1
|
Čížková D, Schmiedová L, Kváč M, Sak B, Macholán M, Piálek J, Kreisinger J. The effect of host admixture on wild house mouse gut microbiota is weak when accounting for spatial autocorrelation. Mol Ecol 2024; 33:e17192. [PMID: 37933543 DOI: 10.1111/mec.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
The question of how interactions between the gut microbiome and vertebrate hosts contribute to host adaptation and speciation is one of the major problems in current evolutionary research. Using bacteriome and mycobiome metabarcoding, we examined how these two components of the gut microbiota vary with the degree of host admixture in secondary contact between two house mouse subspecies (Mus musculus musculus and M. m. domesticus). We used a large data set collected at two replicates of the hybrid zone and model-based statistical analyses to ensure the robustness of our results. Assuming that the microbiota of wild hosts suffers from spatial autocorrelation, we directly compared the results of statistical models that were spatially naive with those that accounted for spatial autocorrelation. We showed that neglecting spatial autocorrelation can strongly affect the results and lead to misleading conclusions. The spatial analyses showed little difference between subspecies, both in microbiome composition and in individual bacterial lineages. Similarly, the degree of admixture had minimal effects on the gut bacteriome and mycobiome and was caused by changes in a few microbial lineages that correspond to the common symbionts of free-living house mice. In contrast to previous studies, these data do not support the hypothesis that the microbiota plays an important role in host reproductive isolation in this particular model system.
Collapse
Affiliation(s)
- Dagmar Čížková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Lucie Schmiedová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Kváč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Agriculture and Technology, South Bohemia University, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Piálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids. Sci Rep 2022; 12:20559. [PMID: 36446872 PMCID: PMC9709078 DOI: 10.1038/s41598-022-24723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Host-microbe interactions are intimately linked to eukaryotic evolution, particularly in sap-sucking insects that often rely on obligate microbial symbionts for nutrient provisioning. Cicadas (Cicadidae: Auchenorrhyncha) specialize on xylem fluid and derive many essential amino acids and vitamins from intracellular bacteria or fungi (Hodgkinia, Sulcia, and Ophiocordyceps) that are propagated via transmission from mothers to offspring. Despite the beneficial role of these non-gut symbionts in nutrient provisioning, the role of beneficial microbiota within the gut remains unclear. Here, we investigate the relative abundance and impact of host phylogeny and ecology on gut microbial diversity in cicadas using 16S ribosomal RNA gene amplicon sequencing data from 197 wild-collected cicadas and new mitochondrial genomes across 38 New Zealand cicada species, including natural hybrids between one pair of two species. We find low abundance and a lack of phylogenetic structure and hybrid effects but a significant role of elevation in explaining variation in gut microbiota.
Collapse
|
3
|
Unzueta-Martínez A, Scanes E, Parker LM, Ross PM, O'Connor W, Bowen JL. Microbiomes of the Sydney Rock Oyster are acquired through both vertical and horizontal transmission. Anim Microbiome 2022; 4:32. [PMID: 35590396 PMCID: PMC9118846 DOI: 10.1186/s42523-022-00186-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background The term holobiont is widely accepted to describe animal hosts and their associated microorganisms. The genomes of all that the holobiont encompasses, are termed the hologenome and it has been proposed as a unit of selection in evolution. To demonstrate that natural selection acts on the hologenome, a significant portion of the associated microbial genomes should be transferred between generations. Using the Sydney Rock Oyster (Saccostrea glomerata) as a model, we tested if the microbes of this broadcast spawning species could be passed down to the next generation by conducting single parent crosses and tracking the microbiome from parent to offspring and throughout early larval stages using 16S rRNA gene amplicon sequencing. From each cross, we sampled adult tissues (mantle, gill, stomach, gonad, eggs or sperm), larvae (D-veliger, umbo, eyed pediveliger, and spat), and the surrounding environment (water and algae feed) for microbial community analysis. Results We found that each larval stage has a distinct microbiome that is partially influenced by their parental microbiome, particularly the maternal egg microbiome. We also demonstrate the presence of core microbes that are consistent across all families, persist throughout early life stages (from eggs to spat), and are not detected in the microbiomes of the surrounding environment. In addition to the core microbiomes that span all life cycle stages, there is also evidence of environmentally acquired microbial communities, with earlier larval stages (D-veliger and umbo), more influenced by seawater microbiomes, and later larval stages (eyed pediveliger and spat) dominated by microbial members that are specific to oysters and not detected in the surrounding environment. Conclusion Our study characterized the succession of oyster larvae microbiomes from gametes to spat and tracked selected members that persisted across multiple life stages. Overall our findings suggest that both horizontal and vertical transmission routes are possible for the complex microbial communities associated with a broadcast spawning marine invertebrate. We demonstrate that not all members of oyster-associated microbiomes are governed by the same ecological dynamics, which is critical for determining what constitutes a hologenome. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00186-9.
