1
|
Gui T, Liu Y, Fu M, Wu H, Su P, Feng X, Zheng M, Huang Z, Luo X, Boron WF, Chen LM. Redox state of NAD modulates the activation of Na-bicarbonate cotransporter NBCe1-B via IRBIT and L-IRBIT. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1452-1462. [PMID: 39985648 DOI: 10.1007/s11427-024-2750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 02/24/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD) is well known as a coenzyme involved in many redox reactions in cellular energy metabolism, or as a substrate for many NAD+-consuming enzymes, including those that generate the second messenger cyclic ADP-ribose or deacetylate proteins (e.g., histones). The role of NAD in non-catalytic proteins is poorly understood. IRBIT and L-IRBIT (the IRBITs) are two cytosolic proteins that are structurally related to dehydrogenases but lack catalytic activity. Instead, by interacting directly with their targets, the IRBITs modulate the function of numerous proteins with important roles, ranging from Ca2+ signaling and intracellular pH (pHi) regulation to DNA metabolism to autophagy. Among the targets of the IRBITs is the Na+-HCO3- cotransporter NBCe1-B, which plays a central role in intracellular pH (pHi) regulation and epithelial electrolyte transport. Here, we demonstrate that NAD modulates NBCe1-B activation by serving as a cofactor of IRBIT or L-IRBIT. Blocking NAD salvage pathway greatly decreases NBCe1-B activation by the IRBITs. Administration of the oxidized form NAD+ enhances, whereas the reduced form NADH decreases NBCe1-B activity. Our study represents the first example in which the redox state of NAD, via IRBIT or L-IRBIT, modulates the function of a membrane transport protein. Our findings reveal a new role of NAD and greatly expand our understanding of NAD biology. Because the NAD redox state fluctuates greatly with metabolic status, our work provides insight into how, via the IRBITs, energy metabolism could affect pHi regulation and many other IRBIT-dependent processes.
Collapse
Affiliation(s)
- Tianxiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| | - Mingfeng Fu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xuhui Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Mengmeng Zheng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Zixuan Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xudong Luo
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Di Mattía RA, Gallo D, Ciarrocchi S, Gonano LA, Blanco PG, Valverde CA, Portiansky EL, Sommese LM, Toischer K, Bleckwedel F, Zelarayán LC, Aiello EA, Orlowski A. Cardiac hypertrophy induced by overexpression of IP3-released inositol 1, 4, 5-trisphosphate receptor-binding protein (IRBIT). J Mol Cell Cardiol 2025; 201:1-15. [PMID: 39929439 DOI: 10.1016/j.yjmcc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION IRBIT, also known as Ahcyl1, is an IP3 receptor (IP3R)-binding protein released with IP3 and was first described as a competitive inhibitor of the mentioned receptor. Studies have shown that overexpression of IP3Rs is associated with cardiac hypertrophy in both human and animal models. Given that IP3Rs play a role in cardiac hypertrophy, IRBIT may also be involved in this condition. AIM Although IRBIT heart expression has been reported, its function in cardiac tissues remains unclear. Thus, we aimed to study the cardiac outcomes of up-and downregulation of IRBIT to establish its pathophysiological role. METHODS AND RESULTS We found that IRBIT is expressed in mouse ventricles and atria, fibroblasts and cardiomyocytes isolated from neonatal mice, and in the myoblast cell line H9c2. Mice with transverse aortic constriction showed a significant increase in both the mRNA and protein expression of IRBIT. Furthermore, we described the differential expression of IRBIT in human myocardial samples of dilated and ischemic cardiomyopathy. IRBIT cardiac overexpression in mice using an adenoassociated virus (AAV9) at two different time points (neonatal mice, day 4 and adult mice, 3 months) resulted in the development of cardiac hypertrophy with impaired systolic function by four months of age. A decrease in the mRNA levels of the IP3 receptor was also observed in both models. Isolated myocytes from the IRBIT-overexpressing neonatal model showed a significantly decreased Ca2+ transient amplitude and slower rise of the global Ca2+ transient, without changes in sarcoplasmic reticulum (SR) Ca2+ content or spontaneous Ca2+ wave frequency. However, the velocity of Ca2+ wave propagation was reduced. Moreover, we found that the dyssynchrony index (DI) is significantly increased under IRBIT overexpression. Nuclear Ca2+ dynamics were assessed, showing no significant changes, but IRBIT overexpression reduced the number of nuclear envelope invaginations. In addition, reducing IRBIT expression using AAV9-shRNA did not result in any changes in the heart morphometric parameters. CONCLUSION Our study describes for the first time that IRBIT plays a critical role in the pathophysiology of the heart. Our findings demonstrate that IRBIT overexpression disrupts Ca2+ signaling, contributing to hypertrophic remodeling and impaired cardiac function. The altered wave propagation, the increase in DI and the decrease of the rate of the Ca2+ transient suggests that IRBIT influences Ca2+ - induced Ca2+ release. This study provides the first evidence linking IRBIT to pathological cardiac remodeling and Ca2+ handling dysregulation. Although significant progress has been made, further research is required to better understand the cardiovascular function of IRBIT and its mechanisms.
Collapse
Affiliation(s)
- R A Di Mattía
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - D Gallo
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - S Ciarrocchi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - L A Gonano
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - P G Blanco
- Centro de Fisiología Reproductiva & Métodos Complementarios de Diagnóstico (CEFIRE & MECODIAG), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - C A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - E L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - L M Sommese
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - K Toischer
- German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany; Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany
| | - F Bleckwedel
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany
| | - L C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany; Justus Liebig University, Medical Clinic I, Department of Cardiology and Angiology, Klinikstraße 33, 35392 Giessen, Germany
| | - E A Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - A Orlowski
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
3
|
Budnik N, Leroux AE, Cooke M, Kazanietz MG, Vigliano C, Kobayashi K, Perez-Castro C. The role of S-adenosylhomocysteine hydrolase-like 1 in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119819. [PMID: 39154900 DOI: 10.1016/j.bbamcr.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
This integrative review aims to highlight the importance of investigating the functional role of AHCYL1, also known as IRBIT, in cancer cells. It has recently been suggested that AHCYL1 regulates cell survival/death, stemness capacity, and the host adaptive response to the tumor microenvironment. Despite this knowledge, the role of AHCYL1 in cancer is still controversial, probably due to its ability to interact with multiple factors in a tissue-specific manner. Understanding the mechanisms regulating the functional interplay between the tumor and the tumor microenvironment that controls the expression of AHCYL1 could provide a deeper comprehension of the regulation of tumor development. Addressing how AHCYL1 modulates cellular plasticity processes in a tumoral context is potentially relevant to developing translational approaches in cancer biology.
Collapse
Affiliation(s)
- Nicolás Budnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Cooke
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marcelo G Kazanietz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI Buenos Aires, Argentina; Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS Buenos Aires, Argentina
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Muñoz-Bernart M, Budnick N, Castro A, Manzi M, Monge ME, Pioli J, Defranchi S, Parrilla G, Santilli JP, Davies K, Espinosa JM, Kobayashi K, Vigliano C, Perez-Castro C. S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) inhibits lung cancer tumorigenesis by regulating cell plasticity. Biol Direct 2023; 18:8. [PMID: 36872327 PMCID: PMC9985837 DOI: 10.1186/s13062-023-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most frequently diagnosed cancers characterized by high mortality, metastatic potential, and recurrence. Deregulated gene expression of lung cancer, likewise in many other solid tumors, accounts for their cell heterogeneity and plasticity. S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as Inositol triphosphate (IP(3)) receptor-binding protein released with IP(3) (IRBIT), plays roles in many cellular functions, including autophagy and apoptosis but AHCYL1 role in lung cancer is largely unknown. RESULTS Here, we analyzed the expression of AHCYL1 in Non-Small Cell Lung Cancer (NSCLC) cells from RNA-seq public data and surgical specimens, which revealed that AHCYL1 expression is downregulated in tumors and inverse correlated to proliferation marker Ki67 and the stemness signature expression. AHCYL1-silenced NSCLC cells showed enhanced stem-like properties in vitro, which correlated with higher expression levels of stem markers POU5F1 and CD133. Also, the lack of AHCYL1 enhanced tumorigenicity and angiogenesis in mouse xenograft models highlighting stemness features. CONCLUSIONS These findings indicate that AHCYL1 is a negative regulator in NSCLC tumorigenesis by modulating cell differentiation state and highlighting AHCYL1 as a potential prognostic biomarker for lung cancer.
