1
|
Chou MH, Qiao H, Yan H, Andersson G, Conner CR, Grebel J, Joshi YJ, Miller JM, Povey RG, Wu X, Cleland AN. Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates. Nat Commun 2025; 16:1450. [PMID: 39920121 PMCID: PMC11805963 DOI: 10.1038/s41467-025-56454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Mechanical systems have emerged as a compelling platform for applications in quantum information, leveraging advances in the control of phonons, the quanta of mechanical vibrations. Experiments have demonstrated the control and measurement of phonon states in mechanical resonators, and while dual-resonator entanglement has been demonstrated, more complex entangled states remain a challenge. Here, we demonstrate rapid multi-phonon entanglement generation and subsequent tomographic analysis, using a scalable platform comprising two surface acoustic wave resonators on separate substrates, each connected to a superconducting qubit. We synthesize a mechanical Bell state with a fidelity of F = 0.872 ± 0.002 , and a multi-phonon entangled N = 2 N00N state with a fidelity of F = 0.748 ± 0.008 . The compact, modular, and scalable platform we demonstrate will enable further advances in the quantum control of complex mechanical systems.
Collapse
Affiliation(s)
- Ming-Han Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Physics, University of Chicago, Chicago, IL, USA
- AWS Center for Quantum Computing, Pasadena, CA, USA
| | - Hong Qiao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Haoxiong Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Gustav Andersson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Christopher R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Joel Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Google, Santa Barbara, CA, USA
| | - Yash J Joshi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jacob M Miller
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Rhys G Povey
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Xuntao Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Andrew N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Center for Molecular Engineering and Material Science Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
2
|
Kumar B, Rajagopal P. Unconventional phonon blockade effect in array of three coupled weakly nonlinear nanomechanical resonators. Sci Rep 2024; 14:23258. [PMID: 39370416 PMCID: PMC11456609 DOI: 10.1038/s41598-024-73662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Phonon antibunching, a phenomenon arising from the quantum statistics of mechanical vibrations, has attracted significant attention due to its potential applications in quantum information processing, sensing, and energy harvesting. Here, we present a comprehensive investigation of phonon antibunching in a system consisting of three weakly nonlinear coupled nanomechanical resonators. We analytically derive and study the antibunching behavior of phonons in the proposed system and bring insight into the underlying mechanisms. The optimal phonon blockade results from destructive quantum interference due to distinct two-phonon excitation pathways. Due to this quantum interference, these unconventional phonon blockade systems can achieve antibunched statistics even in weakly nonlinear regimes, in contrast to conventional phonon blockade systems that require strong nonlinearity. We show that with the inclusion of an additional resonator, there are multiple additional two-phonon excitation pathways compared to two resonator cases, which results in stronger phonon antibunching and supports single phonon for longer duration. These findings are interesting for practical phononics using coupled-resonator systems.
Collapse
Affiliation(s)
- Bhaskar Kumar
- Indian Institute of Technology Madras, Chennai, 600036, India
| | | |
Collapse
|
3
|
Zhang J, Orszag M, Xiao M, Jiang X, Lin Q, He B. Highly Correlated Optomechanical Oscillations Manifested by an Anomalous Stabilization. PHYSICAL REVIEW LETTERS 2024; 133:103602. [PMID: 39303252 DOI: 10.1103/physrevlett.133.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
Driven by a sufficiently powerful pump laser, a cavity optomechanical system will stabilize in coupled oscillations of its cavity field and mechanical resonator. It was assumed that the oscillation will be continuously magnified upon enhancing the driving laser further. However, based on the nonlinear dynamics of the system, we find that the dynamical behaviors of the system are much more complex than this intuitive picture, especially when it is operated near the blue detuning point by the mechanical resonator's intrinsic frequency. There exists an anomalous stabilization: depending on its intrinsic damping rate and the pump power, the mechanical resonator will metastably stay on one orbit of oscillation after another until it completely stabilizes on the final orbit it can reach. These orbits are consistent with the locked ones with almost fixed oscillation amplitudes, which are realized after the pump power becomes still higher. The oscillatory cavity field is seen to adjust its sidebands following the mechanical frequency shift due to optical spring effect, so that it always drives the mechanical resonator to near those locked orbits once the pump power is over a threshold. In the regimes with such correlation between cavity field sidebands and mechanical oscillation, the system's dynamical attractors are confined on the locked orbits and chaotic motion is also excluded.
Collapse
Affiliation(s)
- Jinlian Zhang
- Fujian Key Laboratory of Light Propagation and Transformation and Institute of Systems Science, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | | | | | | | - Qing Lin
- Fujian Key Laboratory of Light Propagation and Transformation and Institute of Systems Science, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | | |
Collapse
|
4
|
Lai G, Huang S, Deng L, Chen A. Improving the Stationary Entanglement of a Laguerre-Gaussian Cavity Mode with a Rotating Mirror via Nonlinear Cross-Kerr Interactions and Parametric Interactions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1389. [PMID: 39269051 PMCID: PMC11397274 DOI: 10.3390/nano14171389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Quantum entanglement is essential in performing many quantum information tasks. Here, we theoretically investigate the stationary entanglement between a Laguerre-Gaussian (LG) cavity field and a rotating end mirror in an LG-cavity optorotational system with a nonlinear cross-Kerr (CK) interaction and a degenerate optical parametric amplifier (OPA). We calculate the logarithmic negativity of the system to quantify the stationary entanglement. We examine the influence of various system parameters such as the cavity detuning, the strength of the nonlinear CK interaction, the parametric gain and phase of the OPA, the power of the input Gaussian laser, the topological charge of the LG-cavity field, the mass of the rotating end mirror, and the ambient temperature on the stationary entanglement. Under the combined effect of the nonlinear CK interaction and the OPA, we find that the stationary entanglement can be substantially enhanced at lower Gaussian laser powers, smaller topological charges of the LG-cavity field, and larger masses of the rotating end mirror. We show that the combination of the nonlinear CK interaction and the OPA can make the stationary entanglement more robust against the ambient temperature.
Collapse
Affiliation(s)
- Guilin Lai
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sumei Huang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Deng
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Aixi Chen
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Hidki A, Peng JX, Singh SK, Khalid M, Asjad M. Entanglement and quantum coherence of two YIG spheres in a hybrid Laguerre-Gaussian cavity optomechanics. Sci Rep 2024; 14:11204. [PMID: 38755238 PMCID: PMC11099069 DOI: 10.1038/s41598-024-61670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
We theoretically investigate continuous variable entanglement and macroscopic quantum coherence in the hybrid L-G rotational cavity optomechanical system containing two YIG spheres. In this system, a single L-G cavity mode and both magnon modes (which are due to the collective excitation of spins in two YIG spheres) are coupled through the magnetic dipole interaction whereas the L-G cavity mode can also exchange orbital angular momentum (OAM) with the rotating mirror (RM). We study in detail the effects of various physical parameters like cavity and both magnon detunings, environment temperature, optorotational and magnon coupling strengths on the bipartite entanglement and the macroscopic quantum coherence as well. We also explore parameter regimes to achieve maximum values for both of these quantum correlations. We also observed that the parameters regime for achieving maximum bipartite entanglement is completely different from macroscopic quantum coherence. So, our present study shall provide a method to control various nonclassical quantum correlations of macroscopic objects in the hybrid L-G rotational cavity optomechanical system and have potential applications in quantum sensing, quantum meteorology, and quantum information science.