Collapse
Affiliation(s)
- Andrea Unzueta-Martínez
- Department of Marine and Environmental Science, Northeastern University, Nahant, MA, 01908, USA. .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.,Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Laura M Parker
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Wayne O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Jennifer L Bowen
- Department of Marine and Environmental Science, Northeastern University, Nahant, MA, 01908, USA
| |
Collapse
|
4
|
Smith D, Palacios-Pérez M, Jheeta S. The Enclosed Intestinal Microbiome: Semiochemical Signals from the Precambrian and Their Disruption by Heavy Metal Pollution. Life (Basel) 2022; 12:287. [PMID: 35207574 PMCID: PMC8879143 DOI: 10.3390/life12020287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
It is increasingly likely that many non-communicable diseases of humans and associated animals are due to the degradation of their intestinal microbiomes, a situation often referred to as dysbiosis. An analysis of the resultant diseases offers an opportunity to probe the function of these microbial partners of multicellular animals. In our view, it now seems likely that vertebrate animals and their microbiomes have coevolved throughout the Ediacaran-Cambrian transition and beyond, operating by semiochemical messaging between the multicellular host and its microbial community guest. A consideration of the overall role of the mutualistic intestinal microbiome as an enclosed bioreactor throws up a variety of challenging concepts. In particular: the significance of the microbiome with respect to the immune system suggests that microeukaryotes could act as microbial sentinel cells; the ubiquity of bacteriophage viruses implies the rapid turnover of microbial composition by a viral-shunt mechanism; and high microbial diversity is needed to ensure that horizontal gene transfer allows valuable genetic functions to be expressed. We have previously postulated that microbes of sufficient diversity must be transferred from mother to infant by seemingly accidental contamination during the process of natural birth. We termed this maternal microbial inheritance and suggested that it operates alongside parental genetic inheritance to modify gene expression. In this way, the adjustment of the neonate immune system by the microbiome may represent one of the ways in which the genome of a vertebrate animal interacts with its microbial environment. The absence of such critical functions in the neonate may help to explain the observation of persistent immune-system problems in affected adults. Equally, granted that the survival of the guest microbiome depends on the viability of its host, one function of microbiome-generated semiochemicals could be to facilitate the movement of food through the digestive tract, effectively partitioning nutrition between host and guest. In the event of famine, downregulation of microbial growth and therefore of semiochemical production would allow all available food to be consumed by the host. Although it is often thought that non-communicable diseases, such as type 2 diabetes, are caused by consumption of food containing insufficient dietary fibre, our hypothesis suggests that poor-quality food is not the prime cause but that the tendency for disease follows the degradation of the intestinal microbiome, when fat build-up occurs because the relevant semiochemicals can no longer be produced. It is the purpose of this paper to highlight the possibility that the origins of the microbiome lie in the Precambrian and that the disconnection of body and microbiome gives rise to non-communicable disease through the loss of semiochemical signalling. We further surmise that this disconnect has been largely brought about by heavy metal poisoning, potentially illuminating a facet of the exposome, the sum total of environmental insults that influence the expression of the genetic inheritance of an animal.
Collapse
Affiliation(s)
- David Smith
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Miryam Palacios-Pérez
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
- Theoretical Biology Group, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sohan Jheeta
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| |
Collapse
|
5
|
Suárez J, Triviño V. What Is a Hologenomic Adaptation? Emergent Individuality and Inter-Identity in Multispecies Systems. Front Psychol 2020; 11:187. [PMID: 32194470 PMCID: PMC7064717 DOI: 10.3389/fpsyg.2020.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 01/09/2023] Open
Abstract
Contemporary biological research has suggested that some host-microbiome multispecies systems (referred to as "holobionts") can in certain circumstances evolve as unique biological individual, thus being a unit of selection in evolution. If this is so, then it is arguably the case that some biological adaptations have evolved at the level of the multispecies system, what we call hologenomic adaptations. However, no research has yet been devoted to investigating their nature, or how these adaptations can be distinguished from adaptations at the species-level (genomic adaptations). In this paper, we cover this gap by investigating the nature of hologenomic adaptations. By drawing on the case of the evolution of sanguivory diet in vampire bats, we argue that a trait constitutes a hologenomic adaptation when its evolution can only be explained if the holobiont is considered the biological individual that manifests this adaptation, while the bacterial taxa that bear the trait are only opportunistic beneficiaries of it. We then use the philosophical notions of emergence and inter-identity to explain the nature of this form of individuality and argue why it is special of holobionts. Overall, our paper illustrates how the use of philosophical concepts can illuminate scientific discussions, in the trend of what has recently been called metaphysics of biology.