Collapse
Affiliation(s)
- Melina Muñoz-Bernart
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Nicolás Budnick
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Araceli Castro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina
| | - Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Desarrollo Analítico y Control de Procesos, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Julieta Pioli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Sebastián Defranchi
- Servicio de Cirugía Torácica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Gustavo Parrilla
- Servicio de Cirugía Torácica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Juan Pablo Santilli
- Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Kevin Davies
- Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina.,Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
6
|
Chen S, Lyanguzova M, Kaufhold R, Plevock Haase KM, Lee H, Arnaoutov A, Dasso M. Association of RanGAP to nuclear pore complex component, RanBP2/Nup358, is required for pupal development in Drosophila. Cell Rep 2021; 37:110151. [PMID: 34965423 PMCID: PMC11166264 DOI: 10.1016/j.celrep.2021.110151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/15/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Ran's GTPase-activating protein (RanGAP) is tethered to the nuclear envelope (NE) in multicellular organisms. We investigated the consequences of RanGAP localization in human tissue culture cells and Drosophila. In tissue culture cells, disruption of RanGAP1 NE localization surprisingly has neither obvious impacts on viability nor nucleocytoplasmic transport of a model substrate. In Drosophila, we identified a region within nucleoporin dmRanBP2 required for direct tethering of dmRanGAP to the NE. A dmRanBP2 mutant lacking this region shows no apparent growth defects during larval stages but arrests at the early pupal stage. A direct fusion of dmRanGAP to the dmRanBP2 mutant rescues this arrest, indicating that dmRanGAP recruitment to dmRanBP2 per se is necessary for the pupal ecdysis sequence. Our results indicate that while the NE localization of RanGAP is widely conserved in multicellular organisms, the targeting mechanisms are not. Further, we find a requirement for this localization during pupal development.
Collapse
Affiliation(s)
- Shane Chen
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Maria Lyanguzova
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Ross Kaufhold
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Karen M Plevock Haase
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Hangnoh Lee
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Cao P, Li G, Xiang J. Genome instability and lymphoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:552-557. [PMID: 34148893 PMCID: PMC10930211 DOI: 10.11817/j.issn.1672-7347.2021.190427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 11/03/2022]
Abstract
Lymphoma is one of the most common malignant tumor of the hematologic system. The genome instability is not only an important molecular basis for the development of lymphoma, but also has important value in the diagnosis and prognosis of lymphoma. There are 2 types of genome instability: Microsatellite instability (MSI/MIN) at gene level and chromosomal instability at chromosome level. Through the study on genes associated with lymphoma, the unstable genes associated with lymphoma could be found, meanwhile the mechanism of its occurrence and development of lymphoma could be explored, and the important basis of molecular biology could also be provided in the field of current hot lymphoma precision medical research.
Collapse
Affiliation(s)
- Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China.
| | - Guiyuan Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China.
| | - Juanjuan Xiang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| |
Collapse
|
8
|
Huang W, Li N, Zhang Y, Wang X, Yin M, Lei QY. AHCYL1 senses SAH to inhibit autophagy through interaction with PIK3C3 in an MTORC1-independent manner. Autophagy 2021; 18:309-319. [PMID: 33993848 DOI: 10.1080/15548627.2021.1924038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
S-adenosyl-l-homocysteine (SAH), an amino acid derivative, is a key intermediate metabolite in methionine metabolism, which is normally considered as a harmful by-product and hydrolyzed quickly once formed. AHCY (adenosylhomocysteinase) converts SAH into homocysteine and adenosine. There are two other members in the AHCY family, AHCYL1 (adenosylhomocysteinase like 1) and AHCYL2 (adenosylhomocysteinase like 2). Here we define AHCYL1 function as a SAH sensor to inhibit macroautophagy/autophagy through PIK3C3. The C terminus of AHCYL1 interacts with SAH specifically and the interaction with SAH promotes the binding of the N terminus to the catalytic domain of PIK3C3, resulting in inhibition of PIK3C3. More importantly, this observation was further validated in vivo, indicating that SAH functions as a signaling molecule. Our study uncovers a new axis of SAH-AHCYL1-PIK3C3, which senses the intracellular level of SAH to inhibit autophagy in an MTORC1-independent manner.Abbreviations: ADOX: adenosine dialdehyde; AHCY: adenosylhomocysteinase; AHCYL1: adenosylhomocysteinase like 1; cLEU: cycloleucine; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; SAH: S-adenosyl-l-homocysteine; SAM: S-adenosyl-l-methionine.
Collapse
Affiliation(s)
- Wei Huang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Wang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Su P, Wu H, Wang M, Cai L, Liu Y, Chen LM. IRBIT activates NBCe1-B by releasing the auto-inhibition module from the transmembrane domain. J Physiol 2020; 599:1151-1172. [PMID: 33237573 PMCID: PMC7898672 DOI: 10.1113/jp280578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Key points The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Abstract The electrogenic Na+/HCO3− cotransporter NBCe1‐B is widely expressed in many tissues in the body. NBCe1‐B exhibits only basal activity due to the action of the auto‐inhibition domain (AID) in its unique amino‐terminus. However, NBCe1‐B can be activated by interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). Here, we investigate the molecular mechanism underlying the auto‐inhibition of NBCe1‐B and its activation by IRBIT. The IRBIT‐binding domain (IBD) of NBCe1‐B spans residues 1−52, essentially consisting of two arms, one negatively charged (residues 1−24) and the other positively charged (residues 40−52). The AID mainly spans residues 40−85, overlapping with the IBD in the positively charged arm. The magnitude of auto‐inhibition of NBCe1‐B is greatly decreased by manipulating the positively charged residues in the AID or by replacing a set of negatively charged residues with neutral ones in the transmembrane domain. The interaction between IRBIT and NBCe1‐B is abolished by mutating a set of negatively charged Asp/Glu residues (to Asn/Gln) plus a set of Ser/Thr residues (to Ala) in the PEST domain of IRBIT. However, this interaction is not affected by replacing the same set of Ser/Thr residues in the PEST domain with Asp. We propose that: (1) the AID, acting as a brake, binds to the transmembrane domain via electrostatic interaction to slow down NBCe1‐B; (2) IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain. The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Collapse
Affiliation(s)
- Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Cell-cycle-dependent phosphorylation of RRM1 ensures efficient DNA replication and regulates cancer vulnerability to ATR inhibition. Oncogene 2020; 39:5721-5733. [PMID: 32712628 DOI: 10.1038/s41388-020-01403-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs) building blocks for DNA synthesis, and is a well-recognized target for cancer therapy. RNR is a heterotetramer consisting of two large RRM1 subunits and two small RRM2 subunits. RNR activity is greatly stimulated by transcriptional activation of RRM2 during S/G2 phase to ensure adequate dNTP supply for DNA replication. However, little is known about the cell-cycle-dependent regulation of RNR activity through RRM1. Here, we report that RRM1 is phosphorylated at Ser 559 by CDK2/cyclin A during S/G2 phase. And this S559 phosphorylation of RRM1enhances RNR enzymatic activity and is required for maintaining sufficient dNTPs during normal DNA replication. Defective RRM1 S559 phosphorylation causes DNA replication stress, double-strand break, and genomic instability. Moreover, combined targeting of RRM1 S559 phosphorylation and ATR triggers lethal replication stress and profound antitumor effects. Thus, this posttranslational phosphorylation of RRM1 provides an alternative mechanism to finely regulating RNR and therapeutic opportunities for cancer treatment.
