1
|
Ghazali N, Garassino MC, Leighl NB, Bestvina CM. Immunotherapy in advanced, KRAS G12C-mutant non-small-cell lung cancer: current strategies and future directions. Ther Adv Med Oncol 2025; 17:17588359251323985. [PMID: 40093982 PMCID: PMC11907553 DOI: 10.1177/17588359251323985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Kirsten rat sarcoma (KRAS) mutations are present in up to 25% of non-small-cell lung cancer (NSCLC). KRAS G12C is the most common type of mutation, representing approximately half of the cases in KRAS-mutant NSCLC. Mutations in KRAS activate the RAF-MEK-ERK pathway, leading to increased cell proliferation and survival. Recent advances in drug development have led to the approval of KRAS G12C inhibitors sotorasib and adagrasib. This review explores the emerging therapeutic strategies in KRAS G12C-mutant NSCLC, including dual checkpoint blockade and combinations with checkpoint inhibitors, with a focus on the setting of advanced disease.
Collapse
Affiliation(s)
- Nadia Ghazali
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | | | - Natasha B Leighl
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Christine M Bestvina
- Department of Medicine, The University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Hu Z, Martí J. Unraveling atomic-scale mechanisms of GDP extraction catalyzed by SOS1 in KRAS-G12 and KRAS-D12 oncogenes. Comput Biol Med 2025; 186:109599. [PMID: 39731920 DOI: 10.1016/j.compbiomed.2024.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
The guanine exchange factor SOS1 plays a pivotal role in the positive feedback regulation of the KRAS signaling pathway. Recently, the regulation of KRAS-SOS1 interactions and KRAS downstream effector proteins has emerged as a key focus in the development of therapies targeting KRAS-driven cancers. However, the detailed dynamic mechanisms underlying SOS1-catalyzed GDP extraction and the impact of KRAS mutations remain largely unexplored. In this study, we unveil and describe in atomic detail the primary mechanisms by which SOS1 facilitates GDP extraction from KRAS oncogenes. For GDP-bound wild-type KRAS (KRAS-G12), four critical amino acids (Lys811, Glu812, Lys939, and Glu942) are identified as essential for the catalytic function of SOS1. Notably, the KRAS-G12D mutation (KRAS-D12) significantly accelerates the rate of GDP extraction. The molecular basis of this enhancement are attributed to hydrogen bonding interactions between the mutant residue Asp12 and a positively charged pocket in the intrinsically disordered region (residues 807-818), comprising Ser807, Trp809, Thr810, and Lys811. These findings provide novel insights into SOS1-KRAS interactions and offer a foundation for developing anti-cancer strategies aimed at disrupting these mechanisms.
Collapse
Affiliation(s)
- Zheyao Hu
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain.
| |
Collapse
|
3
|
Nussinov R, Yavuz BR, Jang H. Allostery in Disease: Anticancer Drugs, Pockets, and the Tumor Heterogeneity Challenge. J Mol Biol 2025:169050. [PMID: 40021049 DOI: 10.1016/j.jmb.2025.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Charting future innovations is challenging. Yet, allosteric and orthosteric anticancer drugs are undergoing a revolution and taxing unresolved dilemmas await. Among the imaginative innovations, here we discuss cereblon and thalidomide derivatives as a means of recruiting neosubstrates and their degradation, allosteric heterogeneous bifunctional drugs like PROTACs, drugging phosphatases, inducers of targeted posttranslational protein modifications, antibody-drug conjugates, exploiting membrane interactions to increase local concentration, stabilizing the folded state, and more. These couple with harnessing allosteric cryptic pockets whose discovery offers more options to modulate the affinity of orthosteric, active site inhibitors. Added to these are strategies to counter drug resistance through drug combinations co-targeting pathways to bypass signaling blockades. Here, we discuss on the molecular and cellular levels, such inspiring advances, provide examples of their applications, their mechanisms and rational. We start with an overview on difficult to target proteins and their properties-rarely, if ever-conceptualized before, discuss emerging innovative drugs, and proceed to the increasingly popular allosteric cryptic pockets-their advantages-and critically, issues to be aware of. We follow with drug resistance and in-depth discussion of tumor heterogeneity. Heterogeneity is a hallmark of highly aggressive cancers, the core of drug resistance unresolved challenge. We discuss potential ways to target heterogeneity by predicting it. The increase in experimental and clinical data, computed (cell-type specific) interactomes, capturing transient cryptic pockets, learned drug resistance, workings of regulatory mechanisms, heterogeneity, and resistance-based cell signaling drug combinations, assisted by AI-driven reasoning and recognition, couple with creative allosteric drug discovery, charting future innovations.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| |
Collapse
|
4
|
Uniyal P, Kashyap VK, Behl T, Parashar D, Rawat R. KRAS Mutations in Cancer: Understanding Signaling Pathways to Immune Regulation and the Potential of Immunotherapy. Cancers (Basel) 2025; 17:785. [PMID: 40075634 PMCID: PMC11899378 DOI: 10.3390/cancers17050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation is one of the most prevailing mutations in various tumors and is difficult to cure. Long-term proliferation in carcinogenesis is primarily initiated by oncogenic KRAS-downstream signaling. Recent research suggests that it also activates the autocrine effect and interplays the tumor microenvironment (TME). Here, we discuss the emerging research, including KRAS mutations to immune evasion in TME, which induce immunological modulation that promotes tumor development. This review gives an overview of the existing knowledge of the underlying connection between KRAS mutations and tumor immune modulation. It also addresses the mechanisms to reduce the effect of oncogenes on the immune system and recent advances in clinical trials for immunotherapy in KRAS-mutated cancers.
Collapse
Affiliation(s)
- Priyanka Uniyal
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| | - Vivek Kumar Kashyap
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research (ST-CECR), School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, India;
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi Rawat
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| |
Collapse
|
5
|
D'Alessio-Sands L, Gaynier J, Michel-Milian V, Agbowuro AA, Brackett CM. Current Strategies and Future Dimensions in the Development of KRAS Inhibitors for Targeted Anticancer Therapy. Drug Dev Res 2025; 86:e70042. [PMID: 39799558 DOI: 10.1002/ddr.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 12/15/2024] [Indexed: 01/15/2025]
Abstract
KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy. Over the last decade, this protein has evolved from being termed "undruggable" to producing two clinically approved drugs along with several more in clinical development, and many under preclinical investigations. This review details the development of various KRAS-targeted molecules with emphasis on the different drug design strategies employed by examining the following areas: (1) Direct inhibition of KRAS mutants using small molecule binders, (2) Inhibiting the activated state of KRAS mutants using a binary complex of small molecule binders and cyclophilin A, and (3) Targeted degradation of KRAS mutants using the PROTAC approach. We assess the pharmacological attributes and possible clinical benefits of the different molecules and look to the next frontiers in the application of KRAS inhibitors as anticancer agents.
Collapse
Affiliation(s)
| | - Joshua Gaynier
- South University School of Pharmacy, Savannah, Giorgia, USA
| | | | | | | |
Collapse
|
6
|
Wang Y, Bui TA, Yang X, Hutvagner G, Deng W. Advancements in gene therapies targeting mutant KRAS in cancers. Cancer Metastasis Rev 2025; 44:24. [PMID: 39820726 PMCID: PMC11748474 DOI: 10.1007/s10555-025-10243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Mutations in the KRAS gene are well-known tumourigenic drivers of colorectal, pancreatic and lung cancers. Mechanistically, these mutations promote uncontrolled cell proliferation and alter the tumour microenvironment during early carcinoma stages. Given their critical carcinogenic functions, significant progress has been made in developing KRAS inhibitors for cancer treatment. However, clinical applications of these KRAS inhibitor compounds are limited to specific cancer types which carry the relevant KRAS mutations. Additionally, clinical findings have shown that these compounds can induce moderate to serious side effects. Therefore, new approaches have emerged focusing on the development of universal therapeutics capable of targeting a wider range of KRAS mutations, minimising toxicity and enhancing the therapeutic efficacy. This review aims to examine these therapeutic strategies in the context of cancer treatment. It firstly provides an overview of fundamental KRAS biology within the cell signalling landscape and how KRAS mutations are associated with cancer pathogenesis. Subsequently, it introduces the development of current KRAS inhibitors which target certain KRAS mutants in different types of cancer. It then explores the potential of gene therapy approaches, including siRNA, miRNA and CRISPR methodologies. Furthermore, it discusses the use of lipid-based nanocarriers to deliver gene cargos for targeting KRAS gene mutants. Finally, it provides the insights into the future prospects for combatting KRAS mutation-associated cancers.
