneity at multiple molecular layers within a population of cells and reveal how this variation is coupled or uncoupled between the captured omic layers. The data sets generated by these techniques have the potential to enable a deeper understanding of the key biological processes and mechanisms driving cellular heterogeneity and how they are linked with normal development and aging as well as disease etiology. This review details both established and novel single-cell mono- and multiomics technologies and considers their limitations, applications, and likely future developments.
Collapse
Affiliation(s)
- Lia Chappell
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom; , ,
| | | | - Thierry Voet
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom; , , .,Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| |
Collapse
|
36
|
Karemaker ID, Vermeulen M. Single-Cell DNA Methylation Profiling: Technologies and Biological Applications. Trends Biotechnol 2018; 36:952-965. [PMID: 29724495 DOI: 10.1016/j.tibtech.2018.04.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
DNA methylation is an epigenetic modification that plays an important role in gene expression regulation, development, and disease. Recent technological innovations have spurred the development of methods that enable us to study the occurrence and biology of this mark at the single-cell level. Apart from answering fundamental biological questions about heterogeneous systems or rare cell types, low-input methods also bring clinical applications within reach. Ultimately, integrating these data with other single-cell data sets will allow deciphering multiple layers of gene expression regulation within each individual cell. Here, we review the approaches that have been developed to facilitate single-cell DNA methylation profiling, their biological applications, and how these will further our understanding of the biology of DNA methylation.
Collapse
Affiliation(s)
- Ino D Karemaker
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Coluccio A, Ecco G, Duc J, Offner S, Turelli P, Trono D. Individual retrotransposon integrants are differentially controlled by KZFP/KAP1-dependent histone methylation, DNA methylation and TET-mediated hydroxymethylation in naïve embryonic stem cells. Epigenetics Chromatin 2018; 11:7. [PMID: 29482634 PMCID: PMC6389204 DOI: 10.1186/s13072-018-0177-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/16/2018] [Indexed: 01/18/2023] Open
Abstract
Background The KZFP/KAP1 (KRAB zinc finger proteins/KRAB-associated protein 1) system plays a central role in repressing transposable elements (TEs) and maintaining parent-of-origin DNA methylation at imprinting control regions (ICRs) during the wave of genome-wide reprogramming that precedes implantation. In naïve murine embryonic stem cells (mESCs), the genome is maintained highly hypomethylated by a combination of TET-mediated active demethylation and lack of de novo methylation, yet KAP1 is tethered by sequence-specific KZFPs to ICRs and TEs where it recruits histone and DNA methyltransferases to impose heterochromatin formation and DNA methylation. Results Here, upon removing either KAP1 or the cognate KZFP, we observed rapid TET2-dependent accumulation of 5hmC at both ICRs and TEs. In the absence of the KZFP/KAP1 complex, ICRs lost heterochromatic histone marks and underwent both active and passive DNA demethylation. For KAP1-bound TEs, 5mC hydroxylation correlated with transcriptional reactivation. Using RNA-seq, we further compared the expression profiles of TEs upon Kap1 removal in wild-type, Dnmt and Tet triple knockout mESCs. While we found that KAP1 represents the main effector of TEs repression in all three settings, we could additionally identify specific groups of TEs further controlled by DNA methylation. Furthermore, we observed that in the absence of TET proteins, activation upon Kap1 depletion was blunted for some TE integrants and increased for others. Conclusions Our results indicate that the KZFP/KAP1 complex maintains heterochromatin and DNA methylation at ICRs and TEs in naïve embryonic stem cells partly by protecting these loci from TET-mediated demethylation. Our study further unveils an unsuspected level of complexity in the transcriptional control of the endovirome by demonstrating often integrant-specific differential influences of histone-based heterochromatin modifications, DNA methylation and 5mC oxidation in regulating TEs expression. Electronic supplementary material The online version of this article (10.1186/s13072-018-0177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Coluccio
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Gabriela Ecco
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
38
|
Delhalle S, Bode SFN, Balling R, Ollert M, He FQ. A roadmap towards personalized immunology. NPJ Syst Biol Appl 2018; 4:9. [PMID: 29423275 PMCID: PMC5802799 DOI: 10.1038/s41540-017-0045-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022] Open
Abstract
Big data generation and computational processing will enable medicine to evolve from a "one-size-fits-all" approach to precise patient stratification and treatment. Significant achievements using "Omics" data have been made especially in personalized oncology. However, immune cells relative to tumor cells show a much higher degree of complexity in heterogeneity, dynamics, memory-capability, plasticity and "social" interactions. There is still a long way ahead on translating our capability to identify potentially targetable personalized biomarkers into effective personalized therapy in immune-centralized diseases. Here, we discuss the recent advances and successful applications in "Omics" data utilization and network analysis on patients' samples of clinical trials and studies, as well as the major challenges and strategies towards personalized stratification and treatment for infectious or non-communicable inflammatory diseases such as autoimmune diseases or allergies. We provide a roadmap and highlight experimental, clinical, computational analysis, data management, ethical and regulatory issues to accelerate the implementation of personalized immunology.