Collapse
|
11
|
Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie 2020; 173:33-47. [PMID: 32105812 DOI: 10.1016/j.biochi.2020.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
12
|
Wang M, Wu H, Liu Y, Chen LM. Activation of mouse NBCe1-B by Xenopus laevis and mouse IRBITs: Role of the variable Nt appendage of IRBITs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183240. [PMID: 32119862 DOI: 10.1016/j.bbamem.2020.183240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
The IP3 receptor binding protein released with inositol 1,4,5-trisphosphate (IRBIT) plays important roles in the regulation of intracellular Ca2+ signaling and intracellular pH. The mammals express two IRBIT paralogs, i.e., IRBIT1 (encoded by AHCYL1) and IRBIT2 (encoded by AHCYL2). The clawed frog Xenopus laevis oocyte is widely used for biophysical studies on ion channels and transporters. It remains unknown whether endogenous IRBIT is expressed in Xenopus oocytes. Here, we cloned from frog oocyte irbit2.L and irbit2.S, orthologs of mammalian IRBIT2. When over-expressed, the frog IRBITs powerfully stimulate the electrogenic Na+/HCO3- cotransporter NBCe1-B as mouse IRBIT2-V2 does. Expression of an isolated Nt fragment of NBCe1-B containing the IRBIT-binding domain greatly decreases NBCe1-B activity in oocytes, suggesting that the basal activity of NBCe1-B contains a large component derived from the stimulation by endogenous frog IRBIT. The frog IRBITs are highly homologous to the mammalian ones in the carboxyl-terminal region, but varies greatly in the amino-terminal (Nt) appendage. Interestingly, truncation study showed that the Nt appendage of IRBIT1 and the long Nt appendage of IRBIT2-V2 modestly enhance, whereas the short Nt appendage of IRBIT2-V4 greatly inhibits the functional interaction between IRBIT and NBCe1-B. Finally, Ala-substitution of Ser68, a key phosphorylation site in the PEST domain of IRBIT, causes distinct functional consequences depending on the structural context of the Nt appendage in different IRBIT isoforms. We conclude that the Nt appendage of IRBITs is not necessary for, but plays an important regulatory role in the functional interaction between IRBIT and NBCe1-B.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
13
|
Arnaoutov A, Lee H, Plevock Haase K, Aksenova V, Jarnik M, Oliver B, Serpe M, Dasso M. IRBIT Directs Differentiation of Intestinal Stem Cell Progeny to Maintain Tissue Homeostasis. iScience 2020; 23:100954. [PMID: 32179478 PMCID: PMC7068126 DOI: 10.1016/j.isci.2020.100954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 11/27/2022] Open
Abstract
The maintenance of the intestinal epithelium is ensured by the controlled proliferation of intestinal stem cells (ISCs) and differentiation of their progeny into various cell types, including enterocytes (ECs) that both mediate nutrient absorption and provide a barrier against pathogens. The signals that regulate transition of proliferative ISCs into differentiated ECs are not fully understood. IRBIT is an evolutionarily conserved protein that regulates ribonucleotide reductase (RNR), an enzyme critical for the generation of DNA precursors. Here, we show that IRBIT expression in ISC progeny within the Drosophila midgut epithelium cells regulates their differentiation via suppression of RNR activity. Disruption of this IRBIT-RNR regulatory circuit causes a premature loss of intestinal tissue integrity. Furthermore, age-related dysplasia can be reversed by suppression of RNR activity in ISC progeny. Collectively, our findings demonstrate a role of the IRBIT-RNR pathway in gut homeostasis. IRBIT is required for homeostasis of the intestinal epithelium IRBIT inhibition of RNR ensures proper intestinal stem cell differentiation Suppression of RNR in intestinal stem cell progeny reverses age-related dysplasia
Collapse
Affiliation(s)
- Alexei Arnaoutov
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA.
| | - Hangnoh Lee
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA
| | | | - Vasilisa Aksenova
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Cell Biology and Metabolism Program, NICHD, NIH, Bethesda, MD 20892, USA
| | - Brian Oliver
- Developmental Genomics Section, Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20814, USA
| | - Mihaela Serpe
- Section on Cellular Communications, NICHD, NIH, Bethesda, MD 20892, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Long MJC, Zhao Y, Aye Y. Clofarabine Commandeers the RNR-α-ZRANB3 Nuclear Signaling Axis. Cell Chem Biol 2019; 27:122-133.e5. [PMID: 31836351 DOI: 10.1016/j.chembiol.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/30/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
Ribonucleotide reductase (RNR) is an essential enzyme in DNA biogenesis and a target of several chemotherapeutics. Here, we investigate how anti-leukemic drugs (e.g., clofarabine [ClF]) that target one of the two subunits of RNR, RNR-α, affect non-canonical RNR-α functions. We discovered that these clinically approved RNR-inhibiting dATP-analogs inhibit growth by also targeting ZRANB3-a recently identified DNA synthesis promoter and nuclear-localized interactor of RNR-α. Remarkably, in early time points following drug treatment, ZRANB3 targeting accounted for most of the drug-induced DNA synthesis suppression and multiple cell types featuring ZRANB3 knockout/knockdown were resistant to these drugs. In addition, ZRANB3 plays a major role in regulating tumor invasion and H-rasG12V-promoted transformation in a manner dependent on the recently discovered interactome of RNR-α involving select cytosolic-/nuclear-localized protein players. The H-rasG12V-promoted transformation-which we show requires ZRANB3-supported DNA synthesis-was efficiently suppressed by ClF. Such overlooked mechanisms of action of approved drugs and a previously unappreciated example of non-oncogene addiction, which is suppressed by RNR-α, may advance cancer interventions.
Collapse
Affiliation(s)
- Marcus J C Long
- Bishop Burton, Beverley, East Riding of Yorkshire HU17 8QH, UK
| | - Yi Zhao
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland.
| |
Collapse
|
15
|
Long MJC, Van Hall-Beauvais A, Aye Y. The more the merrier: how homo-oligomerization alters the interactome and function of ribonucleotide reductase. Curr Opin Chem Biol 2019; 54:10-18. [PMID: 31734537 DOI: 10.1016/j.cbpa.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 02/05/2023]
Abstract
Stereotyped as a nexus of dNTP synthesis, the dual-subunit enzyme - ribonucleotide reductase (RNR) - is coming into view as a paradigm of oligomerization and moonlighting behavior. In the present issue of 'omics', we discuss what makes the larger subunit of this enzyme (RNR-α) so interesting, highlighting its emerging cellular interactome based on its unique oligomeric dynamism that dictates its compartment-specific occupations. Linking the history of the field with the multivariable nature of this exceedingly sophisticated enzyme, we further discuss implications of new data pertaining to DNA-damage response, S-phase checkpoints, and ultimately tumor suppression. We hereby hope to provide ideas for those interested in these fields and exemplify conceptual frameworks and tools that are useful to study RNR's broader roles in biology.
Collapse
Affiliation(s)
| | - Alexandra Van Hall-Beauvais
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland.
| |
Collapse
|
16
|
Liu B, Großhans J. The role of dNTP metabolites in control of the embryonic cell cycle. Cell Cycle 2019; 18:2817-2827. [PMID: 31544596 PMCID: PMC6791698 DOI: 10.1080/15384101.2019.1665948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Deoxyribonucleotide metabolites (dNTPs) are the substrates for DNA synthesis. It has been proposed that their availability influences the progression of the cell cycle during development and pathological situations such as tumor growth. The mechanism has remained unclear for the link between cell cycle and dNTP levels beyond their role as substrates. Here, we review recent studies concerned with the dynamics of dNTP levels in early embryos and the role of DNA replication checkpoint as a sensor of dNTP levels.