Collapse
Affiliation(s)
- Yuhang Wang
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Thuy Anh Bui
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Xinpu Yang
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
7
|
Benary GE, Kilgenstein F, Koller S, Scherkenbeck J. Monophthalates of betulinic acid and related pentacyclic triterpenes inhibit efficiently the SOS-mediated nucleotide exchange and impact PI3K/AKT signaling in oncogenic K-RAS4B proteins. RSC Adv 2025; 15:883-895. [PMID: 39802464 PMCID: PMC11719397 DOI: 10.1039/d4ra08503e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Betulinic acid and other herbal pentacyclic triterpenes have attracted interest in cancer research as these natural products induce apoptosis and suppress tumor progression. However, the molecular basis of the antitumor effect is still unknown. Here we show that monophthalates of betulinic acid and related triterpenes inhibit GDP/GTP exchange in oncogenic K-RAS4B proteins via the PI3K/AKT downstream cascade. According to a binding model based on molecular modelling, these derivatives act like a molecular glue that stabilizes an unproductive K-RAS4Ballo:SOS complex. This represents a new mode of action and could be an attractive route for targeting RAS-related cancers.
Collapse
Affiliation(s)
- Gerrit E Benary
- University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
| | - Frank Kilgenstein
- University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
| | - Sascha Koller
- University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
| | - Jürgen Scherkenbeck
- University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
| |
Collapse
|
8
|
Peterson KJ, Slepchenko BM, Loew LM. Bridging molecular to cellular scales for models of membrane receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626844. [PMID: 39677765 PMCID: PMC11643039 DOI: 10.1101/2024.12.04.626844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Biochemical interactions at membranes are the starting points for cell signaling networks. But bimolecular reaction kinetics are difficult to experimentally measure on 2-dimensional membranes and are usually measured in volumetric in vitro assays. Membrane tethering produces confinement and steric effects that will significantly impact binding rates in ways that are not readily estimated from volumetric measurements. Also, there are situations when 2D reactions do not conform to simple kinetics. Here we show how highly coarse-grained molecular simulations using the SpringSaLaD software can be used to estimate membrane- tethered rate constants from experimentally determined volumetric kinetics. The approach is validated using an analytical solution for dimerization of binding sites anchored via stiff linkers. This approach can provide 2-dimensional bimolecular rate constants to parameterize cell-scale models of receptor-mediated signaling. We explore how factors such as molecular reach, steric effects, disordered domains, local concentration and diffusion affect the kinetics of binding. We find that for reaction-limited cases, the key determinant in converting 3D to 2D rate constant is the distance of the binding sites from the membrane. On the other hand, the mass action rate law may no longer be obeyed for diffusion-limited reaction on surfaces; the simulations reveal when this situation pertains. We then apply our approach to epidermal growth factor receptor (EGFR) mediated activation of the membrane-bound small GTPase Ras. The analysis reveals how prior binding of Ras to the allosteric site of SOS, a guanine nucleotide exchange factor (GEF) that is recruited to EGFR, significantly accelerates its catalytic activity.
Collapse
Affiliation(s)
- Kelvin J. Peterson
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT USA
| | - Boris M. Slepchenko
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT USA
| | - Leslie M. Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT USA
| |
Collapse
|
9
|
Sabt A, Tawfik HO, Khaleel EF, Badi RM, Ibrahim HAA, Elkaeed EB, Eldehna WM. An overview of recent advancements in small molecules suppression of oncogenic signaling of K-RAS: an updated review. Mol Divers 2024; 28:4581-4608. [PMID: 38289431 DOI: 10.1007/s11030-023-10777-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2024]
Abstract
RAS (rat sarcoma) oncoproteins are crucial for the growth of some human cancers, including lung, colorectal, and pancreatic adenocarcinomas. The RAS family contains three known human isoforms H(Harvey)-RAS, N(Neuroblastoma)-RAS, and K(Kirsten)-RAS. Mutations in RAS proteins cause up to ~ 30% of cancer cases. For almost 30 years, mutant proteins druggable pockets remained undiscovered, they are nearly identical to their essential, wild-type counterparts and cause cancer. Recent research has increased our knowledge of RAS's structure, processing, and signaling pathways and revealed novel insights into how it works in cancer cells. We highlight several approaches that inhibit RAS activity with small compounds in this review: substances that blocked farnesyltransferase (FTase), isoprenylcysteine carboxyl methyltransferase (Icmt), and RAS-converting enzyme 1 (Rce1) three important enzymes required for RAS localization. Inhibitors block the son of sevenless (SOS) protein's role in nucleotide exchange activity, small molecules that interfered with the phosphodiesterase (PDEδ)-mediated intracellular RAS transport processes, substances that focused on inhibiting RAS-effector interactions. Inhibitors are made to suppress the oncogenic K-RAS G12C mutant only when the nucleophilic cysteine residue at codon 12 is present and many inhibitors with various mechanisms like breaking the organization membrane of K-RAS nano-clustering. So, this is a thorough analysis of the most recent advancements in K-RAS-targeted anticancer techniques, hopefully offering insight into the field's future.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, 13713, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
10
|
Sankarapandian V, Rajendran RL, Miruka CO, Sivamani P, Maran BAV, Krishnamoorthy R, Gangadaran P, Ahn BC. A review on tyrosine kinase inhibitors for targeted breast cancer therapy. Pathol Res Pract 2024; 263:155607. [PMID: 39326367 DOI: 10.1016/j.prp.2024.155607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Breast cancer is a heterogeneous disease with complex molecular pathogenesis. Overexpression of several tyrosine kinase receptors is associated with poor prognosis, therefore, they can be key targets in breast cancer therapy. Tyrosine kinase inhibitors (TKIs) have emerged as leading agents in targeted cancer therapy due to their effectiveness in disrupting key molecular pathways involved in tumor growth. TKIs target various tyrosine kinases, including the human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor receptor (VEGFR), anaplastic lymphoma kinase (ALK), vascular endothelial growth factor receptor (VEGFR)-associated multi-targets, rearranged during transfection (RET), fibroblast growth factor receptor (FGFR), receptor tyrosine kinase-like orphan signal 1 (ROS1), Mitogen-activated protein kinase (MAPK), and tropomyosin receptor kinase (TRK). These drugs target the tyrosine kinase domain of receptor tyrosine kinases and play a vital role in proliferation and migration of breast cancer cells. Several TKIs, including lapatinib, neratinib, and tucatinib, have been developed and are currently used in clinical settings, often in combination with chemotherapy, endocrine therapy, or other targeted agents. TKIs have demonstrated remarkable benefits in enhancing progression-free and overall survival in patients with breast cancer and have become a standard of care for this population. This review provides an overview of TKIs currently being examined in preclinical studies and clinical trials, especially in combination with drugs approved for breast cancer treatment. TKIs have emerged as a promising therapeutic option for patients with breast cancer and hold potential for treating other breast cancer subtypes. The development of new TKIs and their integration into personalized treatment strategies will continue to shape the future of breast cancer therapy.
Collapse
Affiliation(s)
- Vidya Sankarapandian
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Box 20000, Uganda
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Conrad Ondieki Miruka
- Department of Biochemistry, Kampala International University, Western Campus, Box 20000, Uganda
| | - Poornima Sivamani
- Department of Pharmacology and Clinical pharmacology, Christian Medical College, Vellore 632004, India
| | - Balu Alagar Venmathi Maran
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| |
Collapse
|
11
|
Ren H, Lee AA, Lew LJN, DeGrandchamp JB, Groves JT. Positive feedback in Ras activation by full-length SOS arises from autoinhibition release mechanism. Biophys J 2024; 123:3295-3303. [PMID: 39021073 PMCID: PMC11480760 DOI: 10.1016/j.bpj.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Signaling through the Ras-MAPK pathway can exhibit switch-like activation, which has been attributed to the underlying positive feedback and bimodality in the activation of RasGDP to RasGTP by SOS. SOS contains both catalytic and allosteric Ras binding sites, and a common assumption is that allosteric activation selectively by RasGTP provides the mechanism of positive feedback. However, recent single-molecule studies have revealed that SOS catalytic rates are independent of the nucleotide state of Ras in the allosteric binding site, raising doubt about this as a positive feedback mechanism. Here, we perform detailed kinetic analyses of receptor-mediated recruitment of full-length SOS to the membrane while simultaneously monitoring its catalytic activation of Ras. These results, along with kinetic modeling, expose the autoinhibition release step in SOS, rather than either recruitment or allosteric activation, as the underlying mechanism giving rise to positive feedback in Ras activation.
