1
|
Záhonová K, Füssy Z, Albanaz ATS, Butenko A, Kachale A, Kraeva N, Galan A, Zakharova A, Stojanova B, Votýpka J, Kostygov AY, Spodareva VV, Malysheva MN, Frolov AO, Rogozin IB, Paris Z, Valášek LS, Yurchenko V, Lukeš J. Comparative genomic analysis of trypanosomatid protists illuminates an extensive change in the nuclear genetic code. mBio 2025:e0088525. [PMID: 40293238 DOI: 10.1128/mbio.00885-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Trypanosomatids are among the most extensively studied protists due to their parasitic interactions with insects, vertebrates, and plants. Recently, Blastocrithidia nonstop was found to depart from the canonical genetic code, with all three stop codons reassigned to encode amino acids (UAR for glutamate and UGA for tryptophan), and UAA having dual meaning also as a termination signal (glutamate and stop). To explore features linked to this phenomenon, we analyzed the genomes of four Blastocrithidia and four Obscuromonas species, the latter representing a sister group employing the canonical genetic code. We found that all Blastocrithidia species encode cognate tRNAs for UAR codons, possess a distinct 4 bp anticodon stem tRNATrpCCA decoding UGA, and utilize UAA as the only stop codon. The distribution of in-frame reassigned codons is consistently non-random, suggesting a translational burden avoided in highly expressed genes. Frame-specific enrichment of UAA codons immediately following the genuine UAA stop codon, not observed in Obscuromonas, points to a specific mode of termination. All Blastocrithidia species possess specific mutations in eukaryotic release factor 1 and a unique acidic region following the prion-like N-terminus of eukaryotic release factor 3 that may be associated with stop codon readthrough. We infer that the common ancestor of the genus Blastocrithidia already exhibited a GC-poor genome with the non-canonical genetic code. Our comparative analysis highlights features associated with this extensive stop codon reassignment. This cascade of mutually dependent adaptations, driven by increasing AU-richness in transcripts and frequent emergence of in-frame stops, underscores the dynamic interplay between genome composition and genetic code plasticity to maintain vital functionality. IMPORTANCE The genetic code, assigning amino acids to codons, is almost universal, yet an increasing number of its alterations keep emerging, mostly in organelles and unicellular eukaryotes. One such case is the trypanosomatid genus Blastocrithidia, where all three stop codons were reassigned to amino acids, with UAA also serving as a sole termination signal. We conducted a comparative analysis of four Blastocrithidia species, all with the same non-canonical genetic code, and their close relatives of the genus Obscuromonas, which retain the canonical code. This across-genome comparison allowed the identification of key traits associated with genetic code reassignment in Blastocrithidia. This work provides insight into the evolutionary steps, facilitating an extensive departure from the canonical genetic code that occurred independently in several eukaryotic lineages.
Collapse
Affiliation(s)
- Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Ambar Kachale
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Bojana Stojanova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Viktoria V Spodareva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina N Malysheva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander O Frolov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Igor B Rogozin
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| | | | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| |
Collapse
|
2
|
Grome MW, Nguyen MTA, Moonan DW, Mohler K, Gurara K, Wang S, Hemez C, Stenton BJ, Cao Y, Radford F, Kornaj M, Patel J, Prome M, Rogulina S, Sozanski D, Tordoff J, Rinehart J, Isaacs FJ. Engineering a genomically recoded organism with one stop codon. Nature 2025; 639:512-521. [PMID: 39910296 PMCID: PMC11903333 DOI: 10.1038/s41586-024-08501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/05/2024] [Indexed: 02/07/2025]
Abstract
The genetic code is conserved across all domains of life, yet exceptions have revealed variations in codon assignments and associated translation factors1-3. Inspired by this natural malleability, synthetic approaches have demonstrated whole-genome replacement of synonymous codons to construct genomically recoded organisms (GROs)4,5 with alternative genetic codes. However, no efforts have fully leveraged translation factor plasticity and codon degeneracy to compress translation function to a single codon and assess the possibility of a non-degenerate code. Here we describe construction and characterization of Ochre, a GRO that fully compresses a translational function into a single codon. We replaced 1,195 TGA stop codons with the synonymous TAA in ∆TAG Escherichia coli C321.∆A4. We then engineered release factor 2 (RF2) and tRNATrp to mitigate native UGA recognition, translationally isolating four codons for non-degenerate functions. Ochre thus utilizes UAA as the sole stop codon, with UGG encoding tryptophan and UAG and UGA reassigned for multi-site incorporation of two distinct non-standard amino acids into single proteins with more than 99% accuracy. Ochre fully compresses degenerate stop codons into a single codon and represents an important step toward a 64-codon non-degenerate code that will enable precise production of multi-functional synthetic proteins with unnatural encoded chemistries and broad utility in biotechnology and biotherapeutics.
Collapse
Affiliation(s)
- Michael W Grome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Michael T A Nguyen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Daniel W Moonan
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kebron Gurara
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Shenqi Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Colin Hemez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Benjamin J Stenton
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Yunteng Cao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Felix Radford
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maya Kornaj
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Jaymin Patel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maisha Prome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Svetlana Rogulina
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - David Sozanski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Tordoff
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Farren J Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Zhou Z, Riley R, Kautsar S, Wu W, Egan R, Hofmeyr S, Goldhaber-Gordon S, Yu M, Ho H, Liu F, Chen F, Morgan-Kiss R, Shi L, Liu H, Wang Z. GenomeOcean: An Efficient Genome Foundation Model Trained on Large-Scale Metagenomic Assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635558. [PMID: 39975405 PMCID: PMC11838515 DOI: 10.1101/2025.01.30.635558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genome foundation models hold transformative potential for precision medicine, drug discovery, and understanding complex biological systems. However, existing models are often inefficient, constrained by suboptimal tokenization and architectural design, and biased toward reference genomes, limiting their representation of low-abundance, uncultured microbes in the rare biosphere. To address these challenges, we developed GenomeOcean, a 4-billion-parameter generative genome foundation model trained on over 600 Gbp of high-quality contigs derived from 220 TB of metagenomic datasets collected from diverse habitats across Earth's ecosystems. A key innovation of GenomeOcean is training directly on large-scale co-assemblies of metagenomic samples, enabling enhanced representation of rare microbial species and improving generalizability beyond genome-centric approaches. We implemented a byte-pair encoding (BPE) tokenization strategy for genome sequence generation, alongside architectural optimizations, achieving up to 150× faster sequence generation while maintaining high biological fidelity. GenomeOcean excels in representing microbial species and generating protein-coding genes constrained by evolutionary principles. Additionally, its fine-tuned model demonstrates the ability to discover novel biosynthetic gene clusters (BGCs) in natural genomes and perform zero-shot synthesis of biochemically plausible, complete BGCs. GenomeOcean sets a new benchmark for metagenomic research, natural product discovery, and synthetic biology, offering a robust foundation for advancing these fields.
Collapse
Affiliation(s)
| | - Robert Riley
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Satria Kautsar
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Weimin Wu
- Northwestern University, Evanston, IL, USA
| | - Rob Egan
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven Hofmeyr
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Mutian Yu
- Northwestern University, Evanston, IL, USA
| | - Harrison Ho
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California at Merced, Merced, CA, USA
| | - Fengchen Liu
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California at Berkeley, Berkeley, CA, USA
| | | | | | - Lizhen Shi
- Northwestern University, Evanston, IL, USA
| | - Han Liu
- Northwestern University, Evanston, IL, USA
| | - Zhong Wang
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California at Merced, Merced, CA, USA
| |
Collapse
|
4
|
Weinheimer AR, Ha AD, Aylward FO. Towards a unifying phylogenomic framework for tailed phages. PLoS Genet 2025; 21:e1011595. [PMID: 39908317 PMCID: PMC11835377 DOI: 10.1371/journal.pgen.1011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Classifying viruses systematically has remained a key challenge of virology due to the absence of universal genes and vast genetic diversity of viruses. In particular, the most dominant and diverse group of viruses, the tailed double-stranded DNA viruses of prokaryotes belonging to the class Caudoviricetes, lack sufficient similarity in the genetic machinery that unifies them to reconstruct an inclusive, stable phylogeny of these genes. While previous approaches to organize tailed phage diversity have managed to distinguish various taxonomic levels, these methods are limited in scalability, reproducibility, and the inclusion of modes of evolution, like gene gains and losses, remain key challenges. Here, we present a novel, comprehensive, and reproducible framework for examining evolutionary relationships of tailed phages. In this framework, we compare phage genomes based on the presence and absence of a fixed set of gene families which are used as binary trait data that is input into maximum likelihood models. Our resulting phylogeny stably recovers known taxonomic families of tailed phages, with and without the inclusion of metagenome-derived phages. We also quantify the mosaicism of replication and structural genes among known families, and our results suggest that these exchanges likely underpin the emergence of new families. Additionally, we apply this framework to large phages (>100 kilobases) to map emergences of traits associated with genome expansion. Taken together, this evolutionary framework for charting and organizing tailed phage diversity improves the systemization of phage taxonomy, which can unify phage studies and advance our understanding of their evolution.