Collapse
Affiliation(s)
- Sylvie Delhalle
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| | - Sebastian F N Bode
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg.,2Center for Pediatrics-Department of General Pediatrics, Adolescent Medicine, and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany
| | - Rudi Balling
- 3Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Markus Ollert
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg.,4Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, 5000 Odense C, Denmark
| | - Feng Q He
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
39
|
Elli FM, Bordogna P, Arosio M, Spada A, Mantovani G. Mosaicism for GNAS methylation defects associated with pseudohypoparathyroidism type 1B arose in early post-zygotic phases. Clin Epigenetics 2018; 10:16. [PMID: 29445425 PMCID: PMC5801752 DOI: 10.1186/s13148-018-0449-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background Pseudohypoparathyroidism type 1B (PHP1B; MIM#603233) is a rare imprinting disorder (ID), associated with the GNAS locus, characterized by parathyroid hormone (PTH) resistance in the absence of other endocrine or physical abnormalities. Sporadic PHP1B cases, with no known underlying primary genetic lesions, could represent true stochastic errors in early embryonic maintenance of methylation. Previous data confirmed the existence of different degrees of methylation defects associated with PHP1B and suggested the presence of mosaicism, a phenomenon already described in the context of other IDs. Results With respect to mosaic conditions, the study of multiple tissues is a necessary approach; thus, we investigated somatic cell lines (peripheral blood and buccal epithelium and cells from the urine sediment) descending from different germ layers from 19 PHP patients (11 spor-PHP1B, 4 GNAS mutated PHP1A, and 4 PHP with no GNAS (epi)genetic defects) and 5 healthy controls. We identified 11 patients with epigenetic defects, further subdivided in groups with complete or partial methylation defects. The recurrence of specific patterns of partial methylation defects limited to specific CpGs was confirmed by checking methylation profiles of spor-PHP1B patients diagnosed in our lab (n = 56). Underlying primary genetic defects, such as uniparental disomy or deletion, potentially causative for the detected partial methylation were excluded in all samples. Conclusions Our data showed no differences of methylation levels between organs and tissues from the same patient, so we concluded that the epimutation occurred in early post-zygotic phases and that the partial defects were mosaics. The number of patients with no detectable (epi)genetic GNAS defects was too small to exclude epimutations occurring in later post-zygotic phases, affecting only selected tissues different from blood, thus leading to underdiagnosis during routine molecular diagnosis. Finally, we found no correlation between methylation ratios, representing the proportion of epimutated cells, and the clinical presentation, further confirming the hypothesis of a threshold effect of the GNAS loss of imprinting leading to an "all-or-none" phenotype.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
| | - Paolo Bordogna
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Spada
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
40
|
Craven L, Tang MX, Gorman GS, De Sutter P, Heindryckx B. Novel reproductive technologies to prevent mitochondrial disease. Hum Reprod Update 2018. [PMID: 28651360 DOI: 10.1093/humupd/dmx018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of nuclear transfer (NT) has been proposed as a novel reproductive treatment to overcome the transmission of maternally-inherited mitochondrial DNA (mtDNA) mutations. Pathogenic mutations in mtDNA can cause a wide-spectrum of life-limiting disorders, collectively known as mtDNA disease, for which there are currently few effective treatments and no known cures. The many unique features of mtDNA make genetic counselling challenging for women harbouring pathogenic mtDNA mutations but reproductive options that involve medical intervention are available that will minimize the risk of mtDNA disease in their offspring. This includes PGD, which is currently offered as a clinical treatment but will not be suitable for all. The potential for NT to reduce transmission of mtDNA mutations has been demonstrated in both animal and human models, and has recently been clinically applied not only to prevent mtDNA disease but also for some infertility cases. In this review, we will interrogate the different NT techniques, including a discussion on the available safety and efficacy data of these technologies for mtDNA disease prevention. In addition, we appraise the evidence for the translational use of NT technologies in infertility. OBJECTIVE AND RATIONALE We propose to review the current scientific evidence regarding the clinical use of NT to prevent mitochondrial disease. SEARCH METHODS The scientific literature was investigated by searching PubMed database until Jan 2017. Relevant documents from Human Fertilisation and Embryology Authority as well as reports from both the scientific and popular media were also implemented. The above searches were based on the following key words: 'mitochondria', 'mitochondrial DNA'; 'mitochondrial DNA disease', 'fertility'; 'preimplantation genetic diagnosis', 'nuclear transfer', 'mitochondrial replacement' and 'mitochondrial donation'. OUTCOMES While NT techniques have been shown to effectively reduce the transmission of heteroplasmic mtDNA variants in animal