Collapse
Affiliation(s)
- Abdelkader Hidki
- LPTHE, Department of Physics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Jia-Xin Peng
- School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - S K Singh
- Process Systems Engineering Centre (PROSPECT), Research Institute of Sustainable Environment (RISE), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia.
| | - M Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
- Centre of Research Impact and Outcome, Chitkara University, Chandigarh, Punjab, 140401, India
| | - M Asjad
- Department of Applied Mathematics and Sciences, Khalifa University, 127788, Abu Dhabi, UAE.
| |
Collapse
|
6
|
Li G, Yin ZQ. Steady motional entanglement between two distant levitated nanoparticles. OPTICS EXPRESS 2024; 32:7377-7390. [PMID: 38439419 DOI: 10.1364/oe.511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024]
Abstract
Quantum entanglement in macroscopic systems is not only essential for practical quantum information processing, but also valuable for the study of the boundary between quantum and the classical world. However, it is very challenging to achieve the steady remote entanglement between distant macroscopic systems. We consider two distant nanoparticles, both of which are optically trapped in two cavities. Based on the coherent scattering mechanism, we find that the ultrastrong optomechanical coupling between the cavity modes and the motion of the levitated nanoparticles could be achieved. The large and steady entanglement between the filtered output cavity modes and the motion of nanoparticles can be generated if the trapping laser is under the red sideband. Then through entanglement swapping, the steady motional entanglement between the distant nanoparticles can be realized. We numerically simulate and find that the two nanoparticles with 10 km distance can be entangled for the experimentally feasible parameters, even in room temperature environments. The generated continuous variable multipartite entanglement is the key to realizing the quantum enhanced sensor network and the sensitivity beyond the standard quantum limit.
Collapse
|
7
|
Xu X, Zhu H, Chen S, Li F, Zhang X. Nonlinear dynamics of cavity optomechanical-thermal systems. OPTICS EXPRESS 2024; 32:7611-7621. [PMID: 38439438 DOI: 10.1364/oe.515095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Cavity optomechanics is concerned with the interaction between optical cavities and mechanical resonators. Here, we present systematic research on the dynamic behaviors of cavity optomechanical systems incorporating the influence of thermal nonlinearity. A dimensionless theoretical model was established to describe the system and numerical simulations were performed to study the dynamic behaviors. We theoretically identify the staircase effect, which can abruptly alter the system parameters when adiabatically sweeping the pump laser frequency across the optical cavity resonance and driving the mechanical resonator into oscillation. Moreover, we found bistability effects in several detuning intervals when sweeping the laser forward and backward. Both effects are analyzed theoretically and the roots lie in the thermal instability between averaged cavity energy and laser detuning. Our study shows the dynamic behaviors in an optomechanical-thermal system and provides guidance in leveraging the systems for applications in optical frequency comb, phonon laser, etc.
Collapse
|
8
|
Peng Y, Peng H, Chen Z, Zhang J. Ultrasensitive Soft Sensor from Anisotropic Conductive Biphasic Liquid Metal-Polymer Gels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305707. [PMID: 38053434 DOI: 10.1002/adma.202305707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Subtle vibrations, such as sound and ambient noises, are common mechanical waves that can transmit energy and signals for modern technologies such as robotics and health management devices. However, soft electronics cannot accurately distinguish ultrasmall vibrations owing to their extremely small pressure, complex vibration waveforms, and high noise susceptibility. This study successfully recognizes signals from subtle vibrations using a highly flexible anisotropic conductive gel (ACG) based on biphasic liquid metals. The relationships between the anisotropic structure, subtle vibrations, and electrical performance are investigated using rheological-electrical experiments. The refined anisotropic design successfully realized low-cost flexible electronics with ultrahigh sensitivity (Gauge Factor: 12787), extremely low detection limit (strain: 0.01%), and excellent frequency recognition accuracy (>99%), significantly surpassing those of current flexible sensors. The ultrasensitive flexible electronics in this study are beneficial for diverse advanced technologies such as acoustic engineering, wearable electronics, and intelligent robotics.
Collapse
Affiliation(s)
- Yan Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Center for Advanced Electronic Materials Research, Wuxi Campus, Southeast University, Wuxi, 214061, P. R. China
| | - Hao Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zixun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Center for Advanced Electronic Materials Research, Wuxi Campus, Southeast University, Wuxi, 214061, P. R. China
| |
Collapse
|
9
|
Yang J, Lu TX, Peng M, Liu J, Jiao YF, Jing H. Multi-field-driven optomechanical entanglement. OPTICS EXPRESS 2024; 32:785-794. [PMID: 38175098 DOI: 10.1364/oe.509811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Cavity optomechanical (COM) entanglement, playing an essential role in building quantum networks and enhancing quantum sensors, is usually weak and easily destroyed by noises. As feasible and effective ways to overcome this obstacle, optical or mechanical parametric modulations have been used to improve the quality of quantum squeezing or entanglement in various COM systems. However, the possibility of combining these powerful means to enhance COM entanglement has yet to be explored. Here, we fill this gap by studying a COM system containing an intra-cavity optical parametric amplifier (OPA), driven optically and mechanically. By tuning the relative strength and the frequency mismatch of optical and mechanical driving fields, we find that constructive interference can emerge and significantly improve the strength of COM entanglement and its robustness to thermal noises. This work sheds what we believe to be a new light on preparing and protecting quantum states with multi-field driven COM systems for diverse applications.
Collapse
|
10
|
Motazedifard A, Dalafi A, Naderi MH. Negative cavity photon spectral function in an optomechanical system with two parametrically-driven mechanical modes. OPTICS EXPRESS 2023; 31:36615-36637. [PMID: 38017809 DOI: 10.1364/oe.499409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
We propose an experimentally feasible optomechanical scheme to realize a negative cavity photon spectral function (CPSF) which is equivalent to a negative absorption. The system under consideration is an optomechanical system consisting of two mechanical (phononic) modes which are linearly coupled to a common cavity mode via the radiation pressure while parametrically driven through the coherent time-modulation of their spring coefficients. Using the equations of motion for the cavity retarded Green's function obtained in the framework of the generalized linear response theory, we show that in the red-detuned and weak-coupling regimes a frequency-dependent effective cavity damping rate (ECDR) corresponding to a negative CPSF can be realized by controlling the cooperativities and modulation parameters while the system still remains in the stable regime. Nevertheless, such a negativity which acts as an optomechanical gain never occurs in a standard (an unmodulated bare) cavity optomechanical system. Besides, we find that the presence of two modulated mechanical degrees of freedom provides more controllability over the magnitude and bandwidth of the negativity of CPSF, in comparison to the setup with a single modulated mechanical oscillator. Interestingly, the introduced negativity may open a new platform to realize an extraordinary (modified) optomechanically induced transparency (in which the input signal is amplified in the output) leading to a perfect tunable optomechanical filter with switchable bandwidth which can be used as an optical transistor.
Collapse
|
11
|
Liu X, Yang R, Zhang J, Zhang T. Generation of multipartite entangled states based on a double-longitudinal-mode cavity optomechanical system. OPTICS EXPRESS 2023; 31:30005-30019. [PMID: 37710553 DOI: 10.1364/oe.496528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
An optomechanical system is a promising platform to connect different "notes" of quantum networks. Therefore, entanglements generated from it is also of great importance. In this paper, the parameter dependence of optomechanical and optical-optical entanglements generated from the double-longitudinal-mode cavity optomechanical system are discussed and two quadrapartite entanglement generation schemes based on such a system are proposed. Furthermore, 2N and 4N-partite entangled states of optical modes can be obtained by coupling N cavities that used in the above two schemes with N-1 beamsplitters, respectively. Certain ladder or linear entanglement structures are included in the finally obtained entangled state, which are important for its application in one-way quantum computing.
Collapse
|
12
|
Qiao H, Dumur É, Andersson G, Yan H, Chou MH, Grebel J, Conner CR, Joshi YJ, Miller JM, Povey RG, Wu X, Cleland AN. Splitting phonons: Building a platform for linear mechanical quantum computing. Science 2023; 380:1030-1033. [PMID: 37289889 DOI: 10.1126/science.adg8715] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Linear optical quantum computing provides a desirable approach to quantum computing, with only a short list of required computational elements. The similarity between photons and phonons points to the interesting potential for linear mechanical quantum computing using phonons in place of photons. Although single-phonon sources and detectors have been demonstrated, a phononic beam splitter element remains an outstanding requirement. Here we demonstrate such an element, using two superconducting qubits to fully characterize a beam splitter with single phonons. We further use the beam splitter to demonstrate two-phonon interference, a requirement for two-qubit gates in linear computing. This advances a new solid-state system for implementing linear quantum computing, further providing straightforward conversion between itinerant phonons and superconducting qubits.