Collapse
Affiliation(s)
- Alaina R. Weinheimer
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech; Blacksburg, Virginia, United States of America
| |
Collapse
|
5
|
Herbert A. Flipons and the origin of the genetic code. Biol Lett 2025; 21:20240635. [PMID: 39837490 PMCID: PMC11883820 DOI: 10.1098/rsbl.2024.0635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
This paper is focused on the origins of the contemporary genetic code. A novel explanation is proposed for how the mapping of nucleotides in DNA to amino acids in proteins arose that derives from repeat nucleotide sequences able to form alternative nucleic acid structures (ANS), such as the unusual left-handed Z-DNA, triplex, G-quadruplex and I-motif conformations. The scheme identifies sequence-specific contacts that map ANS repeats to dipeptide polymers (DPS). The stereochemistry required naturally evolves into a non-overlapping, triplet code for mapping nucleotides to amino acids. The ANS/DPS complexes form a simple, genetically transmitted, self-templating, autonomously replicating collection of 'tinkers' for Nature to evolve. Tinkers have agency and promote their own synthesis by forming catalytic scaffolds with metals, further enhancing their capabilities. Initial support for the model is provided by computational models built with AlphaFold3. The predictions made are properly falsifiable with the currently available methodology.
Collapse
|
6
|
Figueroa-Gonzalez PA, Bornemann TLV, Hinzke T, Maaß S, Trautwein-Schult A, Starke J, Moore CJ, Esser SP, Plewka J, Hesse T, Schmidt TC, Schreiber U, Bor B, Becher D, Probst AJ. Metaproteogenomics resolution of a high-CO 2 aquifer community reveals a complex cellular adaptation of groundwater Gracilibacteria to a host-dependent lifestyle. MICROBIOME 2024; 12:194. [PMID: 39369255 PMCID: PMC11452946 DOI: 10.1186/s40168-024-01889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Bacteria of the candidate phyla radiation (CPR), constituting about 25% of the bacterial biodiversity, are characterized by small cell size and patchy genomes without complete key metabolic pathways, suggesting a symbiotic lifestyle. Gracilibacteria (BD1-5), which are part of the CPR branch, possess alternate coded genomes and have not yet been cultivated. The lifestyle of Gracilibacteria, their temporal dynamics, and activity in natural ecosystems, particularly in groundwater, has remained largely unexplored. Here, we aimed to investigate Gracilibacteria activity in situ and to discern their lifestyle based on expressed genes, using the metaproteogenome of Gracilibacteria as a function of time in the cold-water geyser Wallender Born in the Volcanic Eifel region in Germany. RESULTS We coupled genome-resolved metagenomics and metaproteomics to investigate a cold-water geyser microbial community enriched in Gracilibacteria across a 12-day time-series. Groundwater was collected and sequentially filtered to fraction CPR and other bacteria. Based on 725 Gbps of metagenomic data, 1129 different ribosomal protein S3 marker genes, and 751 high-quality genomes (123 population genomes after dereplication), we identified dominant bacteria belonging to Gallionellales and Gracilibacteria along with keystone microbes, which were low in genomic abundance but substantially contributing to proteomic abundance. Seven high-quality Gracilibacteria genomes showed typical limitations, such as limited amino acid or nucleotide synthesis, in their central metabolism but no co-occurrence with potential hosts. The genomes of these Gracilibacteria were encoded for a high number of proteins involved in cell to cell interaction, supporting the previously surmised host-dependent lifestyle, e.g., type IV and type II secretion system subunits, transporters, and features related to cell motility, which were also detected on protein level. CONCLUSIONS We here identified microbial keystone taxa in a high-CO2 aquifer, and revealed microbial dynamics of Gracilibacteria. Although Gracilibacteria in this ecosystem did not appear to target specific organisms in this ecosystem due to lack of co-occurrence despite enrichment on 0.2-µm filter fraction, we provide proteomic evidence for the complex machinery behind the host-dependent lifestyle of groundwater Gracilibacteria. Video Abstract.
Collapse
Affiliation(s)
- Perla Abigail Figueroa-Gonzalez
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
| | - Tjorven Hinzke
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, 17489, Greifswald, Germany
- Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, 17489, Germany
| | - Sandra Maaß
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Joern Starke
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Carrie J Moore
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Julia Plewka
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Tobias Hesse
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, 45141, Germany
| | - Torsten C Schmidt
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, 45141, Germany
| | - Ulrich Schreiber
- Department of Geology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Batbileg Bor
- Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany.
| |
Collapse
|
7
|
Gao SM, Wang P, Li Q, Shu WS, Tang LY, Lin ZL, Li JT, Huang LN. Deciphering microbial metabolic interactions and their implications for community dynamics in acid mine drainage sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135478. [PMID: 39137550 DOI: 10.1016/j.jhazmat.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The microbially-mediated reduction processes have potential for the bioremediation of acid mine drainage (AMD), which represents a worldwide environment problem. However, we know little about the microbial interactions in anaerobic AMD sediments. Here we utilized genome-resolved metagenomics to uncover the nature of cooperative and competitive metabolic interactions in 90 AMD sediments across Southern China. Our analyses recovered well-represented prokaryotic communities through the reconstruction of 2625 population genomes. Functional analyses of these genomes revealed extensive metabolic handoffs which occurred more frequently in nitrogen metabolism than in sulfur metabolism, as well as stable functional redundancy across sediments resulting from populations with low genomic relatedness. Genome-scale metabolic modeling showed that metabolic competition promoted microbial co-occurrence relationships, suggesting that community assembly was dominated by habitat filtering in sediments. Notably, communities colonizing more extreme conditions tended to be highly competitive, which was typically accompanied with increased network complexity but decreased stability of the microbiome. Finally, our results demonstrated that heterotrophic Thermoplasmatota associated with ferric iron and sulfate reduction contributed most to the elevated levels of competition. Our study shed light on the cooperative and competitive metabolisms of microbiome in the hazardous AMD sediments, which may provide preliminary clues for the AMD bioremediation in the future.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Pandeng Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ling-Yun Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhi-Liang Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin-Tian Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
8
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
9
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Salman A, Biziaev N, Shuvalova E, Alkalaeva E. mRNA context and translation factors determine decoding in alternative nuclear genetic codes. Bioessays 2024; 46:e2400058. [PMID: 38724251 DOI: 10.1002/bies.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
The genetic code is a set of instructions that determine how the information in our genetic material is translated into amino acids. In general, it is universal for all organisms, from viruses and bacteria to humans. However, in the last few decades, exceptions to this rule have been identified both in pro- and eukaryotes. In this review, we discuss the 16 described alternative eukaryotic nuclear genetic codes and observe theories of their appearance in evolution. We consider possible molecular mechanisms that allow codon reassignment. Most reassignments in nuclear genetic codes are observed for stop codons. Moreover, in several organisms, stop codons can simultaneously encode amino acids and serve as termination signals. In this case, the meaning of the codon is determined by the additional factors besides the triplets. A comprehensive review of various non-standard coding events in the nuclear genomes provides a new insight into the translation mechanism in eukaryotes.
Collapse
Affiliation(s)
- Ali Salman
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Gao Y, Zhong Z, Zhang D, Zhang J, Li YX. Exploring the roles of ribosomal peptides in prokaryote-phage interactions through deep learning-enabled metagenome mining. MICROBIOME 2024; 12:94. [PMID: 38790030 PMCID: PMC11118758 DOI: 10.1186/s40168-024-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.
Collapse
Affiliation(s)
- Ying Gao
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Zheng Zhong
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Dengwei Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Jian Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Yong-Xin Li
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
12
|
Cook R, Crisci MA, Pye HV, Telatin A, Adriaenssens EM, Santini JM. Decoding huge phage diversity: a taxonomic classification of Lak megaphages. J Gen Virol 2024; 105. [PMID: 38814706 PMCID: PMC11165621 DOI: 10.1099/jgv.0.001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
High-throughput sequencing for uncultivated viruses has accelerated the understanding of global viral diversity and uncovered viral genomes substantially larger than any that have so far been cultured. Notably, the Lak phages are an enigmatic group of viruses that present some of the largest known phage genomes identified in human and animal microbiomes, and are dissimilar to any cultivated viruses. Despite the wealth of viral diversity that exists within sequencing datasets, uncultivated viruses have rarely been used for taxonomic classification. We investigated the evolutionary relationships of 23 Lak phages and propose a taxonomy for their classification. Predicted protein analysis revealed the Lak phages formed a deeply branching monophyletic clade within the class Caudoviricetes which contained no other phage genomes. One of the interesting features of this clade is that all current members are characterised by an alternative genetic code. We propose the Lak phages belong to a new order, the 'Grandevirales'. Protein and nucleotide-based analyses support the creation of two families, three sub-families, and four genera within the order 'Grandevirales'. We anticipate that the proposed taxonomy of Lak megaphages will simplify the future classification of related viral genomes as they are uncovered. Continued efforts to classify divergent viruses are crucial to aid common analyses of viral genomes and metagenomes.
