1
|
Kim DW, Bevan MA. Energy landscapes for interfacial colloidal crystallization on three-dimensional surface topographies. J Colloid Interface Sci 2025; 696:137882. [PMID: 40378454 DOI: 10.1016/j.jcis.2025.137882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/18/2025]
Abstract
Designing conditions to enable interfacial colloidal crystallization on three-dimensional (3D) surface topographies requires understanding how particles interact with each other, surfaces, solution species, and gravity. The net interaction, or potential energy landscape, can produce diverse states including dispersed, aggregated, deposited, arrested, and sedimented configurations, often more easily than near-equilibrium interfacial crystalline states. Although nearly neutrally buoyant particles at fluid interfaces have been well studied, less progress has been made in determining competing interactions necessary to produce interfacial colloidal crystals on fluid-solid surface topographies. In this work, we directly measure and model the interactions that control interfacial colloidal crystallization on 3D surface topographies with varying elevation and curvature. Our results demonstrate crystallization for different colloidal materials and sizes in solvent mixtures containing charged surfactants without density or refractive index matching. Conditions for interfacial crystallization are designed via systematic development of direct measurements and models of kT-scale energy landscapes balancing buoyancy, electrostatics, and depletion interactions. Unique crystal morphologies are obtained for different particle materials and dimensions, which shows a dependence on the balance of gravitational and pair interactions.
Collapse
Affiliation(s)
- Dong Woo Kim
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Michael A Bevan
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA.
| |
Collapse
|
2
|
Sokolov A, Katuri J, de Pablo JJ, Snezhko A. Synthetic Active Liquid Crystals Powered by Acoustic Waves. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418846. [PMID: 40135350 PMCID: PMC12075919 DOI: 10.1002/adma.202418846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Active nematic materials combine orientational order with activity at the microscopic level. Current experimental realizations of active nematics include vibrating elongated particles, cell layers, suspensions of elongated bacteria, and a mixture of bio-filaments with molecular motors. The majority of active nematics are of biological origin. The realization of a fully synthetic active liquid crystal comprised of a lyotropic chromonic liquid crystal energized by ultrasonic waves, is reported. This synthetic active liquid crystal is free from biological degradation and variability, exhibits phenomenology associated with active nematics, and enables precise and rapid activity control over a significantly extended range. It is demonstrated that the energy of the acoustic field is converted into microscopic extensile stresses disrupting long-range nematic order and giving rise to an undulation instability and proliferation of topological defects. The emergence of unconventional free-standing persistent vortices in the nematic director field at high activity levels is revealed. The results provide a foundation for the design of externally energized active liquid crystals with stable material properties and tunable topological defect dynamics crucial for the realization of reconfigurable microfluidic systems.
Collapse
Affiliation(s)
- Andrey Sokolov
- Materials Science DivisionArgonne National Laboratory9700 South Cass AvenueLemontIL60439USA
| | - Jaideep Katuri
- Materials Science DivisionArgonne National Laboratory9700 South Cass AvenueLemontIL60439USA
| | - Juan J. de Pablo
- Materials Science DivisionArgonne National Laboratory9700 South Cass AvenueLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Alexey Snezhko
- Materials Science DivisionArgonne National Laboratory9700 South Cass AvenueLemontIL60439USA
| |
Collapse
|
3
|
Zhao QH, Qi JY, Deng NN. DNA photofluids show life-like motion. NATURE MATERIALS 2025:10.1038/s41563-025-02202-0. [PMID: 40204968 DOI: 10.1038/s41563-025-02202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
As active matter, cells exhibit non-equilibrium structures and behaviours such as reconfiguration, motility and division. These capabilities arise from the collective action of biomolecular machines continuously converting photoenergy or chemical energy into mechanical energy. Constructing similar dynamic processes in vitro presents opportunities for developing life-like intelligent soft materials. Here we report an active fluid formed from the liquid-liquid phase separation of photoresponsive DNA nanomachines. The photofluids can orchestrate and amplify nanoscale mechanical movements by orders of magnitude to produce macroscopic cell-like behaviours including elongation, division and rotation. We identify two dissipative processes in the DNA droplets, photoalignment and photofibrillation, which are crucial for harnessing stochastic molecular motions cooperatively. Our results demonstrate an active liquid molecular system that consumes photoenergy to create ordered out-of-equilibrium structures and behaviours. This system may help elucidate the physical principles underlying cooperative motion in active matter and pave the way for developing programmable interactive materials.
Collapse
Affiliation(s)
- Qi-Hong Zhao
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Ying Qi
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nan-Nan Deng
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, China.
| |
Collapse
|
4
|
Zhao Z, Li H, Yao Y, Zhao Y, Serra F, Kawaguchi K, Zhang H, Sano M. Integer topological defects offer a methodology to quantify and classify active cell monolayers. Nat Commun 2025; 16:2452. [PMID: 40069207 PMCID: PMC11897356 DOI: 10.1038/s41467-025-57783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Monolayers of confluent elongated cells are frequently considered active nematics, featuring ± 1 2 topological defects. In extensile systems, where cells extend further along their long axis, they can accumulate at + 1 2 defects and escape from - 1 2 defects. Nevertheless, collective dynamics surrounding integer defects remain insufficiently understood. We induce diverse + 1 topological defects (asters, spirals, and targets) within neural progenitor cell monolayers using microfabricated patterns. Remarkably, cells migrate toward the cores of all + 1 defects, challenging existing theories and conventional extensile/contractile dichotomy, which predicts escape from highly bent spirals and targets. By combining experiments and a continuum theory derived from a cell-level model, we identify previously overlooked nonlinear active forces driving this unexpected accumulation toward defect cores, providing a unified framework to explain cell behavior across defect types. Our findings establish + 1 defects as probes to uncover key nonlinear features of active nematics, offering a methodology to characterize and classify cell monolayers.
Collapse
Affiliation(s)
- Zihui Zhao
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - He Li
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yisong Yao
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfeng Zhao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, China
| | - Francesca Serra
- Physics and Astronomy, Johns Hopkins University, BA, USA
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Kyogo Kawaguchi
- Institute for Physics of Intelligence, The University of Tokyo, Tokyo, Japan
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- RIKEN Cluster for Pioneering Research, Kobe, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Hepeng Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Masaki Sano
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Veenstra J, Scheibner C, Brandenbourger M, Binysh J, Souslov A, Vitelli V, Coulais C. Adaptive locomotion of active solids. Nature 2025; 639:935-941. [PMID: 40074911 DOI: 10.1038/s41586-025-08646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/14/2025] [Indexed: 03/14/2025]
Abstract
Active systems composed of energy-generating microscopic constituents are a promising platform to create autonomous functional materials1-16 that can, for example, locomote through complex and unpredictable environments. Yet coaxing these energy sources into useful mechanical work has proved challenging. Here we engineer active solids based on centimetre-scale building blocks that perform adaptive locomotion. These prototypes exhibit a non-variational form of elasticity characterized by odd moduli8,12,17, whose magnitude we predict from microscopics using coarse-grained theories and which we validate experimentally. When interacting with an external environment, these active solids spontaneously undergo limit cycles of shape changes, which naturally lead to locomotion such as rolling and crawling. The robustness of the locomotion is rooted in an emergent feedback loop between the active solid and the environment, which is mediated by elastic deformations and stresses. As a result, our active solids are able to accelerate, adjust their gaits and locomote through a variety of terrains with a similar performance to more complex control strategies implemented by neural networks. Our work establishes active solids as a bridge between materials and robots and suggests decentralized strategies to control the nonlinear dynamics of biological systems8,18-22, soft materials5,6,9,11,12,23-25 and driven nanomechanical devices7,26-30.
