1
|
Oravcová M, Nie M, Otomo T, Boddy MN. SMC5/6-Mediated Plasmid Silencing is Directed by SIMC1-SLF2 and Antagonized by LT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645818. [PMID: 40196500 PMCID: PMC11974782 DOI: 10.1101/2025.03.27.645818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
SMC5/6 is unique amongst the Structural Maintenance of Chromosomes (SMC) complexes in its ability to repress transcription from extrachromosomal circular DNA (ecDNA), including viral genomes and plasmids. Previously, we showed that human SMC5/6 is regulated by two mutually exclusive subcomplexes-SIMC1-SLF2 and SLF1/2-the counterparts of yeast Nse5/6 (Oravcová, eLife, 2022). Notably, only SIMC1-SLF2 recruits SMC5/6 to SV40 Large T antigen (LT) foci in PML nuclear bodies (PML NBs), suggesting that these regulatory subcomplexes direct distinct roles of SMC5/6 on chromosomal versus ecDNA. However, their roles in plasmid repression remain unclear. Here, we demonstrate that SMC5/6-mediated repression of plasmid transcription depends exclusively on SIMC1-SLF2, whereas SLF1/2 is dispensable. Reinforcing its specialized role in ecDNA suppression, SIMC1-SLF2 does not participate in SMC5/6 recruitment to chromosomal DNA lesions. We further show that plasmid silencing requires a conserved interaction between SIMC1-SLF2 and SMC6, mirroring the functional relationship observed between yeast Nse5/6 and Smc6. As for viral silencing, plasmid repression depends on the SUMO pathway; however, unlike viral silencing, it does not require PML NBs. Additionally, we find that LT interacts with SMC5/6 and increases plasmid transcription to levels observed in SIMC1-SLF2-deficient cells-echoing the antagonistic roles of HBx (HBV) and Vpr (HIV-1) in viral genome repression. These findings expand the paradigm of viral antagonism against SMC5/6-mediated silencing, positioning LT as a novel player in this evolutionary tug-of-war.
Collapse
Affiliation(s)
- Martina Oravcová
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Minghua Nie
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Takanori Otomo
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Michael N. Boddy
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Uhlmann F. A unified model for cohesin function in sisterchromatid cohesion and chromatin loop formation. Mol Cell 2025; 85:1058-1071. [PMID: 40118039 DOI: 10.1016/j.molcel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
The ring-shaped cohesin complex topologically entraps two DNAs to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape by forming DNA loops, which it is thought to achieve using an in vitro-observed loop extrusion mechanism. However, recent studies revealed that loop-extrusion-deficient cohesin retains its ability to form chromatin loops, suggesting a divergence of in vitro and in vivo loop formation. Instead of loop extrusion, we examine whether cohesin forms chromatin loops by a mechanism akin to sister chromatid cohesion establishment: sequential topological capture of two DNAs. We explore similarities and differences between the "loop capture" and the "loop extrusion" model, how they compare at explaining experimental observations, and how future approaches can delineate their possible respective contributions. We extend our DNA-DNA capture model for cohesin function to related structural maintenance of chromosomes (SMC) family members, condensin, the Smc5-Smc6 complex, and bacterial SMC complexes.
Collapse
Affiliation(s)
- Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
3
|
Schmid EW, Walter JC. Predictomes, a classifier-curated database of AlphaFold-modeled protein-protein interactions. Mol Cell 2025; 85:1216-1232.e5. [PMID: 40015271 PMCID: PMC11931459 DOI: 10.1016/j.molcel.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characterization of the PPIs underlying cellular processes is lacking. AlphaFold-Multimer (AF-M) has the potential to fill this knowledge gap, but standard AF-M confidence metrics do not reliably separate relevant PPIs from an abundance of false positive predictions. To address this limitation, we used machine learning on curated datasets to train a structure prediction and omics-informed classifier (SPOC) that effectively separates true and false AF-M predictions of PPIs, including in proteome-wide screens. We applied SPOC to an all-by-all matrix of nearly 300 human genome maintenance proteins, generating ∼40,000 predictions that can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High-confidence PPIs discovered using our approach enable hypothesis generation in genome maintenance. Our results provide a framework for interpreting large-scale AF-M screens and help lay the foundation for a proteome-wide structural interactome.
Collapse
Affiliation(s)
- Ernst W Schmid
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Ho JJ, Cheng E, Wong CJ, St-Germain JR, Dunham WH, Raught B, Gingras AC, Brown GW. The BLM-TOP3A-RMI1-RMI2 proximity map reveals that RAD54L2 suppresses sister chromatid exchanges. EMBO Rep 2025; 26:1290-1314. [PMID: 39870965 PMCID: PMC11894219 DOI: 10.1038/s44319-025-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers. The pathology of Bloom Syndrome stems from the impaired activity of the BLM-TOP3A-RMI1-RMI2 (BTRR) complex which suppresses crossover recombination to prevent potentially deleterious genome rearrangements. We provide a comprehensive BTRR proximal proteome, revealing proteins that suppress crossover recombination. We find that RAD54L2, a SNF2-family protein, physically interacts with BLM and suppresses sister chromatid exchanges. RAD54L2 is important for recruitment of BLM to chromatin and requires an intact ATPase domain to promote non-crossover recombination. Thus, the BTRR proximity map identifies a regulator of recombination.
Collapse
Affiliation(s)
- Jung Jennifer Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Edith Cheng
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jonathan R St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wade H Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
5
|
Vaziri C, Forker K, Zhang X, Wu D, Zhou P, Bowser JL. Pathological modulation of genome maintenance by cancer/testes antigens (CTAs). DNA Repair (Amst) 2025; 147:103818. [PMID: 39983270 PMCID: PMC11923853 DOI: 10.1016/j.dnarep.2025.103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
The Cancer Testis Antigens (CTAs) are a group of germ cell proteins that are absent from normal somatic cells yet aberrantly expressed in many cancer cells. When mis-expressed in cancer cells, many CTAs promote tumorigenic characteristics including genome instability, DNA damage tolerance and therapy resistance. Here we highlight some of the CTAs for which their roles in genome maintenance in cancer cells are well established. We consider three broad CTA categories: (1) Melanoma Antigens (MAGEs) (2) Mitotic CTAs and (3) CTAs with roles in meiotic homologous recombination. Many cancer cells rely on CTAs to tolerate intrinsic and therapy-induced genotoxic stress. Therefore, CTAs represent molecular vulnerabilities of cancer cells and may provide opportunities for therapy. Owing to their high-level expression in tumors and absence from normal somatic cells, CTA-directed therapies could have a high level of specificity and would likely be devoid of side-effect toxicity.
Collapse
Affiliation(s)
- Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Karly Forker
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Di Wu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Sellés-Baiget S, Ambjørn SM, Carli A, Hendriks IA, Gallina I, Davey NE, Benedict B, Zarantonello A, Gadi SA, Meeusen B, Hertz EPT, Slappendel L, Semlow D, Sturla S, Nielsen ML, Nilsson J, Miller TCR, Duxin JP. Catalytic and noncatalytic functions of DNA polymerase κ in translesion DNA synthesis. Nat Struct Mol Biol 2025; 32:300-314. [PMID: 39300172 PMCID: PMC11832425 DOI: 10.1038/s41594-024-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Translesion DNA synthesis (TLS) is a cellular process that enables the bypass of DNA lesions encountered during DNA replication and is emerging as a primary target of chemotherapy. Among vertebrate DNA polymerases, polymerase κ (Polκ) has the distinctive ability to bypass minor groove DNA adducts in vitro. However, Polκ is also required for cells to overcome major groove DNA adducts but the basis of this requirement is unclear. Here, we combine CRISPR base-editor screening technology in human cells with TLS analysis of defined DNA lesions in Xenopus egg extracts to unravel the functions and regulations of Polκ during lesion bypass. Strikingly, we show that Polκ has two main functions during TLS, which are differentially regulated by Rev1 binding. On the one hand, Polκ is essential to replicate across a minor groove DNA lesion in a process that depends on PCNA ubiquitylation but is independent of Rev1. On the other hand, through its cooperative interaction with Rev1 and ubiquitylated PCNA, Polκ appears to stabilize the Rev1-Polζ extension complex on DNA to allow extension past major groove DNA lesions and abasic sites, in a process that is independent of Polκ's catalytic activity. Together, our work identifies catalytic and noncatalytic functions of Polκ in TLS and reveals important regulatory mechanisms underlying the unique domain architecture present at the C-terminal end of Y-family TLS polymerases.
Collapse
Affiliation(s)
- Selene Sellés-Baiget
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Sara M Ambjørn
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carli
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Irene Gallina
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra Zarantonello
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sampath A Gadi
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bob Meeusen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Emil P T Hertz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Laura Slappendel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Daniel Semlow
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shana Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C R Miller
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Chiou LF, Jayaprakash D, Droby GN, Zhang X, Yang Y, Mills CA, Webb TS, Barker NK, Wu D, Herring LE, Bowser J, Vaziri C. The RING Finger E3 Ligase RNF25 Protects DNA Replication Forks Independently of its Canonical Roles in Ubiquitin Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632184. [PMID: 39829812 PMCID: PMC11741350 DOI: 10.1101/2025.01.09.632184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The DNA damage response (DDR) mechanisms that allow cells to tolerate DNA replication stress are critically important for genome stability and cell viability. Using an unbiased genetic screen we identify a role for the RING finger E3 ubiquitin ligase RNF25 in promoting DNA replication stress tolerance. In response to DNA replication stress, RNF25-deficient cells generate aberrantly high levels of single-stranded DNA (ssDNA), accumulate in S-phase and show reduced mitotic entry. Using single-molecule DNA fiber analysis, we show that RNF25 protects reversed DNA replication forks generated by the fork remodeler HLTF from nucleolytic degradation by MRE11 and CtIP. Mechanistically, RNF25 interacts with the replication fork protection factor REV7 and recruits REV7 to nascent DNA after replication stress. The role of RNF25 in protecting replication forks is fully separable from its canonical functions in ubiquitin conjugation. This work reveals the RNF25-REV7 signaling axis as an important protective mechanism in cells experiencing replication stress.