Collapse
Affiliation(s)
- Ryan Cook
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Marco A Crisci
- Department of Structural and Molecular Biology, Division of Biosciences, UCL, London, UK
| | - Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Joanne M Santini
- Department of Structural and Molecular Biology, Division of Biosciences, UCL, London, UK
| |
Collapse
|
13
|
Zhang Y, Li H, Shen Y, Wang S, Tian L, Yin H, Shi J, Xing A, Zhang J, Ali U, Sami A, Chen X, Gao C, Zhao Y, Lyu Y, Wang X, Chen Y, Tian Z, Wu SB, Wu L. Readthrough events in plants reveal plasticity of stop codons. Cell Rep 2024; 43:113723. [PMID: 38300801 DOI: 10.1016/j.celrep.2024.113723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/02/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Stop codon readthrough (SCR) has important biological implications but remains largely uncharacterized. Here, we identify 1,009 SCR events in plants using a proteogenomic strategy. Plant SCR candidates tend to have shorter transcript lengths and fewer exons and splice variants than non-SCR transcripts. Mass spectrometry evidence shows that stop codons involved in SCR events can be recoded as 20 standard amino acids, some of which are also supported by suppressor tRNA analysis. We also observe multiple functional signals in 34 maize extended proteins and characterize the structural and subcellular localization changes in the extended protein of basic transcription factor 3. Furthermore, the SCR events exhibit non-conserved signature, and the extensions likely undergo protein-coding selection. Overall, our study not only characterizes that SCR events are commonly present in plants but also identifies the recoding plasticity of stop codons, which provides important insights into the flexibility of genetic decoding.
Collapse
Affiliation(s)
- Yuqian Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China; School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Hehuan Li
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Lei Tian
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Haoqiang Yin
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Jiawei Shi
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Anqi Xing
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Usman Ali
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Abdul Sami
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xueyan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Chenxuan Gao
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yangtao Zhao
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yajing Lyu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xiaoxu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China; School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
14
|
Gao SM, Fei HL, Li Q, Lan LY, Huang LN, Fan PF. Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations. Nat Commun 2024; 15:1254. [PMID: 38341424 PMCID: PMC10858875 DOI: 10.1038/s41467-024-45663-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
- College of Life Science, China West Normal University, Nanchong, 637002, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
15
|
Lou YC, Chen L, Borges AL, West-Roberts J, Firek BA, Morowitz MJ, Banfield JF. Infant gut DNA bacteriophage strain persistence during the first 3 years of life. Cell Host Microbe 2024; 32:35-47.e6. [PMID: 38096814 PMCID: PMC11156429 DOI: 10.1016/j.chom.2023.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Bacteriophages are key components of gut microbiomes, yet the phage colonization process in the infant gut remains uncertain. Here, we establish a large phage sequence database and use strain-resolved analyses to investigate DNA phage succession in infants throughout the first 3 years of life. Analysis of 819 fecal metagenomes collected from 28 full-term and 24 preterm infants and their mothers revealed that early-life phageome richness increases over time and reaches adult-like complexity by age 3. Approximately 9% of early phage colonizers, which are mostly maternally transmitted and infect Bacteroides, persist for 3 years and are more prevalent in full-term than in preterm infants. Although rare, phages with stop codon reassignment are more likely to persist than non-recoded phages and generally display an increase in in-frame reassigned stop codons over 3 years. Overall, maternal seeding, stop codon reassignment, host CRISPR-Cas locus prevalence, and diverse phage populations contribute to stable viral colonization.
Collapse
Affiliation(s)
- Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob West-Roberts
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brian A Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Cook R, Telatin A, Bouras G, Camargo AP, Larralde M, Edwards RA, Adriaenssens EM. Driving through stop signs: predicting stop codon reassignment improves functional annotation of bacteriophages. ISME COMMUNICATIONS 2024; 4:ycae079. [PMID: 38939532 PMCID: PMC11210395 DOI: 10.1093/ismeco/ycae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The majority of bacteriophage diversity remains uncharacterized, and new intriguing mechanisms of their biology are being continually described. Members of some phage lineages, such as the Crassvirales, repurpose stop codons to encode an amino acid by using alternate genetic codes. Here, we investigated the prevalence of stop codon reassignment in phage genomes and its subsequent impacts on functional annotation. We predicted 76 genomes within INPHARED and 712 vOTUs from the Unified Human Gut Virome Catalogue (UHGV) that repurpose a stop codon to encode an amino acid. We re-annotated these sequences with modified versions of Pharokka and Prokka, called Pharokka-gv and Prokka-gv, to automatically predict stop codon reassignment prior to annotation. Both tools significantly improved the quality of annotations, with Pharokka-gv performing best. For sequences predicted to repurpose TAG to glutamine (translation table 15), Pharokka-gv increased the median gene length (median of per genome median) from 287 to 481 bp for UHGV sequences (67.8% increase) and from 318 to 550 bp for INPHARED sequences (72.9% increase). The re-annotation increased median coding capacity from 66.8% to 90.0% and from 69.0% to 89.8% for UHGV and INPHARED sequences predicted to use translation table 15. Furthermore, the proportion of genes that could be assigned functional annotation increased, including an increase in the number of major capsid proteins that could be identified. We propose that automatic prediction of stop codon reassignment before annotation is beneficial to downstream viral genomic and metagenomic analyses.
Collapse
Affiliation(s)
- Ryan Cook
- Quadram Institute Bioscience, Norwich NR4 7UQ, United Kingdom
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich NR4 7UQ, United Kingdom
| | - George Bouras
- Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5070, Australia
- Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5070, Australia
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Martin Larralde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | |
Collapse
|
17
|
Liu J, Jaffe AL, Chen L, Bor B, Banfield JF. Host translation machinery is not a barrier to phages that interact with both CPR and non-CPR bacteria. mBio 2023; 14:e0176623. [PMID: 38009957 PMCID: PMC10746230 DOI: 10.1128/mbio.01766-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Here, we profiled putative phages of Saccharibacteria, which are of particular importance as Saccharibacteria influence some human oral diseases. We additionally profiled putative phages of Gracilibacteria and Absconditabacteria, two Candidate Phyla Radiation (CPR) lineages of interest given their use of an alternative genetic code. Among the phages identified in this study, some are targeted by spacers from both CPR and non-CPR bacteria and others by both bacteria that use the standard genetic code as well as bacteria that use an alternative genetic code. These findings represent new insights into possible phage replication strategies and have relevance for phage therapies that seek to manipulate microbiomes containing CPR bacteria.
Collapse
Affiliation(s)
- Jett Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Alexander L. Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
| | - Batbileg Bor
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| |
Collapse
|
18
|
Cook R, Telatin A, Bouras G, Camargo AP, Larralde M, Edwards RA, Adriaenssens EM. Predicting stop codon reassignment improves functional annotation of bacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572299. [PMID: 38187747 PMCID: PMC10769273 DOI: 10.1101/2023.12.19.572299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The majority of bacteriophage diversity remains uncharacterised, and new intriguing mechanisms of their biology are being continually described. Members of some phage lineages, such as the Crassvirales, repurpose stop codons to encode an amino acid by using alternate genetic codes. Here, we investigated the prevalence of stop codon reassignment in phage genomes and subsequent impacts on functional annotation. We predicted 76 genomes within INPHARED and 712 vOTUs from the Unified Human Gut Virome catalogue (UHGV) that repurpose a stop codon to encode an amino acid. We re-annotated these sequences with modified versions of Pharokka and Prokka, called Pharokka-gv and Prokka-gv, to automatically predict stop codon reassignment prior to annotation. Both tools significantly improved the quality of annotations, with Pharokka-gv performing best. For sequences predicted to repurpose TAG to glutamine (translation table 15), Pharokka-gv increased the median gene length (median of per genome medians) from 287 to 481 bp for UHGV sequences (67.8% increase) and from 318 to 550 bp for INPHARED sequences (72.9% increase). The re-annotation increased mean coding density from 66.8% to 90.0%, and from 69.0% to 89.8% for UHGV and INPHARED sequences. Furthermore, the proportion of genes that could be assigned functional annotation increased, including an increase in the number of major capsid proteins that could be identified. We propose that automatic prediction of stop codon reassignment before annotation is beneficial to downstream viral genomic and metagenomic analyses.
Collapse
Affiliation(s)
- Ryan Cook
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Andrea Telatin
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5070, Australia
- Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5070, Australia
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martin Larralde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Evelien M. Adriaenssens
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| |
Collapse
|
19
|
Dimonaco NJ, Clare A, Kenobi K, Aubrey W, Creevey CJ. StORF-Reporter: finding genes between genes. Nucleic Acids Res 2023; 51:11504-11517. [PMID: 37897345 PMCID: PMC10682499 DOI: 10.1093/nar/gkad814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/30/2023] Open
Abstract
Large regions of prokaryotic genomes are currently without any annotation, in part due to well-established limitations of annotation tools. For example, it is routine for genes using alternative start codons to be misreported or completely omitted. Therefore, we present StORF-Reporter, a tool that takes an annotated genome and returns regions that may contain missing CDS genes from unannotated regions. StORF-Reporter consists of two parts. The first begins with the extraction of unannotated regions from an annotated genome. Next, Stop-ORFs (StORFs) are identified in these unannotated regions. StORFs are open reading frames that are delimited by stop codons and thus can capture those genes most often missing in genome annotations. We show this methodology recovers genes missing from canonical genome annotations. We inspect the results of the genomes of model organisms, the pangenome of Escherichia coli, and a set of 5109 prokaryotic genomes of 247 genera from the Ensembl Bacteria database. StORF-Reporter extended the core, soft-core and accessory gene collections, identified novel gene families and extended families into additional genera. The high levels of sequence conservation observed between genera suggest that many of these StORFs are likely to be functional genes that should now be considered for inclusion in canonical annotations.