Collapse
Affiliation(s)
- Jonas Veenstra
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Colin Scheibner
- James Franck Institute, University of Chicago, Chicago, IL, USA
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Martin Brandenbourger
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands
- Aix Marseille Université, CNRS, Centrale Méditerranée, IRPHE, UMR 7342, Marseille, France
| | - Jack Binysh
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Anton Souslov
- TCM Group, Cavendish Laboratory, Cambridge, United Kingdom
| | - Vincenzo Vitelli
- James Franck Institute, University of Chicago, Chicago, IL, USA.
- Department of Physics, University of Chicago, Chicago, IL, USA.
- Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| | - Corentin Coulais
- Institute of Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Nishide R, Ishihara S. Oscillatory and chaotic pattern dynamics driven by surface curvature. Phys Rev E 2025; 111:L022202. [PMID: 40103164 DOI: 10.1103/physreve.111.l022202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/21/2025] [Indexed: 03/20/2025]
Abstract
Patterns on curved surfaces are ubiquitous, yet the influence of surface geometry on pattern dynamics remains elusive. We recently reported a mechanism of pattern propagation in which a static pattern on a flat plane becomes a propagating pattern on a curved surface [Phys. Rev. Lett. 128, 224101 (2022)0031-900710.1103/PhysRevLett.128.224101]. Here, we address whether surface curvature can drive more complex pattern dynamics beyond propagation. By employing a combination of weakly nonlinear analysis and numerical simulation, we theoretically determine the condition for the emergence of pattern dynamics on curved surfaces and show that oscillatory and chaotic pattern dynamics can emerge by controlling the surface shapes. These findings highlight a role of surface topography in pattern formation and dynamics.
Collapse
Affiliation(s)
- Ryosuke Nishide
- The University of Tokyo, Graduate School of Arts and Sciences, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Shuji Ishihara
- The University of Tokyo, Graduate School of Arts and Sciences, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
- The University of Tokyo, Universal Biology Institute, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Joshi C, Hellstein D, Wennerholm C, Downey E, Hamilton E, Hocking S, Andrei AS, Adler JH, Atherton TJ. A programmable environment for shape optimization and shapeshifting problems. NATURE COMPUTATIONAL SCIENCE 2025; 5:170-183. [PMID: 39730874 DOI: 10.1038/s43588-024-00749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/25/2024] [Indexed: 12/29/2024]
Abstract
Soft materials underpin many domains of science and engineering, including soft robotics, structured fluids, and biological and particulate media. In response to applied mechanical, electromagnetic or chemical stimuli, such materials typically change shape, often dramatically. Predicting their structure is of great interest to facilitate design and mechanistic understanding, and can be cast as an optimization problem where a given energy function describing the physics of the material is minimized with respect to the shape of the domain and additional fields. However, shape-optimization problems are very challenging to solve, and there is a lack of suitable simulation tools that are both readily accessible and general in purpose. Here we present an open-source programmable environment, Morpho, and demonstrate its versatility by showcasing a range of applications from different areas of soft-matter physics: swelling hydrogels, complex fluids that form aspherical droplets, soap films and membranes, and filaments.
Collapse
Affiliation(s)
- Chaitanya Joshi
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Daniel Hellstein
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Cole Wennerholm
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Eoghan Downey
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Emmett Hamilton
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
- Department of Mathematics, Tufts University, Medford, MA, USA
| | - Samuel Hocking
- Department of Mathematics, Tufts University, Medford, MA, USA
| | - Anca S Andrei
- Department of Mathematics, Tufts University, Medford, MA, USA
| | - James H Adler
- Department of Mathematics, Tufts University, Medford, MA, USA
| | - Timothy J Atherton
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA.
| |
Collapse
|
8
|
Nishide R, Ishihara S. Weakly nonlinear analysis of Turing pattern dynamics on curved surfaces. Phys Rev E 2025; 111:024208. [PMID: 40103169 DOI: 10.1103/physreve.111.024208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/10/2024] [Indexed: 03/20/2025]
Abstract
Pattern dynamics on curved surfaces are ubiquitous. Although the effect of surface topography on pattern dynamics has gained much interest, there is a limited understanding of the roles of surface geometry and topology in pattern dynamics. Recently, we reported that a static pattern on a flat plane can become a propagating pattern on a curved surface [Phys. Rev. Lett. 128, 224101 (2022)10.1103/PhysRevLett.128.224101]. By examining reaction-diffusion equations on axisymmetric surfaces, certain conditions for the onset of pattern propagation were determined. However, this analysis was limited by the assumption that the pattern propagates at a constant speed. Here, we investigate the pattern propagation driven by surface curvature using weakly nonlinear analysis, which enables a more comprehensive approach to the aforementioned problem. The analysis reveals consistent conditions of the pattern propagation similar to our previous results, and further predicts that rich dynamics other than pattern propagation, such as periodic and chaotic behaviors, can arise depending on the surface geometry. This study provides a perspective on the relationship between surfaces and pattern dynamics and a basis for controlling pattern dynamics on surfaces.
Collapse
Affiliation(s)
- Ryosuke Nishide
- The University of Tokyo, Graduate School of Arts and Sciences, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Shuji Ishihara
- The University of Tokyo, Graduate School of Arts and Sciences, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
- The University of Tokyo, Universal Biology Institute, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Hindley JW. Constructing mechanosensitive signalling pathways de novo in synthetic cells. Biochem Soc Trans 2025:BST20231285. [PMID: 39838922 DOI: 10.1042/bst20231285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025]
Abstract
Biological mechanotransduction enables cells to sense and respond to mechanical forces in their local environment through changes in cell structure and gene expression, resulting in downstream changes in cell function. However, the complexity of living systems obfuscates the mechanisms of mechanotransduction, and hence the study of these processes in vitro has been critical in characterising the function of existing mechanosensitive membrane proteins. Synthetic cells are biomolecular compartments that aim to mimic the organisation, functionality and behaviours of biological systems, and represent the next step in the development of in vitro cell models. In recent years, mechanosensitive channels have been incorporated into synthetic cells to create de novo mechanosensitive signalling pathways. Here, I will discuss these developments, from the molecular parts used to construct existing pathways, the functionality of such systems, and potential future directions in engineering synthetic mechanotransduction. The recapitulation of mechanotransduction in synthetic biology will facilitate an improved understanding of biological signalling through the study of molecular interactions across length scales, whilst simultaneously generating new biotechnologies that can be applied as diagnostics, microreactors and therapeutics.