Collapse
Affiliation(s)
- He Ren
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Albert A Lee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California
| | - L J Nugent Lew
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | | | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California; Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
12
|
Lee AA, Kim NH, Alvarez S, Ren H, DeGrandchamp JB, Lew LJN, Groves JT. Bimodality in Ras signaling originates from processivity of the Ras activator SOS without deterministic bistability. SCIENCE ADVANCES 2024; 10:eadi0707. [PMID: 38905351 PMCID: PMC11192083 DOI: 10.1126/sciadv.adi0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Ras is a small GTPase that is central to important functional decisions in diverse cell types. An important aspect of Ras signaling is its ability to exhibit bimodal or switch-like activity. We describe the total reconstitution of a receptor-mediated Ras activation-deactivation reaction catalyzed by SOS and p120-RasGAP on supported lipid membrane microarrays. The results reveal a bimodal Ras activation response, which is not a result of deterministic bistability but is rather driven by the distinct processivity of the Ras activator, SOS. Furthermore, the bimodal response is controlled by the condensation state of the scaffold protein, LAT, to which SOS is recruited. Processivity-driven bimodality leads to stochastic bursts of Ras activation even under strongly deactivating conditions. This behavior contrasts deterministic bistability and may be more resistant to pharmacological inhibition.
Collapse
Affiliation(s)
- Albert A. Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Neil H. Kim
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - He Ren
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - L. J. Nugent Lew
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Wang J, Zhu H, Tian R, Zhang Q, Zhang H, Hu J, Wang S. Physiological and pathological effects of phase separation in the central nervous system. J Mol Med (Berl) 2024; 102:599-615. [PMID: 38441598 PMCID: PMC11055734 DOI: 10.1007/s00109-024-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Phase separation, also known as biomolecule condensate, participates in physiological processes such as transcriptional regulation, signal transduction, gene expression, and DNA damage repair by creating a membrane-free compartment. Phase separation is primarily caused by the interaction of multivalent non-covalent bonds between proteins and/or nucleic acids. The strength of molecular multivalent interaction can be modified by component concentration, the potential of hydrogen, posttranslational modification, and other factors. Notably, phase separation occurs frequently in the cytoplasm of mitochondria, the nucleus, and synapses. Phase separation in vivo is dynamic or stable in the normal physiological state, while abnormal phase separation will lead to the formation of biomolecule condensates, speeding up the disease progression. To provide candidate suggestions for the clinical treatment of nervous system diseases, this review, based on existing studies, carefully and systematically represents the physiological roles of phase separation in the central nervous system and its pathological mechanism in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, China.
| | - Ruijia Tian
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Qian Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Haoliang Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Jin Hu
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
14
|
Brownfield BA, Richardson BC, Halaby SL, Fromme JC. Sec7 regulatory domains scaffold autoinhibited and active conformations. Proc Natl Acad Sci U S A 2024; 121:e2318615121. [PMID: 38416685 PMCID: PMC10927569 DOI: 10.1073/pnas.2318615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 03/01/2024] Open
Abstract
The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here, we report the cryogenic electron microscopy structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.
Collapse
Affiliation(s)
- Bryce A. Brownfield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Brian C. Richardson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Steve L. Halaby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
15
|
Huang WYC, Boxer SG, Ferrell JE. Membrane localization accelerates association under conditions relevant to cellular signaling. Proc Natl Acad Sci U S A 2024; 121:e2319491121. [PMID: 38427601 PMCID: PMC10927583 DOI: 10.1073/pnas.2319491121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
Translocation of cytoplasmic molecules to the plasma membrane is commonplace in cell signaling. Membrane localization has been hypothesized to increase intermolecular association rates; however, it has also been argued that association should be faster in the cytosol because membrane diffusion is slow. Here, we directly compare an identical association reaction, the binding of complementary DNA strands, in solution and on supported membranes. The measured rate constants show that for a 10-µm-radius spherical cell, association is 22- to 33-fold faster at the membrane than in the cytoplasm. The kinetic advantage depends on cell size and is essentially negligible for typical ~1 µm prokaryotic cells. The rate enhancement is attributable to a combination of higher encounter rates in two dimensions and a higher reaction probability per encounter.
Collapse
Affiliation(s)
- William Y. C. Huang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
16
|
Guo Y, Tian J, Guo Y, Wang C, Chen C, Cai S, Yu W, Sun B, Yan J, Li Z, Fan J, Qi Q, Zhang D, Jin W, Hua Z, Chen G. Oncogenic KRAS effector USP13 promotes metastasis in non-small cell lung cancer through deubiquitinating β-catenin. Cell Rep 2023; 42:113511. [PMID: 38043062 DOI: 10.1016/j.celrep.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
KRAS mutations are frequently detected in non-small cell lung cancers (NSCLCs). Although covalent KRASG12C inhibitors have been developed to treat KRASG12C-mutant cancers, effective treatments are still lacking for other KRAS-mutant NSCLCs. Thus, identifying a KRAS effector that confers poor prognosis would provide an alternative strategy for the treatment of KRAS-driven cancers. Here, we show that KRAS drives expression of deubiquitinase USP13 through Ras-responsive element-binding protein 1 (RREB1). Elevated USP13 promotes KRAS-mutant NSCLC metastasis, which is associated with poor prognosis in NSCLC patients. Mechanistically, USP13 interacts with and removes the K63-linked polyubiquitination of β-catenin at lysine 508, which enhances the binding between β-catenin and transcription factor TCF4. Importantly, we identify 2-methoxyestradiol as an effective inhibitor for USP13 from a natural compound library, and it could potently suppress the metastasis of KRAS-mutant NSCLC cells in vitro and in vivo. These findings identify USP13 as a therapeutic target for metastatic NSCLC with KRAS mutations.
Collapse
Affiliation(s)
- Yanguan Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Congcong Chen
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Songwang Cai
- Department of General Surgery and Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Wenliang Yu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhonghua Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jun Fan
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Qi Qi
- Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China.
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China; Department of Medical Biochemistry, Molecular Biology and Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China.
| |
Collapse
|
17
|
Bhadhadhara K, Jani V, Koulgi S, Sonavane U, Joshi R. Studying early structural changes in SOS1 mediated KRAS activation mechanism. Curr Res Struct Biol 2023; 7:100115. [PMID: 38188543 PMCID: PMC10765296 DOI: 10.1016/j.crstbi.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
KRAS activation is known to be modulated by a guanine nucleotide exchange factor (GEF), namely, Son of Sevenless1 (SOS1). SOS1 facilitates the exchange of GDP to GTP thereby leading to activation of KRAS. The binding of GDP/GTP to KRAS at the REM/allosteric site of SOS1 regulates the activation of KRAS at CDC25/catalytic site by facilitating its exchange. Different aspects of the allosteric activation of KRAS through SOS1 are still being explored. To understand the SOS1 mediated activation of KRAS, molecular dynamics simulations for a total of nine SOS1 complexes (KRAS-SOS1-KRAS) were performed. These nine systems comprised different combinations of KRAS-bound nucleotides (GTP/GDP) at REM and CDC25 sites of SOS1. Various conformational and thermodynamic parameters were analyzed for these simulation systems. MMPBSA free energy analysis revealed that binding at CDC25 site of SOS1 was significantly low for GDP-bound KRAS as compared to that of GTP-bound KRAS. It was observed that presence of either GDP/GTP bound KRAS at the REM site of SOS1 affected the activation related changes in the KRAS present at CDC25 site. The conformational changes at the catalytic site of SOS1 resulting from GDP/GTP-bound KRAS at the allosteric changes may hint at KRAS activation through different pathways (slow/fast/rare). The allosteric effect on activation of KRAS at CDC25 site may be due to conformations adopted by switch-I, switch-II, beta2 regions of KRAS at REM site. The effect of structural rearrangements occurring at allosteric KRAS may have led to increased interactions between SOS1 and KRAS at both the sites. The SOS1 residues involved in these important interactions with KRAS at the REM site were R694, S732 and K735. Whereas the ones interacting with KRAS at CDC25 site were S807, W809 and K814. This may suggest the crucial role of these residues in guiding the allosteric activation of KRAS at CDC25 site. The conformational shifts observed in the switch-I, switch-II and alpha3 regions of KRAS at CDC25 site may be attributed to be a part of allosteric activation. The binding affinities, interacting residues and conformational dynamics may provide an insight into development of inhibitors targeting the SOS1 mediated KRAS activation.