Collapse
Affiliation(s)
- Nicholas J Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3PD, Wales, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, Wales, UK
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- School of Biological Sciences, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| | - Amanda Clare
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, Wales, UK
| | - Kim Kenobi
- Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ, Wales, UK
| | - Wayne Aubrey
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, Wales, UK
| | - Christopher J Creevey
- School of Biological Sciences, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| |
Collapse
|
20
|
Fremin BJ, Bhatt AS, Kyrpides NC. Identification of over ten thousand candidate structured RNAs in viruses and phages. Comput Struct Biotechnol J 2023; 21:5630-5639. [PMID: 38047235 PMCID: PMC10690425 DOI: 10.1016/j.csbj.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Structured RNAs play crucial roles in viruses, exerting influence over both viral and host gene expression. However, the extensive diversity of structured RNAs and their ability to act in cis or trans positions pose challenges for predicting and assigning their functions. While comparative genomics approaches have successfully predicted candidate structured RNAs in microbes on a large scale, similar efforts for viruses have been lacking. In this study, we screened over 5 million DNA and RNA viral sequences, resulting in the prediction of 10,006 novel candidate structured RNAs. These predictions are widely distributed across taxonomy and ecosystem. We found transcriptional evidence for 206 of these candidate structured RNAs in the human fecal microbiome. These candidate RNAs exhibited evidence of nucleotide covariation, indicative of selective pressure maintaining the predicted secondary structures. Our analysis revealed a diverse repertoire of candidate structured RNAs, encompassing a substantial number of putative tRNAs or tRNA-like structures, Rho-independent transcription terminators, and potentially cis-regulatory structures consistently positioned upstream of genes. In summary, our findings shed light on the extensive diversity of structured RNAs in viruses, offering a valuable resource for further investigations into their functional roles and implications in viral gene expression and pave the way for a deeper understanding of the intricate interplay between viruses and their hosts at the molecular level.
Collapse
Affiliation(s)
- Brayon J. Fremin
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ami S. Bhatt
- Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Lead Contact, USA
| |
Collapse
|
21
|
Grigson SR, Giles SK, Edwards RA, Papudeshi B. Knowing and Naming: Phage Annotation and Nomenclature for Phage Therapy. Clin Infect Dis 2023; 77:S352-S359. [PMID: 37932119 PMCID: PMC10627814 DOI: 10.1093/cid/ciad539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages, or phages, are viruses that infect bacteria shaping microbial communities and ecosystems. They have gained attention as potential agents against antibiotic resistance. In phage therapy, lytic phages are preferred for their bacteria killing ability, while temperate phages, which can transfer antibiotic resistance or toxin genes, are avoided. Selection relies on plaque morphology and genome sequencing. This review outlines annotating genomes, identifying critical genomic features, and assigning functional labels to protein-coding sequences. These annotations prevent the transfer of unwanted genes, such as antimicrobial resistance or toxin genes, during phage therapy. Additionally, it covers International Committee on Taxonomy of Viruses (ICTV)-an established phage nomenclature system for simplified classification and communication. Accurate phage genome annotation and nomenclature provide insights into phage-host interactions, replication strategies, and evolution, accelerating our understanding of the diversity and evolution of phages and facilitating the development of phage-based therapies.
Collapse
Affiliation(s)
- Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
22
|
Babkin I, Tikunov A, Morozova V, Matveev A, Morozov VV, Tikunova N. Genomes of a Novel Group of Phages That Use Alternative Genetic Code Found in Human Gut Viromes. Int J Mol Sci 2023; 24:15302. [PMID: 37894982 PMCID: PMC10607447 DOI: 10.3390/ijms242015302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metagenomics provides detection of phage genome sequences in various microbial communities. However, the use of alternative genetic codes by some phages precludes the correct analysis of their genomes. In this study, the unusual phage genome (phAss-1, 135,976 bp) was found after the de novo assembly of the human gut virome. Genome analysis revealed the presence of the TAG stop codons in 41 ORFs, including characteristic phage ORFs, and three genes of suppressor tRNA. Comparative analysis indicated that no phages with similar genomes were described. However, two phage genomes (BK046881_ctckW2 and BK025033_ct6IQ4) with substantial similarity to phAss-1 were extracted from the human gut metagenome data. These two complete genomes demonstrated 82.7% and 86.4% of nucleotide identity, respectively, similar genome synteny to phAss-1, the presence of suppressor tRNA genes and suppressor TAG stop codons in many characteristic phage ORFs. These data indicated that phAss-1, BK046881_ctckW2, and BK025033_ct6IQ4 are distinct species within the proposed Phassvirus genus. Moreover, a monophyletic group of divergent phage genomes containing the proposed Phassvirus genus was found among metagenome data. Several phage genomes from the group also contain ORFs with suppressor TAG stop codons, indicating the need to use various translation tables when depositing phage genomes in GenBank.
Collapse
Affiliation(s)
- Igor Babkin
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Tikunov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vera Morozova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
| | - Andrey Matveev
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
| | - Vitaliy V. Morozov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
| | - Nina Tikunova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
23
|
McGowan J, Kilias ES, Alacid E, Lipscombe J, Jenkins BH, Gharbi K, Kaithakottil GG, Macaulay IC, McTaggart S, Warring SD, Richards TA, Hall N, Swarbreck D. Identification of a non-canonical ciliate nuclear genetic code where UAA and UAG code for different amino acids. PLoS Genet 2023; 19:e1010913. [PMID: 37796765 PMCID: PMC10553269 DOI: 10.1371/journal.pgen.1010913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 10/07/2023] Open
Abstract
The genetic code is one of the most highly conserved features across life. Only a few lineages have deviated from the "universal" genetic code. Amongst the few variants of the genetic code reported to date, the codons UAA and UAG virtually always have the same translation, suggesting that their evolution is coupled. Here, we report the genome and transcriptome sequencing of a novel uncultured ciliate, belonging to the Oligohymenophorea class, where the translation of the UAA and UAG stop codons have changed to specify different amino acids. Genomic and transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes with anticodons complementary to the reassigned codons. We show that the retained UGA stop codon is enriched in the 3'UTR immediately downstream of the coding region of genes, suggesting that there is functional drive to maintain tandem stop codons. Using a phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code changes, highlighting the remarkable number of independent genetic code changes within the Ciliophora group of protists. According to our knowledge, this is the first report of a genetic code variant where UAA and UAG encode different amino acids.
Collapse
Affiliation(s)
- Jamie McGowan
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Elisabet Alacid
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James Lipscombe
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Iain C. Macaulay
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Seanna McTaggart
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Sally D. Warring
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
24
|
Manzano-Marín A, Kvist S, Oceguera-Figueroa A. Evolution of an Alternative Genetic Code in the Providencia Symbiont of the Hematophagous Leech Haementeria acuecueyetzin. Genome Biol Evol 2023; 15:evad164. [PMID: 37690114 PMCID: PMC10540940 DOI: 10.1093/gbe/evad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Strict blood-feeding animals are confronted with a strong B-vitamin deficiency. Blood-feeding leeches from the Glossiphoniidae family, similarly to hematophagous insects, have evolved specialized organs called bacteriomes to harbor symbiotic bacteria. Leeches of the Haementeria genus have two pairs of globular bacteriomes attached to the esophagus which house intracellular "Candidatus Providencia siddallii" bacteria. Previous work analyzing a draft genome of the Providencia symbiont of the Mexican leech Haementeria officinalis showed that, in this species, the bacteria hold a reduced genome capable of synthesizing B vitamins. In this work, we aimed to expand our knowledge on the diversity and evolution of Providencia symbionts of Haementeria. For this purpose, we sequenced the symbiont genomes of three selected leech species. We found that all genomes are highly syntenic and have kept a stable genetic repertoire, mirroring ancient insect endosymbionts. Additionally, we found B-vitamin pathways to be conserved among these symbionts, pointing to a conserved symbiotic role. Lastly and most notably, we found that the symbiont of H. acuecueyetzin has evolved an alternative genetic code, affecting a portion of its proteome and showing evidence of a lineage-specific and likely intermediate stage of genetic code reassignment.
Collapse
Affiliation(s)
- Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sebastian Kvist
- Department of Natural History, Royal Ontario Museum, Toronto, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Present address: Swedish Museum of Natural History, Stockholm, Sweden
| | - Alejandro Oceguera-Figueroa
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autonoma de México, Ciudad de México, México
| |
Collapse
|
25
|
Papudeshi B, Vega AA, Souza C, Giles SK, Mallawaarachchi V, Roach MJ, An M, Jacobson N, McNair K, Fernanda Mora M, Pastrana K, Boling L, Leigh C, Harker C, Plewa WS, Grigson SR, Bouras G, Decewicz P, Luque A, Droit L, Handley SA, Wang D, Segall AM, Dinsdale EA, Edwards RA. Host interactions of novel Crassvirales species belonging to multiple families infecting bacterial host, Bacteroides cellulosilyticus WH2. Microb Genom 2023; 9:001100. [PMID: 37665209 PMCID: PMC10569736 DOI: 10.1099/mgen.0.001100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite identifying over 600 Crassvirales genomes computationally, only few have been successfully isolated. Continued efforts in isolation of more Crassvirales genomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting various Bacteroides hosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These species, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. 'frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Alejandro A. Vega
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Souza
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Michelle An
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Nicole Jacobson
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Katelyn McNair
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
| | - Maria Fernanda Mora
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Karina Pastrana
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Christopher Leigh
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clarice Harker
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Will S. Plewa
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Susanna R. Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Przemysław Decewicz
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Antoni Luque
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
- Present address: Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A. Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anca M. Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| |
Collapse
|
26
|
Special Issue “Bacteriophage Genomics”: Editorial. Microorganisms 2023; 11:microorganisms11030693. [PMID: 36985265 PMCID: PMC10054338 DOI: 10.3390/microorganisms11030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Virus genomics as a separate branch of biology has emerged relatively recently [...]