Collapse
Affiliation(s)
- H Qiao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - É Dumur
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering and Material Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - G Andersson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - H Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - M-H Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - J Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - C R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Y J Joshi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - J M Miller
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - R G Povey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - X Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - A N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering and Material Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
13
|
Hauer BD, Combes J, Teufel JD. Nonlinear Sideband Cooling to a Cat State of Motion. PHYSICAL REVIEW LETTERS 2023; 130:213604. [PMID: 37295107 DOI: 10.1103/physrevlett.130.213604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/14/2023] [Indexed: 06/12/2023]
Abstract
The ability to prepare a macroscopic mechanical resonator into a quantum superposition state is an outstanding goal of cavity optomechanics. Here, we propose a technique to generate cat states of motion using the intrinsic nonlinearity of a dispersive optomechanical interaction. By applying a bichromatic drive to an optomechanical cavity, our protocol enhances the inherent second-order processes of the system, inducing the requisite two-phonon dissipation. We show that this nonlinear sideband cooling technique can dissipatively engineer a mechanical resonator into a cat state, which we verify using the full Hamiltonian and an adiabatically reduced model. While the fidelity of the cat state is maximized in the single-photon, strong-coupling regime, we demonstrate that Wigner negativity persists even for weak coupling. Finally, we show that our cat state generation protocol is robust to significant thermal decoherence of the mechanical mode, indicating that such a procedure may be feasible for near-term experimental systems.
Collapse
Affiliation(s)
- B D Hauer
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - J Combes
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - J D Teufel
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
14
|
Yan ZF, He B, Lin Q. Optomechanical force sensor operating over wide detection range. OPTICS EXPRESS 2023; 31:16535-16548. [PMID: 37157730 DOI: 10.1364/oe.486667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A detector with both broad operation range and high sensitivity is desirable in the measurement of weak periodic forces. Based on a nonlinear dynamical mechanism of locking the mechanical oscillation amplitude in optomechanical systems, we propose a force sensor that realizes the detection through the cavity field sidebands modified by an unknown external periodic force. Under the mechanical amplitude locking condition, the unknown external force happens to modify the locked oscillation amplitude linearly to its magnitude, thus achieving a linear scaling between the sideband changes read by the sensor and the magnitude of the force to be measured. This linear scaling range is found to be comparable to the applied pump drive amplitude, so the sensor can measure a wide range of force magnitude. Because the locked mechanical oscillation is rather robust against thermal perturbation, the sensor works well at room temperature. In addition to weak periodic forces, the same setup can as well detect static forces, though the detection ranges are much narrower.
Collapse
|
15
|
Jolin SW, Andersson G, Hernández JCR, Strandberg I, Quijandría F, Aumentado J, Borgani R, Tholén MO, Haviland DB. Multipartite Entanglement in a Microwave Frequency Comb. PHYSICAL REVIEW LETTERS 2023; 130:120601. [PMID: 37027873 DOI: 10.1103/physrevlett.130.120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Significant progress has been made with multipartite entanglement of discrete qubits, but continuous variable systems may provide a more scalable path toward entanglement of large ensembles. We demonstrate multipartite entanglement in a microwave frequency comb generated by a Josephson parametric amplifier subject to a bichromatic pump. We find 64 correlated modes in the transmission line using a multifrequency digital signal processing platform. Full inseparability is verified in a subset of seven modes. Our method can be expanded to generate even more entangled modes in the near future.
Collapse
Affiliation(s)
- Shan W Jolin
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Gustav Andersson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - J C Rivera Hernández
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Ingrid Strandberg
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Fernando Quijandría
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - José Aumentado
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - Riccardo Borgani
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Intermodulation Products AB, SE-823 93 Segersta, Sweden
| | - Mats O Tholén
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Intermodulation Products AB, SE-823 93 Segersta, Sweden
| | - David B Haviland
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Xie H, He LW, Liao CG, Chen ZH, Lin XM. Generation of robust optical entanglement in cavity optomagnonics. OPTICS EXPRESS 2023; 31:7994-8004. [PMID: 36859918 DOI: 10.1364/oe.478963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We propose a scheme to realize robust optical entanglement in cavity optomagnonics, where two optical whispering gallery modes (WGMs) couple to a magnon mode in a yttrium iron garnet (YIG) sphere. The beam-splitter-like and two-mode squeezing magnon-photon interactions can be realized simultaneously when the two optical WGMs are driven by external fields. Entanglement between the two optical modes is then generated via their coupling with magnons. By exploiting the destructive quantum interference between the bright modes of the interface, the effects of initial thermal occupations of magnons can be eliminated. Moreover, the excitation of the Bogoliubov dark mode is capable of protecting the optical entanglement from thermal heating effects. Therefore, the generated optical entanglement is robust against thermal noise and the requirement of cooling the magnon mode is relaxed. Our scheme may find applications in the study of magnon-based quantum information processing.
Collapse
|
17
|
Peng M, Cheng J, Zheng X, Ma J, Feng Z, Sun X. 2D-materials-integrated optoelectromechanics: recent progress and future perspectives. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:026402. [PMID: 36167057 DOI: 10.1088/1361-6633/ac953e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The discovery of two-dimensional (2D) materials has gained worldwide attention owing to their extraordinary optical, electrical, and mechanical properties. Due to their atomic layer thicknesses, the emerging 2D materials have great advantages of enhanced interaction strength, broad operating bandwidth, and ultralow power consumption for optoelectromechanical coupling. The van der Waals (vdW) epitaxy or multidimensional integration of 2D material family provides a promising platform for on-chip advanced nano-optoelectromechanical systems (NOEMS). Here, we provide a comprehensive review on the nanomechanical properties of 2D materials and the recent advances of 2D-materials-integrated nano-electromechanical systems and nano-optomechanical systems. By utilizing active nanophotonics and optoelectronics as the interface, 2D active NOEMS and their coupling effects are particularly highlighted at the 2D atomic scale. Finally, we share our viewpoints on the future perspectives and key challenges of scalable 2D-materials-integrated active NOEMS for on-chip miniaturized, lightweight, and multifunctional integration applications.
Collapse
Affiliation(s)
- Mingzeng Peng
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083,People's Republic of China
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Jiadong Cheng
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083,People's Republic of China
| | - Xinhe Zheng
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083,People's Republic of China
| | - Jingwen Ma
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Ziyao Feng
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Xiankai Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| |
Collapse
|
18
|
Zivari A, Fiaschi N, Burgwal R, Verhagen E, Stockill R, Gröblacher S. On-chip distribution of quantum information using traveling phonons. SCIENCE ADVANCES 2022; 8:eadd2811. [PMID: 36399558 PMCID: PMC9674299 DOI: 10.1126/sciadv.add2811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/29/2022] [Indexed: 06/10/2023]
Abstract
Distributing quantum entanglement on a chip is a crucial step toward realizing scalable quantum processors. Using traveling phonons-quantized guided mechanical wave packets-as a medium to transmit quantum states is now gaining substantial attention due to their small size and low propagation speed compared to other carriers, such as electrons or photons. Moreover, phonons are highly promising candidates to connect heterogeneous quantum systems on a chip, such as microwave and optical photons for long-distance transmission of quantum states via optical fibers. Here, we experimentally demonstrate the feasibility of distributing quantum information using phonons by realizing quantum entanglement between two traveling phonons and creating a time-bin-encoded traveling phononic qubit. The mechanical quantum state is generated in an optomechanical cavity and then launched into a phononic waveguide in which it propagates for around 200 micrometers. We further show how the phononic, together with a photonic qubit, can be used to violate a Bell-type inequality.
Collapse
Affiliation(s)
- Amirparsa Zivari
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, the Netherlands
| | - Niccolò Fiaschi
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, the Netherlands
| | - Roel Burgwal
- Center for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, the Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, the Netherlands
| | - Ewold Verhagen
- Center for Nanophotonics, AMOLF, Science Park 104, 1098XG Amsterdam, the Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, the Netherlands
| | - Robert Stockill
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, the Netherlands
| | - Simon Gröblacher
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, the Netherlands
| |
Collapse
|
19
|
An X, Deng T, Chen L, Ye S, Zhong Z. Generation of Schrödinger Cat States in a Hybrid Cavity Optomechanical System. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1554. [PMID: 36359645 PMCID: PMC9689546 DOI: 10.3390/e24111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
We present an alternative scheme to achieve Schrödinger cat states in a strong coupling hybrid cavity optomechanical system. Under the single-photon strong-coupling regime, the interaction between the atom-cavity-oscillator system can induce the mesoscopic mechanical oscillator to Schrödinger cat states. Comparing to previous schemes, the proposed proposal consider the second order approximation on the Lamb-Dicke parameter, which is more universal in the experiment. Numerical simulations confirm the validity of our derivation.