Collapse
Affiliation(s)
- Lilly F. Chiou
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deepika Jayaprakash
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Present address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Gaith N. Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present address: Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present address: In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - C. Allie Mills
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S. Webb
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Wu
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E. Herring
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead Contact
| |
Collapse
|
8
|
Can G, Shyian M, Krishnamoorthy A, Lim Y, Wu RA, Zaher MS, Raschle M, Walter JC, Pellman DS. TTF2 promotes replisome eviction from stalled forks in mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626186. [PMID: 39651145 PMCID: PMC11623681 DOI: 10.1101/2024.11.30.626186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
When cells enter mitosis with under-replicated DNA, sister chromosome segregation is compromised, which can lead to massive genome instability. The replisome-associated E3 ubiquitin ligase TRAIP mitigates this threat by ubiquitylating the CMG helicase in mitosis, leading to disassembly of stalled replisomes, fork cleavage, and restoration of chromosome structure by alternative end-joining. Here, we show that replisome disassembly requires TRAIP phosphorylation by the mitotic Cyclin B-CDK1 kinase, as well as TTF2, a SWI/SNF ATPase previously implicated in the eviction of RNA polymerase from mitotic chromosomes. We find that TTF2 tethers TRAIP to replisomes using an N-terminal Zinc finger that binds to phosphorylated TRAIP and an adjacent TTF2 peptide that contacts the CMG-associated leading strand DNA polymerase ε. This TRAIP-TTF2-pol ε bridge, which forms independently of the TTF2 ATPase domain, is essential to promote CMG unloading and stalled fork breakage. Conversely, RNAPII eviction from mitotic chromosomes requires the ATPase activity of TTF2. We conclude that in mitosis, replisomes undergo a CDK- and TTF2-dependent structural reorganization that underlies the cellular response to incompletely replicated DNA.
Collapse
Affiliation(s)
- Geylani Can
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maksym Shyian
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Archana Krishnamoorthy
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Lim
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - R. Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Present Address: Arrakis Pharmaceuticals, Waltham, MA, USA
| | - Manal S. Zaher
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Markus Raschle
- Technische Universitat Kaiserslautern, Kaiserslautern, Germany
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute
| | - David S. Pellman
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Howard Hughes Medical Institute
| |
Collapse
|
9
|
Yang Y, Jayaprakash D, Jhujh S, Reynolds J, Chen S, Gao Y, Anand J, Mutter-Rottmayer E, Ariel P, An J, Cheng X, Pearce K, Blanchet SA, Nandakumar N, Zhou P, Fradet-Turcotte A, Stewart G, Vaziri C. PCNA-binding activity separates RNF168 functions in DNA replication and DNA double-stranded break signaling. Nucleic Acids Res 2024; 52:13019-13035. [PMID: 39445802 PMCID: PMC11602139 DOI: 10.1093/nar/gkae918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
RNF168 orchestrates a ubiquitin-dependent DNA damage response to regulate the recruitment of repair factors, such as 53BP1 to DNA double-strand breaks (DSBs). In addition to its canonical functions in DSB signaling, RNF168 may facilitate DNA replication fork progression. However, the precise role of RNF168 in DNA replication remains unclear. Here, we demonstrate that RNF168 is recruited to DNA replication factories in a manner that is independent of the canonical DSB response pathway regulated by Ataxia-Telangiectasia Mutated (ATM) and RNF8. We identify a degenerate Proliferating Cell Nuclear Antigen (PCNA)-interacting peptide (DPIP) motif in the C-terminus of RNF168, which together with its Motif Interacting with Ubiquitin (MIU) domain mediates binding to mono-ubiquitylated PCNA at replication factories. An RNF168 mutant harboring inactivating substitutions in its DPIP box and MIU1 domain (termed RNF168 ΔDPIP/ΔMIU1) is not recruited to sites of DNA synthesis and fails to support ongoing DNA replication. Notably, the PCNA interaction-deficient RNF168 ΔDPIP/ΔMIU1 mutant fully rescues the ability of RNF168-/- cells to form 53BP1 foci in response to DNA DSBs. Therefore, RNF168 functions in DNA replication and DSB signaling are fully separable. Our results define a new mechanism by which RNF168 promotes DNA replication independently of its canonical functions in DSB signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Deepika Jayaprakash
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
- Oral and Craniofacial Biomedicine Program, Adam’s School of Dentistry, University of North Carolina at Chapel Hill, 385 S Columbia Street, Chapel Hill, NC 27599, USA
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| | - Steve Chen
- Cytiva Life Sciences, Global Life Sciences Solutions USA LLC, 100 Results Way, Marlborough, MA 01752, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Jay Ramanlal Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Elizabeth Mutter-Rottmayer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Pablo Ariel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
- Institute of Cancer Prevention and Treatment, Harbin Medical University, 6 Bao Jian Street, Nan Gang District, Harbin 150081, China
| | - Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital,181 Hanyu Road, Shapingba District, Chongqing 400044, China
| | - Kenneth H Pearce
- Center For Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Marsico Hall, 125 Mason Farm Road, CB# 7363, Chapel Hill, NC 27599, USA
| | - Sophie-Anne Blanchet
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medecine, Université Laval, 9 McMahon, Québec, Canada
| | - Nandana Nandakumar
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medecine, Université Laval, 9 McMahon, Québec, Canada
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA
| | - Amélie Fradet-Turcotte
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medecine, Université Laval, 9 McMahon, Québec, Canada
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, 160 Medical Drive, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Ryder EL, Nasir N, Durgan AEO, Jenkyn-Bedford M, Tye S, Zhang X, Wu Q. Structural mechanisms of SLF1 interactions with Histone H4 and RAD18 at the stalled replication fork. Nucleic Acids Res 2024; 52:12405-12421. [PMID: 39360622 PMCID: PMC11551741 DOI: 10.1093/nar/gkae831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
DNA damage that obstructs the replication machinery poses a significant threat to genome stability. Replication-coupled repair mechanisms safeguard stalled replication forks by coordinating proteins involved in the DNA damage response (DDR) and replication. SLF1 (SMC5-SMC6 complex localization factor 1) is crucial for facilitating the recruitment of the SMC5/6 complex to damage sites through interactions with SLF2, RAD18, and nucleosomes. However, the structural mechanisms of SLF1's interactions are unclear. In this study, we determined the crystal structure of SLF1's ankyrin repeat domain bound to an unmethylated histone H4 tail, illustrating how SLF1 reads nascent nucleosomes. Using structure-based mutagenesis, we confirmed a phosphorylation-dependent interaction necessary for a stable complex between SLF1's tandem BRCA1 C-Terminal domain (tBRCT) and the phosphorylated C-terminal region (S442 and S444) of RAD18. We validated a functional role of conserved phosphate-binding residues in SLF1, and hydrophobic residues in RAD18 that are adjacent to phosphorylation sites, both of which contribute to the strong interaction. Interestingly, we discovered a DNA-binding property of this RAD18-binding interface, providing an additional domain of SLF1 to enhance binding to nucleosomes. Our results provide critical structural insights into SLF1's interactions with post-replicative chromatin and phosphorylation-dependent DDR signalling, enhancing our understanding of SMC5/6 recruitment and/or activity during replication-coupled DNA repair.
Collapse
Affiliation(s)
- Emma L Ryder
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nazia Nasir
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Amy E O Durgan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael Jenkyn-Bedford
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CambridgeCB2 1GA, UK
| | - Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Xiaodong Zhang
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Qian Wu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Li Q, Zhang J, Haluska C, Zhang X, Wang L, Liu G, Wang Z, Jin D, Cheng T, Wang H, Tian Y, Wang X, Sun L, Zhao X, Chen Z, Wang L. Cryo-EM structures of Smc5/6 in multiple states reveal its assembly and functional mechanisms. Nat Struct Mol Biol 2024; 31:1532-1542. [PMID: 38890552 PMCID: PMC11479838 DOI: 10.1038/s41594-024-01319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
Smc5/6 is a member of the eukaryotic structural maintenance of chromosomes (SMC) family of complexes with important roles in genome maintenance and viral restriction. However, limited structural understanding of Smc5/6 hinders the elucidation of its diverse functions. Here, we report cryo-EM structures of the budding yeast Smc5/6 complex in eight-subunit, six-subunit and five-subunit states. Structural maps throughout the entire length of these complexes reveal modularity and key elements in complex assembly. We show that the non-SMC element (Nse)2 subunit supports the overall shape of the complex and uses a wedge motif to aid the stability and function of the complex. The Nse6 subunit features a flexible hook region for attachment to the Smc5 and Smc6 arm regions, contributing to the DNA repair roles of the complex. Our results also suggest a structural basis for the opposite effects of the Nse1-3-4 and Nse5-6 subcomplexes in regulating Smc5/6 ATPase activity. Collectively, our integrated structural and functional data provide a framework for understanding Smc5/6 assembly and function.
Collapse
Affiliation(s)
- Qian Li
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cory Haluska
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Fifth People's Hospital, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences,Fudan University, Shanghai, China
| | - Lei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics,Chinese Academy of Sciences, Beijing, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute,Chinese Academy of Sciences, Shanghai, China
| | - Zhaoning Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Duo Jin
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tong Cheng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
| | - Yuan Tian
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangxi Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics,Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Fifth People's Hospital, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences,Fudan University, Shanghai, China
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Zhenguo Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Fifth People's Hospital, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences,Fudan University, Shanghai, China.
| | - Lanfeng Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Kochenova OV, D’Alessandro G, Pilger D, Schmid E, Richards SL, Garcia MR, Jhujh SS, Voigt A, Gupta V, Carnie CJ, Wu RA, Gueorguieva N, Stewart GS, Walter JC, Jackson SP. USP37 prevents premature disassembly of stressed replisomes by TRAIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611025. [PMID: 39282314 PMCID: PMC11398331 DOI: 10.1101/2024.09.03.611025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The E3 ubiquitin ligase TRAIP associates with the replisome and helps this molecular machine deal with replication stress. Thus, TRAIP promotes DNA inter-strand crosslink repair by triggering the disassembly of CDC45-MCM2-7-GINS (CMG) helicases that have converged on these lesions. However, disassembly of single CMGs that have stalled temporarily would be deleterious, suggesting that TRAIP must be carefully regulated. Here, we demonstrate that human cells lacking the de-ubiquitylating enzyme USP37 are hypersensitive to topoisomerase poisons and other replication stress-inducing agents. We further show that TRAIP loss rescues the hypersensitivity of USP37 knockout cells to topoisomerase inhibitors. In Xenopus egg extracts depleted of USP37, TRAIP promotes premature CMG ubiquitylation and disassembly when converging replisomes stall. Finally, guided by AlphaFold-Multimer, we discovered that binding to CDC45 mediates USP37's response to topological stress. In conclusion, we propose that USP37 protects genome stability by preventing TRAIP-dependent CMG unloading when replication stress impedes timely termination.