Collapse
Affiliation(s)
- James W Hindley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
10
|
Schimming CD, Reichhardt CJO, Reichhardt C. Analytical model for the motion and interaction of two-dimensional active nematic defects. SOFT MATTER 2024; 21:122-136. [PMID: 39630130 DOI: 10.1039/d4sm00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We develop an approximate, analytical model for the velocity of defects in active nematics by combining recent results for the velocity of topological defects in nematic liquid crystals with the flow field generated from individual defects in active nematics. Importantly, our model takes into account the long-range interactions between defects that result from the flows they produce as well as the orientational coupling between defects inherent in nematics. Our work complements previous studies of active nematic defect motion by introducing a linear approximation that allows us to treat defect interactions as two-body interactions and incorporates the hydrodynamic screening length as a tuning parameter. We show that the model can analytically predict bound states between two +1/2 winding number defects, effective attraction between two -1/2 defects, and the scaling of a critical unbinding length between ±1/2 defects with activity. The model also gives predictions for the trajectories of defects, such as the scattering of +1/2 defects by -1/2 defects at a critical impact parameter that depends on activity. In the presence of circular confinement, the model predicts a braiding motion for three +1/2 defects that was recently seen in experiments, as well as stable and ergodic trajectories for four or more defects.
Collapse
Affiliation(s)
- Cody D Schimming
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
11
|
Carlsson C, Gao T. Active droplet driven by collective chemotaxis. SOFT MATTER 2024; 20:9562-9571. [PMID: 39576104 DOI: 10.1039/d4sm00717d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Surfactant-laden fluid interfaces of soft colloids, such as bubbles and droplets, are ubiquitously seen in various natural phenomena and industrial settings. In canonical systems where microparticles are driven in hydrodynamic flows, convection of the surfactant changes local surface tension. Subsequently, the interplay of Marangoni and hydrodynamic stresses leads to rich interfacial dynamics that directly impact the particle motions. Here we introduce a new mechanism for self-propelled droplets, driven by a thin layer of chemically active microparticles situated at the interface of a suspended droplet, which is a direct extension of the planar collective surfing model by Masoud and Shelley (H. Masoud and M. J. Shelley, Phys. Rev. Lett., 2014, 112, 128304). These particles can generate chemicals locally, leading to spontaneous Marangoni flows that drive the self-aggregation of microparticles. This process, in turn, creates a polarized surfactant distribution, which induces collective chemotaxis and dipolar bulk flows, ultimately breaking the symmetry. By assuming the local surfactant production to be either proportional to particle density or saturated at a high particle density, we observe that the system can be chemotactically diverging or approach a steady state with constant migration velocity. The system is studied analytically in the linear region for the initial transient dynamics, yielding critical numbers and familiar patterns, as well as numerically for larger amplitudes and over a long time using spectral methods.
Collapse
Affiliation(s)
- Christian Carlsson
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48864, USA.
| | - Tong Gao
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48864, USA.
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48864, USA
| |
Collapse
|
12
|
Vélez-Cerón I, Ignés-Mullol J, Sagués F. Active nematic coherence probed under spatial patterns of distributed activity. SOFT MATTER 2024; 20:9578-9585. [PMID: 39576238 DOI: 10.1039/d4sm00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A photoresponsive variant of the paradigmatic active nematic fluid made of microtubules and powered by kinesin motors is studied in a conventional two-dimensional interface under blue-light illumination. This advantageously permits the system's performance to be assessed under conditions of spatially distributed activity. Both turbulent and flow aligning conditions are separately analyzed. Under uniform illuminating conditions, active flows get enhanced, in accordance with previous observations. In contrast, patterning the activity appears to disturb the effective activity measured in terms of the vorticity of the elicited flows. We interpret this result as alternative evidence of the important role played by the active length scale in setting not only the textural and flow characteristics of the active nematic but also, most importantly, the range of material integrity. Our research continues to explore perspectives that should pave the way for an effective control of such an admirable material.
Collapse
Affiliation(s)
- Ignasi Vélez-Cerón
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Langeslay B, Juarez G. Strain rate controls alignment in growing bacterial monolayers. SOFT MATTER 2024; 20:8468-8479. [PMID: 39404596 DOI: 10.1039/d4sm00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Growing monolayers of rod-shaped bacteria exhibit local alignment similarly to extensile active nematics. When confined in a channel or growing inward from a ring, the local nematic order of these monolayers changes to a global ordering with cells throughout the monolayer orienting in the same direction. The mechanism behind this phenomenon is so far unclear, as previously proposed mechanisms fail to predict the correct alignment direction in one or more confinement geometries. We present a strain-based model relating net deformation of the growing monolayer to the cell-level deformation resulting from single-cell growth and rotation, producing predictions of cell orientation behavior based on the velocity field in the monolayer. This model correctly predicts the direction of preferential alignment in channel-confined, inward growing, and unconfined colonies. The model also quantitatively predicts orientational order when the velocity field has no net negative strain rate in any direction. We further test our model in simulations of expanding colonies confined to spherical surfaces. Our model and simulations agree that cells away from the origin cell orient radially relative to the colony's center. Additionally, our model's quantitative prediction of the orientational order agrees with the simulation results in the top half of the sphere but fails in the lower half where there is a net negative strain rate. The success of our model bridges the gap between previous works on cell alignment in disparate confinement geometries and provides insight into the underlying physical effects responsible for large-scale alignment.
Collapse
Affiliation(s)
- Blake Langeslay
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gabriel Juarez
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
14
|
Kurjahn M, Abbaspour L, Papenfuß F, Bittihn P, Golestanian R, Mahault B, Karpitschka S. Collective self-caging of active filaments in virtual confinement. Nat Commun 2024; 15:9122. [PMID: 39443452 PMCID: PMC11499643 DOI: 10.1038/s41467-024-52936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order. We explore how the light pattern, in particular its boundary curvature, impacts aggregation. A minimal mechanistic model of active flexible filaments resembles the experimental findings, thereby revealing the emergent and generic character of these structures. This phenomenon may enable elongated microorganisms to generate adaptive colony architectures in limited habitats or guide the assembly of biomimetic fibrous materials.
Collapse
Affiliation(s)
- Maximilian Kurjahn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Leila Abbaspour
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Franziska Papenfuß
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
| | - Stefan Karpitschka
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
- Fachbereich Physik, Universität Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, Universität Konstanz, Konstanz, Germany.
| |
Collapse
|
15
|
Matsubayashi HT, Razavi S, Rock TW, Nakajima D, Nakamura H, Kramer DA, Matsuura T, Chen B, Murata S, Nomura SM, Inoue T. Light-guided actin polymerization drives directed motility in protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617543. [PMID: 39464024 PMCID: PMC11507749 DOI: 10.1101/2024.10.14.617543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Motility is a hallmark of life's dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 μm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.