Collapse
Affiliation(s)
- Boyang Liu
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
| | - Jörg Großhans
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
- Entwicklungsgenetik, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
17
|
Chen G, Luo Y, Warncke K, Sun Y, Yu DS, Fu H, Behera M, Ramalingam SS, Doetsch PW, Duong DM, Lammers M, Curran WJ, Deng X. Acetylation regulates ribonucleotide reductase activity and cancer cell growth. Nat Commun 2019; 10:3213. [PMID: 31324785 PMCID: PMC6642173 DOI: 10.1038/s41467-019-11214-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/25/2019] [Indexed: 12/26/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleoside diphosphates (dNDPs) to provide dNTP precursors for DNA synthesis. Here, we report that acetylation and deacetylation of the RRM2 subunit of RNR acts as a molecular switch that impacts RNR activity, dNTP synthesis, and DNA replication fork progression. Acetylation of RRM2 at K95 abrogates RNR activity by disrupting its homodimer assembly. RRM2 is directly acetylated by KAT7, and deacetylated by Sirt2, respectively. Sirt2, which level peak in S phase, sustains RNR activity at or above a threshold level required for dNTPs synthesis. We also find that radiation or camptothecin-induced DNA damage promotes RRM2 deacetylation by enhancing Sirt2-RRM2 interaction. Acetylation of RRM2 at K95 results in the reduction of the dNTP pool, DNA replication fork stalling, and the suppression of tumor cell growth in vitro and in vivo. This study therefore identifies acetylation as a regulatory mechanism governing RNR activity.
Collapse
Affiliation(s)
- Guo Chen
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yin Luo
- Department of Pharmacology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1510 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Kurt Warncke
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA
| | - Youwei Sun
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - David S Yu
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1510 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Madhusmita Behera
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Paul W Doetsch
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany
| | - Walter J Curran
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Long MJC, Hnedzko D, Kim BK, Aye Y. Breaking the Fourth Wall: Modulating Quaternary Associations for Protein Regulation and Drug Discovery. Chembiochem 2019; 20:1091-1104. [PMID: 30589188 PMCID: PMC6499692 DOI: 10.1002/cbic.201800716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPIs) are an effective means to orchestrate intricate biological processes required to sustain life. Approximately 650 000 PPIs underlie the human interactome; thus underscoring its complexity and the manifold signaling outputs altered in response to changes in specific PPIs. This minireview illustrates the growing arsenal of PPI assemblies and offers insights into how these varied PPI regulatory modalities are relevant to customized drug discovery, with a focus on cancer. First, known and emerging PPIs and PPI-targeted drugs of both natural and synthetic origin are categorized. Building on these discussions, the merits of PPI-guided therapeutics over traditional drug design are discussed. Finally, a compare-and-contrast section for different PPI blockers, with gain-of-function PPI interventions, such as PROTACS, is provided.
Collapse
Affiliation(s)
- Marcus J. C. Long
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| | - Dziyana Hnedzko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Bo Kyoung Kim
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
| | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| |
Collapse
|
19
|
Carbone M, Amelio I, Affar EB, Brugarolas J, Cannon-Albright LA, Cantley LC, Cavenee WK, Chen Z, Croce CM, Andrea AD, Gandara D, Giorgi C, Jia W, Lan Q, Mak TW, Manley JL, Mikoshiba K, Onuchic JN, Pass HI, Pinton P, Prives C, Rothman N, Sebti SM, Turkson J, Wu X, Yang H, Yu H, Melino G. Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ 2018; 25:1885-1904. [PMID: 30323273 PMCID: PMC6219489 DOI: 10.1038/s41418-018-0213-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The relative contribution of intrinsic genetic factors and extrinsic environmental ones to cancer aetiology and natural history is a lengthy and debated issue. Gene-environment interactions (G x E) arise when the combined presence of both a germline genetic variant and a known environmental factor modulates the risk of disease more than either one alone. A panel of experts discussed our current understanding of cancer aetiology, known examples of G × E interactions in cancer, and the expanded concept of G × E interactions to include somatic cancer mutations and iatrogenic environmental factors such as anti-cancer treatment. Specific genetic polymorphisms and genetic mutations increase susceptibility to certain carcinogens and may be targeted in the near future for prevention and treatment of cancer patients with novel molecularly based therapies. There was general consensus that a better understanding of the complexity and numerosity of G × E interactions, supported by adequate technological, epidemiological, modelling and statistical resources, will further promote our understanding of cancer and lead to novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - El Bachir Affar
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, Quebec, H1T 2M4, Canada
| | - James Brugarolas
- Department of Internal Medicine, Hematology-Oncology Division, Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY, 10021, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Chen
- Department of Molecular Biology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alan D' Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David Gandara
- Thoracic Oncology, UC Davis, Sacramento, CA, 96817, USA
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Wei Jia
- Hawaii Cancer Center, Honolulu, HI, USA
| | - Qing Lan
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Harvey I Pass
- Division of General Thoracic Surgery, Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA
| | - Nathaniel Rothman
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Said M Sebti
- Drug Discovery Department, Moffitt Cancer Center, and Department of Oncologic Sciences, University of South Florida, Tampa, FL, 33612, USA
| | | | - Xifeng Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Gerry Melino
- MRC Toxicology Unit, Leicester, UK.
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
20
|
Fu Y, Long MJC, Wisitpitthaya S, Inayat H, Pierpont TM, Elsaid IM, Bloom JC, Ortega J, Weiss RS, Aye Y. Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Nat Chem Biol 2018; 14:943-954. [PMID: 30150681 DOI: 10.1038/s41589-018-0113-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022]
Abstract
Since the origins of DNA-based life, the enzyme ribonucleotide reductase (RNR) has spurred proliferation because of its rate-limiting role in de novo deoxynucleoside-triphosphate (dNTP) biosynthesis. Paradoxically, the large subunit, RNR-α, of this obligatory two-component complex in mammals plays a context-specific antiproliferative role. There is little explanation for this dichotomy. Here, we show that RNR-α has a previously unrecognized DNA-replication inhibition function, leading to growth retardation. This underappreciated biological activity functions in the nucleus, where RNR-α interacts with ZRANB3. This process suppresses ZRANB3's function in unstressed cells, which we show to promote DNA synthesis. This nonreductase function of RNR-α is promoted by RNR-α hexamerization-induced by a natural and synthetic nucleotide of dA/ClF/CLA/FLU-which elicits rapid RNR-α nuclear import. The newly discovered nuclear signaling axis is a primary defense against elevated or imbalanced dNTP pools that can exert mutagenic effects irrespective of the cell cycle.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marcus J C Long
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Huma Inayat
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | - Islam M Elsaid
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jordana C Bloom
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.
| |
Collapse
|
21
|
Eid AH, El-Yazbi AF, Zouein F, Arredouani A, Ouhtit A, Rahman MM, Zayed H, Pintus G, Abou-Saleh H. Inositol 1,4,5-Trisphosphate Receptors in Hypertension. Front Physiol 2018; 9:1018. [PMID: 30093868 PMCID: PMC6071574 DOI: 10.3389/fphys.2018.01018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic hypertension remains a major cause of global mortality and morbidity. It is a complex disease that is the clinical manifestation of multiple genetic, environmental, nutritional, hormonal, and aging-related disorders. Evidence supports a role for vascular aging in the development of hypertension involving an impairment in endothelial function together with an alteration in vascular smooth muscle cells (VSMCs) calcium homeostasis leading to increased myogenic tone. Changes in free intracellular calcium levels ([Ca2+] i ) are mediated either by the influx of Ca2+ from the extracellular space or release of Ca2+ from intracellular stores, mainly the sarcoplasmic reticulum (SR). The influx of extracellular Ca2+ occurs primarily through voltage-gated Ca2+ channels (VGCCs), store-operated Ca2+ channels (SOC), and Ca2+ release-activated channels (CRAC), whereas SR-Ca2+ release occurs through inositol trisphosphate receptor (IP3R) and ryanodine receptors (RyRs). IP3R-mediated SR-Ca2+ release, in the form of Ca2+ waves, not only contributes to VSMC contraction and regulates VGCC function but is also intimately involved in structural remodeling of resistance arteries in hypertension. This involves a phenotypic switch of VSMCs as well as an alteration of cytoplasmic Ca2+ signaling machinery, a phenomena tightly related to the aging process. Several lines of evidence implicate changes in expression/function levels of IP3R isoforms in the development of hypertension, VSMC phenotypic switch, and vascular aging. The present review discusses the current knowledge of these mechanisms in an integrative approach and further suggests potential new targets for hypertension management and treatment.