Collapse
Affiliation(s)
- Olga V. Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Giuseppina D’Alessandro
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Domenic Pilger
- The Gurdon Institute and Department of Biochemistry, University of Cambridge
| | - Ernst Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Sean L. Richards
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Marcos Rios Garcia
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Voigt
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Vipul Gupta
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Christopher J. Carnie
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - R. Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Nadia Gueorguieva
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Stephen P. Jackson
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
13
|
Palek M, Palkova N, Kleiblova P, Kleibl Z, Macurek L. RAD18 directs DNA double-strand break repair by homologous recombination to post-replicative chromatin. Nucleic Acids Res 2024; 52:7687-7703. [PMID: 38884202 PMCID: PMC11260465 DOI: 10.1093/nar/gkae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
RAD18 is an E3 ubiquitin ligase that prevents replication fork collapse by promoting DNA translesion synthesis and template switching. Besides this classical role, RAD18 has been implicated in homologous recombination; however, this function is incompletely understood. Here, we show that RAD18 is recruited to DNA lesions by monoubiquitination of histone H2A at K15 and counteracts accumulation of 53BP1. Super-resolution microscopy revealed that RAD18 localizes to the proximity of DNA double strand breaks and limits the distribution of 53BP1 to the peripheral chromatin nanodomains. Whereas auto-ubiquitination of RAD18 mediated by RAD6 inhibits its recruitment to DNA breaks, interaction with SLF1 promotes RAD18 accumulation at DNA breaks in the post-replicative chromatin by recognition of histone H4K20me0. Surprisingly, suppression of 53BP1 function by RAD18 is not involved in homologous recombination and rather leads to reduction of non-homologous end joining. Instead, we provide evidence that RAD18 promotes HR repair by recruiting the SMC5/6 complex to DNA breaks. Finally, we identified several new loss-of-function mutations in RAD18 in cancer patients suggesting that RAD18 could be involved in cancer development.
Collapse
Affiliation(s)
- Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Natalie Palkova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| |
Collapse
|
14
|
Ahmed A, Kato N, Gautier J. Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis. J Mol Biol 2024; 436:168618. [PMID: 38763228 PMCID: PMC11227339 DOI: 10.1016/j.jmb.2024.168618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Interstrand crosslinks (ICLs) are a type of covalent lesion that can prevent transcription and replication by inhibiting DNA strand separation and instead trigger cell death. ICL inducing compounds are commonly used as chemotherapies due to their effectiveness in inhibiting cell proliferation. Naturally occurring crosslinking agents formed from metabolic processes can also pose a challenge to genome stability especially in slowly or non-dividing cells. Cells maintain a variety of ICL repair mechanisms to cope with this stressor within and outside the S phase of the cell cycle. Here, we discuss the mechanisms of various replication-independent ICL repair pathways and how crosslink repair efficiency is tied to aging and disease.
Collapse
Affiliation(s)
- Arooba Ahmed
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Niyo Kato
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
15
|
Vontalge EJ, Kavlashvili T, Dahmen SN, Cranford MT, Dewar JM. Control of DNA replication in vitro using a reversible replication barrier. Nat Protoc 2024; 19:1940-1983. [PMID: 38594502 PMCID: PMC11230854 DOI: 10.1038/s41596-024-00977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
A major obstacle to studying DNA replication is that it involves asynchronous and highly delocalized events. A reversible replication barrier overcomes this limitation and allows replication fork movement to be synchronized and localized, facilitating the study of replication fork function and replication coupled repair. Here we provide details on establishing a reversible replication barrier in vitro and using it to monitor different aspects of DNA replication. DNA template containing an array of lac operator (lacO) sequences is first bound to purified lac repressor (LacR). This substrate is then replicated in vitro using a biochemical replication system, which results in replication forks stalled on either side of the LacR array regardless of when or where they arise. Once replication forks are synchronized at the barrier, isopropyl-β-D-thiogalactopyranoside can be added to disrupt LacR binding so that replication forks synchronously resume synthesis. We describe how this approach can be employed to control replication fork elongation, termination, stalling and uncoupling, as well as assays that can be used to monitor these processes. We also explain how this approach can be adapted to control whether replication forks encounter a DNA lesion on the leading or lagging strand template and whether a converging fork is present. The required reagents can be prepared in 1-2 weeks and experiments using this approach are typically performed over 1-3 d. The main requirements for utilizing the LacR replication barrier are basic biochemical expertise and access to an in vitro system to study DNA replication. Investigators should also be trained in working with radioactive materials.
Collapse
Affiliation(s)
- Emma J Vontalge
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tamar Kavlashvili
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Steven N Dahmen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew T Cranford
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
16
|
Shah R, Aslam MA, Spanjaard A, de Groot D, Zürcher LM, Altelaar M, Hoekman L, Pritchard CEJ, Pilzecker B, van den Berk PCM, Jacobs H. Dual role of proliferating cell nuclear antigen monoubiquitination in facilitating Fanconi anemia-mediated interstrand crosslink repair. PNAS NEXUS 2024; 3:pgae242. [PMID: 38957451 PMCID: PMC11217772 DOI: 10.1093/pnasnexus/pgae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
The Fanconi anemia (FA) repair pathway governs repair of highly genotoxic DNA interstrand crosslinks (ICLs) and relies on translesion synthesis (TLS). TLS is facilitated by REV1 or site-specific monoubiquitination of proliferating cell nuclear antigen (PCNA) (PCNA-Ub) at lysine 164 (K164). A PcnaK164R/K164R but not Rev1-/- mutation renders mammals hypersensitive to ICLs. Besides the FA pathway, alternative pathways have been associated with ICL repair (1, 2), though the decision making between those remains elusive. To study the dependence and relevance of PCNA-Ub in FA repair, we intercrossed PcnaK164R/+; Fancg-/+ mice. A combined mutation (PcnaK164R/K164R; Fancg-/- ) was found embryonically lethal. RNA-seq of primary double-mutant (DM) mouse embryonic fibroblasts (MEFs) revealed elevated levels of replication stress-induced checkpoints. To exclude stress-induced confounders, we utilized a Trp53 knock-down to obtain a model to study ICL repair in depth. Regarding ICL-induced cell toxicity, cell cycle arrest, and replication fork progression, single-mutant and DM MEFs were found equally sensitive, establishing PCNA-Ub to be critical for FA-ICL repair. Immunoprecipitation and spectrometry-based analysis revealed an unknown role of PCNA-Ub in excluding mismatch recognition complex MSH2/MSH6 from being recruited to ICLs. In conclusion, our results uncovered a dual function of PCNA-Ub in ICL repair, i.e. exclude MSH2/MSH6 recruitment to channel the ICL toward canonical FA repair, in addition to its established role in coordinating TLS opposite the unhooked ICL.
Collapse
Affiliation(s)
- Ronak Shah
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Muhammad Assad Aslam
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department/Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Bosan Road, 60800 Multan, Pakistan
| | - Aldo Spanjaard
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Daniel de Groot
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lisa M Zürcher
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Colin E J Pritchard
- Mouse Clinic for Cancer and Aging Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bas Pilzecker
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
17
|
Swift LP, Lagerholm BC, Henderson LR, Ratnaweera M, Baddock HT, Sengerova B, Lee S, Cruz-Migoni A, Waithe D, Renz C, Ulrich HD, Newman JA, Schofield CJ, McHugh PJ. SNM1A is crucial for efficient repair of complex DNA breaks in human cells. Nat Commun 2024; 15:5392. [PMID: 38918391 PMCID: PMC11199599 DOI: 10.1038/s41467-024-49583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
DNA double-strand breaks (DSBs), such as those produced by radiation and radiomimetics, are amongst the most toxic forms of cellular damage, in part because they involve extensive oxidative modifications at the break termini. Prior to completion of DSB repair, the chemically modified termini must be removed. Various DNA processing enzymes have been implicated in the processing of these dirty ends, but molecular knowledge of this process is limited. Here, we demonstrate a role for the metallo-β-lactamase fold 5'-3' exonuclease SNM1A in this vital process. Cells disrupted for SNM1A manifest increased sensitivity to radiation and radiomimetic agents and show defects in DSB damage repair. SNM1A is recruited and is retained at the sites of DSB damage via the concerted action of its three highly conserved PBZ, PIP box and UBZ interaction domains, which mediate interactions with poly-ADP-ribose chains, PCNA and the ubiquitinated form of PCNA, respectively. SNM1A can resect DNA containing oxidative lesions induced by radiation damage at break termini. The combined results reveal a crucial role for SNM1A to digest chemically modified DNA during the repair of DSBs and imply that the catalytic domain of SNM1A is an attractive target for potentiation of radiotherapy.
Collapse
Affiliation(s)
- Lonnie P Swift
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Cell Imaging and Cytometry Core, Turku Bioscience Centre, University of Turku and Åbo Akademi, ku, Finland
| | - Lucy R Henderson
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Malitha Ratnaweera
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hannah T Baddock
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Calico Life Sciences, South San Francisco, CA, USA
| | - Blanka Sengerova
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sook Lee
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Abimael Cruz-Migoni
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Peter J McHugh
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
18
|
Vaculíková J, Holá M, Králová B, Lelkes E, Štefanovie B, Vágnerová R, Angelis KJ, Paleček JJ. NSE5 subunit interacts with distant regions of the SMC arms in the Physcomitrium patens SMC5/6 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38858852 DOI: 10.1111/tpj.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.