Collapse
Affiliation(s)
- Hideaki T. Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| | - Shiva Razavi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University
- Department of Biological Engineering, School of Engineering, Massachusetts Institute of Technology
| | - T. Willow Rock
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Daichi Nakajima
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | - Hideki Nakamura
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Hakubi Center for Advanced Research, Kyoto University
- Department of Synthetic Chemistry and Biological Chemistry, School of Engineering, Kyoto University
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | | | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | - Satoshi Murata
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | | | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| |
Collapse
|
16
|
Van de Cauter L, Jawale YK, Tam D, Baldauf L, van Buren L, Koenderink GH, Dogterom M, Ganzinger KA. High-Speed Imaging of Giant Unilamellar Vesicle Formation in cDICE. ACS OMEGA 2024; 9:42278-42288. [PMID: 39431092 PMCID: PMC11483911 DOI: 10.1021/acsomega.4c04825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Giant unilamellar vesicles (GUVs) are widely used as in vitro model membranes in biophysics and as cell-sized containers in synthetic biology. Despite their ubiquitous use, there is no one-size-fits-all method for their production. Numerous methods have been developed to meet the demanding requirements of reproducibility, reliability, and high yield while simultaneously achieving robust encapsulation. Emulsion-based methods are often praised for their apparent simplicity and good yields; hence, methods like continuous droplet interface crossing encapsulation (cDICE), which make use of this principle, have gained popularity. However, the underlying physical principles governing the formation of GUVs in cDICE and related methods remain poorly understood. To this end, we have developed a high-speed microscopy setup that allows us to visualize GUV formation in real time. Our experiments reveal a complex droplet formation process occurring at the capillary orifice, generating >30 μm-sized droplets and only in some cases GUV-sized (∼15 μm) satellite droplets. According to existing theoretical models, the oil-water interface should allow for the crossing of all droplets, but based on our observations and scaling arguments on the fluid dynamics within the system, we find a size-selective crossing of GUV-sized droplets only. The origin of these droplets remains partly unclear; we hypothesize that some small GUVs might be formed from large droplets sitting at the second interface. Finally, we demonstrate that proteins in the inner solution affect GUV formation by increasing the viscosity and altering the lipid adsorption kinetics. These results will not only contribute to a better understanding of GUV formation processes in cDICE but ultimately also aid in the development of more reliable and efficient methods for GUV production.
Collapse
Affiliation(s)
| | - Yash K. Jawale
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Daniel Tam
- Laboratory
for Aero and Hydrodynamics, Delft University
of Technology, Delft 2629 HZ, The Netherlands
| | - Lucia Baldauf
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Lennard van Buren
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Marileen Dogterom
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | | |
Collapse
|
17
|
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. LAB ON A CHIP 2024; 24:4679-4716. [PMID: 39323383 PMCID: PMC11425070 DOI: 10.1039/d4lc00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (i.e., lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, etc.), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Callum D Hay
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Suchaya M Mahuttanatan
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - James W Hindley
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Oscar Ces
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
18
|
Čopar S, Kos Ž. Many-defect solutions in planar nematics: interactions, spiral textures and boundary conditions. SOFT MATTER 2024; 20:6894-6906. [PMID: 39150404 DOI: 10.1039/d4sm00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
From incompressible flows to electrostatics, harmonic functions can provide solutions to many two-dimensional problems and, similarly, the director field of a planar nematic can be determined using complex analysis. We derive a closed-form solution for a quasi-steady state director field induced by an arbitrarily large set of point defects and circular inclusions with or without fixed rotational degrees of freedom, and compute the forces and torques acting on each defect or inclusion. We show that a complete solution must include two types of singularities, generating a defect winding number and its spiral texture, which have a direct effect on defect equilibrium textures and their dynamics. The solution accounts for discrete degeneracy of topologically distinct free energy minima which can be obtained by defect braiding. The derived formalism can be readily applied to equilibrium and slowly evolving nematic textures for active or passive fluids with multiple defects present within the orientational order.
Collapse
Affiliation(s)
- Simon Čopar
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
| | - Žiga Kos
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
19
|
Chakrabarti B, Rachh M, Shvartsman SY, Shelley MJ. Cytoplasmic stirring by active carpets. Proc Natl Acad Sci U S A 2024; 121:e2405114121. [PMID: 39012825 PMCID: PMC11287282 DOI: 10.1073/pnas.2405114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Large cells often rely on cytoplasmic flows for intracellular transport, maintaining homeostasis, and positioning cellular components. Understanding the mechanisms of these flows is essential for gaining insights into cell function, developmental processes, and evolutionary adaptability. Here, we focus on a class of self-organized cytoplasmic stirring mechanisms that result from fluid-structure interactions between cytoskeletal elements at the cell cortex. Drawing inspiration from streaming flows in late-stage fruit fly oocytes, we propose an analytically tractable active carpet theory. This model deciphers the origins and three-dimensional spatiotemporal organization of such flows. Through a combination of simulations and weakly nonlinear theory, we establish the pathway of the streaming flow to its global attractor: a cell-spanning vortical twister. Our study reveals the inherent symmetries of this emergent flow, its low-dimensional structure, and illustrates how complex fluid-structure interaction aligns with classical solutions in Stokes flow. This framework can be easily adapted to elucidate a broad spectrum of self-organized, cortex-driven intracellular flows.
Collapse
Affiliation(s)
- Brato Chakrabarti
- Center for Computational Biology, Flatiron Institute, New York, NY10010
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru560089, India
| | - Manas Rachh
- Center for Computational Mathematics, Flatiron Institute, New York, NY10010
| | - Stanislav Y. Shvartsman
- Center for Computational Biology, Flatiron Institute, New York, NY10010
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Michael J. Shelley
- Center for Computational Biology, Flatiron Institute, New York, NY10010
- The Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| |
Collapse
|
20
|
Vafa F, Nelson DR, Doostmohammadi A. Periodic orbits, pair nucleation, and unbinding of active nematic defects on cones. Phys Rev E 2024; 109:064606. [PMID: 39020887 DOI: 10.1103/physreve.109.064606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
Geometric confinement and topological constraints present promising means of controlling active materials. By combining analytical arguments derived from the Born-Oppenheimer approximation with numerical simulations, we investigate the simultaneous impact of confinement together with curvature singularity by characterizing the dynamics of an active nematic on a cone. Here, the Born-Oppenheimer approximation means that textures can follow defect positions rapidly on the timescales of interest. Upon imposing strong anchoring boundary conditions at the base of a cone, we find a rich phase diagram of multidefect dynamics, including exotic periodic orbits of one or two +1/2 flank defects, depending on activity and nonquantized geometric charge at the cone apex. By characterizing the transitions between these ordered dynamical states, we present detailed understanding of (i) defect unbinding, (ii) defect absorption, and (iii) defect pair nucleation at the apex. Numerical simulations confirm theoretical predictions of not only the nature of the circular orbits but also defect unbinding from the apex.
Collapse
|
21
|
Yashunsky V, Pearce DJG, Ariel G, Be'er A. Topological defects in multi-layered swarming bacteria. SOFT MATTER 2024; 20:4237-4245. [PMID: 38747575 PMCID: PMC11135144 DOI: 10.1039/d4sm00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Topological defects, which are singular points in a director field, play a major role in shaping active systems. Here, we experimentally study topological defects and the flow patterns around them, that are formed during the highly rapid dynamics of swarming bacteria. The results are compared to the predictions of two-dimensional active nematics. We show that, even though some of the assumptions underlying the theory do not hold, the swarm dynamics is in agreement with two-dimensional nematic theory. In particular, we look into the multi-layered structure of the swarm, which is an important feature of real, natural colonies, and find a strong coupling between layers. Our results suggest that the defect-charge density is hyperuniform, i.e., that long range density-fluctuations are suppressed.
Collapse
Affiliation(s)
- Victor Yashunsky
- The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel.
| | - Daniel J G Pearce
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel.