Collapse
|
20
|
Kong D, Xu J, Gong C, Wang F, Hu X. Magnon-atom-optical photon entanglement via the microwave photon-mediated Raman interaction. OPTICS EXPRESS 2022; 30:34998-35013. [PMID: 36242502 DOI: 10.1364/oe.468400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
We show that it is possible to generate magnon-atom-optical photon tripartite entanglement via the microwave photon-mediated Raman interaction. Magnons in a macroscopic ferromagnet and optical photons in a cavity are induced into a Raman interaction with an atomic spin ensemble when a microwave field couples the magnons to one Raman wing. The controllable magnon-atom entanglement, magnon-optical photon entanglement, and even genuine magnon-atom-optical photon tripartite entanglement can be generated simultaneously. In addition, these bipartite and tripartite entanglements are robust against the environment temperature. Our scheme paves the way for exploring a quantum interface bridging the microwave and optical domains, and may provide a promising building block for hybrid quantum networks.
Collapse
|
21
|
Lai DG, Liao JQ, Miranowicz A, Nori F. Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism. PHYSICAL REVIEW LETTERS 2022; 129:063602. [PMID: 36018654 DOI: 10.1103/physrevlett.129.063602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Entanglement of light and multiple vibrations is a key resource for multichannel quantum information processing and memory. However, entanglement generation is generally suppressed, or even fully destroyed, by the dark-mode (DM) effect induced by the coupling of multiple degenerate or near-degenerate vibrational modes to a common optical mode. Here we propose how to generate optomechanical entanglement via DM breaking induced by synthetic magnetism. We find that at nonzero temperature, light and vibrations are separable in the DM-unbreaking regime but entangled in the DM-breaking regime. Remarkably, the threshold thermal phonon number for preserving entanglement in our simulations has been observed to be up to 3 orders of magnitude stronger than that in the DM-unbreaking regime. The application of the DM-breaking mechanism to optomechanical networks can make noise-tolerant entanglement networks feasible. These results are quite general and can initiate advances in quantum resources with immunity against both dark modes and thermal noise.
Collapse
Affiliation(s)
- Deng-Gao Lai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Jie-Qiao Liao
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Adam Miranowicz
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
22
|
Abstract
Optomechanical systems are suitable for realizing the ground-state cooling of macroscopic objects. Based on a dynamical approach that goes beyond the validity of the standard linearization approach, we simulate the detailed cooling processes for a membrane-in-middle optomechanical system. In addition to the cooling results, we especially study the cooling speed, which is indicated by how soon the first minimum thermal phonon number is reached. Their relevance to the system parameters provides essential knowledge about how to achieve the best and/or fastest cooling under various combinations of different driving fields.
Collapse
|
23
|
Seis Y, Capelle T, Langman E, Saarinen S, Planz E, Schliesser A. Ground state cooling of an ultracoherent electromechanical system. Nat Commun 2022; 13:1507. [PMID: 35314677 PMCID: PMC8938490 DOI: 10.1038/s41467-022-29115-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cavity electromechanics relies on parametric coupling between microwave and mechanical modes to manipulate the mechanical quantum state, and provide a coherent interface between different parts of hybrid quantum systems. High coherence of the mechanical mode is of key importance in such applications, in order to protect the quantum states it hosts from thermal decoherence. Here, we introduce an electromechanical system based around a soft-clamped mechanical resonator with an extremely high Q-factor (>109) held at very low (30 mK) temperatures. This ultracoherent mechanical resonator is capacitively coupled to a microwave mode, strong enough to enable ground-state-cooling of the mechanics ([Formula: see text]). This paves the way towards exploiting the extremely long coherence times (tcoh > 100 ms) offered by such systems for quantum information processing and state conversion.
Collapse
Affiliation(s)
- Yannick Seis
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thibault Capelle
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eric Langman
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sampo Saarinen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eric Planz
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Albert Schliesser
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Li Y, Jiao YF, Liu JX, Miranowicz A, Zuo YL, Kuang LM, Jing H. Vector optomechanical entanglement. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:67-77. [PMID: 39635004 PMCID: PMC11501366 DOI: 10.1515/nanoph-2021-0485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/07/2024]
Abstract
The polarizations of optical fields, besides field intensities, provide more degrees of freedom to manipulate coherent light-matter interactions. Here, we propose how to achieve a coherent switch of optomechanical entanglement in a polarized-light-driven cavity system. We show that by tuning the polarizations of the driving field, the effective optomechanical coupling can be well controlled and, as a result, quantum entanglement between the mechanical oscillator and the optical transverse electric mode can be coherently and reversibly switched to that between the same phonon mode and the optical transverse magnetic mode. This ability to switch optomechanical entanglement with such a vectorial device can be important for building a quantum network being capable of efficient quantum information interchanges between processing nodes and flying photons.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha410081, China
| | - Ya-Feng Jiao
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha410081, China
| | - Jing-Xue Liu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha410081, China
| | - Adam Miranowicz
- Faculty of Physics, Institute of Spintronics and Quantum Information, Adam Mickiewicz University, Poznań61-614, Poland
| | - Yun-Lan Zuo
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha410081, China
| | - Le-Man Kuang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha410081, China
| | - Hui Jing
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha410081, China
| |
Collapse
|
25
|
Shlesinger I, Cognée KG, Verhagen E, Koenderink AF. Integrated Molecular Optomechanics with Hybrid Dielectric-Metallic Resonators. ACS PHOTONICS 2021; 8:3506-3516. [PMID: 34938824 PMCID: PMC8679090 DOI: 10.1021/acsphotonics.1c00808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 06/14/2023]
Abstract
Molecular optomechanics describes surface-enhanced Raman scattering using the formalism of cavity optomechanics as a parametric coupling of the molecule's vibrational modes to the plasmonic resonance. Most of the predicted applications require intense electric field hotspots but spectrally narrow resonances, out of reach of standard plasmonic resonances. The Fano lineshapes resulting from the hybridization of dielectric-plasmonic resonators with a broad-band plasmon and narrow-band cavity mode allow reaching strong Raman enhancement with high-Q resonances, paving the way for sideband resolved molecular optomechanics. We extend the molecular optomechanics formalism to describe hybrid dielectric-plasmonic resonators with multiple optical resonances and with both free-space and waveguide addressing. We demonstrate how the Raman enhancement depends on the complex response functions of the hybrid system, and we retrieve the expression of Raman enhancement as a product of pump enhancement and the local density of states. The model allows prediction of the Raman emission ratio into different output ports and enables demonstrating a fully integrated high-Q Raman resonator exploiting multiple cavity modes coupled to the same waveguide.
Collapse
Affiliation(s)
- Ilan Shlesinger
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Kévin G. Cognée
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- LP2N,
Institut d’Optique Graduate School, CNRS, Univ. Bordeaux, 33400 Talence, France
| | - Ewold Verhagen
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - A. Femius Koenderink
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
26
|
Sheng J, Yang C, Wu H. Realization of a coupled-mode heat engine with cavity-mediated nanoresonators. SCIENCE ADVANCES 2021; 7:eabl7740. [PMID: 34878829 PMCID: PMC8654295 DOI: 10.1126/sciadv.abl7740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report an experimental demonstration of a coupled-mode heat engine in a two-membrane-in-the-middle cavity optomechanical system. The normal mode of the cavity-mediated strongly coupled nanoresonators is used as the working medium, and an Otto cycle is realized by extracting work between two phononic thermal reservoirs. The heat engine performance is characterized in both normal mode and bare mode pictures, which reveals that the correlation of two membranes plays a substantial role during the thermodynamic cycle. Moreover, a straight-twin nanomechanical engine is implemented by engineering the normal modes and operating two cylinders out of phase. Our results demonstrate an essential class of heat engine in cavity optomechanical systems and provide an ideal platform platform for investigating heat engines of interacting subsystems in small scales with controllability and scalability.