Collapse
Affiliation(s)
- Kirti Bhadhadhara
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Vinod Jani
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Shruti Koulgi
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Uddhavesh Sonavane
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Rajendra Joshi
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| |
Collapse
|
18
|
Brownfield BA, Richardson BC, Halaby SL, Fromme JC. Sec7 regulatory domains scaffold autoinhibited and active conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568272. [PMID: 38045260 PMCID: PMC10690275 DOI: 10.1101/2023.11.22.568272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here we report the cryoEM structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.
Collapse
Affiliation(s)
- Bryce A. Brownfield
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - Brian C. Richardson
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
- Current address: The Hormel Institute, University of Minnesota, Austin MN 55912
| | - Steve L. Halaby
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
- Current address: Abbvie Inc., Irvine, CA 92612
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
19
|
Vujovic F, Shepherd CE, Witting PK, Hunter N, Farahani RM. Redox-Mediated Rewiring of Signalling Pathways: The Role of a Cellular Clock in Brain Health and Disease. Antioxidants (Basel) 2023; 12:1873. [PMID: 37891951 PMCID: PMC10604469 DOI: 10.3390/antiox12101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan signalling pathways can be rewired to dampen or amplify the rate of events, such as those that occur in development and aging. Given that a linear network topology restricts the capacity to rewire signalling pathways, such scalability of the pace of biological events suggests the existence of programmable non-linear elements in the underlying signalling pathways. Here, we review the network topology of key signalling pathways with a focus on redox-sensitive proteins, including PTEN and Ras GTPase, that reshape the connectivity profile of signalling pathways in response to an altered redox state. While this network-level impact of redox is achieved by the modulation of individual redox-sensitive proteins, it is the population by these proteins of critical nodes in a network topology of signal transduction pathways that amplifies the impact of redox-mediated reprogramming. We propose that redox-mediated rewiring is essential to regulate the rate of transmission of biological signals, giving rise to a programmable cellular clock that orchestrates the pace of biological phenomena such as development and aging. We further review the evidence that an aberrant redox-mediated modulation of output of the cellular clock contributes to the emergence of pathological conditions affecting the human brain.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Paul K. Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
21
|
Leonard TA, Loose M, Martens S. The membrane surface as a platform that organizes cellular and biochemical processes. Dev Cell 2023; 58:1315-1332. [PMID: 37419118 DOI: 10.1016/j.devcel.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.
Collapse
Affiliation(s)
- Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
22
|
Feng S, Sanford JA, Weber T, Hutchinson-Bunch CM, Dakup PP, Paurus VL, Attah K, Sauro HM, Qian WJ, Wiley HS. A Phosphoproteomics Data Resource for Systems-level Modeling of Kinase Signaling Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551714. [PMID: 37577496 PMCID: PMC10418157 DOI: 10.1101/2023.08.03.551714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Building mechanistic models of kinase-driven signaling pathways requires quantitative measurements of protein phosphorylation across physiologically relevant conditions, but this is rarely done because of the insensitivity of traditional technologies. By using a multiplexed deep phosphoproteome profiling workflow, we were able to generate a deep phosphoproteomics dataset of the EGFR-MAPK pathway in non-transformed MCF10A cells across physiological ligand concentrations with a time resolution of <12 min and in the presence and absence of multiple kinase inhibitors. An improved phosphosite mapping technique allowed us to reliably identify >46,000 phosphorylation sites on >6600 proteins, of which >4500 sites from 2110 proteins displayed a >2-fold increase in phosphorylation in response to EGF. This data was then placed into a cellular context by linking it to 15 previously published protein databases. We found that our results were consistent with much, but not all previously reported data regarding the activation and negative feedback phosphorylation of core EGFR-ERK pathway proteins. We also found that EGFR signaling is biphasic with substrates downstream of RAS/MAPK activation showing a maximum response at <3ng/ml EGF while direct substrates, such as HGS and STAT5B, showing no saturation. We found that RAS activation is mediated by at least 3 parallel pathways, two of which depend on PTPN11. There appears to be an approximately 4-minute delay in pathway activation at the step between RAS and RAF, but subsequent pathway phosphorylation was extremely rapid. Approximately 80 proteins showed a >2-fold increase in phosphorylation across all experiments and these proteins had a significantly higher median number of phosphorylation sites (~18) relative to total cellular phosphoproteins (~4). Over 60% of EGF-stimulated phosphoproteins were downstream of MAPK and included mediators of cellular processes such as gene transcription, transport, signal transduction and cytoskeletal arrangement. Their phosphorylation was either linear with respect to MAPK activation or biphasic, corresponding to the biphasic signaling seen at the level of the EGFR. This deep, integrated phosphoproteomics data resource should be useful in building mechanistic models of EGFR and MAPK signaling and for understanding how downstream responses are regulated.
Collapse
Affiliation(s)
- Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - James A. Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Thomas Weber
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | | | - Panshak P. Dakup
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Vanessa L. Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| |
Collapse
|
23
|
Lee AA, Kim NH, Alvarez S, Ren H, DeGrandchamp JB, Lew LJN, Groves JT. Bimodality in Ras signaling originates from processivity of the Ras activator SOS without classic kinetic bistability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549263. [PMID: 37503094 PMCID: PMC10370109 DOI: 10.1101/2023.07.17.549263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ras is a small GTPase that is central to important functional decisions in diverse cell types. An important aspect of Ras signaling is its ability to exhibit bimodal, or switch-like activity. We describe the total reconstitution of a receptor-mediated Ras activation-deactivation reaction catalyzed by SOS and p120-RasGAP on supported lipid membrane microarrays. The results reveal a bimodal Ras activation response, which is not a result of classic kinetic bistability, but is rather driven by the distinct processivity of the Ras activator, SOS. Furthermore, the bimodal response is controlled by the condensation state of the scaffold protein, LAT, to which SOS is recruited. Processivity-driven bimodality leads to stochastic bursts of Ras activation even under strongly deactivating conditions. This behavior contrasts classic kinetic bistability and is distinctly more resistant to pharmacological inhibition.
Collapse
|
24
|
Montalbo RCK, Tu HL. Micropatterning of functional lipid bilayer assays for quantitative bioanalysis. BIOMICROFLUIDICS 2023; 17:031302. [PMID: 37179590 PMCID: PMC10171888 DOI: 10.1063/5.0145997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Interactions of the cell with its environment are mediated by the cell membrane and membrane-localized molecules. Supported lipid bilayers have enabled the recapitulation of the basic properties of cell membranes and have been broadly used to further our understanding of cellular behavior. Coupled with micropatterning techniques, lipid bilayer platforms have allowed for high throughput assays capable of performing quantitative analysis at a high spatiotemporal resolution. Here, an overview of the current methods of the lipid membrane patterning is presented. The fabrication and pattern characteristics are briefly described to present an idea of the quality and notable features of the methods, their utilizations for quantitative bioanalysis, as well as to highlight possible directions for the advanced micropatterning lipid membrane assays.