Collapse
Affiliation(s)
- Jitka Vaculíková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marcela Holá
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Barbora Králová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Edit Lelkes
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Barbora Štefanovie
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Jan J Paleček
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
19
|
Lorite NP, Apostolova S, Guasch-Vallés M, Pryer A, Unzueta F, Freire R, Solé-Soler R, Pedraza N, Dolcet X, Garí E, Agell N, Taylor EM, Colomina N, Torres-Rosell J. Crucial role of the NSE1 RING domain in Smc5/6 stability and FANCM-independent fork progression. Cell Mol Life Sci 2024; 81:251. [PMID: 38847937 PMCID: PMC11335289 DOI: 10.1007/s00018-024-05275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 08/22/2024]
Abstract
The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.
Collapse
Affiliation(s)
- Neus P Lorite
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Sonia Apostolova
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marta Guasch-Vallés
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Aaron Pryer
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Fernando Unzueta
- Departament Biomedicina, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Universidad de La Laguna, Campus Ciencias de la Salud, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Roger Solé-Soler
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Neus Pedraza
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Xavier Dolcet
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Eloi Garí
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Neus Agell
- Departament Biomedicina, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elaine M Taylor
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neus Colomina
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain.
| | - Jordi Torres-Rosell
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain.
| |
Collapse
|
20
|
Rivard RS, Chang YC, Ragland RL, Thu YM, Kassab M, Mandal RS, Van Riper SK, Kulej K, Higgins L, Markowski TM, Shang D, Hedberg J, Erber L, Garcia B, Chen Y, Bielinsky AK, Brown EJ. Improved detection of DNA replication fork-associated proteins. Cell Rep 2024; 43:114178. [PMID: 38703364 PMCID: PMC12034227 DOI: 10.1016/j.celrep.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Innovative methods to retrieve proteins associated with actively replicating DNA have provided a glimpse into the molecular dynamics of replication fork stalling. We report that a combination of density-based replisome enrichment by isolating proteins on nascent DNA (iPOND2) and label-free quantitative mass spectrometry (iPOND2-DRIPPER) substantially increases both replication factor yields and the dynamic range of protein quantification. Replication protein abundance in retrieved nascent DNA is elevated up to 300-fold over post-replicative controls, and recruitment of replication stress factors upon fork stalling is observed at similar levels. The increased sensitivity of iPOND2-DRIPPER permits direct measurement of ubiquitination events without intervening retrieval of diglycine tryptic fragments of ubiquitin. Using this approach, we find that stalled replisomes stimulate the recruitment of a diverse cohort of DNA repair factors, including those associated with poly-K63-ubiquitination. Finally, we uncover the temporally controlled association of stalled replisomes with nuclear pore complex components and nuclear cytoskeleton networks.
Collapse
Affiliation(s)
- Rebecca S Rivard
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan L Ragland
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yee-Mon Thu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Muzaffer Kassab
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Shubhra Mandal
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan K Van Riper
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna Kulej
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Todd M Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - David Shang
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Eric J Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Cho T, Hoeg L, Setiaputra D, Durocher D. NFATC2IP is a mediator of SUMO-dependent genome integrity. Genes Dev 2024; 38:233-252. [PMID: 38503515 PMCID: PMC11065178 DOI: 10.1101/gad.350914.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The post-translational modification of proteins by SUMO is crucial for cellular viability and mammalian development in part due to the contribution of SUMOylation to genome duplication and repair. To investigate the mechanisms underpinning the essential function of SUMO, we undertook a genome-scale CRISPR/Cas9 screen probing the response to SUMOylation inhibition. This effort identified 130 genes whose disruption reduces or enhances the toxicity of TAK-981, a clinical-stage inhibitor of the SUMO E1-activating enzyme. Among the strongest hits, we validated and characterized NFATC2IP, an evolutionarily conserved protein related to the fungal Esc2 and Rad60 proteins that harbors tandem SUMO-like domains. Cells lacking NFATC2IP are viable but are hypersensitive to SUMO E1 inhibition, likely due to the accumulation of mitotic chromosome bridges and micronuclei. NFATC2IP primarily acts in interphase and associates with nascent DNA, suggesting a role in the postreplicative resolution of replication or recombination intermediates. Mechanistically, NFATC2IP interacts with the SMC5/6 complex and UBC9, the SUMO E2, via its first and second SUMO-like domains, respectively. AlphaFold-Multimer modeling suggests that NFATC2IP positions and activates the UBC9-NSMCE2 complex, the SUMO E3 ligase associated with SMC5/SMC6. We conclude that NFATC2IP is a key mediator of SUMO-dependent genomic integrity that collaborates with the SMC5/6 complex.
Collapse
Affiliation(s)
- Tiffany Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
22
|
Schmid EW, Walter JC. Predictomes: A classifier-curated database of AlphaFold-modeled protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588596. [PMID: 38645019 PMCID: PMC11030396 DOI: 10.1101/2024.04.09.588596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characterization of the PPIs underlying biochemical processes is lacking. Although AlphaFold-Multimer (AF-M) has the potential to fill this knowledge gap, standard AF-M confidence metrics do not reliably separate relevant PPIs from an abundance of false positive predictions. To address this limitation, we used machine learning on well curated datasets to train a Structure Prediction and Omics informed Classifier called SPOC that shows excellent performance in separating true and false PPIs, including in proteome-wide screens. We applied SPOC to an all-by-all matrix of nearly 300 human genome maintenance proteins, generating ~40,000 predictions that can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High confidence PPIs discovered using our approach suggest novel hypotheses in genome maintenance. Our results provide a framework for interpreting large scale AF-M screens and help lay the foundation for a proteome-wide structural interactome.
Collapse
Affiliation(s)
- Ernst W. Schmid
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C. Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
23
|
Jurkovic CM, Boisvert FM. Evolution of techniques and tools for replication fork proteome and protein interaction studies. Biochem Cell Biol 2024; 102:135-144. [PMID: 38113480 DOI: 10.1139/bcb-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Understanding the complex network of protein-protein interactions (PPI) that govern cellular functions is essential for unraveling the molecular basis of biological processes and diseases. Mass spectrometry (MS) has emerged as a powerful tool for studying protein dynamics, enabling comprehensive analysis of protein function, structure, post-translational modifications, interactions, and localization. This article provides an overview of MS techniques and their applications in proteomics studies, with a focus on the replication fork proteome. The replication fork is a multi-protein assembly involved in DNA replication, and its proper functioning is crucial for maintaining genomic integrity. By combining quantitative MS labeling techniques with various data acquisition methods, researchers have made significant strides in elucidating the complex processes and molecular mechanisms at the replication fork. Overall, MS has revolutionized our understanding of protein dynamics, offering valuable insights into cellular processes and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Carla-Marie Jurkovic
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Griffith-Jones S, Álvarez L, Mukhopadhyay U, Gharbi S, Rettel M, Adams M, Hennig J, Bhogaraju S. Structural basis for RAD18 regulation by MAGEA4 and its implications for RING ubiquitin ligase binding by MAGE family proteins. EMBO J 2024; 43:1273-1300. [PMID: 38448672 PMCID: PMC10987633 DOI: 10.1038/s44318-024-00058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.
Collapse
Affiliation(s)
| | - Lucía Álvarez
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Mandy Rettel
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Michael Adams
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Janosch Hennig
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
25
|
Roy S, Adhikary H, D’Amours D. The SMC5/6 complex: folding chromosomes back into shape when genomes take a break. Nucleic Acids Res 2024; 52:2112-2129. [PMID: 38375830 PMCID: PMC10954462 DOI: 10.1093/nar/gkae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
High-level folding of chromatin is a key determinant of the shape and functional state of chromosomes. During cell division, structural maintenance of chromosome (SMC) complexes such as condensin and cohesin ensure large-scale folding of chromatin into visible chromosomes. In contrast, the SMC5/6 complex plays more local and context-specific roles in the structural organization of interphase chromosomes with important implications for health and disease. Recent advances in single-molecule biophysics and cryo-electron microscopy revealed key insights into the architecture of the SMC5/6 complex and how interactions connecting the complex to chromatin components give rise to its unique repertoire of interphase functions. In this review, we provide an integrative view of the features that differentiates the SMC5/6 complex from other SMC enzymes and how these enable dramatic reorganization of DNA folding in space during DNA repair reactions and other genome transactions. Finally, we explore the mechanistic basis for the dynamic targeting of the SMC5/6 complex to damaged chromatin and its crucial role in human health.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hemanta Adhikary
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
26
|
Scelfo A, Angrisani A, Grillo M, Barnes BM, Muyas F, Sauer CM, Leung CWB, Dumont M, Grison M, Mazaud D, Garnier M, Guintini L, Nelson L, Esashi F, Cortés-Ciriano I, Taylor SS, Déjardin J, Wilhelm T, Fachinetti D. Specialized replication mechanisms maintain genome stability at human centromeres. Mol Cell 2024; 84:1003-1020.e10. [PMID: 38359824 DOI: 10.1016/j.molcel.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Annapaola Angrisani
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Marco Grillo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | | | - Marie Dumont
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Marine Grison
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - David Mazaud
- Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France
| | - Mickaël Garnier
- Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France
| | - Laetitia Guintini
- Institute of Human Genetics, CNRS-Université de Montpellier, Montpellier 34396, France
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS-Université de Montpellier, Montpellier 34396, France
| | - Therese Wilhelm
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France.
| |
Collapse
|
27
|
Day M, Tetik B, Parlak M, Almeida-Hernández Y, Räschle M, Kaschani F, Siegert H, Marko A, Sanchez-Garcia E, Kaiser M, Barker IA, Pearl LH, Oliver AW, Boos D. TopBP1 utilises a bipartite GINS binding mode to support genome replication. Nat Commun 2024; 15:1797. [PMID: 38413589 PMCID: PMC10899662 DOI: 10.1038/s41467-024-45946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
Activation of the replicative Mcm2-7 helicase by loading GINS and Cdc45 is crucial for replication origin firing, and as such for faithful genetic inheritance. Our biochemical and structural studies demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1. Mutation analysis reveals that either surface is individually able to support TopBP1-GINS interaction, albeit with reduced affinity. Consistently, either surface is sufficient for replication origin firing in Xenopus egg extracts and becomes essential in the absence of the other. The TopBP1-GINS interaction appears sterically incompatible with simultaneous binding of DNA polymerase epsilon (Polε) to GINS when bound to Mcm2-7-Cdc45, although TopBP1-BRCT4 and the Polε subunit PolE2 show only partial competitivity in binding to Psf1. Our TopBP1-GINS model improves the understanding of the recently characterised metazoan pre-loading complex. It further predicts the coordination of three molecular origin firing processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.