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
- The Department of Physics, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel.
| |
Collapse
|
22
|
Shankar S, Scharrer LVD, Bowick MJ, Marchetti MC. Design rules for controlling active topological defects. Proc Natl Acad Sci U S A 2024; 121:e2400933121. [PMID: 38748571 PMCID: PMC11127047 DOI: 10.1073/pnas.2400933121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 05/27/2024] Open
Abstract
Topological defects play a central role in the physics of many materials, including magnets, superconductors, and liquid crystals. In active fluids, defects become autonomous particles that spontaneously propel from internal active stresses and drive chaotic flows stirring the fluid. The intimate connection between defect textures and active flow suggests that properties of active materials can be engineered by controlling defects, but design principles for their spatiotemporal control remain elusive. Here, we propose a symmetry-based additive strategy for using elementary activity patterns, as active topological tweezers, to create, move, and braid such defects. By combining theory and simulations, we demonstrate how, at the collective level, spatial activity gradients act like electric fields which, when strong enough, induce an inverted topological polarization of defects, akin to a negative susceptibility dielectric. We harness this feature in a dynamic setting to collectively pattern and transport interacting active defects. Our work establishes an additive framework to sculpt flows and manipulate active defects in both space and time, paving the way to design programmable active and living materials for transport, memory, and logic.
Collapse
Affiliation(s)
- Suraj Shankar
- Department of Physics, Harvard University, Cambridge, MA02138
- Department of Physics, University of Michigan, Ann Arbor, MI48109
| | - Luca V. D. Scharrer
- Department of Physics, University of California, Santa Barbara, CA93106
- Department of Physics, The University of Chicago, Chicago, IL60637
| | - Mark J. Bowick
- Department of Physics, University of California, Santa Barbara, CA93106
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA93106
| | | |
Collapse
|
23
|
Lång E, Lång A, Blicher P, Rognes T, Dommersnes PG, Bøe SO. Topology-guided polar ordering of collective cell migration. SCIENCE ADVANCES 2024; 10:eadk4825. [PMID: 38630812 PMCID: PMC11023523 DOI: 10.1126/sciadv.adk4825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
The ability of epithelial monolayers to self-organize into a dynamic polarized state, where cells migrate in a uniform direction, is essential for tissue regeneration, development, and tumor progression. However, the mechanisms governing long-range polar ordering of motility direction in biological tissues remain unclear. Here, we investigate the self-organizing behavior of quiescent epithelial monolayers that transit to a dynamic state with long-range polar order upon growth factor exposure. We demonstrate that the heightened self-propelled activity of monolayer cells leads to formation of vortex-antivortex pairs that undergo sequential annihilation, ultimately driving the spread of long-range polar order throughout the system. A computational model, which treats the monolayer as an active elastic solid, accurately replicates this behavior, and weakening of cell-to-cell interactions impedes vortex-antivortex annihilation and polar ordering. Our findings uncover a mechanism in epithelia, where elastic solid material characteristics, activated self-propulsion, and topology-mediated guidance converge to fuel a highly efficient polar self-ordering activity.
Collapse
Affiliation(s)
- Emma Lång
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Anna Lång
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Pernille Blicher
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Paul Gunnar Dommersnes
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stig Ove Bøe
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Wang B, Lu Y. Collective Molecular Machines: Multidimensionality and Reconfigurability. NANO-MICRO LETTERS 2024; 16:155. [PMID: 38499833 PMCID: PMC10948734 DOI: 10.1007/s40820-024-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work. During the last 60 years, designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research. Effective progress has been made, attributed to advances in various fields such as supramolecular chemistry, biology and nanotechnology, and informatics. However, individual molecular machines are only capable of producing nanometer work and generally have only a single functionality. In order to address these problems, collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm. In this review, we comprehensively discuss recent developments in the collective behaviors of molecular machines. In particular, collective behavior is divided into two paradigms. One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials. The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations. We discuss design strategies for both modes and focus on the modulation of features and properties. Subsequently, in order to address existing challenges, the idea of transferring experience gained in the field of micro/nano robotics is presented, offering prospects for future developments in the collective behavior of molecular machines.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
25
|
Vélez-Cerón I, Guillamat P, Sagués F, Ignés-Mullol J. Probing active nematics with in situ microfabricated elastic inclusions. Proc Natl Acad Sci U S A 2024; 121:e2312494121. [PMID: 38451942 PMCID: PMC10945829 DOI: 10.1073/pnas.2312494121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
In this work, we report a direct measurement of the forces exerted by a tubulin/kinesin active nematic gel as well as its complete rheological characterization, including the quantification of its shear viscosity, η, and its activity parameter, α. For this, we develop a method that allows us to rapidly photo-polymerize compliant elastic inclusions in the continuously remodeling active system. Moreover, we quantitatively settle long-standing theoretical predictions, such as a postulated relationship encoding the intrinsic time scale of the active nematic in terms of η and α. In parallel, we infer a value for the nematic elasticity constant, K, by combining our measurements with the theorized scaling of the active length scale. On top of the microrheology capabilities, we demonstrate strategies for defect encapsulation, quantification of defect mechanics, and defect interactions, enabled by the versatility of the microfabrication strategy that allows to combine elastic motifs of different shapes and stiffnesses that are fabricated in situ.
Collapse
Affiliation(s)
- Ignasi Vélez-Cerón
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona08028, Spain
| | - Pau Guillamat
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona08028, Spain
| | - Francesc Sagués
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona08028, Spain
| | - Jordi Ignés-Mullol
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona08028, Spain
| |
Collapse
|
26
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
27
|
Han X, Xu S, Wang L, Bi Z, Wang D, Bu H, Da J, Liu Y, Tan W. Artificial DNA Framework Channel Modulates Antiapoptotic Behavior in Ischemia-Stressed Cells via Destabilizing Promoter G-Quadruplex. ACS NANO 2024; 18:6147-6161. [PMID: 38372229 DOI: 10.1021/acsnano.3c06563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Regulating folding/unfolding of gene promoter G-quadruplexes (G4s) is important for understanding the topological changes in genomic DNAs and the biological effects of such changes on important cellular events. Although many G4-stabilizing ligands have been screened out, effective G4-destabilizing ligands are extremely rare, posing a great challenge for illustrating how G4 destabilization affects gene function in living cells under stress, a long-standing question in neuroscience. Herein, we report a distinct methodology able to destabilize gene promoter G4s in ischemia-stressed neural cells by mitigating the ischemia-induced accumulation of intracellular K+ with an artificial membrane-spanning DNA framework channel (DFC). We also show that ischemia-triggered K+ influx is positively correlated to anomalous stabilization of promoter G4s and downregulation of Bcl-2, an antiapoptotic gene with neuroprotective effects against ischemic injury. Intriguingly, the DFC enables rapid transmembrane transport of excessive K+ mediated by the internal G4 filter, leading to the destabilization of endogenous promoter G4 in Bcl-2 and subsequent turnover of gene expression at both transcription and translation levels under ischemia. Consequently, this work enriches our understanding of the biological roles of endogenous G4s and may offer important clues to study the cellular behaviors in response to stress.