Collapse
Affiliation(s)
- Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fouad Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdelilah Arredouani
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Md M. Rahman
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Horlbeck MA, Xu A, Wang M, Bennett NK, Park CY, Bogdanoff D, Adamson B, Chow ED, Kampmann M, Peterson TR, Nakamura K, Fischbach MA, Weissman JS, Gilbert LA. Mapping the Genetic Landscape of Human Cells. Cell 2018; 174:953-967.e22. [PMID: 30033366 DOI: 10.1016/j.cell.2018.06.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/08/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Seminal yeast studies have established the value of comprehensively mapping genetic interactions (GIs) for inferring gene function. Efforts in human cells using focused gene sets underscore the utility of this approach, but the feasibility of generating large-scale, diverse human GI maps remains unresolved. We developed a CRISPR interference platform for large-scale quantitative mapping of human GIs. We systematically perturbed 222,784 gene pairs in two cancer cell lines. The resultant maps cluster functionally related genes, assigning function to poorly characterized genes, including TMEM261, a new electron transport chain component. Individual GIs pinpoint unexpected relationships between pathways, exemplified by a specific cholesterol biosynthesis intermediate whose accumulation induces deoxynucleotide depletion, causing replicative DNA damage and a synthetic-lethal interaction with the ATR/9-1-1 DNA repair pathway. Our map provides a broad resource, establishes GI maps as a high-resolution tool for dissecting gene function, and serves as a blueprint for mapping the genetic landscape of human cells.
Collapse
Affiliation(s)
- Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Albert Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Min Wang
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Neal K Bennett
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Chong Y Park
- Innovative Genomics Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Derek Bogdanoff
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Britt Adamson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric D Chow
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Tim R Peterson
- Department of Internal Medicine, Division of Bone and Mineral Diseases, and Department of Genetics, Institute for Public Health, Washington University School of Medicine, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Luke A Gilbert
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell 2018; 173:1495-1507.e18. [PMID: 29706546 PMCID: PMC5998384 DOI: 10.1016/j.cell.2018.03.053] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/18/2018] [Accepted: 03/21/2018] [Indexed: 11/21/2022]
Abstract
Quantitative mass spectrometry has established proteome-wide regulation of protein abundance and post-translational modifications in various biological processes. Here, we used quantitative mass spectrometry to systematically analyze the thermal stability and solubility of proteins on a proteome-wide scale during the eukaryotic cell cycle. We demonstrate pervasive variation of these biophysical parameters with most changes occurring in mitosis and G1. Various cellular pathways and components vary in thermal stability, such as cell-cycle factors, polymerases, and chromatin remodelers. We demonstrate that protein thermal stability serves as a proxy for enzyme activity, DNA binding, and complex formation in situ. Strikingly, a large cohort of intrinsically disordered and mitotically phosphorylated proteins is stabilized and solubilized in mitosis, suggesting a fundamental remodeling of the biophysical environment of the mitotic cell. Our data represent a rich resource for cell, structural, and systems biologists interested in proteome regulation during biological transitions.
Collapse
|
24
|
Ando H, Kawaai K, Bonneau B, Mikoshiba K. Remodeling of Ca 2+ signaling in cancer: Regulation of inositol 1,4,5-trisphosphate receptors through oncogenes and tumor suppressors. Adv Biol Regul 2017; 68:64-76. [PMID: 29287955 DOI: 10.1016/j.jbior.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
The calcium ion (Ca2+) is a ubiquitous intracellular signaling molecule that regulates diverse physiological and pathological processes, including cancer. Increasing evidence indicates that oncogenes and tumor suppressors regulate the Ca2+ transport systems. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are IP3-activated Ca2+ release channels located on the endoplasmic reticulum (ER). They play pivotal roles in the regulation of cell death and survival by controlling Ca2+ transfer from the ER to mitochondria through mitochondria-associated ER membranes (MAMs). Optimal levels of Ca2+ mobilization to mitochondria are necessary for mitochondrial bioenergetics, whereas excessive Ca2+ flux into mitochondria causes loss of mitochondrial membrane integrity and apoptotic cell death. In addition to well-known functions on outer mitochondrial membranes, B-cell lymphoma 2 (Bcl-2) family proteins are localized on the ER and regulate IP3Rs to control Ca2+ transfer into mitochondria. Another regulatory protein of IP3R, IP3R-binding protein released with IP3 (IRBIT), cooperates with or counteracts the Bcl-2 family member depending on cellular states. Furthermore, several oncogenes and tumor suppressors, including Akt, K-Ras, phosphatase and tensin homolog (PTEN), promyelocytic leukemia protein (PML), BRCA1, and BRCA1 associated protein 1 (BAP1), are localized on the ER or at MAMs and negatively or positively regulate apoptotic cell death through interactions with IP3Rs and regulation of Ca2+ dynamics. The remodeling of Ca2+ signaling by oncogenes and tumor suppressors that interact with IP3Rs has fundamental roles in the pathology of cancers.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Benjamin Bonneau
- Institute NeuroMyoGene (INMG), CNRS UMR 5310, INSERM U1217, Gregor Mendel building, 16, rue Raphaël Dubois, 69100 Villeurbanne, France
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
25
|
Grbeša I, Kalo A, Belužić R, Kovačević L, Lepur A, Rokić F, Hochberg H, Kanter I, Simunović V, Muńoz-Torres PM, Shav-Tal Y, Vugrek O. Mutations in S-adenosylhomocysteine hydrolase (AHCY) affect its nucleocytoplasmic distribution and capability to interact with S-adenosylhomocysteine hydrolase-like 1 protein. Eur J Cell Biol 2017. [PMID: 28647132 DOI: 10.1016/j.ejcb.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
S-adenosylhomocysteine hydrolase (AHCY) is thought to be located at the sites of ongoing AdoMet-dependent methylation, presumably in the cell nucleus. Endogenous AHCY is located both in cytoplasm and the nucleus. Little is known regarding mechanisms that drive its subcellular distribution, and even less is known on how mutations causing AHCY deficiency affect its intracellular dynamics. Using fluorescence microscopy and GFP-tagged AHCY constructs we show significant differences in the intensity ratio between nuclei and cytoplasm for mutant proteins when compared with wild type AHCY. Interestingly, nuclear export of AHCY is not affected by leptomycin B. Systematic deletions showed that AHCY has two regions, located at both sides of the protein, that contribute to its nuclear localization, implying the interaction with various proteins. In order to evaluate protein interactions in vivo we engaged in bimolecular fluorescence complementation (BiFC) based studies. We investigated previously assumed interaction with AHCY-like-1 protein (AHCYL1), a paralog of AHCY. Indeed, significant interaction between both proteins exists. Additionally, silencing AHCYL1 leads to moderate inhibition of nuclear export of endogenous AHCY.