Collapse
Affiliation(s)
- Jiteng Sheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Cheng Yang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haibin Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
- Corresponding author.
| |
Collapse
|
27
|
Wei Y, Wang X, Xiong B, Zhao C, Liu J, Shan C. Improving few-photon optomechanical effects with coherent feedback. OPTICS EXPRESS 2021; 29:35299-35313. [PMID: 34808967 DOI: 10.1364/oe.440382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Few-photon effects such as photon blockade and tunneling have potential applications in modern quantum technology. To enhance the few-photon effects in an optomechanical system, we introduce a coherent feedback loop to cavity mode theoretically. By studying the second-order correlation function, we show that the photon blockade effect can be improved with feedback. Under appropriate parameters, the photon blockade effect exists even when cavity decay rate is larger than the single-photon optomechanical coupling coefficient, which may reduce the difficulty of realizing single-photon source in experiments. Through further study of the third-order correlation function, we show that the tunneling effect can also be enhanced by feedback. In addition, we discuss the application of feedback on Schrödinger-cat state generation in an optomechanical system. The result shows that the fidelity of cat state generation can be improved in the presence of feedback loop.
Collapse
|
28
|
Patel RN, McKenna TP, Wang Z, Witmer JD, Jiang W, Van Laer R, Sarabalis CJ, Safavi-Naeini AH. Room-Temperature Mechanical Resonator with a Single Added or Subtracted Phonon. PHYSICAL REVIEW LETTERS 2021; 127:133602. [PMID: 34623823 DOI: 10.1103/physrevlett.127.133602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
A room-temperature mechanical oscillator undergoes thermal Brownian motion with an amplitude much larger than the amplitude associated with a single phonon of excitation. This motion can be read out and manipulated using laser light using a cavity-optomechanical approach. By performing a strong quantum measurement (i.e., counting single photons in the sidebands imparted on a laser), we herald the addition and subtraction of single phonons on the 300 K thermal motional state of a 4 GHz mechanical oscillator. To understand the resulting mechanical state, we implement a tomography scheme and observe highly non-Gaussian phase-space distributions. Using a maximum likelihood method, we infer the density matrix of the oscillator, and we confirm the counterintuitive doubling of the mean phonon number resulting from phonon addition and subtraction.
Collapse
Affiliation(s)
- Rishi N Patel
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Timothy P McKenna
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Zhaoyou Wang
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Jeremy D Witmer
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Wentao Jiang
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Raphaël Van Laer
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Christopher J Sarabalis
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Amir H Safavi-Naeini
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
29
|
Zhou YH, Yin XL, Liao JQ. Quantum simulation of tunable and ultrastrong mixed-optomechanics. OPTICS EXPRESS 2021; 29:28202-28216. [PMID: 34614957 DOI: 10.1364/oe.431792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
We propose a reliable scheme to simulate tunable and ultrastrong mixed (first-order and quadratic optomechanical couplings coexisting) optomechanical interactions in a coupled two-mode bosonic system, in which the two modes are coupled by a cross-Kerr interaction and one of the two modes is driven through both the single- and two-excitation processes. We show that the mixed-optomechanical interactions can enter the single-photon strong-coupling and even ultrastrong-coupling regimes. The strengths of both the first-order and quadratic optomechanical couplings can be controlled on demand, and hence first-order, quadratic, and mixed optomechanical models can be realized. In particular, the thermal noise of the driven mode can be suppressed totally by introducing a proper squeezed vacuum bath. We also study how to generate the superposition of coherent squeezed state and vacuum state based on the simulated interactions. The quantum coherence effect in the generated states is characterized by calculating the Wigner function in both the closed- and open-system cases. This work will pave the way to the observation and application of ultrastrong optomechanical effects in quantum simulators.
Collapse
|
30
|
Sun FX, Zheng SS, Xiao Y, Gong Q, He Q, Xia K. Remote Generation of Magnon Schrödinger Cat State via Magnon-Photon Entanglement. PHYSICAL REVIEW LETTERS 2021; 127:087203. [PMID: 34477416 DOI: 10.1103/physrevlett.127.087203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The magnon cat state represents a macroscopic quantum superposition of collective magnetic excitations of large number spins that not only provides fundamental tests of macroscopic quantum effects but also finds applications in quantum metrology and quantum computation. In particular, remote generation and manipulation of Schrödinger cat states are particularly interesting for the development of long-distance and large-scale quantum information processing. Here, we propose an approach to remotely prepare magnon even or odd cat states by performing local non-Gaussian operations on the optical mode that is entangled with the magnon mode through pulsed optomagnonic interaction. By evaluating key properties of the resulting cat states, we show that for experimentally feasible parameters, they are generated with both high fidelity and nonclassicality, as well as with a size large enough to be useful for quantum technologies. Furthermore, the effects of experimental imperfections such as the error of projective measurements and dark count when performing single-photon operations have been discussed, where the lifetime of the created magnon cat states is expected to be t∼1 μs.
Collapse
Affiliation(s)
- Feng-Xiao Sun
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sha-Sha Zheng
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yang Xiao
- Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, Jiangsu, China
| | - Qiongyi He
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, Jiangsu, China
| | - Ke Xia
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
31
|
Bhatt V, Yadav S, Jha PK, Bhattacherjee AB. Polariton multistability in a nonlinear optomechanical cavity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:365302. [PMID: 34171855 DOI: 10.1088/1361-648x/ac0ea9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
We theoretically study the polariton multistability in a solid state based optomechanical resonator embedded with a quantum well and aχ(2)second order nonlinear medium. The excitonic transition inside the quantum well is strongly coupled to the optical cavity mode. The polariton formed due to the mixing of cavity photons and exciton states are coupled to the mechanical mode which gives rise to the bistable behavior. A transition from bistability to tristability occurs in the presence of a strongχ(2)nonlinearity. Switching between bistability and tristability can also be controlled using exciton-cavity and optomechanical coupling making the system highly tunable. Tristability appears at low input power making it a suitable candidate for polaritonic devices which requires low input power.
Collapse
Affiliation(s)
- Vijay Bhatt
- Department of Physics, DDU College, University of Delhi, New Delhi 110078, India
| | - Surabhi Yadav
- Department of Physics, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad-500078, India
| | - Pradip K Jha
- Department of Physics, DDU College, University of Delhi, New Delhi 110078, India
| | - Aranya B Bhattacherjee
- Department of Physics, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad-500078, India
| |
Collapse
|
32
|
Kotler S, Peterson GA, Shojaee E, Lecocq F, Cicak K, Kwiatkowski A, Geller S, Glancy S, Knill E, Simmonds RW, Aumentado J, Teufel JD. Direct observation of deterministic macroscopic entanglement. Science 2021; 372:622-625. [DOI: 10.1126/science.abf2998] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 11/02/2022]
Affiliation(s)
- Shlomi Kotler
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Gabriel A. Peterson
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Ezad Shojaee
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Florent Lecocq
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Katarina Cicak
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Alex Kwiatkowski
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Shawn Geller
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Scott Glancy
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Emanuel Knill
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, USA
| | | | - José Aumentado
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - John D. Teufel
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| |
Collapse
|
33
|
Jin L, Zhao H, Li Z, Jiang Z, Li L, Yan X. Nonlinear dynamic control of GaAs nanomechanical resonators using lasers. NANOTECHNOLOGY 2021; 32:295502. [PMID: 33789255 DOI: 10.1088/1361-6528/abf3f1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The ability to control, manipulate, and read out nanomechanical resonators is of great significance for many applications. In this work, we start by constructing a nonlinear dynamic model that is deduced from the fundamental beam-photon-electron interaction and energy band theories, with the aim of describing a complicated cavity-free optomechanical coupling process. Based on the model established, we first reveal the manipulation of a resonator's response, including softening and hardening effects due to laser injection. By driving the laser parametrically, we comprehensively investigate the control of the resonator's dynamics, in particular, in the nonlinear regime. It is found that both the laser power and frequency can be used to directly manipulate the NEMS resonator's dynamics, e.g., by amplitude amplification, periodicity changes, and periodic-chaotic state conversion. We then provide bifurcation diagrams, which evidence a deterministic evolution of dynamics. Finally, we perform a special study of the control of chaotic states of the nanomechanical resonator using laser parametric driving. The maximal Lyapunov exponents together with time series calculation show that the chaotic states can be controlled at a few specific frequency points of the injecting laser. This work not only provides guidance for using lasers to control nanoscale resonators, but also sheds light on the exploration of novel applications based on nonlinear NEMS resonators.