Collapse
|
25
|
Jin H, Koh M, Lim H, Yong HY, Kim ES, Kim SY, Kim K, Jung J, Ryu WJ, Choi KY, Moon A. Lipid raft protein flotillin-1 is important for the interaction between SOS1 and H-Ras/K-Ras, leading to Ras activation. Int J Cancer 2023; 152:1933-1946. [PMID: 36691829 DOI: 10.1002/ijc.34443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Ras mutations have been frequently observed in human cancer. Although there is a high degree of similarity between Ras isomers, they display preferential coupling in specific cancer types. The binding of Ras to the plasma membrane is essential for its activation and biological functions. The present study elucidated Ras isoform-specific interactions with the membrane and their role in Ras-mediated biological activities. We investigated the role of a lipid raft protein flotillin-1 (Flot-1) in the activations of Ras. We found that Flot-1 was co-localized with H-Ras, but not with N-Ras, in lipid rafts of MDA-MB-231 human breast cells. The amino-terminal hydrophobic domain (1-38) of Flot-1 interacted with the hypervariable region of H-Ras. The epidermal growth factor-stimulated activation of H-Ras required Flot-1 which was not necessary for that of N-Ras in breast cancer cells. Flot-1 interacted with son of sevenless (SOS)-1, which promotes the conversion of Ras-bound GDP to GTP. Notably, Flot-1 was crucial for the interaction between SOS1 and H-Ras/K-Ras in breast and pancreatic cancer cells. Stable knockdown of Flot-1 reduced the in vivo metastasis in a mouse xenograft model with human breast carcinoma cells. A tissue microarray composed of 61 human pancreatic cancer samples showed higher levels of Flot-1 expression in pancreatic tumor tissues compared to normal tissues, and a correlation between K-Ras and Flot-1. Taken together, our findings suggest that Flot-1 may serve as a membrane platform for the interaction of SOS1 with H-Ras/K-Ras in human cancer cells, presenting Flot-1 as a potential target for Ras-driven cancers.
Collapse
Affiliation(s)
- Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hae-Young Yong
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul, Republic of Korea
| | - Kyoungmee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| |
Collapse
|
26
|
Dai J, Wilhelm KB, Bischoff AJ, Pereira JH, Dedeo MT, García-Almedina DM, Adams PD, Groves JT, Francis MB. A Membrane-Associated Light-Harvesting Model is Enabled by Functionalized Assemblies of Gene-Doubled TMV Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207805. [PMID: 36811150 DOI: 10.1002/smll.202207805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/26/2023] [Indexed: 05/18/2023]
Abstract
Photosynthetic light harvesting requires efficient energy transfer within dynamic networks of light-harvesting complexes embedded within phospholipid membranes. Artificial light-harvesting models are valuable tools for understanding the structural features underpinning energy absorption and transfer within chromophore arrays. Here, a method for attaching a protein-based light-harvesting model to a planar, fluid supported lipid bilayer (SLB) is developed. The protein model consists of the tobacco mosaic viral capsid proteins that are gene-doubled to create a tandem dimer (dTMV). Assemblies of dTMV break the facial symmetry of the double disk to allow for differentiation between the disk faces. A single reactive lysine residue is incorporated into the dTMV assemblies for the site-selective attachment of chromophores for light absorption. On the opposing dTMV face, a cysteine residue is incorporated for the bioconjugation of a peptide containing a polyhistidine tag for association with SLBs. The dual-modified dTMV complexes show significant association with SLBs and exhibit mobility on the bilayer. The techniques used herein offer a new method for protein-surface attachment and provide a platform for evaluating excited state energy transfer events in a dynamic, fully synthetic artificial light-harvesting system.
Collapse
Affiliation(s)
- Jing Dai
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jose H Pereira
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michel T Dedeo
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Paul D Adams
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
27
|
Ni Q, Zhu B, Ji Y, Zheng Q, Liang X, Ma N, Jiang H, Zhang F, Shang Y, Wang Y, Xu S, Zhang E, Yuan Y, Chen T, Yin F, Cao H, Huang J, Xia J, Ding X, Qiu X, Ding K, Song C, Zhou W, Wu M, Wang K, Lui R, Lin Q, Chen W, Li Z, Cheng S, Wang X, Xie D, Li J. PPDPF Promotes the Development of Mutant KRAS-Driven Pancreatic Ductal Adenocarcinoma by Regulating the GEF Activity of SOS1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202448. [PMID: 36453576 PMCID: PMC9839844 DOI: 10.1002/advs.202202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The guanine nucleotide exchange factor (GEF) SOS1 catalyzes the exchange of GDP for GTP on RAS. However, regulation of the GEF activity remains elusive. Here, the authors report that PPDPF functions as an important regulator of SOS1. The expression of PPDPF is significantly increased in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and recurrence of PDAC patients. Overexpression of PPDPF promotes PDAC cell growth in vitro and in vivo, while PPDPF knockout exerts opposite effects. Pancreatic-specific deletion of PPDPF profoundly inhibits tumor development in KRASG12D -driven genetic mouse models of PDAC. PPDPF can bind GTP and transfer GTP to SOS1. Mutations of the GTP-binding sites severely impair the tumor-promoting effect of PPDPF. Consistently, mutations of the critical amino acids mediating SOS1-PPDPF interaction significantly impair the GEF activity of SOS1. Therefore, this study demonstrates a novel model of KRAS activation via PPDPF-SOS1 axis, and provides a promising therapeutic target for PDAC.
Collapse
|
28
|
Loose M, Auer A, Brognara G, Budiman HR, Kowalski L, Matijević I. In vitro
reconstitution of small
GTPase
regulation. FEBS Lett 2022; 597:762-777. [PMID: 36448231 DOI: 10.1002/1873-3468.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Small GTPases play essential roles in the organization of eukaryotic cells. In recent years, it has become clear that their intracellular functions result from intricate biochemical networks of the GTPase and their regulators that dynamically bind to a membrane surface. Due to the inherent complexities of their interactions, however, revealing the underlying mechanisms of action is often difficult to achieve from in vivo studies. This review summarizes in vitro reconstitution approaches developed to obtain a better mechanistic understanding of how small GTPase activities are regulated in space and time.
Collapse
Affiliation(s)
- Martin Loose
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | - Albert Auer
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | - Gabriel Brognara
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | | | - Lukasz Kowalski
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | - Ivana Matijević
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| |
Collapse
|
29
|
A proton-pumping enzyme in the brain switches between modes. Nature 2022:10.1038/d41586-022-03617-4. [PMID: 36418873 DOI: 10.1038/d41586-022-03617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Wang J, Yao N, Hu Y, Lei M, Wang M, Yang L, Patel S, Li X, Liu K, Dong Z. PHLDA1 promotes glioblastoma cell growth via sustaining the activation state of Ras. Cell Mol Life Sci 2022; 79:520. [PMID: 36107262 PMCID: PMC11803017 DOI: 10.1007/s00018-022-04538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Activation of the Ras signaling pathway promotes the growth of malignant human glioblastoma multiforme (GBM). Mutations in Ras are rare in GBM, elevated levels of activated Ras are prevalently observed in GBM. However, the potential mechanism of how Ras is activated in GBM remains unclear. In this study, we screened a new interacted protein of Ras, PHLDA1. Our findings confirmed that PHLDA1 acted as an oncogene and promoted glioma progression and recurrence. We demonstrated that PHLDA1 was upregulated in GBM tissues and cells. PHLDA1 overexpression promoted cell proliferation and tumor growth. In terms of mechanism, PHLDA1 promoted cell proliferation by regulating Ras/Raf/Mek/Erk signaling pathway. Moreover, Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. PHLDA1 and Src competed for binding with Ras, inhibiting Ras phosphorylation by Src and rescuing Ras activity. This study may provide a new idea of the molecular mechanism underlying glioma progression and a novel potential therapeutic target for comprehensive glioblastoma treatment.
Collapse
Affiliation(s)
- Jiutao Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ning Yao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yamei Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingjuan Lei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Meixian Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Lu Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Satyananda Patel
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
| |
Collapse
|
31
|
Lin CW, Nocka LM, Stinger BL, DeGrandchamp JB, Lew LJN, Alvarez S, Phan HT, Kondo Y, Kuriyan J, Groves JT. A two-component protein condensate of the EGFR cytoplasmic tail and Grb2 regulates Ras activation by SOS at the membrane. Proc Natl Acad Sci U S A 2022; 119:e2122531119. [PMID: 35507881 PMCID: PMC9181613 DOI: 10.1073/pnas.2122531119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
We reconstitute a phosphotyrosine-mediated protein condensation phase transition of the ∼200 residue cytoplasmic tail of the epidermal growth factor receptor (EGFR) and the adaptor protein, Grb2, on a membrane surface. The phase transition depends on phosphorylation of the EGFR tail, which recruits Grb2, and crosslinking through a Grb2-Grb2 binding interface. The Grb2 Y160 residue plays a structurally critical role in the Grb2-Grb2 interaction, and phosphorylation or mutation of Y160 prevents EGFR:Grb2 condensation. By extending the reconstitution experiment to include the guanine nucleotide exchange factor, SOS, and its substrate Ras, we further find that the condensation state of the EGFR tail controls the ability of SOS, recruited via Grb2, to activate Ras. These results identify an EGFR:Grb2 protein condensation phase transition as a regulator of signal propagation from EGFR to the MAPK pathway.