Collapse
Affiliation(s)
- Ivana Grbeša
- Laboratory for Advanced Genomics, Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Alon Kalo
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Robert Belužić
- Laboratory for Advanced Genomics, Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lucija Kovačević
- Laboratory for Advanced Genomics, Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Adriana Lepur
- Laboratory for Advanced Genomics, Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Hodaya Hochberg
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Itamar Kanter
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Vesna Simunović
- Laboratory for Advanced Genomics, Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Pau Marc Muńoz-Torres
- Laboratory for Advanced Genomics, Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
26
|
Lou M, Liu Q, Ren G, Zeng J, Xiang X, Ding Y, Lin Q, Zhong T, Liu X, Zhu L, Qi H, Shen J, Li H, Shao J. Physical interaction between human ribonucleotide reductase large subunit and thioredoxin increases colorectal cancer malignancy. J Biol Chem 2017; 292:9136-9149. [PMID: 28411237 DOI: 10.1074/jbc.m117.783365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/11/2017] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase (RR) is the rate-limiting enzyme in DNA synthesis, catalyzing the reduction of ribonucleotides to deoxyribonucleotides. During each enzymatic turnover, reduction of the active site disulfide in the catalytic large subunit is performed by a pair of shuttle cysteine residues in its C-terminal tail. Thioredoxin (Trx) and glutaredoxin (Grx) are ubiquitous redox proteins, catalyzing thiol-disulfide exchange reactions. Here, immunohistochemical examination of clinical colorectal cancer (CRC) specimens revealed that human thioredoxin1 (hTrx1), but not human glutaredoxin1 (hGrx1), was up-regulated along with human RR large subunit (RRM1) in cancer tissues, and the expression levels of both proteins were correlated with cancer malignancy stage. Ectopically expressed hTrx1 significantly increased RR activity, DNA synthesis, and cell proliferation and migration. Importantly, inhibition of both hTrx1 and RRM1 produced a synergistic anticancer effect in CRC cells and xenograft mice. Furthermore, hTrx1 rather than hGrx1 was the efficient reductase for RRM1 regeneration. We also observed a direct protein-protein interaction between RRM1 and hTrx1 in CRC cells. Interestingly, besides the known two conserved cysteines, a third cysteine (Cys779) in the RRM1 C terminus was essential for RRM1 regeneration and binding to hTrx1, whereas both Cys32 and Cys35 in hTrx1 played a counterpart role. Our findings suggest that the up-regulated RRM1 and hTrx1 in CRC directly interact with each other and promote RR activity, resulting in enhanced DNA synthesis and cancer malignancy. We propose that the RRM1-hTrx1 interaction might be a novel potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Meng Lou
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qian Liu
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | - Xueping Xiang
- the Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China, and
| | | | - Qinghui Lin
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingting Zhong
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xia Liu
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lijun Zhu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongyan Qi
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Shen
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haoran Li
- Takeda Pharmaceuticals International Company, Cambridge, Massachusetts 02139
| | - Jimin Shao
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China,
| |
Collapse
|
27
|
Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins. Proc Natl Acad Sci U S A 2017; 114:3921-3926. [PMID: 28348216 DOI: 10.1073/pnas.1618514114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IRBIT [inositol 1,4,5-trisphosphate receptor (IP3R) binding protein released with inositol 1,4,5-trisphosphate (IP3)] is a multifunctional protein that regulates several target molecules such as ion channels, transporters, polyadenylation complex, and kinases. Through its interaction with multiple targets, IRBIT contributes to calcium signaling, electrolyte transport, mRNA processing, cell cycle, and neuronal function. However, the regulatory mechanism of IRBIT binding to particular targets is poorly understood. Long-IRBIT is an IRBIT homolog with high homology to IRBIT, except for a unique N-terminal appendage. Long-IRBIT splice variants have different N-terminal sequences and a common C-terminal region, which is involved in multimerization of IRBIT and Long-IRBIT. In this study, we characterized IRBIT and Long-IRBIT splice variants (IRBIT family). We determined that the IRBIT family exhibits different mRNA expression patterns in various tissues. The IRBIT family formed homo- and heteromultimers. In addition, N-terminal splicing of Long-IRBIT changed the protein stability and selectivity to target molecules. These results suggest that N-terminal diversity of the IRBIT family and various combinations of multimer formation contribute to the functional diversity of the IRBIT family.
Collapse
|
28
|
The Intra-S Checkpoint Responses to DNA Damage. Genes (Basel) 2017; 8:genes8020074. [PMID: 28218681 PMCID: PMC5333063 DOI: 10.3390/genes8020074] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/03/2023] Open
Abstract
Faithful duplication of the genome is a challenge because DNA is susceptible to damage by a number of intrinsic and extrinsic genotoxins, such as free radicals and UV light. Cells activate the intra-S checkpoint in response to damage during S phase to protect genomic integrity and ensure replication fidelity. The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation of forks is perhaps the most critical function of the intra-S checkpoint. However, the exact role of the checkpoint at replication forks has remained elusive and controversial. Is the checkpoint required for fork stability, or fork restart, or to prevent fork reversal or fork collapse, or activate repair at replication forks? What are the factors that the checkpoint targets at stalled replication forks? In this review, we will discuss the various pathways activated by the intra-S checkpoint in response to damage to prevent genomic instability.
Collapse
|
29
|
Bonneau B, Ando H, Kawaai K, Hirose M, Takahashi-Iwanaga H, Mikoshiba K. IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. eLife 2016; 5. [PMID: 27995898 PMCID: PMC5173324 DOI: 10.7554/elife.19896] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022] Open
Abstract
IRBIT is a molecule that interacts with the inositol 1,4,5-trisphosphate (IP3)-binding pocket of the IP3 receptor (IP3R), whereas the antiapoptotic protein, Bcl2l10, binds to another part of the IP3-binding domain. Here we show that Bcl2l10 and IRBIT interact and exert an additive inhibition of IP3R in the physiological state. Moreover, we found that these proteins associate in a complex in mitochondria-associated membranes (MAMs) and that their interplay is involved in apoptosis regulation. MAMs are a hotspot for Ca2+ transfer between endoplasmic reticulum (ER) and mitochondria, and massive Ca2+ release through IP3R in mitochondria induces cell death. We found that upon apoptotic stress, IRBIT is dephosphorylated, becoming an inhibitor of Bcl2l10. Moreover, IRBIT promotes ER mitochondria contact. Our results suggest that by inhibiting Bcl2l10 activity and promoting contact between ER and mitochondria, IRBIT facilitates massive Ca2+ transfer to mitochondria and promotes apoptosis. This work then describes IRBIT as a new regulator of cell death.