Collapse
|
27
|
Manjunath LE, Singh A, Som S, Eswarappa SM. Mammalian proteome expansion by stop codon readthrough. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1739. [PMID: 35570338 DOI: 10.1002/wrna.1739] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
Abstract
Recognition of a stop codon by translation machinery as a sense codon results in translational readthrough instead of termination. This recoding process, termed stop codon readthrough (SCR) or translational readthrough, is found in all domains of life including mammals. The context of the stop codon, local mRNA topology, and molecules that interact with the mRNA region downstream of the stop codon determine SCR. The products of SCR can have localization, stability, and function different from those of the canonical isoforms. In this review, we discuss how recent technological and computational advances have increased our understanding of the SCR process in the mammalian system. Based on the known molecular events that occur during SCR of multiple mRNAs, we propose transient molecular roadblocks on an mRNA downstream of the stop codon as a possible mechanism for the induction of SCR. We argue, with examples, that the insights gained from the natural SCR events can guide us to develop novel strategies for the treatment of diseases caused by premature stop codons. This article is categorized under: Translation > Regulation.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
28
|
Gulyaeva A, Garmaeva S, Kurilshikov A, Vich Vila A, Riksen NP, Netea MG, Weersma RK, Fu J, Zhernakova A. Diversity and Ecology of Caudoviricetes Phages with Genome Terminal Repeats in Fecal Metagenomes from Four Dutch Cohorts. Viruses 2022; 14:2305. [PMID: 36298860 PMCID: PMC9610469 DOI: 10.3390/v14102305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The human gut harbors numerous viruses infecting the human host, microbes, and other inhabitants of the gastrointestinal tract. Most of these viruses remain undiscovered, and their influence on human health is unknown. Here, we characterize viral genomes in gut metagenomic data from 1950 individuals from four population and patient cohorts. We focus on a subset of viruses that is highly abundant in the gut, remains largely uncharacterized, and allows confident complete genome identification—phages that belong to the class Caudoviricetes and possess genome terminal repeats. We detect 1899 species-level units belonging to this subset, 19% of which do not have complete representative genomes in major public gut virome databases. These units display diverse genomic features, are predicted to infect a wide range of microbial hosts, and on average account for <1% of metagenomic reads. Analysis of longitudinal data from 338 individuals shows that the composition of this fraction of the virome remained relatively stable over a period of 4 years. We also demonstrate that 54 species-level units are highly prevalent (detected in >5% of individuals in a cohort). Finally, we find 34 associations between highly prevalent phages and human phenotypes, 24 of which can be explained by the relative abundance of potential hosts.
Collapse
Affiliation(s)
- Anastasia Gulyaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Niels P. Riksen
- Department of Internal Medicine, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Rinse K. Weersma
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| |
Collapse
|
29
|
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, Bryant DA, Bhaya D, Krupovic M, Dolja VV, Kyrpides NC, Koonin EV, Gophna U. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 2022; 185:4023-4037.e18. [PMID: 36174579 DOI: 10.1016/j.cell.2022.08.023] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.
Collapse
Affiliation(s)
- Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - I Min Chen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lisa Zeigler Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA; Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Valerian V Dolja
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
30
|
Peters SL, Borges AL, Giannone RJ, Morowitz MJ, Banfield JF, Hettich RL. Experimental validation that human microbiome phages use alternative genetic coding. Nat Commun 2022; 13:5710. [PMID: 36175428 PMCID: PMC9523058 DOI: 10.1038/s41467-022-32979-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
Previous bioinformatic analyses of metagenomic data have indicated that bacteriophages can use genetic codes different from those of their host bacteria. In particular, reassignment of stop codon TAG to glutamine (a variation known as 'genetic code 15') has been predicted. Here, we use LC-MS/MS-based metaproteomics of human fecal samples to provide experimental evidence of the use of genetic code 15 in two crAss-like phages. Furthermore, the proteomic data from several phage structural proteins supports the reassignment of the TAG stop codon to glutamine late in the phage infection cycle. Thus, our work experimentally validates the expression of genetic code 15 in human microbiome phages.
Collapse
Affiliation(s)
- Samantha L Peters
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | | | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
31
|
Samhita L. Re-reading the genetic code: The evolutionary potential of frameshifting in time. J Biosci 2022. [DOI: 10.1007/s12038-022-00289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Thousands of small, novel genes predicted in global phage genomes. Cell Rep 2022; 39:110984. [PMID: 35732113 DOI: 10.1016/j.celrep.2022.110984] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Small genes (<150 nucleotides) have been systematically overlooked in phage genomes. We employ a large-scale comparative genomics approach to predict >40,000 small-gene families in ∼2.3 million phage genome contigs. We find that small genes in phage genomes are approximately 3-fold more prevalent than in host prokaryotic genomes. Our approach enriches for small genes that are translated in microbiomes, suggesting the small genes identified are coding. More than 9,000 families encode potentially secreted or transmembrane proteins, more than 5,000 families encode predicted anti-CRISPR proteins, and more than 500 families encode predicted antimicrobial proteins. By combining homology and genomic-neighborhood analyses, we reveal substantial novelty and diversity within phage biology, including small phage genes found in multiple host phyla, small genes encoding proteins that play essential roles in host infection, and small genes that share genomic neighborhoods and whose encoded proteins may share related functions.
Collapse
|
33
|
Borges AL, Lou YC, Sachdeva R, Al-Shayeb B, Penev PI, Jaffe AL, Lei S, Santini JM, Banfield JF. Widespread stop-codon recoding in bacteriophages may regulate translation of lytic genes. Nat Microbiol 2022; 7:918-927. [PMID: 35618772 PMCID: PMC9197471 DOI: 10.1038/s41564-022-01128-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
Bacteriophages (phages) are obligate parasites that use host bacterial translation machinery to produce viral proteins. However, some phages have alternative genetic codes with reassigned stop codons that are predicted to be incompatible with bacterial translation systems. We analysed 9,422 phage genomes and found that stop-codon recoding has evolved in diverse clades of phages that infect bacteria present in both human and animal gut microbiota. Recoded stop codons are particularly over-represented in phage structural and lysis genes. We propose that recoded stop codons might function to prevent premature production of late-stage proteins. Stop-codon recoding has evolved several times in closely related lineages, which suggests that adaptive recoding can occur over very short evolutionary timescales.
Collapse
Affiliation(s)
- Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Yue Clare Lou
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Basem Al-Shayeb
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Petar I Penev
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Shufei Lei
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Joanne M Santini
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
34
|
Vanni C, Schechter MS, Acinas SG, Barberán A, Buttigieg PL, Casamayor EO, Delmont TO, Duarte CM, Eren AM, Finn RD, Kottmann R, Mitchell A, Sánchez P, Siren K, Steinegger M, Gloeckner FO, Fernàndez-Guerra A. Unifying the known and unknown microbial coding sequence space. eLife 2022; 11:e67667. [PMID: 35356891 PMCID: PMC9132574 DOI: 10.7554/elife.67667] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Genes of unknown function are among the biggest challenges in molecular biology, especially in microbial systems, where 40-60% of the predicted genes are unknown. Despite previous attempts, systematic approaches to include the unknown fraction into analytical workflows are still lacking. Here, we present a conceptual framework, its translation into the computational workflow AGNOSTOS and a demonstration on how we can bridge the known-unknown gap in genomes and metagenomes. By analyzing 415,971,742 genes predicted from 1749 metagenomes and 28,941 bacterial and archaeal genomes, we quantify the extent of the unknown fraction, its diversity, and its relevance across multiple organisms and environments. The unknown sequence space is exceptionally diverse, phylogenetically more conserved than the known fraction and predominantly taxonomically restricted at the species level. From the 71 M genes identified to be of unknown function, we compiled a collection of 283,874 lineage-specific genes of unknown function for Cand. Patescibacteria (also known as Candidate Phyla Radiation, CPR), which provides a significant resource to expand our understanding of their unusual biology. Finally, by identifying a target gene of unknown function for antibiotic resistance, we demonstrate how we can enable the generation of hypotheses that can be used to augment experimental data.