Collapse
Affiliation(s)
- Javier Suárez
- LOGOS/BIAP, Department of Philosophy, University of Barcelona, Barcelona, Spain
- Egenis, The Centre for the Study of Life Sciences, Department of Sociology, Philosophy and Anthropology, University of Exeter, Exeter, United Kingdom
| | - Vanessa Triviño
- Department of History of Science, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
6
|
Schneider DI, Ehrman L, Engl T, Kaltenpoth M, Hua-Van A, Le Rouzic A, Miller WJ. Symbiont-Driven Male Mating Success in the Neotropical Drosophila paulistorum Superspecies. Behav Genet 2019; 49:83-98. [PMID: 30456532 PMCID: PMC6327003 DOI: 10.1007/s10519-018-9937-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Microbial symbionts are ubiquitous associates of living organisms but their role in mediating reproductive isolation (RI) remains controversial. We addressed this knowledge gap by employing the Drosophila paulistorum-Wolbachia model system. Semispecies in the D. paulistorum species complex exhibit strong RI between each other and knockdown of obligate mutualistic Wolbachia bacteria in female D. paulistorum flies triggers loss of assortative mating behavior against males carrying incompatible Wolbachia strains. Here we set out to determine whether de novo RI can be introduced by Wolbachia-knockdown in D. paulistorum males. We show that Wolbachia-knockdown D. paulistorum males (i) are rejected as mates by wild type females, (ii) express altered sexual pheromone profiles, and (iii) are devoid of the endosymbiont in pheromone producing cells. Our findings suggest that changes in Wolbachia titer and tissue tropism can induce de novo premating isolation by directly or indirectly modulating sexual behavior of their native D. paulistorum hosts.
Collapse
Affiliation(s)
- Daniela I Schneider
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Lee Ehrman
- Natural Sciences, State University of New York, Purchase College, Purchase, NY, USA
| | - Tobias Engl
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Aurélie Hua-Van
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Leftwich PT, Hutchings MI, Chapman T. Diet, Gut Microbes and Host Mate Choice: Understanding the significance of microbiome effects on host mate choice requires a case by case evaluation. Bioessays 2018; 40:e1800053. [PMID: 30311675 DOI: 10.1002/bies.201800053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/06/2018] [Indexed: 12/22/2022]
Abstract
All organisms live in close association with microbes. However, not all such associations are meaningful in an evolutionary context. Current debate concerns whether hosts and microbes are best described as communities of individuals or as holobionts (selective units of hosts plus their microbes). Recent reports that assortative mating of hosts by diet can be mediated by commensal gut microbes have attracted interest as a potential route to host reproductive isolation (RI). Here, the authors discuss logical problems with this line of argument. The authors briefly review how microbes can affect host mating preferences and evaluate recent findings from fruitflies. Endosymbionts can potentially influence host RI given stable and recurrent co-association of hosts and microbes over evolutionary time. However, observations of co-occurrence of microbes and hosts are ripe for misinterpretation and such associations will rarely represent a meaningful holobiont. A framework in which hosts and their microbes are independent evolutionary units provides the only satisfactory explanation for the observed range of effects and associations.
Collapse
Affiliation(s)
- Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
8
|
Stencel A, Wloch-Salamon DM. Correction to: Some theoretical insights into the hologenome theory of evolution and the role of microbes in speciation. Theory Biosci 2018; 137:207-208. [PMID: 30238406 PMCID: PMC6208840 DOI: 10.1007/s12064-018-0270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Adrian Stencel
- Faculty of Philosophy, Jagiellonian University, ul. Gołębia 24, 31-007, Kraków, Poland.