Collapse
Affiliation(s)
- Chun-Wei Lin
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Laura M. Nocka
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | | | | | - L. J. Nugent Lew
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Henry T. Phan
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Yasushi Kondo
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- HHMI, Chevy Chase, MD 20815
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
32
|
Sarhangi SM, Matyushov DV. Anomalously Small Reorganization Energy of the Half Redox Reaction of Azurin. J Phys Chem B 2022; 126:3000-3011. [DOI: 10.1021/acs.jpcb.2c00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Setare M. Sarhangi
- Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| | - Dmitry V. Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
33
|
Oh D, Chen Z, Biswas KH, Bai F, Ong HT, Sheetz MP, Groves JT. Competition for shared downstream signaling molecules establishes indirect negative feedback between EGFR and EphA2. Biophys J 2022; 121:1897-1908. [DOI: 10.1016/j.bpj.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022] Open
|
34
|
Jepson TA, Hall SC, Chung JK. Single-molecule phospholipase A2 becomes processive on melittin-induced membrane deformations. Biophys J 2022; 121:1417-1423. [PMID: 35314142 PMCID: PMC9072580 DOI: 10.1016/j.bpj.2022.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
While it is established that the topology of lipid membranes plays an important role in biochemical processes, few direct observations exist regarding how the membranes are actively restructured and its consequences on subsequent reactions. In this work, we investigated how the two major components of bee venom, melittin and phospholipase A2 (PLA2), achieve activation by such membrane remodeling. Their membrane-disrupting functions have been reported to increase when both are present, but the mechanism of this synergism had not been established. Using membrane reconstitution, we found that melittin can form large-scale membrane deformities upon which PLA2 activity is 25-fold higher. Tracking of single-molecule PLA2 revealed that its processive behavior on these deformities underlies the enhanced activity. These results show how melittin and PLA2 work synergistically to enhance the lytic effects of the bee venom. More broadly, they also demonstrate how the membrane topology may be actively altered to modulate cellular membrane-bound reactions.
Collapse
Affiliation(s)
| | - Sarah C Hall
- Colorado State University, Fort Collins, Colorado
| | - Jean K Chung
- Colorado State University, Fort Collins, Colorado.
| |
Collapse
|
35
|
Shrestha R, Chen D, Frank P, Nissley DV, Turbyville TJ. Recapitulation of cell-like KRAS4b membrane dynamics on complex biomimetic membranes. iScience 2022; 25:103608. [PMID: 35106460 PMCID: PMC8786645 DOI: 10.1016/j.isci.2021.103608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the spatiotemporal distribution and dynamics of RAS on the plasma membrane (PM) is the key for elucidating the molecular mechanisms of the RAS signaling pathway. Single particle tracking (SPT) experiments show that in cells, KRAS diffuses in at least three interchanging states on the cellular PM; however, KRAS remains monomeric and always shows homogeneous diffusion on artificial membranes. Here, we show for the first time on a supported lipid bilayer composed of heterogeneous lipid components that we can recapitulate the three-state diffusion of KRAS seen in cells. The use of a biologically relevant eight-lipid system opens a new frontier in the biophysical studies of RAS and other membrane associated proteins on a biomimetic system that recapitulates the complexity of a cellular PM. KRAS4b shows homogeneous diffusion on simple 2-lipids bilayer KRAS4b shows a cell-like, three-state diffusion on a complex 8-lipid bilayer Phase separation in lipids favors the multi-state diffusion of KRAS4b The complex lipid composition favors RAS nanoclustering irrespective of nucleotide state
Collapse
Affiliation(s)
- Rebika Shrestha
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - De Chen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Peter Frank
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Thomas J Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| |
Collapse
|
36
|
Stochasticity and positive feedback enable enzyme kinetics at the membrane to sense reaction size. Proc Natl Acad Sci U S A 2021; 118:2103626118. [PMID: 34789575 PMCID: PMC8617498 DOI: 10.1073/pnas.2103626118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/27/2022] Open
Abstract
Cellular membranes span a wide range of spatial dimensions, from the plasma membrane with a scale of microns to vesicles on the nanometer scale. The work presented here identifies a molecular mechanism, based on common features of cellular signaling enzymes, that causes the average enzymatic catalytic rate to exhibit reaction size dependency. This effect stems from stochastic variation, but the final results can be essentially deterministic. In competitive enzymatic reaction cycles, the final product can depend on the size of the reaction system. The simplicity of the mechanism suggests that size-dependent reaction rates may be widespread among signaling enzymes and thus enable reaction size to be an important factor in signal regulation at the membrane. Here, we present detailed kinetic analyses of a panel of soluble lipid kinases and phosphatases, as well as Ras activating proteins, acting on their respective membrane surface substrates. The results reveal that the mean catalytic rate of such interfacial enzymes can exhibit a strong dependence on the size of the reaction system—in this case membrane area. Experimental measurements and kinetic modeling reveal how stochastic effects stemming from low molecular copy numbers of the enzymes alter reaction kinetics based on mechanistic characteristics of the enzyme, such as positive feedback. For the competitive enzymatic cycles studied here, the final product—consisting of a specific lipid composition or Ras activity state—depends on the size of the reaction system. Furthermore, we demonstrate how these reaction size dependencies can be controlled by engineering feedback mechanisms into the enzymes.
Collapse
|
37
|
Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther 2021; 6:386. [PMID: 34776511 PMCID: PMC8591115 DOI: 10.1038/s41392-021-00780-4] [Citation(s) in RCA: 498] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the leading cause of death worldwide, and its treatment and outcomes have been dramatically revolutionised by targeted therapies. As the most frequently mutated oncogene, Kirsten rat sarcoma viral oncogene homologue (KRAS) has attracted substantial attention. The understanding of KRAS is constantly being updated by numerous studies on KRAS in the initiation and progression of cancer diseases. However, KRAS has been deemed a challenging therapeutic target, even "undruggable", after drug-targeting efforts over the past four decades. Recently, there have been surprising advances in directly targeted drugs for KRAS, especially in KRAS (G12C) inhibitors, such as AMG510 (sotorasib) and MRTX849 (adagrasib), which have obtained encouraging results in clinical trials. Excitingly, AMG510 was the first drug-targeting KRAS (G12C) to be approved for clinical use this year. This review summarises the most recent understanding of fundamental aspects of KRAS, the relationship between the KRAS mutations and tumour immune evasion, and new progress in targeting KRAS, particularly KRAS (G12C). Moreover, the possible mechanisms of resistance to KRAS (G12C) inhibitors and possible combination therapies are summarised, with a view to providing the best regimen for individualised treatment with KRAS (G12C) inhibitors and achieving truly precise treatment.
Collapse
Affiliation(s)
- Lamei Huang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Zhixing Guo
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Fang Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
38
|
Huang WYC, Alvarez S, Kondo Y, Kuriyan J, Groves JT. Relating cellular signaling timescales to single-molecule kinetics: A first-passage time analysis of Ras activation by SOS. Proc Natl Acad Sci U S A 2021; 118:e2103598118. [PMID: 34740968 PMCID: PMC8694064 DOI: 10.1073/pnas.2103598118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Son of Sevenless (SOS) is a Ras guanine nucleotide exchange factor (GEF) that plays a central role in numerous cellular signaling pathways. Like many other signaling molecules, SOS is autoinhibited in the cytosol and activates only after recruitment to the membrane. The mean activation time of individual SOS molecules has recently been measured to be ∼60 s, which is unexpectedly long and seemingly contradictory with cellular signaling timescales, which have been measured to be as fast as several seconds. Here, we rectify this discrepancy using a first-passage time analysis to reconstruct the effective signaling timescale of multiple SOS molecules from their single-molecule activation kinetics. Along with corresponding experimental measurements, this analysis reveals how the functional response time, comprised of many slowly activating molecules, can become substantially faster than the average molecular kinetics. This consequence stems from the enzymatic processivity of SOS in a highly out-of-equilibrium reaction cycle during receptor triggering. Ultimately, rare, early activation events dominate the macroscopic reaction dynamics.