Collapse
Affiliation(s)
- Chiara Vanni
- Microbial Genomics and Bioinformatics Research G, Max Planck Institute for Marine MicrobiologyBremenGermany
- Jacobs University BremenBremenGermany
| | - Matthew S Schechter
- Microbial Genomics and Bioinformatics Research G, Max Planck Institute for Marine MicrobiologyBremenGermany
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Albert Barberán
- Department of Environmental Science, University of ArizonaTucsonUnited States
| | - Pier Luigi Buttigieg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Alfred Wegener InstituteBremerhavenGermany
| | - Emilio O Casamayor
- Center for Advanced Studies of Blanes CEAB-CSIC, Spanish Council for ResearchBlanesSpain
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-SaclayEvryFrance
| | - Carlos M Duarte
- Red Sea Research Centre and Computational Bioscience Research Center, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - A Murat Eren
- Department of Medicine, University of ChicagoChicagoUnited States
- Josephine Bay Paul Center, Marine Biological LaboratoryWoods HoleUnited States
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusHinxtonUnited Kingdom
| | - Renzo Kottmann
- Microbial Genomics and Bioinformatics Research G, Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Alex Mitchell
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusHinxtonUnited Kingdom
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Kimmo Siren
- Section for Evolutionary Genomics, The GLOBE Institute, University of CopenhagenCopenhagenDenmark
| | - Martin Steinegger
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Frank Oliver Gloeckner
- Jacobs University BremenBremenGermany
- University of Bremen and Life Sciences and ChemistryBremenGermany
- Computing Center, Helmholtz Center for Polar and Marine ResearchBremerhavenGermany
| | - Antonio Fernàndez-Guerra
- Microbial Genomics and Bioinformatics Research G, Max Planck Institute for Marine MicrobiologyBremenGermany
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
35
|
Antipov D, Rayko M, Kolmogorov M, Pevzner PA. viralFlye: assembling viruses and identifying their hosts from long-read metagenomics data. Genome Biol 2022; 23:57. [PMID: 35189932 PMCID: PMC8862349 DOI: 10.1186/s13059-021-02566-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Although the use of long-read sequencing improves the contiguity of assembled viral genomes compared to short-read methods, assembling complex viral communities remains an open problem. We describe the viralFlye tool for identification and analysis of metagenome-assembled viruses in long-read assemblies. We show it significantly improves viral assemblies and demonstrate that long-reads result in a much larger array of predicted virus-host associations as compared to short-read assemblies. We demonstrate that the identification of novel CRISPR arrays in bacterial genomes from a newly assembled metagenomic sample provides information for predicting novel hosts for novel viruses.
Collapse
Affiliation(s)
- Dmitry Antipov
- Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Mikhail Rayko
- Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Mikhail Kolmogorov
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, USA
| |
Collapse
|
36
|
Shulgina Y, Eddy SR. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 2021; 10:71402. [PMID: 34751130 PMCID: PMC8629427 DOI: 10.7554/elife.71402] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic code has been proposed to be a ‘frozen accident,’ but the discovery of alternative genetic codes over the past four decades has shown that it can evolve to some degree. Since most examples were found anecdotally, it is difficult to draw general conclusions about the evolutionary trajectories of codon reassignment and why some codons are affected more frequently. To fill in the diversity of genetic codes, we developed Codetta, a computational method to predict the amino acid decoding of each codon from nucleotide sequence data. We surveyed the genetic code usage of over 250,000 bacterial and archaeal genome sequences in GenBank and discovered five new reassignments of arginine codons (AGG, CGA, and CGG), representing the first sense codon changes in bacteria. In a clade of uncultivated Bacilli, the reassignment of AGG to become the dominant methionine codon likely evolved by a change in the amino acid charging of an arginine tRNA. The reassignments of CGA and/or CGG were found in genomes with low GC content, an evolutionary force that likely helped drive these codons to low frequency and enable their reassignment. All life forms rely on a ‘code’ to translate their genetic information into proteins. This code relies on limited permutations of three nucleotides – the building blocks that form DNA and other types of genetic information. Each ‘triplet’ of nucleotides – or codon – encodes a specific amino acid, the basic component of proteins. Reading the sequence of codons in the right order will let the cell know which amino acid to assemble next on a growing protein. For instance, the codon CGG – formed of the nucleotides guanine (G) and cytosine (C) – codes for the amino acid arginine. From bacteria to humans, most life forms rely on the same genetic code. Yet certain organisms have evolved to use slightly different codes, where one or several codons have an altered meaning. To better understand how alternative genetic codes have evolved, Shulgina and Eddy set out to find more organisms featuring these altered codons, creating a new software called Codetta that can analyze the genome of a microorganism and predict the genetic code it uses. Codetta was then used to sift through the genetic information of 250,000 microorganisms. This was made possible by the sequencing, in recent years, of the genomes of hundreds of thousands of bacteria and other microorganisms – including many never studied before. These analyses revealed five groups of bacteria with alternative genetic codes, all of which had changes in the codons that code for arginine. Amongst these, four had genomes with a low proportion of guanine and cytosine nucleotides. This may have made some guanine and cytosine-rich arginine codons very rare in these organisms and, therefore, easier to be reassigned to encode another amino acid. The work by Shulgina and Eddy demonstrates that Codetta is a new, useful tool that scientists can use to understand how genetic codes evolve. In addition, it can also help to ensure the accuracy of widely used protein databases, which assume which genetic code organisms use to predict protein sequences from their genomes.
Collapse
Affiliation(s)
| | - Sean R Eddy
- Molecular & Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
37
|
Yakimov MM, Merkel AY, Gaisin VA, Pilhofer M, Messina E, Hallsworth JE, Klyukina AA, Tikhonova EN, Gorlenko VM. Cultivation of a vampire: 'Candidatus Absconditicoccus praedator'. Environ Microbiol 2021; 24:30-49. [PMID: 34750952 DOI: 10.1111/1462-2920.15823] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Halorhodospira halophila, one of the most-xerophilic halophiles, inhabits biophysically stressful and energetically expensive, salt-saturated alkaline brines. Here, we report an additional stress factor that is biotic: a diminutive Candidate-Phyla-Radiation bacterium, that we named 'Ca. Absconditicoccus praedator' M39-6, which predates H. halophila M39-5, an obligately photosynthetic, anaerobic purple-sulfur bacterium. We cultivated this association (isolated from the hypersaline alkaline Lake Hotontyn Nur, Mongolia) and characterized their biology. 'Ca. Absconditicoccus praedator' is the first stably cultivated species from the candidate class-level lineage Gracilibacteria (order-level lineage Absconditabacterales). Its closed-and-curated genome lacks genes for the glycolytic, pentose phosphate- and Entner-Doudoroff pathways which would generate energy/reducing equivalents and produce central carbon currencies. Therefore, 'Ca. Absconditicoccus praedator' is dependent on host-derived building blocks for nucleic acid-, protein-, and peptidoglycan synthesis. It shares traits with (the uncultured) 'Ca. Vampirococcus lugosii', which is also of the Gracilibacteria lineage. These are obligate parasitic lifestyle, feeding on photosynthetic anoxygenic Gammaproteobacteria, and absorption of host cytoplasm. Commonalities in their genomic composition and structure suggest that the entire Absconditabacterales lineage consists of predatory species which act to cull the populations of their respective host bacteria. Cultivation of vampire : host associations can shed light on unresolved aspects of their metabolism and ecosystem dynamics at life-limiting extremes.
Collapse
Affiliation(s)
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vasil A Gaisin
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Enzo Messina
- Institute for Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, Italy
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N Tikhonova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir M Gorlenko
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
38
|
Crisci MA, Chen LX, Devoto AE, Borges AL, Bordin N, Sachdeva R, Tett A, Sharrar AM, Segata N, Debenedetti F, Bailey M, Burt R, Wood RM, Rowden LJ, Corsini PM, van Winden S, Holmes MA, Lei S, Banfield JF, Santini JM. Closely related Lak megaphages replicate in the microbiomes of diverse animals. iScience 2021; 24:102875. [PMID: 34386733 PMCID: PMC8346664 DOI: 10.1016/j.isci.2021.102875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 02/01/2023] Open
Abstract
Lak phages with alternatively coded ∼540 kbp genomes were recently reported to replicate in Prevotella in microbiomes of humans that consume a non-Western diet, baboons, and pigs. Here, we explore Lak phage diversity and broader distribution using diagnostic polymerase chain reaction and genome-resolved metagenomics. Lak phages were detected in 13 animal types, including reptiles, and are particularly prevalent in pigs. Tracking Lak through the pig gastrointestinal tract revealed significant enrichment in the hindgut compared to the foregut. We reconstructed 34 new Lak genomes, including six curated complete genomes, all of which are alternatively coded. An anomalously large (∼660 kbp) complete genome reconstructed for the most deeply branched Lak from a horse microbiome is also alternatively coded. From the Lak genomes, we identified proteins associated with specific animal species; notably, most have no functional predictions. The presence of closely related Lak phages in diverse animals indicates facile distribution coupled to host-specific adaptation.
Collapse
Affiliation(s)
- Marco A. Crisci
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Audra E. Devoto
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adair L. Borges
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Rohan Sachdeva
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
| | - Allison M. Sharrar
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Rhiannon M. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Paula M. Corsini
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Shufei Lei
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- The University of Melbourne, Melbourne, VIC, Australia
| | - Joanne M. Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
39
|
Malinova I, Zupok A, Massouh A, Schöttler MA, Meyer EH, Yaneva-Roder L, Szymanski W, Rößner M, Ruf S, Bock R, Greiner S. Correction of frameshift mutations in the atpB gene by translational recoding in chloroplasts of Oenothera and tobacco. THE PLANT CELL 2021; 33:1682-1705. [PMID: 33561268 PMCID: PMC8254509 DOI: 10.1093/plcell/koab050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/02/2021] [Indexed: 05/10/2023]
Abstract
Translational recoding, also known as ribosomal frameshifting, is a process that causes ribosome slippage along the messenger RNA, thereby changing the amino acid sequence of the synthesized protein. Whether the chloroplast employs recoding is unknown. I-iota, a plastome mutant of Oenothera (evening primrose), carries a single adenine insertion in an oligoA stretch [11A] of the atpB coding region (encoding the β-subunit of the ATP synthase). The mutation is expected to cause synthesis of a truncated, nonfunctional protein. We report that a full-length AtpB protein is detectable in I-iota leaves, suggesting operation of a recoding mechanism. To characterize the phenomenon, we generated transplastomic tobacco lines in which the atpB reading frame was altered by insertions or deletions in the oligoA motif. We observed that insertion of two adenines was more efficiently corrected than insertion of a single adenine, or deletion of one or two adenines. We further show that homopolymeric composition of the oligoA stretch is essential for recoding, as an additional replacement of AAA lysine codon by AAG resulted in an albino phenotype. Our work provides evidence for the operation of translational recoding in chloroplasts. Recoding enables correction of frameshift mutations and can restore photoautotrophic growth in the presence of a mutation that otherwise would be lethal.