Collapse
Affiliation(s)
- Leisheng Jin
- College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Hao Zhao
- College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Zhi Li
- College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Zongqing Jiang
- College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Lijie Li
- College of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Xiaohong Yan
- College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| |
Collapse
|
34
|
Cha J, Kim H, Kim J, Shim SB, Suh J. Superconducting Nanoelectromechanical Transducer Resilient to Magnetic Fields. NANO LETTERS 2021; 21:1800-1806. [PMID: 33555879 DOI: 10.1021/acs.nanolett.0c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoscale electromechanical coupling provides a unique route toward control of mechanical motions and microwave fields in superconducting cavity electromechanical devices. However, conventional devices composed of aluminum have presented severe constraints on their operating conditions due to the low superconducting critical temperature (1.2 K) and magnetic field (0.01 T) of aluminum. To enhance their potential in device applications, we fabricate a superconducting electromechanical device employing niobium and demonstrate a set of cavity electromechanical dynamics, including back-action cooling and amplification, and electromechanically induced reflection at 4.2 K and in strong magnetic fields up to 0.8 T. Niobium-based electromechanical transducers operating at this temperature could potentially be employed to realize compact, nonreciprocal microwave devices in place of conventional isolators and cryogenic amplifiers. Moreover, with their resilience to magnetic fields, niobium devices utilizing the electromechanical back-action effects could be used to study spin-phonon interactions for nanomechanical spin-sensing.
Collapse
Affiliation(s)
- Jinwoong Cha
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| | - Hakseong Kim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| | - Jihwan Kim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
- Department of Physics, Korea Advanced Institute of Science and Technology, 34141 Daejeon, South Korea
| | - Seung-Bo Shim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| | - Junho Suh
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| |
Collapse
|
35
|
Abstract
High-Q mechanical modes of transverse oscillation at a few megahertz are characterized for a photonic crystal waveguide (PCW) consisting of parallel dielectric nanobeams. The transduction of thermally excited motion of 33 pm at 300 K results in phase modulation with high signal-to-noise ratio for light propagating in a guided mode of the PCW. Numerical modeling gives good agreement with experiment. With these measurements in hand, the system is assessed for possible applications in quantum information science and technology involving strong coupling of single phonons of vibration to single atoms and photons trapped within the PCW. Observations of thermally driven transverse vibration of a photonic crystal waveguide (PCW) are reported. The PCW consists of two parallel nanobeams whose width is modulated symmetrically with a spatial period of 370 nm about a 240-nm vacuum gap between the beams. The resulting dielectric structure has a band gap (i.e., a photonic crystal stop band) with band edges in the near infrared that provide a regime for transduction of nanobeam motion to phase and amplitude modulation of an optical guided mode. This regime is in contrast to more conventional optomechanical coupling by way of moving end mirrors in resonant optical cavities. Models are developed and validated for this optomechanical mechanism in a PCW for probe frequencies far from and near to the dielectric band edge (i.e., stop band edge). The large optomechanical coupling strength predicted should make possible measurements with an imprecision below that at the standard quantum limit and well into the backaction-dominated regime. Since our PCW has been designed for near-field atom trapping, this research provides a foundation for evaluating possible deleterious effects of thermal motion on optical atomic traps near the surfaces of PCWs. Longer-term goals are to achieve strong atom-mediated links between individual phonons of vibration and single photons propagating in the guided modes (GMs) of the PCW, thereby enabling optomechanics at the quantum level with atoms, photons, and phonons. The experiments and models reported here provide a basis for assessing such goals.
Collapse
|
36
|
Squeezed-light-driven force detection with an optomechanical cavity in a Mach-Zehnder interferometer. Sci Rep 2020; 10:17496. [PMID: 33060770 PMCID: PMC7567122 DOI: 10.1038/s41598-020-74629-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 12/03/2022] Open
Abstract
We analyze the performance of a force detector based on balanced measurements with a Mach–Zehnder interferometer incorporating a standard optomechanical cavity. The system is driven by a coherent superposition of coherent light and squeezed vacuum field, providing quantum correlation along with optical coherence in order to enhance the measurement sensitivity beyond the standard quantum limit. We analytically find the optimal measurement strength, squeezing direction, and squeezing strength at which the symmetrized power spectral density for the measurement noise is minimized below the standard quantum limit. This force detection scheme based on a balanced Mach–Zehnder interferometer provides better sensitivity compared to that based on balanced homodyne detection with a local oscillator in the low frequency regime.
Collapse
|
37
|
Jiao YF, Zhang SD, Zhang YL, Miranowicz A, Kuang LM, Jing H. Nonreciprocal Optomechanical Entanglement against Backscattering Losses. PHYSICAL REVIEW LETTERS 2020; 125:143605. [PMID: 33064545 DOI: 10.1103/physrevlett.125.143605] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
We propose how to achieve nonreciprocal quantum entanglement of light and motion and reveal its counterintuitive robustness against random losses. We find that by splitting the counterpropagating lights of a spinning resonator via the Sagnac effect, photons and phonons can be entangled strongly in a chosen direction but fully uncorrelated in the other. This makes it possible both to realize quantum nonreciprocity even in the absence of any classical nonreciprocity and also to achieve significant entanglement revival against backscattering losses in practical devices. Our work provides a way to protect and engineer quantum resources by utilizing diverse nonreciprocal devices, for building noise-tolerant quantum processors, realizing chiral networks, and backaction-immune quantum sensors.
Collapse
Affiliation(s)
- Ya-Feng Jiao
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Sheng-Dian Zhang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Yan-Lei Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Adam Miranowicz
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Le-Man Kuang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Hui Jing
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
38
|
Rohse P, Butlewski J, Klein F, Wagner T, Friesen C, Schwarz A, Wiesendanger R, Sengstock K, Becker C. A cavity optomechanical locking scheme based on the optical spring effect. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:103102. [PMID: 33138582 DOI: 10.1063/5.0010255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
We present a novel locking scheme for active length-stabilization and frequency detuning of a cavity optomechanical device based on the optical spring effect. The error signal is generated by utilizing the position measurement of a thermally driven intra-cavity nanomechanical device and employing its detuning-dependent frequency shift caused by the dispersive coupling to the cavity field. The scheme neither requires external modulation of the laser or the cavity nor does it demand for additional error signal readout, rendering its technical implementation rather simple for a large variety of existing optomechanical devices. Specifically, for large-linewidth microcavities or in situations where other locking schemes appear unfavorable conceptually or are hard to realize technically, the optical spring lock represents a potential alternative for stabilizing the cavity length. We explain the functional principle of the lock and characterize its performance in terms of bandwidth and gain profile.
Collapse
Affiliation(s)
- P Rohse
- ZOQ (Zentrum für Optische Quantentechnologien), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - J Butlewski
- ZOQ (Zentrum für Optische Quantentechnologien), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - F Klein
- ZOQ (Zentrum für Optische Quantentechnologien), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - T Wagner
- ZOQ (Zentrum für Optische Quantentechnologien), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - C Friesen
- INF (Institut für Nanostruktur- und Festkörperphysik), Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
| | - A Schwarz
- INF (Institut für Nanostruktur- und Festkörperphysik), Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
| | - R Wiesendanger
- ZOQ (Zentrum für Optische Quantentechnologien), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - K Sengstock
- ZOQ (Zentrum für Optische Quantentechnologien), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - C Becker
- ZOQ (Zentrum für Optische Quantentechnologien), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
39
|
Zhou YH, Tan QS, Fang XM, Huang JF, Liao JQ. Spectrometric detection of weak forces in cavity optomechanics. OPTICS EXPRESS 2020; 28:28620-28634. [PMID: 32988129 DOI: 10.1364/oe.398161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
We propose a spectrometric method to detect a classical weak force acting upon the moving end mirror in a cavity optomechanical system. The force changes the equilibrium position of the end mirror, and thus the resonance frequency of the cavity field depends on the force to be detected. As a result, the magnitude of the force can be inferred by analyzing the single-photon emission and scattering spectra of the optomechanical cavity. Since the emission and scattering processes are much faster than the characteristic mechanical dissipation, the influence of the mechanical thermal noise is negligible in this spectrometric detection scheme. We also extent this spectrometric method to detect a monochromatic oscillating force by utilizing an optomechanical coupling modulated at the same frequency as the force.