models, and increasing evidence supports their use to prevent the transmission of human mtDNA disease, the need for robust, long-term evaluation is still warranted. Moreover, prenatal screening would still be strongly advocated in combination with the use of these IVF-based technologies. Scientific evidence to support the use of NT and other novel reproductive techniques for infertility is currently lacking. WIDER IMPLICATIONS It is mandatory that any new ART treatments are first adequately assessed in both animal and human models before the cautious implementation of these new therapeutic approaches is clinically undertaken. There is growing evidence to suggest that the translation of these innovative technologies into clinical practice should be cautiously adopted only in highly selected patients. Indeed, given the limited safety and efficacy data, close monitoring of any offspring remains paramount.
Collapse
Affiliation(s)
- Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Mao-Xing Tang
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
41
|
Takahashi N, Gray D, Strogantsev R, Noon A, Delahaye C, Skarnes WC, Tate PH, Ferguson-Smith AC. ZFP57 and the Targeted Maintenance of Postfertilization Genomic Imprints. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 80:177-87. [PMID: 27325708 DOI: 10.1101/sqb.2015.80.027466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic modifications play an important role in modulating genome function. In mammals, inappropriate epigenetic states can cause embryonic lethality and various acquired and inherited diseases; hence, it is important to understand how such states are formed and maintained in particular genomic contexts. Genomic imprinting is a process in which epigenetic states provide a sustained memory of parental origin and cause gene expression/repression from only one of the two parental chromosomes. Genomic imprinting is therefore a valuable model to decipher the principles and processes associated with the targeting and maintenance of epigenetic states in general. Krüppel-associated box zinc finger proteins (KRAB-ZFPs) are proteins that have the potential to mediate this. ZFP57, one of the best characterized proteins in this family, has been shown to target and maintain epigenetic states at imprinting control regions after fertilization. Its role in imprinting through the use of ZFP57 mutants in mouse and the wider implications of KRAB-ZFPs for the targeted maintenance of epigenetic states are discussed here.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Dionne Gray
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | | - Angela Noon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Celia Delahaye
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Peri H Tate
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
42
|
Single Cell Genetics and Epigenetics in Early Embryo: From Oocyte to Blastocyst. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:103-117. [DOI: 10.1007/978-981-13-0502-3_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundberg E, Lundeberg J, Majumder P, Marioni JC, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe'er D, Phillipakis A, Ponting CP, Quake S, Reik W, Rozenblatt-Rosen O, Sanes J, Satija R, Schumacher TN, Shalek A, Shapiro E, Sharma P, Shin JW, Stegle O, Stratton M, Stubbington MJT, Theis FJ, Uhlen M, van Oudenaarden A, Wagner A, Watt F, Weissman J, Wold B, Xavier R, Yosef N. The Human Cell Atlas. eLife 2017; 6:e27041. [PMID: 29206104 DOI: 10.1101/121202] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/30/2017] [Indexed: 05/28/2023] Open
Abstract
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Collapse
Affiliation(s)
- Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Ewan Birney
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Bernd Bodenmiller
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Piero Carninci
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Hans Clevers
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ian Dunham
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Andrew Farmer
- Takara Bio United States, Inc., Mountain View, United States
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, United States
- Massachusetts General Hospital Cancer Center, Boston, United States
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Seung Kim
- Departments of Developmental Biology and of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, United States
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Genetics, Stanford University, Stanford, United States
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Musa Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martijn Nawijn
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mihai Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Garry Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, United States
| | | | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Quake
- Department of Applied Physics and Department of Bioengineering, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Wolf Reik
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Joshua Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Rahul Satija
- Department of Biology, New York University, New York, United States
- New York Genome Center, New York University, New York, United States
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alex Shalek
- Broad Institute of MIT and Harvard, Cambridge, United States
- Institute for Medical Engineering & Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Ehud Shapiro