Collapse
Affiliation(s)
- Xiaoyan Han
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Shujuan Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zhengyan Bi
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Huitong Bu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jun Da
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Ye H, Ouyang Z, Lin J. On particle motion in a confined square domain filled with active fluids. SOFT MATTER 2024; 20:1786-1799. [PMID: 38305105 DOI: 10.1039/d3sm01321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The motion of passive particles in a confined square domain filled with active fluids has been numerically simulated using a direct-fictitious domain method. The ratio of particle diameter to the side length of the square domain (dp/L) is adopted to classify the degree of confinement (i.e., strong or weak confinement). The translational mean-squared displacement (MSDT) of weakly-confined particles scales well with the reported theoretical and experimental results in a short time and eventually reaches a plateau because of the confined environment. Additionally, the radial probability densities of the particle positions gradually increase with increasing distance from the center of the square domain at relatively high activity levels, displaying an apparent rise near the boundary and maximize near the corner. Conversely, the strongly confined particles migrate toward the center of the square domain or approach the corner with continuous rotation. In addition, the localized minima of the angular velocity of the particles show a periodic behavior, with the vortices periodically becoming more organized. Moreover, with increasing activity, two distinct linearly correlated regimes emerge in the relationship between the particle's rotational velocity and the activity. A comprehensive analysis of the collective dynamics reveals that the cutoff length is Rc ≈ 0.19(2.375dp), pointing to the distance at which the velocities of two particles are uncorrelated. Moreover, the spatial correlation function (Ip) shows a small peak at Rr ≈ 0.12(1.5dp), suggesting a relatively strong correlation between a given particle and another particle located at a distance Rr from it. Interestingly, both Rc and Rr are smaller than those observed in an unbounded flow, which indicates that boundary confinement significantly influences the ability of the particles to form coherent structures.
Collapse
Affiliation(s)
- Hao Ye
- Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China.
| | - Zhenyu Ouyang
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, 315210 Ningbo, China.
| | - Jianzhong Lin
- Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China.
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, 315210 Ningbo, China.
| |
Collapse
|
29
|
Li Y, Zarei Z, Tran PN, Wang Y, Baskaran A, Fraden S, Hagan MF, Hong P. A machine learning approach to robustly determine director fields and analyze defects in active nematics. SOFT MATTER 2024; 20:1869-1883. [PMID: 38318759 DOI: 10.1039/d3sm01253k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Active nematics are dense systems of rodlike particles that consume energy to drive motion at the level of the individual particles. They exist in natural systems like biological tissues and artificial materials such as suspensions of self-propelled colloidal particles or synthetic microswimmers. Active nematics have attracted significant attention in recent years due to their spectacular nonequilibrium collective spatiotemporal dynamics, which may enable applications in fields such as robotics, drug delivery, and materials science. The director field, which measures the direction and degree of alignment of the local nematic orientation, is a crucial characteristic of active nematics and is essential for studying topological defects. However, determining the director field is a significant challenge in many experimental systems. Although director fields can be derived from images of active nematics using traditional imaging processing methods, the accuracy of such methods is highly sensitive to the settings of the algorithms. These settings must be tuned from image to image due to experimental noise, intrinsic noise of the imaging technology, and perturbations caused by changes in experimental conditions. This sensitivity currently limits automatic analysis of active nematics. To address this, we developed a machine learning model for extracting reliable director fields from raw experimental images, which enables accurate analysis of topological defects. Application of the algorithm to experimental data demonstrates that the approach is robust and highly generalizable to experimental settings that are different from those in the training data. It could be a promising tool for investigating active nematics and may be generalized to other active matter systems.
Collapse
Affiliation(s)
- Yunrui Li
- Computer Science Department, Brandeis University, USA.
| | - Zahra Zarei
- Physics Department, Brandeis University, USA
| | - Phu N Tran
- Physics Department, Brandeis University, USA
| | - Yifei Wang
- Computer Science Department, Brandeis University, USA.
| | | | - Seth Fraden
- Physics Department, Brandeis University, USA
| | | | - Pengyu Hong
- Computer Science Department, Brandeis University, USA.
| |
Collapse
|
30
|
Liu YL, Zhu YL, Li YC, Lu ZY. Exploring the interplay of liquid crystal orientation and spherical elastic shell deformation in spatial confinement. Phys Chem Chem Phys 2024; 26:6180-6188. [PMID: 38300128 DOI: 10.1039/d3cp04479c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The application of liquid crystal technology typically relies on the precise control of molecular orientation at a surface or interface. This control can be achieved through a combination of morphological and chemical methods. Consequently, variations in constrained boundary flexibility can result in a diverse range of phase behaviors. In this study, we delve into the self-assembly of liquid crystals within elastic spatial confinement by using the Gay-Berne model with the aid of molecular dynamics simulations. Our findings reveal that a spherical elastic shell promotes a more regular and orderly alignment of liquid crystals compared to a hard shell. Moreover, during the cooling process, the hard-shell confined system undergoes an isotropic-smectic phase transition. In contrast, the phase behavior within the spherical elastic shell closely mirrors the isotropic-nematic-smectic phase transition observed in bulk systems. This indicates that the orientational arrangement of liquid crystals and the deformations induced by a flexible interface engage in a competitive interplay during the self-assembly process. Importantly, we found that phase behavior could be manipulated by altering the flexibility of the confined boundaries. This insight offers a fresh perspective for the design of innovative materials, particularly in the realm of liquid crystal/polymer composites.
Collapse
Affiliation(s)
- You-Lu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yan-Chun Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
31
|
Yu H, Gold JI, Wolter TJ, Bao N, Smith E, Zhang HA, Twieg RJ, Mavrikakis M, Abbott NL. Actuating Liquid Crystals Rapidly and Reversibly by Using Chemical Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2309605. [PMID: 38331028 DOI: 10.1002/adma.202309605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Microtubules and catalytic motor proteins underlie the microscale actuation of living materials, and they have been used in reconstituted systems to harness chemical energy to drive new states of organization of soft matter (e.g., liquid crystals (LCs)). Such materials, however, are fragile and challenging to translate to technological contexts. Rapid (sub-second) and reversible changes in the orientations of LCs at room temperature using reactions between gaseous hydrogen and oxygen that are catalyzed by Pd/Au surfaces are reported. Surface chemical analysis and computational chemistry studies confirm that dissociative adsorption of H2 on the Pd/Au films reduces preadsorbed O and generates 1 ML of adsorbed H, driving nitrile-containing LCs from a perpendicular to a planar orientation. Subsequent exposure to O2 leads to oxidation of the adsorbed H, reformation of adsorbed O on the Pd/Au surface, and a return of the LC to its initial orientation. The roles of surface composition and reaction kinetics in determining the LC dynamics are described along with a proof-of-concept demonstration of microactuation of beads. These results provide fresh ideas for utilizing chemical energy and catalysis to reversibly actuate functional LCs on the microscale.