Collapse
Affiliation(s)
- Matthew Day
- School of Biological and Behavioural Sciences, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK.
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| | - Bilal Tetik
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Milena Parlak
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Yasser Almeida-Hernández
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technical University Dortmund, Emil-Figge Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Markus Räschle
- Molecular Genetics, Technical University Kaiserslautern, Paul-Ehrlich Straße 24, 67663, Kaiserslautern, Germany
| | - Farnusch Kaschani
- Analytics Core Facility Essen, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
- Chemical Biology, Center of Medical Biotechnology, University Duisburg-Essen, Fakultät Biologie, Essen, Germany
| | - Heike Siegert
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Anika Marko
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technical University Dortmund, Emil-Figge Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Markus Kaiser
- Analytics Core Facility Essen, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
- Chemical Biology, Center of Medical Biotechnology, University Duisburg-Essen, Fakultät Biologie, Essen, Germany
| | - Isabel A Barker
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW1E 6BT, UK.
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| | - Dominik Boos
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany.
| |
Collapse
|
28
|
Altshuller M, He X, MacKrell EJ, Wernke KM, Wong JWH, Sellés-Baiget S, Wang TY, Chou TF, Duxin JP, Balskus EP, Herzon SB, Semlow DR. The Fanconi anemia pathway repairs colibactin-induced DNA interstrand cross-links. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.576698. [PMID: 38352618 PMCID: PMC10862771 DOI: 10.1101/2024.01.30.576698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Colibactin is a secondary metabolite produced by bacteria present in the human gut and is implicated in the progression of colorectal cancer and inflammatory bowel disease. This genotoxin alkylates deoxyadenosines on opposite strands of host cell DNA to produce DNA interstrand cross-links (ICLs) that block DNA replication. While cells have evolved multiple mechanisms to resolve ("unhook") ICLs encountered by the replication machinery, little is known about which of these pathways promote resistance to colibactin-induced ICLs. Here, we use Xenopus egg extracts to investigate replication-coupled repair of plasmids engineered to contain site-specific colibactin-ICLs. We show that replication fork stalling at a colibactin-ICL leads to replisome disassembly and activation of the Fanconi anemia ICL repair pathway, which unhooks the colibactin-ICL through nucleolytic incisions. These incisions generate a DNA double-strand break intermediate in one sister chromatid, which can be repaired by homologous recombination, and a monoadduct ("ICL remnant") in the other. Our data indicate that translesion synthesis past the colibactin-ICL remnant depends on Polη and a Polκ-REV1-Polζ polymerase complex. Although translesion synthesis past colibactin-induced DNA damage is frequently error-free, it can introduce T>N point mutations that partially recapitulate the mutation signature associated with colibactin exposure in vivo. Taken together, our work provides a biochemical framework for understanding how cells tolerate a naturally-occurring and clinically-relevant ICL.
Collapse
Affiliation(s)
- Maria Altshuller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xu He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elliot J. MacKrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kevin M. Wernke
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Joel W. H. Wong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Selene Sellés-Baiget
- TheNovo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Julien P. Duxin
- TheNovo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Daniel R. Semlow
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
29
|
Xu MJ, Jordan PW. SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome. Int J Mol Sci 2024; 25:952. [PMID: 38256025 PMCID: PMC10815603 DOI: 10.3390/ijms25020952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
It is widely accepted that DNA replication fork stalling is a common occurrence during cell proliferation, but there are robust mechanisms to alleviate this and ensure DNA replication is completed prior to chromosome segregation. The SMC5/6 complex has consistently been implicated in the maintenance of replication fork integrity. However, the essential role of the SMC5/6 complex during DNA replication in mammalian cells has not been elucidated. In this study, we investigate the molecular consequences of SMC5/6 loss at the replication fork in mouse embryonic stem cells (mESCs), employing the auxin-inducible degron (AID) system to deplete SMC5 acutely and reversibly in the defined cellular contexts of replication fork stall and restart. In SMC5-depleted cells, we identify a defect in the restart of stalled replication forks, underpinned by excess MRE11-mediated fork resection and a perturbed localization of fork protection factors to the stalled fork. Previously, we demonstrated a physical and functional interaction of SMC5/6 with the COP9 signalosome (CSN), a cullin deneddylase that enzymatically regulates cullin ring ligase (CRL) activity. Employing a combination of DNA fiber techniques, the AID system, small-molecule inhibition assays, and immunofluorescence microscopy analyses, we show that SMC5/6 promotes the localization of fork protection factors to stalled replication forks by negatively modulating the COP9 signalosome (CSN). We propose that the SMC5/6-mediated modulation of the CSN ensures that CRL activity and their roles in DNA replication fork stabilization are maintained to allow for efficient replication fork restart when a replication fork stall is alleviated.
Collapse
Affiliation(s)
- Michelle J. Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
30
|
Aze A, Hutchins JRA, Maiorano D. Studying Translesion DNA Synthesis Using Xenopus In Vitro Systems. Methods Mol Biol 2024; 2740:21-36. [PMID: 38393467 DOI: 10.1007/978-1-0716-3557-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Cell-free extracts derived from Xenopus eggs have been widely used to decipher molecular pathways involved in several cellular processes including DNA synthesis, the DNA damage response, and genome integrity maintenance. We set out assays using Xenopus cell-free extracts to study translesion DNA synthesis (TLS), a branch of the DNA damage tolerance pathway that allows replication of damaged DNA. Using this system, we were able to recapitulate TLS activities that occur naturally in vivo during early embryogenesis. This chapter describes protocols to detect chromatin-bound TLS factors by western blotting and immunofluorescence microscopy upon induction of DNA damage by UV irradiation, monitor TLS-dependent mutagenesis, and perform proteomic screening.
Collapse
Affiliation(s)
- Antoine Aze
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - James R A Hutchins
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
31
|
Colding-Christensen CS, Kakulidis ES, Arroyo-Gomez J, Hendriks IA, Arkinson C, Fábián Z, Gambus A, Mailand N, Duxin JP, Nielsen ML. Profiling ubiquitin signalling with UBIMAX reveals DNA damage- and SCF β-Trcp1-dependent ubiquitylation of the actin-organizing protein Dbn1. Nat Commun 2023; 14:8293. [PMID: 38097601 PMCID: PMC10721886 DOI: 10.1038/s41467-023-43873-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Ubiquitin widely modifies proteins, thereby regulating most cellular functions. The complexity of ubiquitin signalling necessitates unbiased methods enabling global detection of dynamic protein ubiquitylation. Here, we describe UBIMAX (UBiquitin target Identification by Mass spectrometry in Xenopus egg extracts), which enriches ubiquitin-conjugated proteins and quantifies regulation of protein ubiquitylation under precise and adaptable conditions. We benchmark UBIMAX by investigating DNA double-strand break-responsive ubiquitylation events, identifying previously known targets and revealing the actin-organizing protein Dbn1 as a major target of DNA damage-induced ubiquitylation. We find that Dbn1 is targeted for proteasomal degradation by the SCFβ-Trcp1 ubiquitin ligase, in a conserved mechanism driven by ATM-mediated phosphorylation of a previously uncharacterized β-Trcp1 degron containing an SQ motif. We further show that this degron is sufficient to induce DNA damage-dependent protein degradation of a model substrate. Collectively, we demonstrate UBIMAX's ability to identify targets of stimulus-regulated ubiquitylation and reveal an SCFβ-Trcp1-mediated ubiquitylation mechanism controlled directly by the apical DNA damage response kinases.
Collapse
Affiliation(s)
- Camilla S Colding-Christensen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ellen S Kakulidis
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Javier Arroyo-Gomez
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ivo A Hendriks
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Connor Arkinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- California Institute for Quantitative Biosciences and Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Zita Fábián
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Niels Mailand
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Julien P Duxin
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Michael L Nielsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
32
|
Huang W, Qiu F, Zheng L, Shi M, Shen M, Zhao X, Xiang S. Structural insights into Rad18 targeting by the SLF1 BRCT domains. J Biol Chem 2023; 299:105288. [PMID: 37748650 PMCID: PMC10598736 DOI: 10.1016/j.jbc.2023.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Rad18 interacts with the SMC5/6 localization factor 1 (SLF1) to recruit the SMC5/6 complex to DNA damage sites for repair. The mechanism of the specific Rad18 recognition by SLF1 is unclear. Here, we present the crystal structure of the tandem BRCT repeat (tBRCT) in SLF1 (SLF1tBRCT) bound with the interacting Rad18 peptide. Our structure and biochemical studies demonstrate that SLF1tBRCT interacts with two phosphoserines and adjacent residues in Rad18 for high-affinity and specificity Rad18 recognition. We found that SLF1tBRCT utilizes mechanisms common among tBRCTs as well as unique ones for Rad18 binding, the latter include interactions with an α-helical structure in Rad18 that has not been observed in other tBRCT-bound ligand proteins. Our work provides structural insights into Rad18 targeting by SLF1 and expands the understanding of BRCT-mediated complex assembly.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Fangjie Qiu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Lin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Meng Shi
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Miaomiao Shen
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Xiaolan Zhao
- Department of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China.
| |
Collapse
|
33
|
Kleene V, Corvaglia V, Chacin E, Forne I, Konrad DB, Khosravani P, Douat C, Kurat CF, Huc I, Imhof A. DNA mimic foldamers affect chromatin composition and disturb cell cycle progression. Nucleic Acids Res 2023; 51:9629-9642. [PMID: 37650653 PMCID: PMC10570015 DOI: 10.1093/nar/gkad681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
The use of synthetic chemicals to selectively interfere with chromatin and the chromatin-bound proteome represents a great opportunity for pharmacological intervention. Recently, synthetic foldamers that mimic the charge surface of double-stranded DNA have been shown to interfere with selected protein-DNA interactions. However, to better understand their pharmacological potential and to improve their specificity and selectivity, the effect of these molecules on complex chromatin needs to be investigated. We therefore systematically studied the influence of the DNA mimic foldamers on the chromatin-bound proteome using an in vitro chromatin assembly extract. Our studies show that the foldamer efficiently interferes with the chromatin-association of the origin recognition complex in vitro and in vivo, which leads to a disturbance of cell cycle in cells treated with foldamers. This effect is mediated by a strong direct interaction between the foldamers and the origin recognition complex and results in a failure of the complex to organise chromatin around replication origins. Foldamers that mimic double-stranded nucleic acids thus emerge as a powerful tool with designable features to alter chromatin assembly and selectively interfere with biological mechanisms.