- Department of Computer Science and Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer Center, University of Texas, Houston, United States
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Oliver Stegle
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Michael Stratton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | - Fabian J Theis
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Matthias Uhlen
- Science for Life Laboratory and Department of Proteomics, KTH Royal Institute of Technology, Stockholm, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | | | - Allon Wagner
- Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Fiona Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Jonathan Weissman
- Howard Hughes Medical Institute, Chevy Chase, United States
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, United States
| | - Barbara Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, United States
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, United States
| | - Nir Yosef
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
- Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
44
|
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundberg E, Lundeberg J, Majumder P, Marioni JC, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe'er D, Phillipakis A, Ponting CP, Quake S, Reik W, Rozenblatt-Rosen O, Sanes J, Satija R, Schumacher TN, Shalek A, Shapiro E, Sharma P, Shin JW, Stegle O, Stratton M, Stubbington MJT, Theis FJ, Uhlen M, van Oudenaarden A, Wagner A, Watt F, Weissman J, Wold B, Xavier R, Yosef N. The Human Cell Atlas. eLife 2017; 6:e27041. [PMID: 29206104 PMCID: PMC5762154 DOI: 10.7554/elife.27041] [Citation(s) in RCA: 1396] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022] Open
Abstract
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Collapse
Affiliation(s)
- Aviv Regev
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
| | - Eric S Lander
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ido Amit
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUnited States
| | - Ewan Birney
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - Bernd Bodenmiller
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Institute of Molecular Life SciencesUniversity of ZürichZürichSwitzerland
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Piero Carninci
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular BiologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Hans Clevers
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center UtrechtUtrechtThe Netherlands
| | - Bart Deplancke
- Institute of Bioengineering, School of Life SciencesSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland
| | - Ian Dunham
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - James Eberwine
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuantHeidelberg UniversityHeidelbergGermany
| | - Wolfgang Enard
- Department of Biology IILudwig Maximilian University MunichMartinsriedGermany
| | - Andrew Farmer
- Takara Bio United States, Inc.Mountain ViewUnited States
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Berthold Göttgens
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Nir Hacohen
- Broad Institute of MIT and HarvardCambridgeUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Muzlifah Haniffa
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Seung Kim
- Departments of Developmental Biology and of MedicineStanford University School of MedicineStanfordUnited States
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Emma Lundberg
- Science for Life Laboratory, School of BiotechnologyKTH Royal Institute of TechnologyStockholmSweden
- Department of GeneticsStanford UniversityStanfordUnited States
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologyStockholmSweden
| | | | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Miriam Merad
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Musa Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Martijn Nawijn
- Department of Pathology and Medical Biology, GRIAC Research InstituteUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Mihai Netea
- Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Garry Nolan
- Department of Microbiology and ImmunologyStanford UniversityStanfordUnited States
| | - Dana Pe'er
- Computational and Systems Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | | | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Stephen Quake
- Department of Applied Physics and Department of BioengineeringStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Wolf Reik
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Joshua Sanes
- Center for Brain Science and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Rahul Satija
- Department of BiologyNew York UniversityNew YorkUnited States
- New York Genome CenterNew York UniversityNew YorkUnited States
| | - Ton N Schumacher
- Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alex Shalek
- Broad Institute of MIT and HarvardCambridgeUnited States
- Institute for Medical Engineering & Science (IMES) and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | - Ehud Shapiro
- Department of Computer Science and Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Jay W Shin
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Oliver Stegle
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - Michael Stratton
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | - Fabian J Theis
- Institute of Computational BiologyGerman Research Center for Environmental Health, Helmholtz Center MunichNeuherbergGermany
- Department of MathematicsTechnical University of MunichGarchingGermany