Collapse
Affiliation(s)
- Benjamin Bonneau
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | | | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| |
Collapse
|
30
|
Parkhitko AA, Binari R, Zhang N, Asara JM, Demontis F, Perrimon N. Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. Genes Dev 2016; 30:1409-22. [PMID: 27313316 PMCID: PMC4926864 DOI: 10.1101/gad.282277.116] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Methionine generates the methyl donor SAM, which is converted via methylation to SAH, which accumulates during aging. Parkhitko et al. discovered significant life span extension in response to down-regulation of two noncanonical Drosophila homologs of the SAH hydrolase Ahcy, CG9977/dAhcyL1 and Ahcy89E/CG8956/dAhcyL2, which act as dominant-negative regulators of canonical AHCY. Tissue-specific down-regulation of dAhcyL1/L2 in the brain and intestine extends health and life span. Aging is a risk factor for many human pathologies and is characterized by extensive metabolic changes. Using targeted high-throughput metabolite profiling in Drosophila melanogaster at different ages, we demonstrate that methionine metabolism changes strikingly during aging. Methionine generates the methyl donor S-adenosyl-methionine (SAM), which is converted via methylation to S-adenosyl-homocysteine (SAH), which accumulates during aging. A targeted RNAi screen against methionine pathway components revealed significant life span extension in response to down-regulation of two noncanonical Drosophila homologs of the SAH hydrolase Ahcy (S-adenosyl-L-homocysteine hydrolase [SAHH[), CG9977/dAhcyL1 and Ahcy89E/CG8956/dAhcyL2, which act as dominant-negative regulators of canonical AHCY. Importantly, tissue-specific down-regulation of dAhcyL1/L2 in the brain and intestine extends health and life span. Furthermore, metabolomic analysis of dAhcyL1-deficient flies revealed its effect on age-dependent metabolic reprogramming and H3K4 methylation. Altogether, reprogramming of methionine metabolism in young flies and suppression of age-dependent SAH accumulation lead to increased life span. These studies highlight the role of noncanonical Ahcy enzymes as determinants of healthy aging and longevity.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard Binari
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Nannan Zhang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, Division of Developmental Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Misko TA, Wijerathna SR, Radivoyevitch T, Berdis AJ, Ahmad MF, Harris ME, Dealwis CG. Inhibition of yeast ribonucleotide reductase by Sml1 depends on the allosteric state of the enzyme. FEBS Lett 2016; 590:1704-12. [PMID: 27155231 DOI: 10.1002/1873-3468.12207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 11/05/2022]
Abstract
Sml1 is an intrinsically disordered protein inhibitor of Saccharomyces cerevisiae ribonucleotide reductase (ScRR1), but its inhibition mechanism is poorly understood. RR reduces ribonucleoside diphosphates to their deoxy forms, and balances the nucleotide pool. Multiple turnover kinetics show that Sml1 inhibition of dGTP/ADP- and ATP/CDP-bound ScRR follows a mixed inhibition mechanism. However, Sml1 cooperatively binds to the ES complex in the dGTP/ADP form, whereas with ATP/CDP, Sml1 binds weakly and noncooperatively. Gel filtration and mutagenesis studies indicate that Sml1 does not alter the oligomerization equilibrium and the CXXC motif is not involved in the inhibition. The data suggest that Sml1 is an allosteric inhibitor.
Collapse
Affiliation(s)
- Tessianna A Misko
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Sanath R Wijerathna
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, OH, USA
| | | | - Md Faiz Ahmad
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Chris G Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
32
|
Cho E, Yen Y. Novel regulators and molecular mechanisms of p53R2 and its disease relevance. Biochimie 2016; 123:81-4. [DOI: 10.1016/j.biochi.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
33
|
Prole DL, Taylor CW. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 2016; 594:2849-66. [PMID: 26830355 PMCID: PMC4887697 DOI: 10.1113/jp271139] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023] Open
Abstract
Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are expressed in nearly all animal cells, where they mediate the release of Ca2+ from intracellular stores. The complex spatial and temporal organization of the ensuing intracellular Ca2+ signals allows selective regulation of diverse physiological responses. Interactions of IP3Rs with other proteins contribute to the specificity and speed of Ca2+ signalling pathways, and to their capacity to integrate information from other signalling pathways. In this review, we provide a comprehensive survey of the proteins proposed to interact with IP3Rs and the functional effects that these interactions produce. Interacting proteins can determine the activity of IP3Rs, facilitate their regulation by multiple signalling pathways and direct the Ca2+ that they release to specific targets. We suggest that IP3Rs function as signalling hubs through which diverse inputs are processed and then emerge as cytosolic Ca2+ signals.
![]()
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
34
|
Kuo ML, Lee MBE, Tang M, den Besten W, Hu S, Sweredoski MJ, Hess S, Chou CM, Changou CA, Su M, Jia W, Su L, Yen Y. PYCR1 and PYCR2 Interact and Collaborate with RRM2B to Protect Cells from Overt Oxidative Stress. Sci Rep 2016; 6:18846. [PMID: 26733354 PMCID: PMC4702135 DOI: 10.1038/srep18846] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
Ribonucleotide reductase small subunit B (RRM2B) is a stress response protein that protects normal human fibroblasts from oxidative stress. However, the underlying mechanism that governs this function is not entirely understood. To identify factors that interact with RRM2B and mediate anti-oxidation function, large-scale purification of human Flag-tagged RRM2B complexes was performed. Pyrroline-5-carboxylate reductase 1 and 2 (PYCR1, PYCR2) were identified by mass spectrometry analysis as components of RRM2B complexes. Silencing of both PYCR1 and PYCR2 by expressing short hairpin RNAs induced defects in cell proliferation, partial fragmentation of the mitochondrial network, and hypersensitivity to oxidative stress in hTERT-immortalized human foreskin fibroblasts (HFF-hTERT). Moderate overexpression of RRM2B, comparable to stress-induced level, protected cells from oxidative stress. Silencing of both PYCR1 and PYCR2 completely abolished anti-oxidation activity of RRM2B, demonstrating a functional collaboration of these metabolic enzymes in response to oxidative stress.
Collapse
Affiliation(s)
- Mei-Ling Kuo
- Department of Molecular Pharmacology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Mabel Bin-Er Lee
- Department of Molecular Pharmacology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Michelle Tang
- Department of Molecular Pharmacology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Willem den Besten
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shuya Hu
- Department of Molecular Pharmacology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125
| | - Chih-Ming Chou
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan 110
| | - Chun A. Changou
- Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan 110
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan 110
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan 110
| | - Mingming Su
- University of Hawaii Cancer Center, HI 96813, USA
| | - Wei Jia
- University of Hawaii Cancer Center, HI 96813, USA
| | - Leila Su
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan 110
| | - Yun Yen
- Department of Molecular Pharmacology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan 110
- Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan 110
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan 110
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan 110
| |
Collapse
|
35
|
Ahmad MF, Huff SE, Pink J, Alam I, Zhang A, Perry K, Harris ME, Misko T, Porwal SK, Oleinick NL, Miyagi M, Viswanathan R, Dealwis CG. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators. J Med Chem 2015; 58:9498-509. [PMID: 26488902 DOI: 10.1021/acs.jmedchem.5b00929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.
Collapse
Affiliation(s)
- Md Faiz Ahmad
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Sarah E Huff
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Intekhab Alam
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Andrew Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Kay Perry
- Northeastern-CAT at the Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Michael E Harris
- Department of Biochemistry, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Tessianna Misko
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Suheel K Porwal
- Department of Chemistry, Dehradun Institute of Technology, University of Deharadun , Dehradun 248197, India
| | - Nancy L Oleinick
- Case Comprehensive Cancer Center, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Department of Radiation Oncology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Masaru Miyagi
- Center for Proteomics and Bioinformatics, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Rajesh Viswanathan
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Chris Godfrey Dealwis
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Center for Proteomics and the Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
36
|
Ando H, Hirose M, Gainche L, Kawaai K, Bonneau B, Ijuin T, Itoh T, Takenawa T, Mikoshiba K. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues. PLoS One 2015; 10:e0141569. [PMID: 26509711 PMCID: PMC4624786 DOI: 10.1371/journal.pone.0141569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/10/2015] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Laura Gainche
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Benjamin Bonneau
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| |
Collapse
|
37
|
Borth H, Weber N, Meyer D, Wartenberg A, Arlt E, Zierler S, Breit A, Wennemuth G, Gudermann T, Boekhoff I. The IP3 R Binding Protein Released With Inositol 1,4,5-Trisphosphate Is Expressed in Rodent Reproductive Tissue and Spermatozoa. J Cell Physiol 2015; 231:1114-29. [PMID: 26439876 DOI: 10.1002/jcp.25209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/30/2015] [Indexed: 11/08/2022]
Abstract
Besides its capacity to inhibit the 1,4,5-trisphosphate (IP3) receptor, the regulatory protein IRBIT (IP3 receptor binding protein released with IP3) is also able to control the activity of numerous ion channels and electrolyte transporters and thereby creates an optimal electrolyte composition of various biological fluids. Since a reliable execution of spermatogenesis and sperm maturation critically depends on the establishment of an adequate microenvironment, the expression of IRBIT in male reproductive tissue was examined using immunohistochemical approaches combined with biochemical fractionation methods. The present study documents that IRBIT is expressed in Leydig and Sertoli cells. In addition, pronounced IRBIT expression was detected in sperm precursors during early stages of spermatogenesis as well as in spermatozoa. Analyzing tissue sections of rodent epididymides, IRBIT was found to co-localize with the proton pumping V-ATPase and the cystic fibrosis transmembrane conductance regulator (CFTR) at the apical surface of narrow and clear cells. A similar co-localization of IRBIT with CFTR was also observed for Sertoli cells and developing germ cells. Remarkably, assaying caudal sperm in immunogold electron microscopy, IRBIT was found to localize to the acrosomal cap and the flagellum as well as to the sperm nucleus; moreover, a prominent oligomerization was observed for spermatozoa. The pronounced occurrence of IRBIT in the male reproductive system and mature spermatozoa indicates a potential role for IRBIT in establishing the essential luminal environment for a faithful execution of spermatogenesis and epididymal sperm maturation, and suggest a participation of IRBIT during maturation steps after ejaculation and/or the final fertilization process.