Collapse
Affiliation(s)
- Vera Kleene
- Department of Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Valentina Corvaglia
- Department of Pharmacy, Institute of Chemical Epigenetics, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377 München, Germany
| | - Erika Chacin
- Department of Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Ignasi Forne
- Protein Analysis Unit, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - David B Konrad
- Department of Pharmacy, Institute of Chemical Epigenetics, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377 München, Germany
| | - Pardis Khosravani
- Core Facility Flow Cytometry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Céline Douat
- Department of Pharmacy, Institute of Chemical Epigenetics, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377 München, Germany
| | - Christoph F Kurat
- Department of Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Ivan Huc
- Department of Pharmacy, Institute of Chemical Epigenetics, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377 München, Germany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
- Protein Analysis Unit, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians University, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
34
|
Zhang L, Wirth M, Patra U, Stroh J, Isaakidis K, Rieger L, Kossatz S, Milanovic M, Zang C, Demel U, Keiten‐Schmitz J, Wagner K, Steiger K, Rad R, Bassermann F, Müller S, Keller U, Schick M. Actionable loss of SLF2 drives B-cell lymphomagenesis and impairs the DNA damage response. EMBO Mol Med 2023; 15:e16431. [PMID: 37485814 PMCID: PMC10493575 DOI: 10.15252/emmm.202216431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
The DNA damage response (DDR) acts as a barrier to malignant transformation and is often impaired during tumorigenesis. Exploiting the impaired DDR can be a promising therapeutic strategy; however, the mechanisms of inactivation and corresponding biomarkers are incompletely understood. Starting from an unbiased screening approach, we identified the SMC5-SMC6 Complex Localization Factor 2 (SLF2) as a regulator of the DDR and biomarker for a B-cell lymphoma (BCL) patient subgroup with an adverse prognosis. SLF2-deficiency leads to loss of DDR factors including Claspin (CLSPN) and consequently impairs CHK1 activation. In line with this mechanism, genetic deletion of Slf2 drives lymphomagenesis in vivo. Tumor cells lacking SLF2 are characterized by a high level of DNA damage, which leads to alterations of the post-translational SUMOylation pathway as a safeguard. The resulting co-dependency confers synthetic lethality to a clinically applicable SUMOylation inhibitor (SUMOi), and inhibitors of the DDR pathway act highly synergistic with SUMOi. Together, our results identify SLF2 as a DDR regulator and reveal co-targeting of the DDR and SUMOylation as a promising strategy for treating aggressive lymphoma.
Collapse
Affiliation(s)
- Le Zhang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Upayan Patra
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Jacob Stroh
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Konstandina Isaakidis
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Leonie Rieger
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
| | - Susanne Kossatz
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
- Nuclear Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Maja Milanovic
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Chuanbing Zang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Uta Demel
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
- Clinician Scientist ProgramBerlin Institute of Health (BIH)BerlinGermany
| | - Jan Keiten‐Schmitz
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Kristina Wagner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Katja Steiger
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Comparative Experimental Pathology, Institute of PathologyTechnical University of MunichMunichGermany
| | - Roland Rad
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
- Institute of Molecular Oncology and Functional Genomics, TUM School of MedicineTechnische Universität MünchenMunichGermany
| | - Florian Bassermann
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
| | - Stefan Müller
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Markus Schick
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| |
Collapse
|
35
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Berger S, Chistol G. Visualizing the dynamics of DNA replication and repair at the single-molecule level. Methods Cell Biol 2023; 182:109-165. [PMID: 38359974 PMCID: PMC11246157 DOI: 10.1016/bs.mcb.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
During cell division, the genome of each eukaryotic cell is copied by thousands of replisomes-large protein complexes consisting of several dozen proteins. Recent studies suggest that the eukaryotic replisome is much more dynamic than previously thought. To directly visualize replisome dynamics in a physiological context, we recently developed a single-molecule approach for imaging replication proteins in Xenopus egg extracts. These extracts contain all the soluble nuclear proteins and faithfully recapitulate DNA replication and repair in vitro, serving as a powerful platform for studying the mechanisms of genome maintenance. Here we present detailed protocols for conducting single-molecule experiments in nuclear egg extracts and preparing key reagents. This workflow can be easily adapted to visualize the dynamics and function of other proteins implicated in DNA replication and repair.
Collapse
Affiliation(s)
- Scott Berger
- Biophysics Program, Stanford School of Medicine, Stanford, CA, United States
| | - Gheorghe Chistol
- Biophysics Program, Stanford School of Medicine, Stanford, CA, United States; Chemical and Systems Biology Department, Cancer Biology Program, Stanford School of Medicine, Stanford, CA, United States.
| |
Collapse
|
37
|
Pinedo-Carpio E, Dessapt J, Beneyton A, Sacre L, Bérubé MA, Villot R, Lavoie EG, Coulombe Y, Blondeau A, Boulais J, Malina A, Luo VM, Lazaratos AM, Côté JF, Mallette FA, Guarné A, Masson JY, Fradet-Turcotte A, Orthwein A. FIRRM cooperates with FIGNL1 to promote RAD51 disassembly during DNA repair. SCIENCE ADVANCES 2023; 9:eadf4082. [PMID: 37556550 PMCID: PMC10411901 DOI: 10.1126/sciadv.adf4082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Interstrand DNA cross-links (ICLs) represent complex lesions that compromise genomic stability. Several pathways have been involved in ICL repair, but the extent of factors involved in the resolution of ICL-induced DNA double-strand breaks (DSBs) remains poorly defined. Using CRISPR-based genomics, we identified FIGNL1 interacting regulator of recombination and mitosis (FIRRM) as a sensitizer of the ICL-inducing agent mafosfamide. Mechanistically, we showed that FIRRM, like its interactor Fidgetin like 1 (FIGNL1), contributes to the resolution of RAD51 foci at ICL-induced DSBs. While the stability of FIGNL1 and FIRRM is interdependent, expression of a mutant of FIRRM (∆WCF), which stabilizes the protein in the absence of FIGNL1, allows the resolution of RAD51 foci and cell survival, suggesting that FIRRM has FIGNL1-independent function during DNA repair. In line with this model, FIRRM binds preferentially single-stranded DNA in vitro, raising the possibility that it directly contributes to RAD51 disassembly by interacting with DNA. Together, our findings establish FIRRM as a promoting factor of ICL repair.
Collapse
Affiliation(s)
- Edgar Pinedo-Carpio
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Julien Dessapt
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Adèle Beneyton
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lauralicia Sacre
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - Marie-Anne Bérubé
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Romain Villot
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4 Canada
| | - Elise G. Lavoie
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Yan Coulombe
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Andréanne Blondeau
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Abba Malina
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4 Canada
| | - Vincent M. Luo
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Anna-Maria Lazaratos
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Frédérick A. Mallette
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4 Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Amélie Fradet-Turcotte
- CHU de Québec Research Center-Université Laval (L’Hôtel-Dieu de Québec), Laval University Cancer Research Center, Québec, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC H4A 3T2, Canada
| |
Collapse
|
38
|
Farsi Z, Sheng M. Molecular mechanisms of schizophrenia: Insights from human genetics. Curr Opin Neurobiol 2023; 81:102731. [PMID: 37245257 DOI: 10.1016/j.conb.2023.102731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder that affects millions of people worldwide; however, its etiology is poorly understood at the molecular and neurobiological levels. A particularly important advance in recent years is the discovery of rare genetic variants associated with a greatly increased risk of developing schizophrenia. These primarily loss-of-function variants are found in genes that overlap with those implicated by common variants and are involved in the regulation of glutamate signaling, synaptic function, DNA transcription, and chromatin remodeling. Animal models harboring mutations in these large-effect schizophrenia risk genes show promise in providing additional insights into the molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
39
|
Lelkes E, Jemelková J, Holá M, Štefanovie B, Kolesár P, Vágnerová R, Dvořák Tomaštíková E, Pecinka A, Angelis KJ, Paleček JJ. Characterization of the conserved features of the NSE6 subunit of the Physcomitrium patens SMC5/6 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1084-1099. [PMID: 37191775 DOI: 10.1111/tpj.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are molecular machines ensuring chromatin organization at higher levels. They play direct roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of long-armed SMC, kleisin, and kleisin-associated subunits. Additional factors, like NSE6 within SMC5/6, bind to SMC core complexes and regulate their activities. In the human HsNSE6/SLF2, we recently identified a new CANIN domain. Here we tracked down its sequence homology to lower plants, selected the bryophyte Physcomitrium patens, and analyzed PpNSE6 protein-protein interactions to explore its conservation in detail. We identified a previously unrecognized core sequence motif conserved from yeasts to humans within the NSE6 CANIN domain. This motif mediates the interaction between NSE6 and its NSE5 partner in yeasts and plants. In addition, the CANIN domain and its preceding PpNSE6 sequences bind both PpSMC5 and PpSMC6 arms. Interestingly, we mapped the PpNSE6-binding site at the PpSMC5 arm right next to the PpNSE2-binding surface. The position of NSE6 at SMC arms suggests its role in the regulation of SMC5/6 dynamics. Consistent with the regulatory role of NSE6 subunits, Ppnse6 mutant lines were viable and sensitive to the DNA-damaging drug bleomycin and lost a large portion of rDNA copies. These moss mutants also exhibited reduced growth and developmental aberrations. Altogether, our data showed the conserved function of the NSE6 subunit and architecture of the SMC5/6 complex across species.