| | - Matthias Uhlen
- Science for Life Laboratory and Department of ProteomicsKTH Royal Institute of TechnologyStockholmSweden
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityLyngbyDenmark
| | | | - Allon Wagner
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Fiona Watt
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
| | - Jonathan Weissman
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Cellular & Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biomedical ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Center for RNA Systems BiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Barbara Wold
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Ramnik Xavier
- Broad Institute of MIT and HarvardCambridgeUnited States
- Center for Computational and Integrative BiologyMassachusetts General HospitalBostonUnited States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel DiseaseMassachusetts General HospitalBostonUnited States
- Center for Microbiome Informatics and TherapeuticsMassachusetts Institute of TechnologyCambridgeUnited States
| | - Nir Yosef
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Human Cell Atlas Meeting Participants
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
- Division of Immunology, Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUnited States
- Institute of Molecular Life SciencesUniversity of ZürichZürichSwitzerland
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular BiologyUniversity of CambridgeCambridgeUnited Kingdom
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center UtrechtUtrechtThe Netherlands
- Institute of Bioengineering, School of Life SciencesSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Division of Theoretical Bioinformatics (B080)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuantHeidelberg UniversityHeidelbergGermany
- Department of Biology IILudwig Maximilian University MunichMartinsriedGermany
- Takara Bio United States, Inc.Mountain ViewUnited States
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Massachusetts General Hospital Cancer CenterBostonUnited States
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Departments of Developmental Biology and of MedicineStanford University School of MedicineStanfordUnited States
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Allen Institute for Brain ScienceSeattleUnited States
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Science for Life Laboratory, School of BiotechnologyKTH Royal Institute of TechnologyStockholmSweden
- Department of GeneticsStanford UniversityStanfordUnited States
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologyStockholmSweden
- National Institute of Biomedical GenomicsKalyaniIndia
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUnited States
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Department of Pathology and Medical Biology, GRIAC Research InstituteUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Microbiology and ImmunologyStanford UniversityStanfordUnited States
- Computational and Systems Biology ProgramSloan Kettering InstituteNew YorkUnited States
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
- Department of Applied Physics and Department of BioengineeringStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUnited Kingdom
- Center for Brain Science and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
- New York Genome CenterNew York UniversityNew YorkUnited States
- Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Institute for Medical Engineering & Science (IMES) and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Computer Science and Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
- Institute of Computational BiologyGerman Research Center for Environmental Health, Helmholtz Center MunichNeuherbergGermany
- Department of MathematicsTechnical University of MunichGarchingGermany
- Science for Life Laboratory and Department of ProteomicsKTH Royal Institute of TechnologyStockholmSweden
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityLyngbyDenmark
- Hubrecht Institute and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
- Department of Cellular & Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biomedical ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Center for RNA Systems BiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
- Center for Computational and Integrative BiologyMassachusetts General HospitalBostonUnited States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel DiseaseMassachusetts General HospitalBostonUnited States
- Center for Microbiome Informatics and TherapeuticsMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
45
|
Seah MKY, Messerschmidt DM. From Germline to Soma: Epigenetic Dynamics in the Mouse Preimplantation Embryo. Curr Top Dev Biol 2017; 128:203-235. [PMID: 29477164 DOI: 10.1016/bs.ctdb.