Collapse
|
40
|
Zoepfl D, Juan ML, Schneider CMF, Kirchmair G. Single-Photon Cooling in Microwave Magnetomechanics. PHYSICAL REVIEW LETTERS 2020; 125:023601. [PMID: 32701311 DOI: 10.1103/physrevlett.125.023601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/16/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Cavity optomechanics, where photons are coupled to mechanical motion, provides the tools to control mechanical motion near the fundamental quantum limits. Reaching single-photon strong coupling would allow to prepare the mechanical resonator in non-Gaussian quantum states. Preparing massive mechanical resonators in such states is of particular interest for testing the boundaries of quantum mechanics. This goal remains however challenging due to the small optomechanical couplings usually achieved with massive devices. Here we demonstrate a novel approach where a mechanical resonator is magnetically coupled to a microwave cavity. We measure a single-photon coupling of g_{0}/2π∼3 kHz, an improvement of one order of magnitude over current microwave optomechanical systems. At this coupling we measure a large single-photon cooperativity with C_{0}≳10, an important step to reach single-photon strong coupling. Such a strong interaction allows us to cool the massive mechanical resonator to a third of its steady state phonon population with less than two photons in the microwave cavity. Beyond tests for quantum foundations, our approach is also well suited as a quantum sensor or a microwave to optical transducer.
Collapse
Affiliation(s)
- D Zoepfl
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M L Juan
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - C M F Schneider
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - G Kirchmair
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
41
|
Han X, Fu W, Zhong C, Zou CL, Xu Y, Sayem AA, Xu M, Wang S, Cheng R, Jiang L, Tang HX. Cavity piezo-mechanics for superconducting-nanophotonic quantum interface. Nat Commun 2020; 11:3237. [PMID: 32591510 PMCID: PMC7320138 DOI: 10.1038/s41467-020-17053-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
Hybrid quantum systems are essential for the realization of distributed quantum networks. In particular, piezo-mechanics operating at typical superconducting qubit frequencies features low thermal excitations, and offers an appealing platform to bridge superconducting quantum processors and optical telecommunication channels. However, integrating superconducting and optomechanical elements at cryogenic temperatures with sufficiently strong interactions remains a tremendous challenge. Here, we report an integrated superconducting cavity piezo-optomechanical platform where 10 GHz phonons are resonantly coupled with photons in a superconducting cavity and a nanophotonic cavity at the same time. Taking advantage of the large piezo-mechanical cooperativity (Cem ~7) and the enhanced optomechanical coupling boosted by a pulsed optical pump, we demonstrate coherent interactions at cryogenic temperatures via the observation of efficient microwave-optical photon conversion. This hybrid interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in microwave-optical photon entanglement and quantum sensing mediated by gigahertz phonons.
Collapse
Affiliation(s)
- Xu Han
- Department of Electrical Engineering, Yale University, New Haven, CT, 06520, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Wei Fu
- Department of Electrical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Changchun Zhong
- Department of Applied Physics, Yale University, New Haven, CT, 06520, USA
- Yale Quantum Institute, Yale University, New Haven, CT, 06520, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Chang-Ling Zou
- Department of Electrical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Yuntao Xu
- Department of Electrical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Ayed Al Sayem
- Department of Electrical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Mingrui Xu
- Department of Electrical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Sihao Wang
- Department of Electrical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Risheng Cheng
- Department of Electrical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Liang Jiang
- Department of Applied Physics, Yale University, New Haven, CT, 06520, USA
- Yale Quantum Institute, Yale University, New Haven, CT, 06520, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Hong X Tang
- Department of Electrical Engineering, Yale University, New Haven, CT, 06520, USA.
- Yale Quantum Institute, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
42
|
Yu M, Shen H, Li J. Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields. PHYSICAL REVIEW LETTERS 2020; 124:213604. [PMID: 32530657 DOI: 10.1103/physrevlett.124.213604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
We present a scheme to entangle two microwave fields by using the nonlinear magnetostrictive interaction in a ferrimagnet. The magnetostrictive interaction enables the coupling between a magnon mode (spin wave) and a mechanical mode in the ferrimagnet, and the magnon mode simultaneously couples to two microwave cavity fields via the magnetic dipole interaction. The magnon-phonon coupling is enhanced by directly driving the ferrimagnet with a strong red-detuned microwave field, and the driving photons are scattered onto two sidebands induced by the mechanical motion. We show that two cavity fields can be prepared in a stationary entangled state if they are, respectively, resonant with two mechanical sidebands. The present scheme illustrates a new mechanism for creating entangled states of optical fields and enables potential applications in quantum information science and quantum tasks that require entangled microwave fields.
Collapse
Affiliation(s)
- Mei Yu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Heng Shen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 030006, China
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Jie Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, Delft 2628CJ, Netherlands
| |
Collapse
|
43
|
Qiu L, Shomroni I, Seidler P, Kippenberg TJ. Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy. PHYSICAL REVIEW LETTERS 2020; 124:173601. [PMID: 32412282 DOI: 10.1103/physrevlett.124.173601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/18/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Optomechanical systems in the well-resolved-sideband regime are ideal for studying a myriad of quantum phenomena with mechanical systems, including backaction-evading measurements, mechanical squeezing, and nonclassical states generation. For these experiments, the mechanical oscillator should be prepared in its ground state, i.e., exhibit negligible residual excess motion compared to its zero-point motion. This can be achieved using the radiation pressure of laser light in the cavity by selectively driving the lower motional sideband, leading to sideband cooling. To date, the preparation of sideband-resolved optical systems to their zero-point energy has eluded laser cooling because of strong optical absorption heating. The alternative method of passive cooling suffers from the same problem, as the requisite milliKelvin environment is incompatible with the strong optical driving needed by many quantum protocols. Here, we employ a highly sideband-resolved silicon optomechanical crystal in a ^{3}He buffer-gas environment at ∼2 K to demonstrate laser sideband cooling to a mean thermal phonon occupancy of 0.09_{-0.01}^{+0.02} quantum (self-calibrated using motional sideband asymmetry), which is -7.4 dB of the oscillator's zero-point energy and corresponds to 92% ground state probability. Achieving such low occupancy by laser cooling opens the door to a wide range of quantum-optomechanical experiments in the optical domain.
Collapse
Affiliation(s)
- Liu Qiu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Itay Shomroni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Paul Seidler
- IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Gonzalez-Ballestero C, Gieseler J, Romero-Isart O. Quantum Acoustomechanics with a Micromagnet. PHYSICAL REVIEW LETTERS 2020; 124:093602. [PMID: 32202851 DOI: 10.1103/physrevlett.124.093602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
We show theoretically how to strongly couple the center-of-mass motion of a micromagnet in a harmonic potential to one of its acoustic phononic modes. The coupling is induced by a combination of an oscillating magnetic field gradient and a static homogeneous magnetic field. The former parametrically couples the center-of-mass motion to a magnonic mode while the latter tunes the magnonic mode in resonance with a given acoustic phononic mode. The magnetic fields can be adjusted to either cool the center-of-mass motion to the ground state or to enter into the strong quantum coupling regime. The center of mass can thus be used to probe and manipulate an acoustic mode, thereby opening new possibilities for out-of-equilibrium quantum mesoscopic physics. Our results hold for experimentally feasible parameters and apply to levitated micromagnets as well as micromagnets deposited on a clamped nanomechanical oscillator.