Collapse
Affiliation(s)
- Huaizhe Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| | - Jake I Gold
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Trenton J Wolter
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Nanqi Bao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| | - Evangelos Smith
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Hanyu Alice Zhang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| | - Robert J Twieg
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, OH, 44242, USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Nicholas L Abbott
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| |
Collapse
|
32
|
Nestler M, Praetorius S, Huang ZF, Löwen H, Voigt A. Active smectics on a sphere. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:185001. [PMID: 38262063 DOI: 10.1088/1361-648x/ad21a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
The dynamics of active smectic liquid crystals confined on a spherical surface is explored through an active phase field crystal model. Starting from an initially randomly perturbed isotropic phase, several types of topological defects are spontaneously formed, and then annihilate during a coarsening process until a steady state is achieved. The coarsening process is highly complex involving several scaling laws of defect densities as a function of time where different dynamical exponents can be identified. In general the exponent for the final stage towards the steady state is significantly larger than that in the passive and in the planar case, i.e. the coarsening is getting accelerated both by activity and by the topological and geometrical properties of the sphere. A defect type characteristic for this active system is a rotating spiral of evolving smectic layering lines. On a sphere this defect type also determines the steady state. Our results can in principle be confirmed by dense systems of synthetic or biological active particles.
Collapse
Affiliation(s)
- Michael Nestler
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - Simon Praetorius
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States of America
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Axel Voigt
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
33
|
Wang W, Ren H, Zhang R. Symmetry Breaking of Self-Propelled Topological Defects in Thin-Film Active Chiral Nematics. PHYSICAL REVIEW LETTERS 2024; 132:038301. [PMID: 38307071 DOI: 10.1103/physrevlett.132.038301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 02/04/2024]
Abstract
Active nematics represent a range of dense active matter systems which can engender spontaneous flows and self-propelled topological defects. Two-dimensional (2D) active nematic theory and simulation have been successful in explaining many quasi-2D experiments in which self-propelled +1/2 defects are observed to move along their symmetry axis. However, many active liquid crystals are essentially chiral nematic, but their twist mode becomes irrelevant under the 2D assumption. Here, we use theory and simulation to examine a three-dimensional active chiral nematic confined to a thin film, thus forming a quasi-2D system. We predict that the self-propelled +1/2 disclination in a curved thin film can break its mirror symmetry by moving circularly. Our prediction is confirmed by hydrodynamic simulations of thin spherical-shell and thin cylindrical-shell systems. In the spherical-shell confinement, the four emerged +1/2 disclinations exhibit rich dynamics as a function of activity and chirality. As such, we have proposed a new symmetry-breaking scenario in which self-propelled defects in quasi-2D active nematics can acquire an active angular velocity, greatly enriching their dynamics for finer control and emerging applications.
Collapse
Affiliation(s)
- Weiqiang Wang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Haijie Ren
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| |
Collapse
|
34
|
Mitchell KA, Sabbir MMH, Geumhan K, Smith SA, Klein B, Beller DA. Maximally mixing active nematics. Phys Rev E 2024; 109:014606. [PMID: 38366395 DOI: 10.1103/physreve.109.014606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 02/18/2024]
Abstract
Active nematics are an important new paradigm in soft condensed matter systems. They consist of rodlike components with an internal driving force pushing them out of equilibrium. The resulting fluid motion exhibits chaotic advection, in which a small patch of fluid is stretched exponentially in length. Using simulation, this paper shows that this system can exhibit stable periodic motion when confined to a sufficiently small square with periodic boundary conditions. Moreover, employing tools from braid theory, we show that this motion is maximally mixing, in that it optimizes the (dimensionless) "topological entropy"-the exponential stretching rate of a material line advected by the fluid. That is, this periodic motion of the defects, counterintuitively, produces more chaotic mixing than chaotic motion of the defects. We also explore the stability of the periodic state. Importantly, we show how to stabilize this orbit into a larger periodic tiling, a critical necessity for it to be seen in future experiments.
Collapse
Affiliation(s)
- Kevin A Mitchell
- Physics Department, University of California, Merced, California 95344, USA
| | | | - Kevin Geumhan
- Physics Department, University of California, Merced, California 95344, USA
| | - Spencer A Smith
- Physics Department, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Brandon Klein
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Daniel A Beller
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
35
|
Van de Cauter L, van Buren L, Koenderink GH, Ganzinger KA. Exploring Giant Unilamellar Vesicle Production for Artificial Cells - Current Challenges and Future Directions. SMALL METHODS 2023; 7:e2300416. [PMID: 37464561 DOI: 10.1002/smtd.202300416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Creating an artificial cell from the bottom up is a long-standing challenge and, while significant progress has been made, the full realization of this goal remains elusive. Arguably, one of the biggest hurdles that researchers are facing now is the assembly of different modules of cell function inside a single container. Giant unilamellar vesicles (GUVs) have emerged as a suitable container with many methods available for their production. Well-studied swelling-based methods offer a wide range of lipid compositions but at the expense of limited encapsulation efficiency. Emulsion-based methods, on the other hand, excel at encapsulation but are only effective with a limited set of membrane compositions and may entrap residual additives in the lipid bilayer. Since the ultimate artificial cell will need to comply with both specific membrane and encapsulation requirements, there is still no one-method-fits-all solution for GUV formation available today. This review discusses the state of the art in different GUV production methods and their compatibility with GUV requirements and operational requirements such as reproducibility and ease of use. It concludes by identifying the most pressing issues and proposes potential avenues for future research to bring us one step closer to turning artificial cells into a reality.
Collapse
Affiliation(s)
- Lori Van de Cauter
- Autonomous Matter Department, AMOLF, Amsterdam, 1098 XG, The Netherlands
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | | |
Collapse
|
36
|
Rønning J, Renaud J, Doostmohammadi A, Angheluta L. Spontaneous flows and dynamics of full-integer topological defects in polar active matter. SOFT MATTER 2023; 19:7513-7527. [PMID: 37493084 DOI: 10.1039/d3sm00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Polar active matter of self-propelled particles sustain spontaneous flows through the full-integer topological defects. We study theoretically the incompressible flow profiles around ±1 defects induced by polar and dipolar active forces. We show that dipolar forces induce vortical flows around the +1 defect, while the flow around the -1 defect has an 8-fold rotational symmetry. The vortical flow changes its chirality near the +1 defect core in the absence of the friction with a substrate. We show analytically that the flow induced by polar active forces is vortical near the +1 defect and is 4-fold symmetric near the -1 defect, while it becomes uniform in the far-field. For a pair of oppositely charged defects, this polar flow contributes to a mutual interaction force that depends only on the orientation of the defect pair relative to the background polarization, and that enhances defect pair annihilation. This is in contradiction with the effect of dipolar active forces which decay inversely proportional with the defect separation distance. As such, our analyses reveals a long-ranged mechanism for the pairwise interaction between topological defects in polar active matter.