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When reflecting about cell fate commitment we think of differentiation. Be it during embryonic development or in an adult stem cell niche, where cells of a higher potency specialize and cell fate decisions are taken. Under normal circumstances this process is definitive and irreversible. Cell fate commitment is achieved by the establishment of cell-type-specific transcriptional programmes, which in turn are guided, reinforced, and ultimately locked-in by epigenetic mechanisms. Yet, this plunging drift in cellular potency linked to epigenetically restricted access to genomic information is problematic for reproduction. Particularly in mammals where germ cells are not set aside early on like in other species. Instead they are rederived from the embryonic ectoderm, a differentiating embryonic tissue with somatic epigenetic features. The epigenomes of germ cell precursors are efficiently reprogrammed against the differentiation trend, only to specialize once more into highly differentiated, sex-specific gametes: oocyte and sperm. Their differentiation state is reflected in their specialized epigenomes, and erasure of these features is required to enable the acquisition of the totipotent cell fate to kick start embryonic development of the next generation. Recent technological advances have enabled unprecedented insights into the epigenetic dynamics, first of DNA methylation and then of histone modifications, greatly expanding the historically technically limited understanding of this processes. In this chapter we will focus on the details of embryonic epigenetic reprogramming, a cell fate determination process against the tide to a higher potency.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
46
|
Abstract
Age-related alterations in the human blood system occur in B cells, T cells, cells of the innate system, as well as hematopoietic stem and progenitor cells (HSPCs). Interestingly, age-related, reduced genetic diversity can be identified at the stem cell level and also independently in B cells and T cells. This reduced diversity is most probably related to somatic mutations or to changes in the microenvironmental niche. Either process can select for specific clones or cause repeated evolutionary bottlenecks. This review discusses the age-related clonal expansions in the human HSPC pool, which was termed in the past age-related clonal hematopoiesis (ARCH). ARCH is defined as the gradual, clonal expansion of HSPCs carrying specific, disruptive, and recurrent genetic variants, in individuals without clear diagnosis of hematological malignancies. ARCH is associated not just with chronological aging but also with several other, age-related pathological conditions, including inflammation, vascular diseases, cancer mortality, and high risk for hematological malignancies. Although it remains unclear whether ARCH is a marker of aging or plays an active role in these various pathophysiologies, it is suggested here that treating or even preventing ARCH may prove to be beneficial for human health. This review also describes a decision tree for the diagnosis and follow-up for ARCH in a research setting.
Collapse
|
47
|
Ilic D, Ogilvie C, Noli L, Kolundzic N, Khalaf Y. Human embryos from induced pluripotent stem cell-derived gametes: ethical and quality considerations. Regen Med 2017; 12:681-691. [PMID: 28976837 DOI: 10.2217/rme-2017-0052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protocols for successful differentiation of male and female gametes from induced pluripotent stem cells have been published. Although culture of precursor cells in a natural microenvironment remains necessary to achieve terminal differentiation, the creation of human preimplantation embryos from induced pluripotent stem cell-derived gametes is technically feasible. Such embryos could provide a solution to the scarcity of human cleavage-stage embryos donated for research. Here, we discuss current technology, major research-related ethical concerns and propose the norms that would assure the quality and reliability of such embryos.
Collapse
Affiliation(s)
- Dusko Ilic
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London and Assisted Conception Unit, Guy's Hospital, London SE1 9RT, UK
| | | | - Laila Noli
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London and Assisted Conception Unit, Guy's Hospital, London SE1 9RT, UK
| | - Nikola Kolundzic
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London and Assisted Conception Unit, Guy's Hospital, London SE1 9RT, UK
| | - Yacoub Khalaf
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London and Assisted Conception Unit, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
48
|
Wei Z, Shu C, Zhang C, Huang J, Cai H. A short review of variants calling for single-cell-sequencing data with applications. Int J Biochem Cell Biol 2017; 92:218-226. [PMID: 28951246 DOI: 10.1016/j.biocel.2017.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 11/16/2022]
Abstract
The field of single-cell sequencing is fleetly expanding, and many techniques have been developed in the past decade. With this technology, biologists can study not only the heterogeneity between two adjacent cells in the same tissue or organ, but also the evolutionary relationships and degenerative processes in a single cell. Calling variants is the main purpose in analyzing single cell sequencing (SCS) data. Currently, some popular methods used for bulk-cell-sequencing data analysis are tailored directly to be applied in dealing with SCS data. However, SCS requires an extra step of genome amplification to accumulate enough quantity for satisfying sequencing needs. The amplification yields large biases and thus raises challenge for using the bulk-cell-sequencing methods. In order to provide guidance for the development of specialized analyzed methods as well as using currently developed tools for SNS, this paper aims to bridge the gap. In this paper, we firstly introduced two popular genome amplification methods and compared their capabilities. Then we introduced a few popular models for calling single-nucleotide polymorphisms and copy-number variations. Finally, break-through applications of SNS were summarized to demonstrate its potential in researching cell evolution.