| | - Dominika M Wloch-Salamon
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
9
|
Stencel A, Wloch-Salamon DM. Some theoretical insights into the hologenome theory of evolution and the role of microbes in speciation. Theory Biosci 2018; 137:197-206. [PMID: 30066215 PMCID: PMC6208839 DOI: 10.1007/s12064-018-0268-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 07/26/2018] [Indexed: 12/11/2022]
Abstract
Research on symbiotic communities (microbiomes) of multicellular organisms seems to be changing our understanding of how species of plants and animals have evolved over millions of years. The quintessence of these discoveries is the emergence of the hologenome theory of evolution, founded on the concept that a holobiont (a host along with all of its associated symbiotic microorganisms) acts a single unit of selection in the process of evolution. Although the hologenome theory has become very popular among certain scientific circles, its principles are still being debated. In this paper, we argue, firstly, that only a very small number of symbiotic microorganisms are sufficiently integrated into multicellular organisms to act in concert with them as units of selection, thus rendering claims that holobionts are units of selection invalid. Secondly, even though holobionts are not units of selection, they can still constitute genuine units from an evolutionary perspective, provided we accept certain constraints: mainly, they should be considered units of co-operation. Thirdly, we propose a reconciliation of the role of symbiotic microorganisms with the theory of speciation through the use of a developed framework. Mainly, we will argue that, in order to understand the role of microorganisms in the speciation of multicellular organisms, it is not necessary to consider holobionts units of selection; it is sufficient to consider them units of co-operation.
Collapse
Affiliation(s)
- Adrian Stencel
- Faculty of Philosophy, Jagiellonian University, ul. Gołębia 24, 31-007, Kraków, Poland.
| | - Dominika M Wloch-Salamon
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
10
|
Abstract
Experimental studies of the evolution of reproductive isolation (RI) in real time are a powerful way in which to reveal fundamental, early processes that initiate divergence. In a classic speciation experiment, populations of Drosophila pseudoobscura were subjected to divergent dietary selection and evolved significant positive assortative mating by diet. More recently, a direct role for the gut microbiome in determining this type of RI in Drosophila melanogaster has been proposed. Manipulation of the diet, and hence the gut microbiome, was reported to result in immediate assortative mating by diet, which could be eliminated by reducing gut microbes using antibiotics and recreated by adding back Lactobacillus plantarum We suggest that the evolutionary significance of this result is unclear. For example, in D. melanogaster, the microbiome is reported as flexible and largely environmentally determined. Therefore, microbiome-mediated RI would be transient and would break down under dietary variation. In the absence of evolutionary coassociation or recurrent exposure between host and microbiome, there are no advantages for the gut bacteria or host in effecting RI. To explore these puzzling effects and their mechanisms further, we repeated the tests for RI associated with diet-specific gut microbiomes in D. melanogaster Despite observing replicable differences in the gut microbiomes of flies maintained on different diets, we found no evidence for diet-associated RI, for any role of gut bacteria, or for L. plantarum specifically. The results suggest that there is no general role for gut bacteria in driving the evolution of RI in this species and resolve an evolutionary riddle.
Collapse
|
11
|
Arora AK, Douglas AE. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:10-17. [PMID: 28974456 DOI: 10.1016/j.jinsphys.2017.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment.
Collapse
Affiliation(s)
- Arinder K Arora
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Martinson VG, Douglas AE, Jaenike J. Community structure of the gut microbiota in sympatric species of wild Drosophila. Ecol Lett 2017; 20:629-639. [PMID: 28371064 DOI: 10.1111/ele.12761] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 12/21/2022]
Abstract
Many aspects of animal ecology and physiology are influenced by the microbial communities within them. The underlying forces contributing to the assembly and diversity of gut microbiotas include chance events, host-based selection and interactions among microorganisms within these communities. We surveyed 215 wild individuals from four sympatric species of Drosophila that share a common diet of decaying mushrooms. Their microbiotas consistently contained abundant bacteria that were undetectable or at low abundance in their diet. Despite their deep phylogenetic divergence, all species had similar microbiotas, thus failing to support predictions of the phylosymbiosis hypothesis. Communities within flies were not random assemblages drawn from a common pool; instead, many bacterial operational taxonomic units (OTUs) were overrepresented or underrepresented relative to the neutral expectations, and OTUs exhibited checkerboard distributions among flies. These results suggest that selective factors play an important role in shaping the gut community structure of these flies.