Collapse
Affiliation(s)
- Heike Borth
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Nele Weber
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Dorke Meyer
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Andrea Wartenberg
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Clinic Essen, University of Duisburg-Essen, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universit, ä, t M, ü, nchen, München, Germany
| |
Collapse
|
38
|
A Single Conserved Residue Mediates Binding of the Ribonucleotide Reductase Catalytic Subunit RRM1 to RRM2 and Is Essential for Mouse Development. Mol Cell Biol 2015; 35:2910-7. [PMID: 26077802 DOI: 10.1128/mcb.00475-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022] Open
Abstract
The ribonucleotide reductase (RNR) complex, composed of a catalytic subunit (RRM1) and a regulatory subunit (RRM2), is thought to be a rate-limiting enzymatic complex for the production of nucleotides. In humans, the Rrm1 gene lies at 11p15.5, a tumor suppressor region, and RRM1 expression in cancer has been shown to predict responses to chemotherapy. Nevertheless, whether RRM1 is essential in mammalian cells and what the effects of its haploinsufficiency are remain unknown. To model RNR function in mice we used a mutation previously described in Saccharomyces cerevisiae (Rnr1-W688G) which, despite being viable, leads to increased interaction of the RNR complex with its allosteric inhibitor Sml1. In contrast to yeast, homozygous mutant mice carrying the Rrm1 mutation (Rrm1(WG/WG)) are not viable, even at the earliest embryonic stages. Proteomic analyses failed to identify proteins that specifically bind to the mutant RRM1 but revealed that, in mammals, the mutation prevents RRM1 binding to RRM2. Despite the impact of the mutation, Rrm1(WG/+) mice and cells presented no obvious phenotype, suggesting that the RRM1 protein exists in excess. Our work reveals that binding of RRM1 to RRM2 is essential for mammalian cells and provides the first loss-of-function model of the RNR complex for genetic studies.
Collapse
|
39
|
Lopez-Contreras AJ, Specks J, Barlow JH, Ambrogio C, Desler C, Vikingsson S, Rodrigo-Perez S, Green H, Rasmussen LJ, Murga M, Nussenzweig A, Fernandez-Capetillo O. Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice. Genes Dev 2015; 29:690-5. [PMID: 25838540 PMCID: PMC4387711 DOI: 10.1101/gad.256958.114] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In S. cerevisiae, deletion of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Lopez-Contreras et al. show that cells from mice carrying extra alleles of the RNR regulatory subunit RRM2 present supraphysiological RNR activity and reduced chromosomal breakage at fragile sites. Increased Rrm2 gene dosage also extends the life span of ATR mutant mice. In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the RNR regulatory subunit RRM2 (Rrm2TG) present supraphysiological RNR activity and reduced chromosomal breakage at fragile sites. Moreover, increased Rrm2 gene dosage significantly extends the life span of ATR mutant mice. Our study reveals the first genetic condition in mammals that reduces fragile site expression and alleviates the severity of a progeroid disease by increasing RNR activity.
Collapse
Affiliation(s)
| | - Julia Specks
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Jacqueline H Barlow
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chiara Ambrogio
- Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Svante Vikingsson
- Division of Drug Research/Clinical Pharmacology, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Sara Rodrigo-Perez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Henrik Green
- Division of Drug Research/Clinical Pharmacology, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, SE-581 85 Linköping, Sweden
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
40
|
IRBIT regulates CaMKIIα activity and contributes to catecholamine homeostasis through tyrosine hydroxylase phosphorylation. Proc Natl Acad Sci U S A 2015; 112:5515-20. [PMID: 25922519 DOI: 10.1073/pnas.1503310112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) binding protein released with IP3 (IRBIT) contributes to various physiological events (electrolyte transport and fluid secretion, mRNA polyadenylation, and the maintenance of genomic integrity) through its interaction with multiple targets. However, little is known about the physiological role of IRBIT in the brain. Here we identified calcium calmodulin-dependent kinase II alpha (CaMKIIα) as an IRBIT-interacting molecule in the central nervous system. IRBIT binds to and suppresses CaMKIIα kinase activity by inhibiting the binding of calmodulin to CaMKIIα. In addition, we show that mice lacking IRBIT present with elevated catecholamine levels, increased locomotor activity, and social abnormalities. The level of tyrosine hydroxylase (TH) phosphorylation by CaMKIIα, which affects TH activity, was significantly increased in the ventral tegmental area of IRBIT-deficient mice. We concluded that IRBIT suppresses CaMKIIα activity and contributes to catecholamine homeostasis through TH phosphorylation.
Collapse
|
41
|
Non-enzymatic action of RRM1 protein upregulates PTEN leading to inhibition of colorectal cancer metastasis. Tumour Biol 2015; 36:4833-42. [PMID: 25638032 DOI: 10.1007/s13277-015-3137-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022] Open
|
42
|
Mikoshiba K. Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 2014; 57:217-27. [PMID: 25497594 DOI: 10.1016/j.jbior.2014.10.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
Abstract
IP3 receptor (IP3R) was found to release Ca(2+) from non-mitochondrial store but the exact localization and the mode of action of IP3 remained a mystery. IP3R was identified to be P400 protein, a protein, which was missing in the cerebellum of ataxic mutant mice lacking Ca(2+) spikes in Pukinje cells. IP3R was an IP3 binding protein and was a Ca(2+) channel localized on the endoplasmic reticulum. Full-length cDNA of IP3R type 1 was initially cloned and later two other isoforms of IP3R (IP3R type 2 and type 3) were cloned in vertebrates. Interestingly, the phosphorylation sites, splicing sites, associated molecules, IP3 binding affinity and 5' promoter sequences of each isoform were different. Thus each isoform of IP3 receptor plays a role as a signaling hub offering a unique platform for matching various functional molecules that determines different trajectories of cell signaling. Because of this distinct role of each isoform of IP3R, the dysregulation of IP3 receptor causes various kinds of diseases in human and rodents such as ataxia, vulnerability to neuronal degeneration, heart disease, exocrine secretion deficit, taste perception deficit. Moreover, IP3 was found not only to release Ca(2+), but also to release IRBIT (IP3receptor binding protein released with inositol trisphosphate) essential for the regulation of acid-base balance, RNA synthesis and ribonucleotide reductase.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|