Collapse
Affiliation(s)
- Zhuohui Wei
- School of Computer Science & Engineering, South China University of Technology, Guangzhou, China
| | - Chang Shu
- School of Computer Science & Engineering, South China University of Technology, Guangzhou, China
| | - Changsheng Zhang
- School of Computer Science & Engineering, South China University of Technology, Guangzhou, China
| | - Jingying Huang
- School of Computer Science & Engineering, South China University of Technology, Guangzhou, China
| | - Hongmin Cai
- School of Computer Science & Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
49
|
Luo J, Zhang Y, Guo Y, Tang H, Wei H, Liu S, Wang X, Wang L, Zhou P. TRIM28 regulates Igf2-H19 and Dlk1-Gtl2 imprinting by distinct mechanisms during sheep fibroblast proliferation. Gene 2017; 637:152-160. [PMID: 28947302 DOI: 10.1016/j.gene.2017.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
Abstract
DNA methylation is an essential epigenetic modification involved in regulating gene expression and maintaining epigenetic information across generations. However, how these marks are recognized and interpreted to activate or repress imprinted genes is not fully understood. Preliminary evidence describes the transcriptional repressor TRIM28 as a key regulator of imprinted gene expression during and after early genome-wide reprogramming. Aberrant expression of imprinted genes maybe one possible cause of incomplete epigenetic reprogramming and low efficiency in somatic cell nuclear transfer. Here, we perform a series of experiments to determine whether knockdown of Trim28 alters imprinted gene expression and DMR methylation in sheep embryonic fibroblast (SEF) cells. siRNA-mediated Trim28 silencing in SEF cells resulted in significantly decreased expression of Gtl2 to 30% and increased expression of Dlk1 (~1.7-fold). Moreover, knocking down Trim28 induced DNA methylation at the IG-DMR and the Gtl2 promoter was disrupted. Here, we uncover an important role for Trim28 in the maintenance of DNA methylation at IG-DMR during replication-dependent dilution of methylated cytosine during cellular proliferation. Unlike Dlk1-Gtl2 however, knocking down Trim28 does not affect DMR methylation in the Igf2-H19 gene cluster, yet results in increased expression of Igf2 and H19. Interestingly, Peg3 expression decreased by 60% in Trim28 knockdown cells. PEG3 as a transcriptional repressor to the H19-ICR that interacts with the co-repressor protein TRIM28 through KRAB-A. Trim28 therefore appears to control the Igf2-H19 imprinted cluster indirectly via PEG3, which is distinct from its classical role in preserving DNA methylation during DNA replication. Our results therefore indicate that Trim28 regulates imprinted gene expression through at least two distinct mechanisms during cells proliferation.
Collapse
Affiliation(s)
- Jian Luo
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Yiyuan Zhang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Yanhua Guo
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Hong Tang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Haixia Wei
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shouren Liu
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xinhua Wang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Limin Wang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China; Department of Animal Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269, USA
| | - Ping Zhou
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
50
|
Han L, Wu HJ, Zhu H, Kim KY, Marjani SL, Riester M, Euskirchen G, Zi X, Yang J, Han J, Snyder M, Park IH, Irizarry R, Weissman SM, Michor F, Fan R, Pan X. Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res 2017; 45:e77. [PMID: 28126923 PMCID: PMC5605247 DOI: 10.1093/nar/gkx026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/20/2017] [Indexed: 01/03/2023] Open
Abstract
Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population.
Collapse
Affiliation(s)
- Lin Han
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Hua-Jun Wu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Haiying Zhu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Sadie L Marjani
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Markus Riester
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Ghia Euskirchen
- Department of Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Xiaoyuan Zi
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.,Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Jennifer Yang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jasper Han
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Michael Snyder
- Department of Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Rafael Irizarry
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Sherman M Weissman
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xinghua Pan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|