Collapse
Affiliation(s)
- Edit Lelkes
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jitka Jemelková
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marcela Holá
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Barbora Štefanovie
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Peter Kolesár
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Jan J Paleček
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
40
|
Haccard O, Ciardo D, Narrissamprakash H, Bronchain O, Kumagai A, Dunphy WG, Goldar A, Marheineke K. Rif1 restrains the rate of replication origin firing in Xenopus laevis. Commun Biol 2023; 6:788. [PMID: 37516798 PMCID: PMC10387115 DOI: 10.1038/s42003-023-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
Metazoan genomes are duplicated by the coordinated activation of clusters of replication origins at different times during S phase, but the underlying mechanisms of this temporal program remain unclear during early development. Rif1, a key replication timing factor, inhibits origin firing by recruiting protein phosphatase 1 (PP1) to chromatin counteracting S phase kinases. We have previously described that Rif1 depletion accelerates early Xenopus laevis embryonic cell cycles. Here, we find that in the absence of Rif1, patterns of replication foci change along with the acceleration of replication cluster activation. However, initiations increase only moderately inside active clusters. Our numerical simulations suggest that the absence of Rif1 compresses the temporal program towards more homogeneity and increases the availability of limiting initiation factors. We experimentally demonstrate that Rif1 depletion increases the chromatin-binding of the S phase kinase Cdc7/Drf1, the firing factors Treslin, MTBP, Cdc45, RecQL4, and the phosphorylation of both Treslin and MTBP. We show that Rif1 globally, but not locally, restrains the replication program in early embryos, possibly by inhibiting or excluding replication factors from chromatin.
Collapse
Affiliation(s)
- Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Diletta Ciardo
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Hemalatha Narrissamprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, CERTO-Retina France, 91400, Saclay, France
| | - Akiko Kumagai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - William G Dunphy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
41
|
Stok C, Tsaridou S, van den Tempel N, Everts M, Wierenga E, Bakker FJ, Kok Y, Alves IT, Jae LT, Raas MWD, Huis In 't Veld PJ, de Boer HR, Bhattacharya A, Karanika E, Warner H, Chen M, van de Kooij B, Dessapt J, Ter Morsche L, Perepelkina P, Fradet-Turcotte A, Guryev V, Tromer EC, Chan KL, Fehrmann RSN, van Vugt MATM. FIRRM/C1orf112 is synthetic lethal with PICH and mediates RAD51 dynamics. Cell Rep 2023; 42:112668. [PMID: 37347663 DOI: 10.1016/j.celrep.2023.112668] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Joint DNA molecules are natural byproducts of DNA replication and repair. Persistent joint molecules give rise to ultrafine DNA bridges (UFBs) in mitosis, compromising sister chromatid separation. The DNA translocase PICH (ERCC6L) has a central role in UFB resolution. A genome-wide loss-of-function screen is performed to identify the genetic context of PICH dependency. In addition to genes involved in DNA condensation, centromere stability, and DNA-damage repair, we identify FIGNL1-interacting regulator of recombination and mitosis (FIRRM), formerly known as C1orf112. We find that FIRRM interacts with and stabilizes the AAA+ ATPase FIGNL1. Inactivation of either FIRRM or FIGNL1 results in UFB formation, prolonged accumulation of RAD51 at nuclear foci, and impaired replication fork dynamics and consequently impairs genome maintenance. Combined, our data suggest that inactivation of FIRRM and FIGNL1 dysregulates RAD51 dynamics at replication forks, resulting in persistent DNA lesions and a dependency on PICH to preserve cell viability.
Collapse
Affiliation(s)
- Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Stavroula Tsaridou
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Elles Wierenga
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Femke J Bakker
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Yannick Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Inês Teles Alves
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Maximilian W D Raas
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences, Uppsalalaan 8, 3584CT Utrecht, the Netherlands; Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Pim J Huis In 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - H Rudolf de Boer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Eleftheria Karanika
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Harry Warner
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Mengting Chen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Bert van de Kooij
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Julien Dessapt
- CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Université Laval, Québec, QC GIR 3S3, Canada
| | - Lars Ter Morsche
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Polina Perepelkina
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Amelie Fradet-Turcotte
- CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Université Laval, Québec, QC GIR 3S3, Canada
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Kok-Lung Chan
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands.
| |
Collapse
|
42
|
Yao Q, Peng B, Li C, Li X, Chen M, Zhou Z, Tang D, He J, Wu Y, Sun Y, Li W. SLF2 Interacts with the SMC5/6 Complex to Direct Hepatitis B Virus Episomal DNA to Promyelocytic Leukemia Bodies for Transcriptional Repression. J Virol 2023:e0032823. [PMID: 37338350 PMCID: PMC10373549 DOI: 10.1128/jvi.00328-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects approximately 300 million people worldwide, and permanently repressing transcription of covalently closed circular DNA (cccDNA), the episomal viral DNA reservoir, is an attractive approach toward curing HBV. However, the mechanism underlying cccDNA transcription is only partially understood. In this study, by illuminating cccDNA of wild-type HBV (HBV-WT) and transcriptionally inactive HBV that bears a deficient HBV X gene (HBV-ΔX), we found that the HBV-ΔX cccDNA more frequently colocalizes with promyelocytic leukemia (PML) bodies than that of HBV-WT cccDNA. A small interfering RNA (siRNA) screen targeting 91 PML body-related proteins identified SMC5-SMC6 localization factor 2 (SLF2) as a host restriction factor of cccDNA transcription, and subsequent studies showed that SLF2 mediates HBV cccDNA entrapment in PML bodies by interacting with the SMC5/6 complex. We further showed that the region of SLF2 comprising residues 590 to 710 interacts with and recruits the SMC5/6 complex to PML bodies, and the C-terminal domain of SLF2 containing this region is necessary for repression of cccDNA transcription. Our findings shed new light on cellular mechanisms that inhibit HBV infection and lend further support for targeting the HBx pathway to repress HBV activity. IMPORTANCE Chronic HBV infection remains a major public health problem worldwide. Current antiviral treatments rarely cure the infection, as they cannot clear the viral reservoir, cccDNA, in the nucleus. Therefore, permanently silencing HBV cccDNA transcription represents a promising approach for a cure of HBV infection. Our study provides new insights into the cellular mechanisms that restrict HBV infection, revealing the role of SLF2 in directing HBV cccDNA to PML bodies for transcriptional repression. These findings have important implications for the development of antiviral therapies against HBV.
Collapse
Affiliation(s)
- Qiyan Yao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Bo Peng
- National Institute of Biological Sciences, Beijing, China
| | - Cong Li
- National Institute of Biological Sciences, Beijing, China
| | - Xuelei Li
- National Institute of Biological Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingyi Chen
- National Institute of Biological Sciences, Beijing, China
| | - Zhongmin Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Dingbin Tang
- National Institute of Biological Sciences, Beijing, China
| | - Jiabei He
- National Institute of Biological Sciences, Beijing, China
| | - Yumeng Wu
- National Institute of Biological Sciences, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
43
|
Mazouzi A, Moser SC, Abascal F, van den Broek B, Del Castillo Velasco-Herrera M, van der Heijden I, Hekkelman M, Drenth AP, van der Burg E, Kroese LJ, Jalink K, Adams DJ, Jonkers J, Brummelkamp TR. FIRRM/C1orf112 mediates resolution of homologous recombination intermediates in response to DNA interstrand crosslinks. SCIENCE ADVANCES 2023; 9:eadf4409. [PMID: 37256941 PMCID: PMC10413679 DOI: 10.1126/sciadv.adf4409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.
Collapse
Affiliation(s)
- Abdelghani Mazouzi
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Sarah C. Moser
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Bram van den Broek
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
- BioImaging Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Ingrid van der Heijden
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maarten Hekkelman
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anne Paulien Drenth
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eline van der Burg
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lona J. Kroese
- Animal Modeling Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kees Jalink
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Jos Jonkers
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thijn R. Brummelkamp
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
44
|
Peng XP, Zhao X. The multi-functional Smc5/6 complex in genome protection and disease. Nat Struct Mol Biol 2023; 30:724-734. [PMID: 37336994 PMCID: PMC10372777 DOI: 10.1038/s41594-023-01015-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are ubiquitous genome regulators with a wide range of functions. Among the three types of SMC complexes in eukaryotes, cohesin and condensin fold the genome into different domains and structures, while Smc5/6 plays direct roles in promoting chromosomal replication and repair and in restraining pathogenic viral extra-chromosomal DNA. The importance of Smc5/6 for growth, genotoxin resistance and host defense across species is highlighted by its involvement in disease prevention in plants and animals. Accelerated progress in recent years, including structural and single-molecule studies, has begun to provide greater insights into the mechanisms underlying Smc5/6 functions. Here we integrate a broad range of recent studies on Smc5/6 to identify emerging features of this unique SMC complex and to explain its diverse cellular functions and roles in disease pathogenesis. We also highlight many key areas requiring further investigation for achieving coherent views of Smc5/6-driven mechanisms.