Collapse
Affiliation(s)
- William Y C Huang
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Steven Alvarez
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Yasushi Kondo
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- HHMI, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720;
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
39
|
Thompson SK, Buckl A, Dossetter AG, Griffen E, Gill A. Small molecule Son of Sevenless 1 (SOS1) inhibitors: a review of the patent literature. Expert Opin Ther Pat 2021; 31:1189-1204. [PMID: 34253125 DOI: 10.1080/13543776.2021.1952984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Up to 30% of all human cancers are driven by the overactivation of RAS signaling. Son of Sevenless 1 (SOS1) is a central node in RAS signaling pathways and modulation of SOS1-mediated RAS activation represents a unique opportunity for treating RAS-addicted cancers. Several recent publications and patent documents have demonstrated the ability of small molecules to affect the activation of RAS by SOS1 and have shown their potential for the treatment of cancers driven by RAS mutants.Areas covered: Documents focusing on both small-molecule inhibitors and activators of the SOS1:RAS interaction and their potential use as cancer therapeutics are covered. A total of 10 documents from 4 applicants are evaluated with discussion focusing on structural modifications of these compounds as well as relevant preclinical data.Expert opinion: The last decade has seen a significant increase in research and disclosures in the development of small-molecule SOS1 inhibitors. Considering the promising data that have been disclosed, interest in this area of research will likely remain strong for the foreseeable future. With the first SOS1 inhibitor currently in phase I clinical trials, the outcome of these trials will likely influence future development of SOS1 inhibitors for treatment of RAS-driven cancers.
Collapse
Affiliation(s)
- Severin K Thompson
- Department of Discovery Chemistry, Revolution Medicines Inc., Redwood City, CA, USA
| | - Andreas Buckl
- Department of Discovery Chemistry, Revolution Medicines Inc., Redwood City, CA, USA
| | | | - Ed Griffen
- Medchemica Limited, Biohub, Mereside, Cheshire, UK
| | - Adrian Gill
- Department of Discovery Chemistry, Revolution Medicines Inc., Redwood City, CA, USA
| |
Collapse
|
40
|
The intramolecular allostery of GRB2 governing its interaction with SOS1 is modulated by phosphotyrosine ligands. Biochem J 2021; 478:2793-2809. [PMID: 34232285 DOI: 10.1042/bcj20210105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023]
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a trivalent adaptor protein and a key element in signal transduction. It interacts via its flanking nSH3 and cSH3 domains with the proline-rich domain (PRD) of the RAS activator SOS1 and via its central SH2 domain with phosphorylated tyrosine residues of receptor tyrosine kinases (RTKs; e.g. HER2). The elucidation of structural organization and mechanistic insights into GRB2 interactions, however, remain challenging due to their inherent flexibility. This study represents an important advance in our mechanistic understanding of how GRB2 links RTKs to SOS1. Accordingly, it can be proposed that (1) HER2 pYP-bound SH2 potentiates GRB2 SH3 domain interactions with SOS1 (an allosteric mechanism); (2) the SH2 domain blocks cSH3, enabling nSH3 to bind SOS1 first before cSH3 follows (an avidity-based mechanism); and (3) the allosteric behavior of cSH3 to other domains appears to be unidirectional, although there is an allosteric effect between the SH2 and SH3 domains.
Collapse
|
41
|
Moses ME, Lund PM, Bohr SSR, Iversen JF, Kæstel-Hansen J, Kallenbach AS, Iversen L, Christensen SM, Hatzakis NS. Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33704-33712. [PMID: 34235926 DOI: 10.1021/acsami.1c08809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipases comprise one of the major enzyme classes in biotechnology with applications within, e.g., baking, brewing, biocatalysis, and the detergent industry. Understanding the mechanisms of lipase function and regulation is therefore important to facilitate the optimization of their function by protein engineering. Advances in single-molecule studies in model systems have provided deep mechanistic insights on lipase function, such as the existence of functional states, their dependence on regulatory cues, and their correlation to activity. However, it is unclear how these observations translate to enzyme behavior in applied settings. Here, single-molecule tracking of individual Thermomyces lanuginosus lipase (TLL) enzymes in a detergency application system allowed real-time direct observation of spatiotemporal localization, and thus diffusional behavior, of TLL enzymes on a lard substrate. Parallelized imaging of thousands of individual enzymes allowed us to observe directly the existence and quantify the abundance and interconversion kinetics between three diffusional states that we recently provided evidence to correlate with function. We observe redistribution of the enzyme's diffusional pattern at the lipid-water interface as well as variations in binding efficiency in response to surfactants and calcium, demonstrating that detergency effectors can drive the sampling of lipase functional states. Our single-molecule results combined with ensemble activity assays and enzyme surface binding efficiency readouts allowed us to deconvolute how application conditions can significantly alter protein functional dynamics and/or surface binding, both of which underpin enzyme performance. We anticipate that our results will inspire further efforts to decipher and integrate the dynamic nature of lipases, and other enzymes, in the design of new biotechnological solutions.
Collapse
Affiliation(s)
- Matias E Moses
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Philip M Lund
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Søren S-R Bohr
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Josephine F Iversen
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jacob Kæstel-Hansen
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Amalie S Kallenbach
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Lars Iversen
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
| | | | - Nikos S Hatzakis
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
42
|
Sheffels E, Kortum RL. The Role of Wild-Type RAS in Oncogenic RAS Transformation. Genes (Basel) 2021; 12:genes12050662. [PMID: 33924994 PMCID: PMC8146411 DOI: 10.3390/genes12050662] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The RAS family of oncogenes (HRAS, NRAS, and KRAS) are among the most frequently mutated protein families in cancers. RAS-mutated tumors were originally thought to proliferate independently of upstream signaling inputs, but we now know that non-mutated wild-type (WT) RAS proteins play an important role in modulating downstream effector signaling and driving therapeutic resistance in RAS-mutated cancers. This modulation is complex as different WT RAS family members have opposing functions. The protein product of the WT RAS allele of the same isoform as mutated RAS is often tumor-suppressive and lost during tumor progression. In contrast, RTK-dependent activation of the WT RAS proteins from the two non-mutated WT RAS family members is tumor-promoting. Further, rebound activation of RTK–WT RAS signaling underlies therapeutic resistance to targeted therapeutics in RAS-mutated cancers. The contributions of WT RAS to proliferation and transformation in RAS-mutated cancer cells places renewed interest in upstream signaling molecules, including the phosphatase/adaptor SHP2 and the RasGEFs SOS1 and SOS2, as potential therapeutic targets in RAS-mutated cancers.
Collapse
|
43
|
Biased cytochrome P450-mediated metabolism via small-molecule ligands binding P450 oxidoreductase. Nat Commun 2021; 12:2260. [PMID: 33859207 PMCID: PMC8050233 DOI: 10.1038/s41467-021-22562-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Metabolic control is mediated by the dynamic assemblies and function of multiple redox enzymes. A key element in these assemblies, the P450 oxidoreductase (POR), donates electrons and selectively activates numerous (>50 in humans and >300 in plants) cytochromes P450 (CYPs) controlling metabolism of drugs, steroids and xenobiotics in humans and natural product biosynthesis in plants. The mechanisms underlying POR-mediated CYP metabolism remain poorly understood and to date no ligand binding has been described to regulate the specificity of POR. Here, using a combination of computational modeling and functional assays, we identify ligands that dock on POR and bias its specificity towards CYP redox partners, across mammal and plant kingdom. Single molecule FRET studies reveal ligand binding to alter POR conformational sampling, which results in biased activation of metabolic cascades in whole cell assays. We propose the model of biased metabolism, a mechanism akin to biased signaling of GPCRs, where ligand binding on POR stabilizes different conformational states that are linked to distinct metabolic outcomes. Biased metabolism may allow designing pathway-specific therapeutics or personalized food suppressing undesired, disease-related, metabolic pathways.
Collapse
|
44
|
Han CW, Jeong MS, Jang SB. Understand KRAS and the Quest for Anti-Cancer Drugs. Cells 2021; 10:cells10040842. [PMID: 33917906 PMCID: PMC8068306 DOI: 10.3390/cells10040842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
The KRAS oncogene is mutated in approximately ~30% of human cancers, and the targeting of KRAS has long been highlighted in many studies. Nevertheless, attempts to target KRAS directly have been ineffective. This review provides an overview of the structure of KRAS and its characteristic signaling pathways. Additionally, we examine the problems associated with currently available KRAS inhibitors and discuss promising avenues for drug development.