Collapse
Affiliation(s)
| | - Angela E Douglas
- Department of Entomology and Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14627, USA
| | - John Jaenike
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
13
|
Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E. Life history and eco-evolutionary dynamics in light of the gut microbiota. OIKOS 2017. [DOI: 10.1111/oik.03900] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emilie Macke
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | | | - François Massol
- Univ. Lille; CNRS UMR 8198 Evo-Eco-Paleo SPICI group Lille France
| | - Martijn Callens
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| |
Collapse
|
14
|
Abstract
The advent of relatively inexpensive tools for characterizing microbial communities has led to an explosion of research exploring the diversity, ecology, and evolution of microbe-host systems. Some now question whether existing conceptual frameworks are adequate to explain microbe-host systems. One popular paradigm is the "holobiont-hologenome," which argues that a host and its microbiome evolve as a single cooperative unit of selection (i.e., a superorganism). We argue that the hologenome is based on overly restrictive assumptions which render it an approach of little research utility. A host plus its microbiome is more effectively viewed as an ecological community of organisms that encompasses a broad range of interactions (parasitic to mutualistic), patterns of transmission (horizontal to vertical), and levels of fidelity among partners. The hologenome requires high partner fidelity if it is to evolve as a unit. However, even when this is achieved by particular host-microbe pairs, it is unlikely to hold for the entire host microbiome, and therefore the community is unlikely to evolve as a hologenome. Both mutualistic and antagonistic (fitness conflict) evolution can occur among constituent members of the community, not just adaptations at the "hologenome" level, and there is abundant empirical evidence for such divergence of selective interests among members of host-microbiome communities. We believe that the concepts and methods of ecology, genetics, and evolutionary biology will continue to provide a well-grounded intellectual framework for researching host-microbiome communities, without recourse to the limiting assumption that selection acts predominantly at the holobiont level.
Collapse
|
15
|
Getting the Hologenome Concept Right: an Eco-Evolutionary Framework for Hosts and Their Microbiomes. mSystems 2016; 1:mSystems00028-16. [PMID: 27822520 PMCID: PMC5069740 DOI: 10.1128/msystems.00028-16] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization—what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as host-microbial coevolution? Critical discourse is necessary in this nascent area, but productive discourse requires that skeptics and proponents use the same lexicon. Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization—what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as host-microbial coevolution? Critical discourse is necessary in this nascent area, but productive discourse requires that skeptics and proponents use the same lexicon. For instance, critiquing the hologenome concept is not synonymous with critiquing coevolution, and arguing that an entity is not a primary unit of selection dismisses the fact that the hologenome concept has always embraced multilevel selection. Holobionts and hologenomes are incontrovertible, multipartite entities that result from ecological, evolutionary, and genetic processes at various levels. They are not restricted to one special process but constitute a wider vocabulary and framework for host biology in light of the microbiome.
Collapse
|
16
|
Najarro MA, Sumethasorn M, Lamoureux A, Turner TL. Choosing mates based on the diet of your ancestors: replication of non-genetic assortative mating in Drosophila melanogaster. PeerJ 2015; 3:e1173. [PMID: 26339551 PMCID: PMC4558060 DOI: 10.7717/peerj.1173] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/20/2015] [Indexed: 11/28/2022] Open
Abstract
Assortative mating has been a focus of considerable research because of its potential to influence biodiversity at many scales. Sharon et al. (2010) discovered that an inbred strain of Drosophila melanogaster mated assortatively based on the diet of previous generations, leading to initial reproductive isolation without genetic evolution. This behavior was reproduced by manipulating the microbiome independently of the diet, pointing to extracellular bacterial symbionts as the assortative mating cue. To further investigate the biological significance of this result, we attempted to reproduce this phenomenon in an independent laboratory using different genotypes and additional mating assays. Supporting the previous result, we found that a different inbred strain also mated assortatively based on the diets of previous generations. However, we were unable to generate assortative mating in an outbred strain from North Carolina. Our results support the potential for non-genetic mechanisms to influence reproductive isolation, but additional work is needed to investigate the importance of this mechanism in natural populations of Drosophila.
Collapse
Affiliation(s)
- Michael A Najarro
- Ecology, Evolution, and Marine Biology Department, University of California , Santa Barbara , USA
| | - Matt Sumethasorn
- Ecology, Evolution, and Marine Biology Department, University of California , Santa Barbara , USA
| | - Alexandra Lamoureux
- Ecology, Evolution, and Marine Biology Department, University of California , Santa Barbara , USA
| | - Thomas L Turner
- Ecology, Evolution, and Marine Biology Department, University of California , Santa Barbara , USA
| |
Collapse
|
17
|
Brucker RM, Bordenstein SR. Response to Comment on "The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia". Science 2014; 345:1011. [PMID: 25170145 DOI: 10.1126/science.1256708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chandler and Turelli postulate that intrinsic hybrid dysfunction underscores hybrid lethality in Nasonia. Although it is a suitable conception for examining hybrid incompatibilities, their account of the evidence is factually inaccurate and leaves out the evolutionary process for why lethality became conditional on nuclear-microbe interactions. Hybrid incompatibilities in the context of phylosymbiosis are resolved by hologenomic principles and exemplify this emerging postmodern synthesis.
Collapse
Affiliation(s)
- Robert M Brucker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA. Rowland Institute at Harvard University, Cambridge, MA 02142, USA.
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA. Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|