Collapse
Affiliation(s)
- Carlos Gonzalez-Ballestero
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Jan Gieseler
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - Oriol Romero-Isart
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
45
|
Millen J, Monteiro TS, Pettit R, Vamivakas AN. Optomechanics with levitated particles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:026401. [PMID: 31825901 DOI: 10.1088/1361-6633/ab6100] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Optomechanics is concerned with the use of light to control mechanical objects. As a field, it has been hugely successful in the production of precise and novel sensors, the development of low-dissipation nanomechanical devices, and the manipulation of quantum signals. Micro- and nano-particles levitated in optical fields act as nanoscale oscillators, making them excellent low-dissipation optomechanical objects, with minimal thermal contact to the environment when operating in vacuum. Levitated optomechanics is seen as the most promising route for studying high-mass quantum physics, with the promise of creating macroscopically separated superposition states at masses of 106 amu and above. Optical feedback, both using active monitoring or the passive interaction with an optical cavity, can be used to cool the centre-of-mass of levitated nanoparticles well below 1 mK, paving the way to operation in the quantum regime. In addition, trapped mesoscopic particles are the paradigmatic system for studying nanoscale stochastic processes, and have already demonstrated their utility in state-of-the-art force sensing.
Collapse
Affiliation(s)
- James Millen
- Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | | | | | | |
Collapse
|
46
|
Oeckinghaus T, Momenzadeh SA, Scheiger P, Shalomayeva T, Finkler A, Dasari D, Stöhr R, Wrachtrup J. Spin-Phonon Interfaces in Coupled Nanomechanical Cantilevers. NANO LETTERS 2020; 20:463-469. [PMID: 31820999 DOI: 10.1021/acs.nanolett.9b04198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coupled micro- and nanomechanical oscillators are of fundamental and technical interest for emerging quantum technologies. Upon interfacing with long-lived solid-state spins, the coherent manipulation of the quantum hybrid system becomes possible even at ambient conditions. Although the ability of these systems to act as a quantum bus inducing long-range spin-spin interactions has been known, the possibility to coherently couple electron/nuclear spins to the common modes of multiple oscillators and map their mechanical motion to spin-polarization has not been experimentally demonstrated. We here report experiments on interfacing spins to the common modes of a coupled cantilever system and show their correlation by translating ultralow forces induced by radiation from one oscillator to a distant spin. Further, we analyze the coherent spin-spin coupling induced by the common modes and estimate the entanglement generation among distant spins.
Collapse
Affiliation(s)
- Thomas Oeckinghaus
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
| | - S Ali Momenzadeh
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
| | - Philipp Scheiger
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
| | - Tetyana Shalomayeva
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
| | - Amit Finkler
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
- Department of Chemical and Biological Physics , Weizmann Institute of Science , 76100 Rehovot , Israel
| | - Durga Dasari
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
- Max Planck Institute for Solid State Research , 70569 Stuttgart , Germany
| | - Rainer Stöhr
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
- Center for Applied Quantum Technology , University of Stuttgart , 70569 Stuttgart , Germany
| | - Jörg Wrachtrup
- 3. Physikalisches Institut , University of Stuttgart , 70569 Stuttgart , Germany
- Max Planck Institute for Solid State Research , 70569 Stuttgart , Germany
| |
Collapse
|
47
|
Qin GQ, Yang H, Mao X, Wen JW, Wang M, Ruan D, Long GL. Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode. OPTICS EXPRESS 2020; 28:580-592. [PMID: 32118983 DOI: 10.1364/oe.381760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
We theoretically study the optomechanically induced transparency (OMIT) and absorption (OMIA) phenomena in a single microcavity optomechanical system, assisted by an indirectly coupled auxiliary cavity mode. We show that the interference effect between the two optical modes plays an important role and can be used to control the multiple-pathway induced destructive or constructive interference effect. The three-pathway interference could induce an absorption dip within the transparent window in the red sideband driving regime, while we can switch back and forth between OMIT and OMIA with the four-pathway interference. The conversion between the transparency peak and absorption dip can be achieved by tuning the relative amplitude and phase of the multiple light paths interference. Our system proposes a new platform to realize multiple pathways induced transparency and absorption in a single microcavity and a feasible way for realizing all-optical information processing.
Collapse
|
48
|
Peterson GA, Kotler S, Lecocq F, Cicak K, Jin XY, Simmonds RW, Aumentado J, Teufel JD. Ultrastrong Parametric Coupling between a Superconducting Cavity and a Mechanical Resonator. PHYSICAL REVIEW LETTERS 2019; 123:247701. [PMID: 31922827 DOI: 10.1103/physrevlett.123.247701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 06/10/2023]
Abstract
We present a new optomechanical device where the motion of a micromechanical membrane couples to a microwave resonance of a three-dimensional superconducting cavity. With this architecture, we realize ultrastrong parametric coupling, where the coupling not only exceeds the dissipation in the system but also rivals the mechanical frequency itself. In this regime, the optomechanical interaction induces a frequency splitting between the hybridized normal modes that reaches 88% of the bare mechanical frequency, limited by the fundamental parametric instability. The coupling also exceeds the mechanical thermal decoherence rate, enabling new applications in ultrafast quantum state transfer and entanglement generation.
Collapse
Affiliation(s)
- G A Peterson
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - S Kotler
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - F Lecocq
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - K Cicak
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - X Y Jin
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - R W Simmonds
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - J Aumentado
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - J D Teufel
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| |
Collapse
|
49
|
Guo J, Norte R, Gröblacher S. Feedback Cooling of a Room Temperature Mechanical Oscillator close to its Motional Ground State. PHYSICAL REVIEW LETTERS 2019; 123:223602. [PMID: 31868423 DOI: 10.1103/physrevlett.123.223602] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 05/24/2023]
Abstract
Preparing mechanical systems in their lowest possible entropy state, the quantum ground state, starting from a room temperature environment is a key challenge in quantum optomechanics. This would not only enable creating quantum states of truly macroscopic systems, but at the same time also lay the groundwork for a new generation of quantum-limited mechanical sensors in ambient environments. Laser cooling of optomechanical devices using the radiation pressure force combined with cryogenic precooling has been successful at demonstrating ground state preparation of various devices, while a similar demonstration starting from a room temperature environment remains an outstanding goal. Here, we combine integrated nanophotonics with phononic band gap engineering to simultaneously overcome prior limitations in the isolation from the surrounding environment and the achievable mechanical frequencies, as well as limited optomechanical coupling strength, demonstrating a single-photon cooperativity of 200. This new microchip technology allows us to feedback cool a mechanical resonator to around 1 mK, near its motional ground state, from room temperature. Our experiment marks a major step toward accessible, widespread quantum technologies with mechanical resonators.
Collapse
Affiliation(s)
- Jingkun Guo
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Richard Norte
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands
| | - Simon Gröblacher
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| |
Collapse
|
50
|
Delaney RD, Reed AP, Andrews RW, Lehnert KW. Measurement of Motion beyond the Quantum Limit by Transient Amplification. PHYSICAL REVIEW LETTERS 2019; 123:183603. [PMID: 31763905 DOI: 10.1103/physrevlett.123.183603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Through simultaneous but unequal electromechanical amplification and cooling processes, we create a method for a nearly noiseless pulsed measurement of mechanical motion. We use transient electromechanical amplification (TEA) to monitor a single motional quadrature with a total added noise -8.5±2.0 dB relative to the zero-point motion of the oscillator, or equivalently the quantum limit for simultaneous measurement of both mechanical quadratures. We demonstrate that TEA can be used to resolve fine structure in the phase space of a mechanical oscillator by tomographically reconstructing the density matrix of a squeezed state of motion. Without any inference or subtraction of noise, we directly observe a squeezed variance 2.8±0.3 dB below the oscillator's zero-point motion.
Collapse
Affiliation(s)
- R D Delaney
- JILA, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - A P Reed
- JILA, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Honeywell Quantum Solutions, Broomfield, Colorado 80021, USA
| | - R W Andrews
- JILA, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- HRL Laboratories, LLC, Malibu, California 90265, USA
| | - K W Lehnert
- JILA, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- National Institute of Standards and Technology, Boulder, Colorado 80309, USA
| |
Collapse
|