Collapse
Affiliation(s)
- Chang Woo Han
- Institute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea;
| | - Mi Suk Jeong
- Institute for Plastic Information and Energy Materials and Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (M.S.J. & S.B.J.)
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (M.S.J. & S.B.J.)
| |
Collapse
|
45
|
Abstract
The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions—the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton’s tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.
Collapse
Affiliation(s)
- Tyler A. Jepson
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jean K. Chung
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
46
|
Moghadamchargari Z, Shirzadeh M, Liu C, Schrecke S, Packianathan C, Russell DH, Zhao M, Laganowsky A. Molecular assemblies of the catalytic domain of SOS with KRas and oncogenic mutants. Proc Natl Acad Sci U S A 2021; 118:e2022403118. [PMID: 33723061 PMCID: PMC8000204 DOI: 10.1073/pnas.2022403118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ras is regulated by a specific guanine nucleotide exchange factor Son of Sevenless (SOS), which facilitates the exchange of inactive, GDP-bound Ras with GTP. The catalytic activity of SOS is also allosterically modulated by an active Ras (Ras-GTP). However, it remains poorly understood how oncogenic Ras mutants interact with SOS and modulate its activity. Here, native ion mobility-mass spectrometry is employed to monitor the assembly of the catalytic domain of SOS (SOScat) with KRas and three cancer-associated mutants (G12C, G13D, and Q61H), leading to the discovery of different molecular assemblies and distinct conformers of SOScat engaging KRas. We also find KRasG13D exhibits high affinity for SOScat and is a potent allosteric modulator of its activity. A structure of the KRasG13D•SOScat complex was determined using cryogenic electron microscopy providing insight into the enhanced affinity of the mutant protein. In addition, we find that KRasG13D-GTP can allosterically increase the nucleotide exchange rate of KRas at the active site more than twofold compared to KRas-GTP. Furthermore, small-molecule Ras•SOS disruptors fail to dissociate KRasG13D•SOScat complexes, underscoring the need for more potent disruptors. Taken together, a better understanding of the interaction between oncogenic Ras mutants and SOS will provide avenues for improved therapeutic interventions.
Collapse
Affiliation(s)
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | | | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
47
|
Packer MR, Parker JA, Chung JK, Li Z, Lee YK, Cookis T, Guterres H, Alvarez S, Hossain MA, Donnelly DP, Agar JN, Makowski L, Buck M, Groves JT, Mattos C. Raf promotes dimerization of the Ras G-domain with increased allosteric connections. Proc Natl Acad Sci U S A 2021; 118:e2015648118. [PMID: 33653954 PMCID: PMC7958358 DOI: 10.1073/pnas.2015648118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex. Our results suggest that Raf-RBD binding and Ras dimerization are concerted events that lead to a high-affinity signaling complex at the membrane that we propose is an essential unit in the macromolecular assembly of higher order Ras/Raf/Galectin complexes important for signaling through the Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Morgan R Packer
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Jillian A Parker
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Jean K Chung
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Zhenlu Li
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Young Kwang Lee
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Trinity Cookis
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Hugo Guterres
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Daniel P Donnelly
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | - Lee Makowski
- Department of Bioengineering, Northeastern University, Boston, MA 02115
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115;
| |
Collapse
|
48
|
Nras Q61R/+ and Kras-/- cooperate to downregulate Rasgrp1 and promote lympho-myeloid leukemia in early T-cell precursors. Blood 2021; 137:3259-3271. [PMID: 33512434 PMCID: PMC8351901 DOI: 10.1182/blood.2020009082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Kras−/−; NrasQ61R/+ mice develop early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. We identify Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of T-cell ALL. Although genetic mutations hyperactivating cytokine receptor/Ras signaling are prevalent in ETP-ALL, it remains unknown how activated Ras signaling contributes to ETP-ALL. Here, we find that in addition to the frequent oncogenic RAS mutations, wild-type (WT) KRAS transcript level was significantly downregulated in human ETP-ALL cells. Similarly, loss of WT Kras in NrasQ61R/+ mice promoted hyperactivation of extracellular signal-regulated kinase (ERK) signaling, thymocyte hyperproliferation, and expansion of the ETP compartment. Kras−/−; NrasQ61R/+ mice developed early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. Mechanistically, RNA-sequencing analysis and quantitative proteomics study identified that Rasgrp1, a Ras guanine nucleotide exchange factor, was greatly downregulated in mouse and human ETP-ALL. Unexpectedly, hyperactivated Nras/ERK signaling suppressed Rasgrp1 expression and reduced Rasgrp1 level led to increased ERK signaling, thereby establishing a positive feedback loop to augment Nras/ERK signaling and promote cell proliferation. Corroborating our cell line data, Rasgrp1 haploinsufficiency induced Rasgrp1 downregulation and increased phosphorylated ERK level and ETP expansion in NrasQ61R/+ mice. Our study identifies Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Collapse
|
49
|
Hoang HM, Umutesi HG, Heo J. Allosteric autoactivation of SOS and its kinetic mechanism. Small GTPases 2021; 12:44-59. [PMID: 30983499 PMCID: PMC7781538 DOI: 10.1080/21541248.2019.1601954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022] Open
Abstract
Son of Sevenless (SOS), one of guanine nucleotide exchange factors (GEFs), activates Ras. We discovered that the allosteric domain of SOS yields SOS to proceed a previously unrecognized autoactivation kinetics. Its essential feature is a time-dependent acceleration of SOS feedback activation with a reaction initiator or with the priming of active Ras. Thus, this mechanistic autoactivation feature explains the notion, previously only conjectured, of accelerative SOS activation followed by the priming of active Ras, an action produced by another GEF Ras guanyl nucleotide-releasing protein (RasGRP). Intriguingly, the kinetic transition from gradual RasGRP activation to accelerative SOS activation has been interpreted as an analog to digital conversion; however, from the perspective of autoactivation kinetics, it is a process of straightforward RasGRP-mediated SOS autoactivation. From the viewpoint of allosteric protein cooperativity, SOS autoactivation is a unique time-dependent cooperative SOS activation because it enables an active SOS to accelerate activation of other SOS as a function of time. This time-dependent SOS cooperativity does not belong to the classic steady-state protein cooperativity, which depends on ligand concentration. Although its hysteretic or sigmoid-like saturation curvature is a classic hallmark of steady-state protein cooperativity, its hyperbolic saturation figure typically represents protein noncooperativity. We also discovered that SOS autoactivation perturbs the previously predicted hysteresis of SOS activation in a steady state to produce a hyperbolic saturation curve. We interpret this as showing that SOS allostery elicits, through SOS autoactivation, cooperativity uniquely time-dependent but not ligand concentration dependent.
Collapse
Affiliation(s)
- Hanh My Hoang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Hope Gloria Umutesi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
50
|
How the T cell signaling network processes information to discriminate between self and agonist ligands. Proc Natl Acad Sci U S A 2020; 117:26020-26030. [PMID: 33020303 DOI: 10.1073/pnas.2008303117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
T cells exhibit remarkable sensitivity and selectivity in detecting and responding to agonist peptides (p) bound to MHC molecules in a sea of self pMHC molecules. Despite much work, understanding of the underlying mechanisms of distinguishing such ligands remains incomplete. Here, we quantify T cell discriminatory capacity using channel capacity, a direct measure of the signaling network's ability to discriminate between antigen-presenting cells (APCs) displaying either self ligands or a mixture of self and agonist ligands. This metric shows how differences in information content between these two types of peptidomes are decoded by the topology and rates of kinetic proofreading signaling steps inside T cells. Using channel capacity, we constructed numerically substantiated hypotheses to explain the discriminatory role of a recently identified slow LAT Y132 phosphorylation step. Our results revealed that in addition to the number and kinetics of sequential signaling steps, a key determinant of discriminatory capability is spatial localization of a minimum number of these steps to the engaged TCR. Biochemical and imaging experiments support these findings. Our results also reveal the discriminatory role of early negative feedback and necessary amplification conferred by late positive feedback.
Collapse
|