Collapse
Affiliation(s)
- Xiao P Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Cancer Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Ibars E, Codina-Fabra J, Bellí G, Casas C, Tarrés M, Solé-Soler R, Lorite NP, Ximénez-Embún P, Muñoz J, Colomina N, Torres-Rosell J. Ubiquitin proteomics identifies RNA polymerase I as a target of the Smc5/6 complex. Cell Rep 2023; 42:112463. [PMID: 37141096 DOI: 10.1016/j.celrep.2023.112463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/29/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Ubiquitination controls numerous cellular processes, and its deregulation is associated with many pathologies. The Nse1 subunit in the Smc5/6 complex contains a RING domain with ubiquitin E3 ligase activity and essential functions in genome integrity. However, Nse1-dependent ubiquitin targets remain elusive. Here, we use label-free quantitative proteomics to analyze the nuclear ubiquitinome of nse1-C274A RING mutant cells. Our results show that Nse1 impacts the ubiquitination of several proteins involved in ribosome biogenesis and metabolism that, importantly, extend beyond canonical functions of Smc5/6. In addition, our analysis suggests a connection between Nse1 and RNA polymerase I (RNA Pol I) ubiquitination. Specifically, Nse1 and the Smc5/6 complex promote ubiquitination of K408 and K410 in the clamp domain of Rpa190, a modification that induces its degradation in response to blocks in transcriptional elongation. We propose that this mechanism contributes to Smc5/6-dependent segregation of the rDNA array, the locus transcribed by RNA Pol I.
Collapse
Affiliation(s)
- Eva Ibars
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Joan Codina-Fabra
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Gemma Bellí
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Celia Casas
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Marc Tarrés
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Roger Solé-Soler
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Neus P Lorite
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain; ProteoRed-ISCIII, Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain; ProteoRed-ISCIII, Madrid, Spain
| | - Neus Colomina
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Jordi Torres-Rosell
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain.
| |
Collapse
|
46
|
Xu Q, Dong H, Wang Z, Zhang P, Albers AE, Kaufmann AM, Zheng ZM, Qian X. Integration and viral oncogene expression of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma and gastric cancer. J Med Virol 2023; 95:e28761. [PMID: 37212316 DOI: 10.1002/jmv.28761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/23/2023]
Abstract
Persistent high-risk human papillomavirus (HR-HPV) infections cause cervical cancer and a fraction of head and neck cancer. To investigate whether HR-HPV infection might be also involved in the development of gastric cancer (GC), we developed a platform utilizing a rolling circle amplification (RCA)-based nested L1 polymerase chain reaction with Sanger sequencing to genotype the HPV DNA in cancer tissues of 361 GC and 89 oropharyngeal squamous cell carcinomas (OPSCC). HPV transcriptional activity was determined by E6/E7 mRNA expression and a 3' rapid amplification of cDNA ends was performed to identify HPV integration and expression of virus-host fusion transcripts. Ten of 361 GC, 2 of 89 OPSCC, and 1 of 22 normal adjacent tissues were HPV L1 DNA-positive. Five of the 10 HPV-positive GC were genotyped as HPV16 by sequencing and 1 of 2 GC with RCA/nested HPV16 E6/E7 DNA detection exhibited HPV16 E6/E7 mRNA. Two OPSCC displayed HPV16 L1 DNA and E6/E7 mRNA, of which 1 OPSCC tissue showed virus-host RNA fusion transcripts from an intron region of KIAA0825 gene. Together, our data reveal viral oncogene expression and/or integration in GC and OPSCC and a possible etiology role of HPV infections in gastric carcinogenesis.
Collapse
Affiliation(s)
- Qiang Xu
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Haoru Dong
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Education Base, Wenzhou Medical University, Wenzhou, China
| | - Zhiyu Wang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Education Base, Wenzhou Medical University, Wenzhou, China
| | - Pei Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Andreas E Albers
- Department of Clinical Medicine, Oto-Rhino-Laryngology, Medical School Berlin, Berlin, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Education Base, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
47
|
Ngo AM, Puschnik AS. Genome-Scale Analysis of Cellular Restriction Factors That Inhibit Transgene Expression from Adeno-Associated Virus Vectors. J Virol 2023; 97:e0194822. [PMID: 36971544 PMCID: PMC10134838 DOI: 10.1128/jvi.01948-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Adeno-associated virus (AAV) vectors are one of the leading platforms for gene delivery for the treatment of human genetic diseases, but the antiviral cellular mechanisms that interfere with optimal transgene expression are incompletely understood. Here, we performed two genome-scale CRISPR screens to identify cellular factors that restrict transgene expression from recombinant AAV vectors. Our screens revealed several components linked to DNA damage response, chromatin remodeling, and transcriptional regulation. Inactivation of the Fanconi anemia gene FANCA; the human silencing hub (HUSH)-associated methyltransferase SETDB1; and the gyrase, Hsp90, histidine kinase, and MutL (GHKL)-type ATPase MORC3 led to increased transgene expression. Moreover, SETDB1 and MORC3 knockout improved transgene levels of several AAV serotypes as well as other viral vectors, such as lentivirus and adenovirus. Finally, we demonstrated that the inhibition of FANCA, SETDB1, or MORC3 also enhanced transgene expression in human primary cells, suggesting that they could be physiologically relevant pathways that restrict AAV transgene levels in therapeutic settings. IMPORTANCE Recombinant AAV (rAAV) vectors have been successfully developed for the treatment of genetic diseases. The therapeutic strategy often involves the replacement of a defective gene by the expression of a functional copy from the rAAV vector genome. However, cells possess antiviral mechanisms that recognize and silence foreign DNA elements thereby limiting transgene expression and its therapeutic effect. Here, we utilize a functional genomics approach to uncover a comprehensive set of cellular restriction factors that inhibit rAAV-based transgene expression. Genetic inactivation of selected restriction factors increased rAAV transgene expression. Hence, modulation of identified restriction factors has the potential to enhance AAV gene replacement therapies.
Collapse
Affiliation(s)
- Ashley M. Ngo
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | | |
Collapse
|
48
|
Pradhan B, Kanno T, Umeda Igarashi M, Loke MS, Baaske MD, Wong JSK, Jeppsson K, Björkegren C, Kim E. The Smc5/6 complex is a DNA loop-extruding motor. Nature 2023; 616:843-848. [PMID: 37076626 PMCID: PMC10132971 DOI: 10.1038/s41586-023-05963-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
Structural maintenance of chromosomes (SMC) protein complexes are essential for the spatial organization of chromosomes1. Whereas cohesin and condensin organize chromosomes by extrusion of DNA loops, the molecular functions of the third eukaryotic SMC complex, Smc5/6, remain largely unknown2. Using single-molecule imaging, we show that Smc5/6 forms DNA loops by extrusion. Upon ATP hydrolysis, Smc5/6 reels DNA symmetrically into loops at a force-dependent rate of one kilobase pair per second. Smc5/6 extrudes loops in the form of dimers, whereas monomeric Smc5/6 unidirectionally translocates along DNA. We also find that the subunits Nse5 and Nse6 (Nse5/6) act as negative regulators of loop extrusion. Nse5/6 inhibits loop-extrusion initiation by hindering Smc5/6 dimerization but has no influence on ongoing loop extrusion. Our findings reveal functions of Smc5/6 at the molecular level and establish DNA loop extrusion as a conserved mechanism among eukaryotic SMC complexes.
Collapse
Affiliation(s)
| | - Takaharu Kanno
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Miki Umeda Igarashi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mun Siong Loke
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | | | - Kristian Jeppsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Camilla Björkegren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | - Eugene Kim
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
49
|
Anand J, Chiou L, Sciandra C, Zhang X, Hong J, Wu D, Zhou P, Vaziri C. Roles of trans-lesion synthesis (TLS) DNA polymerases in tumorigenesis and cancer therapy. NAR Cancer 2023; 5:zcad005. [PMID: 36755961 PMCID: PMC9900426 DOI: 10.1093/narcan/zcad005] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
DNA damage tolerance and mutagenesis are hallmarks and enabling characteristics of neoplastic cells that drive tumorigenesis and allow cancer cells to resist therapy. The 'Y-family' trans-lesion synthesis (TLS) DNA polymerases enable cells to replicate damaged genomes, thereby conferring DNA damage tolerance. Moreover, Y-family DNA polymerases are inherently error-prone and cause mutations. Therefore, TLS DNA polymerases are potential mediators of important tumorigenic phenotypes. The skin cancer-propensity syndrome xeroderma pigmentosum-variant (XPV) results from defects in the Y-family DNA Polymerase Pol eta (Polη) and compensatory deployment of alternative inappropriate DNA polymerases. However, the extent to which dysregulated TLS contributes to the underlying etiology of other human cancers is unclear. Here we consider the broad impact of TLS polymerases on tumorigenesis and cancer therapy. We survey the ways in which TLS DNA polymerases are pathologically altered in cancer. We summarize evidence that TLS polymerases shape cancer genomes, and review studies implicating dysregulated TLS as a driver of carcinogenesis. Because many cancer treatment regimens comprise DNA-damaging agents, pharmacological inhibition of TLS is an attractive strategy for sensitizing tumors to genotoxic therapies. Therefore, we discuss the pharmacological tractability of the TLS pathway and summarize recent progress on development of TLS inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Jay Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Lilly Chiou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carly Sciandra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
Campos LV, Van Ravenstein SX, Vontalge EJ, Greer BH, Heintzman DR, Kavlashvili T, McDonald WH, Rose KL, Eichman BF, Dewar JM. RTEL1 and MCM10 overcome topological stress during vertebrate replication termination. Cell Rep 2023; 42:112109. [PMID: 36807139 PMCID: PMC10432576 DOI: 10.1016/j.celrep.2023.112109] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Topological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress. RTEL1 and MCM10 cooperate to promote fork convergence and do not impact topoisomerase activity but do promote fork progression through a replication barrier. Thus, RTEL1 and MCM10 play a general role in promoting progression of stalled forks, including when forks stall during termination. Our data reveal an alternate mechanism of termination involving RTEL1 and MCM10 that can be used to complete DNA synthesis under conditions of topological stress.
Collapse
Affiliation(s)
- Lillian V Campos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Emma J Vontalge
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Briana H Greer
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Darren R Heintzman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tamar Kavlashvili
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|