Collapse
Affiliation(s)
- Irina Malinova
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Arkadiusz Zupok
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Amid Massouh
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Etienne H Meyer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Liliya Yaneva-Roder
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Witold Szymanski
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Margit Rößner
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stephan Greiner
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
40
|
Williams TJ, Allen MA, Ivanova N, Huntemann M, Haque S, Hancock AM, Brazendale S, Cavicchioli R. Genome Analysis of a Verrucomicrobial Endosymbiont With a Tiny Genome Discovered in an Antarctic Lake. Front Microbiol 2021; 12:674758. [PMID: 34140946 PMCID: PMC8204192 DOI: 10.3389/fmicb.2021.674758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 01/25/2023] Open
Abstract
Organic Lake in Antarctica is a marine-derived, cold (−13∘C), stratified (oxic-anoxic), hypersaline (>200 gl–1) system with unusual chemistry (very high levels of dimethylsulfide) that supports the growth of phylogenetically and metabolically diverse microorganisms. Symbionts are not well characterized in Antarctica. However, unicellular eukaryotes are often present in Antarctic lakes and theoretically could harbor endosymbionts. Here, we describe Candidatus Organicella extenuata, a member of the Verrucomicrobia with a highly reduced genome, recovered as a metagenome-assembled genome with genetic code 4 (UGA-to-Trp recoding) from Organic Lake. It is closely related to Candidatus Pinguicocccus supinus (163,218 bp, 205 genes), a newly described cytoplasmic endosymbiont of the freshwater ciliate Euplotes vanleeuwenhoeki (Serra et al., 2020). At 158,228 bp (encoding 194 genes), the genome of Ca. Organicella extenuata is among the smallest known bacterial genomes and similar to the genome of Ca. Pinguicoccus supinus (163,218 bp, 205 genes). Ca. Organicella extenuata retains a capacity for replication, transcription, translation, and protein-folding while lacking any capacity for the biosynthesis of amino acids or vitamins. Notably, the endosymbiont retains a capacity for fatty acid synthesis (type II) and iron–sulfur (Fe-S) cluster assembly. Metagenomic analysis of 150 new metagenomes from Organic Lake and more than 70 other Antarctic aquatic locations revealed a strong correlation in abundance between Ca. Organicella extenuata and a novel ciliate of the genus Euplotes. Like Ca. Pinguicoccus supinus, we infer that Ca. Organicella extenuata is an endosymbiont of Euplotes and hypothesize that both Ca. Organicella extenuata and Ca. Pinguicocccus supinus provide fatty acids and Fe-S clusters to their Euplotes host as the foundation of a mutualistic symbiosis. The discovery of Ca. Organicella extenuata as possessing genetic code 4 illustrates that in addition to identifying endosymbionts by sequencing known symbiotic communities and searching metagenome data using reference endosymbiont genomes, the potential exists to identify novel endosymbionts by searching for unusual coding parameters.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Natalia Ivanova
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Marcel Huntemann
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Sabrina Haque
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Benler S, Koonin EV. Fishing for phages in metagenomes: what do we catch, what do we miss? Curr Opin Virol 2021; 49:142-150. [PMID: 34139668 DOI: 10.1016/j.coviro.2021.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metagenomics and metatranscriptomics have become the principal approaches for discovery of novel bacteriophages and preliminary characterization of their ecology and biology. Metagenomic sequencing dramatically expanded the known diversity of tailed and non-tailed phages with double-stranded DNA genomes and those with single-stranded DNA genomes, whereas metatranscriptomics led to the discovery of thousands of new single-stranded RNA phages. Apart from expanding phage diversity, metagenomics studies discover major novel groups of phages with unique features of genome organization, expression strategy and virus-host interaction, such as the putative order 'crAssvirales', which includes the most abundant human-associated viruses. The continued success of metagenomics hinges on the combination of the most powerful computational methods for phage genome assembly and analysis including harnessing CRISPR spacers for the discovery of novel phages and host assignment. Together, these approaches could make a comprehensive characterization of the earth phageome a realistic goal.
Collapse
Affiliation(s)
- Sean Benler
- National Center for Biotechnology Information, National Institutes of Health, Bethesda MD, United States.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of Health, Bethesda MD, United States.
| |
Collapse
|
42
|
Lomsadze A, Bonny C, Strozzi F, Borodovsky M. GeneMark-HM: improving gene prediction in DNA sequences of human microbiome. NAR Genom Bioinform 2021; 3:lqab047. [PMID: 34056597 PMCID: PMC8153819 DOI: 10.1093/nargab/lqab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 11/14/2022] Open
Abstract
Computational reconstruction of nearly complete genomes from metagenomic reads may identify thousands of new uncultured candidate bacterial species. We have shown that reconstructed prokaryotic genomes along with genomes of sequenced microbial isolates can be used to support more accurate gene prediction in novel metagenomic sequences. We have proposed an approach that used three types of gene prediction algorithms and found for all contigs in a metagenome nearly optimal models of protein-coding regions either in libraries of pre-computed models or constructed de novo. The model selection process and gene annotation were done by the new GeneMark-HM pipeline. We have created a database of the species level pan-genomes for the human microbiome. To create a library of models representing each pan-genome we used a self-training algorithm GeneMarkS-2. Genes initially predicted in each contig served as queries for a fast similarity search through the pan-genome database. The best matches led to selection of the model for gene prediction. Contigs not assigned to pan-genomes were analyzed by crude, but still accurate models designed for sequences with particular GC compositions. Tests of GeneMark-HM on simulated metagenomes demonstrated improvement in gene annotation of human metagenomic sequences in comparison with the current state-of-the-art gene prediction tools.
Collapse
Affiliation(s)
| | | | | | - Mark Borodovsky
- Gene Probe, Inc., 1106 Wrights Mill Ct, Atlanta, GA 30324, USA
| |
Collapse
|
43
|
Benler S, Yutin N, Antipov D, Rayko M, Shmakov S, Gussow AB, Pevzner P, Koonin EV. Thousands of previously unknown phages discovered in whole-community human gut metagenomes. MICROBIOME 2021; 9:78. [PMID: 33781338 PMCID: PMC8008677 DOI: 10.1186/s40168-021-01017-w] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/02/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Double-stranded DNA bacteriophages (dsDNA phages) play pivotal roles in structuring human gut microbiomes; yet, the gut virome is far from being fully characterized, and additional groups of phages, including highly abundant ones, continue to be discovered by metagenome mining. A multilevel framework for taxonomic classification of viruses was recently adopted, facilitating the classification of phages into evolutionary informative taxonomic units based on hallmark genes. Together with advanced approaches for sequence assembly and powerful methods of sequence analysis, this revised framework offers the opportunity to discover and classify unknown phage taxa in the human gut. RESULTS A search of human gut metagenomes for circular contigs encoding phage hallmark genes resulted in the identification of 3738 apparently complete phage genomes that represent 451 putative genera. Several of these phage genera are only distantly related to previously identified phages and are likely to found new families. Two of the candidate families, "Flandersviridae" and "Quimbyviridae", include some of the most common and abundant members of the human gut virome that infect Bacteroides, Parabacteroides, and Prevotella. The third proposed family, "Gratiaviridae," consists of less abundant phages that are distantly related to the families Autographiviridae, Drexlerviridae, and Chaseviridae. Analysis of CRISPR spacers indicates that phages of all three putative families infect bacteria of the phylum Bacteroidetes. Comparative genomic analysis of the three candidate phage families revealed features without precedent in phage genomes. Some "Quimbyviridae" phages possess Diversity-Generating Retroelements (DGRs) that generate hypervariable target genes nested within defense-related genes, whereas the previously known targets of phage-encoded DGRs are structural genes. Several "Flandersviridae" phages encode enzymes of the isoprenoid pathway, a lipid biosynthesis pathway that so far has not been known to be manipulated by phages. The "Gratiaviridae" phages encode a HipA-family protein kinase and glycosyltransferase, suggesting these phages modify the host cell wall, preventing superinfection by other phages. Hundreds of phages in these three and other families are shown to encode catalases and iron-sequestering enzymes that can be predicted to enhance cellular tolerance to reactive oxygen species. CONCLUSIONS Analysis of phage genomes identified in whole-community human gut metagenomes resulted in the delineation of at least three new candidate families of Caudovirales and revealed diverse putative mechanisms underlying phage-host interactions in the human gut. Addition of these phylogenetically classified, diverse, and distinct phages to public databases will facilitate taxonomic decomposition and functional characterization of human gut viromes. Video abstract.
Collapse
Affiliation(s)
- Sean Benler
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Dmitry Antipov
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004 Russia
| | - Mikhail Rayko
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004 Russia
| | - Sergey Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Ayal B. Gussow
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Pavel Pevzner
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004 Russia
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093 USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| |
Collapse
|
44
|
Yutin N, Benler S, Shmakov SA, Wolf YI, Tolstoy I, Rayko M, Antipov D, Pevzner PA, Koonin EV. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat Commun 2021; 12:1044. [PMID: 33594055 PMCID: PMC7886860 DOI: 10.1038/s41467-021-21350-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
CrAssphage is the most abundant human-associated virus and the founding member of a large group of bacteriophages, discovered in animal-associated and environmental metagenomes, that infect bacteria of the phylum Bacteroidetes. We analyze 4907 Circular Metagenome Assembled Genomes (cMAGs) of putative viruses from human gut microbiomes and identify nearly 600 genomes of crAss-like phages that account for nearly 87% of the DNA reads mapped to these cMAGs. Phylogenetic analysis of conserved genes demonstrates the monophyly of crAss-like phages, a putative virus order, and of 5 branches, potential families within that order, two of which have not been identified previously. The phage genomes in one of these families are almost twofold larger than the crAssphage genome (145-192 kilobases), with high density of self-splicing introns and inteins. Many crAss-like phages encode suppressor tRNAs that enable read-through of UGA or UAG stop-codons, mostly, in late phage genes. A distinct feature of the crAss-like phages is the recurrent switch of the phage DNA polymerase type between A and B families. Thus, comparative genomic analysis of the expanded assemblage of crAss-like phages reveals aspects of genome architecture and expression as well as phage biology that were not apparent from the previous work on phage genomics.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Sean Benler
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Sergei A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mike Rayko
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry Antipov
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California-San Diego, La Jolla, CA, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
| |
Collapse
|
45
|
Belinky F, Ganguly I, Poliakov E, Yurchenko V, Rogozin IB. Analysis of Stop Codons within Prokaryotic Protein-Coding Genes Suggests Frequent Readthrough Events. Int J Mol Sci 2021; 22:ijms22041876. [PMID: 33672790 PMCID: PMC7918605 DOI: 10.3390/ijms22041876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons—where an intermediate step is a nonsense substitution—show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
Collapse
Affiliation(s)
- Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Ishan Ganguly
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: (V.Y.); (I.B.R.)
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
- Correspondence: (V.Y.); (I.B.R.)
| |
Collapse
|
46
|
Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol 2021; 6:960-970. [PMID: 34168315 PMCID: PMC8241571 DOI: 10.1038/s41564-021-00928-6] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Bacteriophages have important roles in the ecology of the human gut microbiome but are under-represented in reference databases. To address this problem, we assembled the Metagenomic Gut Virus catalogue that comprises 189,680 viral genomes from 11,810 publicly available human stool metagenomes. Over 75% of genomes represent double-stranded DNA phages that infect members of the Bacteroidia and Clostridia classes. Based on sequence clustering we identified 54,118 candidate viral species, 92% of which were not found in existing databases. The Metagenomic Gut Virus catalogue improves detection of viruses in stool metagenomes and accounts for nearly 40% of CRISPR spacers found in human gut Bacteria and Archaea. We also produced a catalogue of 459,375 viral protein clusters to explore the functional potential of the gut virome. This revealed tens of thousands of diversity-generating retroelements, which use error-prone reverse transcription to mutate target genes and may be involved in the molecular arms race between phages and their bacterial hosts.
Collapse
|
47
|
Auslander N, Gussow AB, Benler S, Wolf YI, Koonin EV. Seeker: alignment-free identification of bacteriophage genomes by deep learning. Nucleic Acids Res 2020; 48:e121. [PMID: 33045744 PMCID: PMC7708075 DOI: 10.1093/nar/gkaa856] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Recent advances in metagenomic sequencing have enabled discovery of diverse, distinct microbes and viruses. Bacteriophages, the most abundant biological entity on Earth, evolve rapidly, and therefore, detection of unknown bacteriophages in sequence datasets is a challenge. Most of the existing detection methods rely on sequence similarity to known bacteriophage sequences, impeding the identification and characterization of distinct, highly divergent bacteriophage families. Here we present Seeker, a deep-learning tool for alignment-free identification of phage sequences. Seeker allows rapid detection of phages in sequence datasets and differentiation of phage sequences from bacterial ones, even when those phages exhibit little sequence similarity to established phage families. We comprehensively validate Seeker's ability to identify previously unidentified phages, and employ this method to detect unknown phages, some of which are highly divergent from the known phage families. We provide a web portal (seeker.pythonanywhere.com) and a user-friendly Python package (github.com/gussow/seeker) allowing researchers to easily apply Seeker in metagenomic studies, for the detection of diverse unknown bacteriophages.
Collapse
Affiliation(s)
- Noam Auslander
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ayal B Gussow
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sean Benler
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
48
|
The Boggarts of biology: how non-genetic changes influence the genotype. Curr Genet 2020; 67:65-77. [PMID: 33037901 DOI: 10.1007/s00294-020-01108-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023]
Abstract
The notion that there is a one-one mapping from genotype to phenotype was overturned a long time ago. Along with genotype and environment, 'non-genetic changes' orchestrated by altered RNA and protein molecules also guide the development of phenotype. The idea that there is a route through which changes in phenotype can lead to changes in genotype impinges on several phenomena of molecular, developmental, evolutionary and applied interest. Phenotypic changes that do not alter the underlying DNA sequence have been studied across model systems (eg: DNA and histone modifications, RNA editing, prion formation) and are known to play an important role in short-term adaptation. However, because of their transient nature and unstable inheritance, the role of such changes in long-term evolution has remained controversial. I classify and review three ways in which non-genetic changes can influence genotype and impact cellular fitness across generations, with an emphasis on the enticing idea that they may act as stepping stones for genetic adaptation. I focus on work from microbial systems and attempt to highlight recent experiments and models that bear on this idea. Overall, I review evidence which suggests that non-genetic changes can impact phenotype via their influence on the genotype, and thus play a role in evolutionary change.
Collapse
|
49
|
Žihala D, Eliáš M. Evolution and Unprecedented Variants of the Mitochondrial Genetic Code in a Lineage of Green Algae. Genome Biol Evol 2020; 11:2992-3007. [PMID: 31617565 PMCID: PMC6821328 DOI: 10.1093/gbe/evz210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria of diverse eukaryotes have evolved various departures from the standard genetic code, but the breadth of possible modifications and their phylogenetic distribution are known only incompletely. Furthermore, it is possible that some codon reassignments in previously sequenced mitogenomes have been missed, resulting in inaccurate protein sequences in databases. Here we show, considering the distribution of codons at conserved amino acid positions in mitogenome-encoded proteins, that mitochondria of the green algal order Sphaeropleales exhibit a diversity of codon reassignments, including previously missed ones and some that are unprecedented in any translation system examined so far, necessitating redefinition of existing translation tables and creating at least seven new ones. We resolve a previous controversy concerning the meaning the UAG codon in Hydrodictyaceae, which beyond any doubt encodes alanine. We further demonstrate that AGG, sometimes together with AGA, encodes alanine instead of arginine in diverse sphaeroplealeans. Further newly detected changes include Arg-to-Met reassignment of the AGG codon and Arg-to-Leu reassignment of the CGG codon in particular species. Analysis of tRNAs specified by sphaeroplealean mitogenomes provides direct support for and molecular underpinning of the proposed reassignments. Furthermore, we point to unique mutations in the mitochondrial release factor mtRF1a that correlate with changes in the use of termination codons in Sphaeropleales, including the two independent stop-to-sense UAG reassignments, the reintroduction of UGA in some Scenedesmaceae, and the sense-to-stop reassignment of UCA widespread in the group. Codon disappearance seems to be the main drive of the dynamic evolution of the mitochondrial genetic code in Sphaeropleales.
Collapse
Affiliation(s)
- David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
50
|
Al-Shayeb B, Sachdeva R, Chen LX, Ward F, Munk P, Devoto A, Castelle CJ, Olm MR, Bouma-Gregson K, Amano Y, He C, Méheust R, Brooks B, Thomas A, Lavy A, Matheus-Carnevali P, Sun C, Goltsman DSA, Borton MA, Sharrar A, Jaffe AL, Nelson TC, Kantor R, Keren R, Lane KR, Farag IF, Lei S, Finstad K, Amundson R, Anantharaman K, Zhou J, Probst AJ, Power ME, Tringe SG, Li WJ, Wrighton K, Harrison S, Morowitz M, Relman DA, Doudna JA, Lehours AC, Warren L, Cate JHD, Santini JM, Banfield JF. Clades of huge phages from across Earth's ecosystems. Nature 2020; 578:425-431. [PMID: 32051592 PMCID: PMC7162821 DOI: 10.1038/s41586-020-2007-4] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
Abstract
Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.
Collapse
Affiliation(s)
- Basem Al-Shayeb
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Lin-Xing Chen
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Fred Ward
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Audra Devoto
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Cindy J Castelle
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Matthew R Olm
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Keith Bouma-Gregson
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Japan
| | - Christine He
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Brandon Brooks
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Alex Thomas
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adi Lavy
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | | | - Christine Sun
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | | | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Allison Sharrar
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | - Alexander L Jaffe
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Tara C Nelson
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rose Kantor
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Ray Keren
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Katherine R Lane
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Ibrahim F Farag
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Shufei Lei
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | - Kari Finstad
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Ronald Amundson
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Karthik Anantharaman
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | | | - Alexander J Probst
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Mary E Power
- Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Wen-Jun Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kelly Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sue Harrison
- Centre for Bioprocess Engineering Research, University of Cape Town, Cape Town, South Africa
| | - Michael Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A Relman
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Anne-Catherine Lehours
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Lesley Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA.
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|