Collapse
Affiliation(s)
- Jonas Rønning
- Department of Physics, Njord Centre, University of Oslo, P.O. Box 1048, 0316 Oslo, Norway.
| | - Julian Renaud
- École Normale Supérieure, PSL Research University, 45 rue d'Ulm, 75005 Paris, France
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Luiza Angheluta
- Department of Physics, Njord Centre, University of Oslo, P.O. Box 1048, 0316 Oslo, Norway.
| |
Collapse
|
37
|
Takinoue M. DNA droplets for intelligent and dynamical artificial cells: from the viewpoint of computation and non-equilibrium systems. Interface Focus 2023; 13:20230021. [PMID: 37577000 PMCID: PMC10415743 DOI: 10.1098/rsfs.2023.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Living systems are molecular assemblies whose dynamics are maintained by non-equilibrium chemical reactions. To date, artificial cells have been studied from such physical and chemical viewpoints. This review briefly gives a perspective on using DNA droplets in constructing artificial cells. A DNA droplet is a coacervate composed of DNA nanostructures, a novel category of synthetic DNA self-assembled systems. The DNA droplets have programmability in physical properties based on DNA base sequence design. The aspect of DNA as an information molecule allows physical and chemical control of nanostructure formation, molecular assembly and molecular reactions through the design of DNA base pairing. As a result, the construction of artificial cells equipped with non-equilibrium behaviours such as dynamical motions, phase separations, molecular sensing and computation using chemical energy is becoming possible. This review mainly focuses on such dynamical DNA droplets for artificial cell research in terms of computation and non-equilibrium chemical reactions.
Collapse
Affiliation(s)
- Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
38
|
Nakazawa K, Chauvin B, Mangenot S, Bertin A. Reconstituted in vitro systems to reveal the roles and functions of septins. J Cell Sci 2023; 136:jcs259448. [PMID: 37815088 DOI: 10.1242/jcs.259448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.
Collapse
Affiliation(s)
- Koyomi Nakazawa
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Brieuc Chauvin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Stéphanie Mangenot
- Laboratoire Matière et Systèmes Complexes , Université de Paris Cité, CNRS UMR 7057, 45 Rue des Saint Pères, 75006 Paris, France
| | - Aurélie Bertin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| |
Collapse
|
39
|
Zarei Z, Berezney J, Hensley A, Lemma L, Senbil N, Dogic Z, Fraden S. Light-activated microtubule-based two-dimensional active nematic. SOFT MATTER 2023; 19:6691-6699. [PMID: 37609884 DOI: 10.1039/d3sm00270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.
Collapse
Affiliation(s)
- Zahra Zarei
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - John Berezney
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Alexander Hensley
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Linnea Lemma
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
- The Department of Chemical and Biological Engineering, Princeton, NJ 08544, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Nesrin Senbil
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Zvonimir Dogic
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | - Seth Fraden
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
40
|
Katayama K, Yoshimura T, Yamashita S, Teratani H, Murakami T, Suzuki H, Fukuda JI. Formation of topological defects at liquid/liquid crystal interfaces in micro-wells controlled by surfactants and light. SOFT MATTER 2023; 19:6578-6588. [PMID: 37603438 DOI: 10.1039/d3sm00838j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Topological defects, the fundamental entities arising from symmetry-breaking, have captivated the attention of physicists, mathematicians, and materials scientists for decades. Here we propose and demonstrate a novel method for robust control of topological defects in a liquid crystal (LC), an ideal testbed for the investigation of topological defects. A liquid layer is introduced on the LC in microwells in a microfluidic device. The liquid/LC interface facilitates the control of the LC alignment thereby introducing different molecules in the liquid/LC phase. A topological defect is robustly formed in a microwell when the liquid/LC interface and the microwell surface impose planar and homeotropic alignment, respectively. We also demonstrate the formation/disappearance of topological defects by light illumination, realized by dissolving photo-responsive molecules in the LC. Our platform that facilitates the control of LC topological defects by the introduction of different molecules and external stimuli could have potential for sensor applications.
Collapse
Affiliation(s)
- Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| | - Takuro Yoshimura
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| | - Saki Yamashita
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| | - Hiroto Teratani
- Department of Precision Mechanics, Chuo University, Tokyo 112-8551, Japan
| | - Tomoki Murakami
- Department of Precision Mechanics, Chuo University, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Chuo University, Tokyo 112-8551, Japan
| | - Jun-Ichi Fukuda
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
41
|
Eshghi I, Zidovska A, Grosberg AY. Activity-Driven Phase Transition Causes Coherent Flows of Chromatin. PHYSICAL REVIEW LETTERS 2023; 131:048401. [PMID: 37566839 DOI: 10.1103/physrevlett.131.048401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 08/13/2023]
Abstract
We discover a new type of nonequilibrium phase transition in a model of chromatin dynamics, which accounts for the coherent motions that have been observed in experiment. The coherent motion is due to the long-range cooperation of molecular motors tethered to chromatin. Cooperation occurs if each motor acts simultaneously on the polymer and the surrounding solvent, exerting on them equal and opposite forces. This drives the flow of solvent past the polymer, which in turn affects the orientation of nearby motors and, if the drive is strong enough, an active polar ("ferromagnetic") phase of motors can spontaneously form. Depending on boundary conditions, either transverse flows or sustained longitudinal oscillations and waves are possible. Predicted length scales are consistent with experiments. We now have in hand a coarse-grained description of chromatin dynamics which reproduces the directed coherent flows of chromatin seen in experiments. This field-theoretic description can be analytically coupled to other features of the nuclear environment such as fluctuating or porous boundaries, local heterogeneities in the distribution of chromatin or its activity, leading to insights on the effects of activity on the cell nucleus and its contents.
Collapse
Affiliation(s)
- Iraj Eshghi
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| | - Alexander Y Grosberg
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| |
Collapse
|
42
|
Xu H, Nejad MR, Yeomans JM, Wu Y. Geometrical control of interface patterning underlies active matter invasion. Proc Natl Acad Sci U S A 2023; 120:e2219708120. [PMID: 37459530 PMCID: PMC10372614 DOI: 10.1073/pnas.2219708120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Interaction between active materials and the boundaries of geometrical confinement is key to many emergent phenomena in active systems. For living active matter consisting of animal cells or motile bacteria, the confinement boundary is often a deformable interface, and it has been unclear how activity-induced interface dynamics might lead to morphogenesis and pattern formation. Here, we studied the evolution of bacterial active matter confined by a deformable boundary. We found that an ordered morphological pattern emerged at the interface characterized by periodically spaced interfacial protrusions; behind the interfacial protrusions, bacterial swimmers self-organized into multicellular clusters displaying +1/2 nematic defects. Subsequently, a hierarchical sequence of transitions from interfacial protrusions to creeping branches allowed the bacterial active drop to rapidly invade surrounding space with a striking self-similar branch pattern. We found that this interface patterning is geometrically controlled by the local curvature of the interface, a phenomenon we denote as collective curvature sensing. Using a continuum active model, we revealed that the collective curvature sensing arises from enhanced active stresses near high-curvature regions, with the active length scale setting the characteristic distance between the interfacial protrusions. Our findings reveal a protrusion-to-branch transition as a unique mode of active matter invasion and suggest a strategy to engineer pattern formation of active materials.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Mehrana R. Nejad
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Julia M. Yeomans
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| |
Collapse
|
43
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
44
|
Arnold D, Takatori SC. Bio-enabled Engineering of Multifunctional "Living" Surfaces. ACS NANO 2023; 17:11077-11086. [PMID: 37294942 PMCID: PMC10311588 DOI: 10.1021/acsnano.3c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Through the magic of "active matter"─matter that converts chemical energy into mechanical work to drive emergent properties─biology solves a myriad of seemingly enormous physical challenges. Using active matter surfaces, for example, our lungs clear an astronomically large number of particulate contaminants that accompany each of the 10,000 L of air we respire per day, thus ensuring that the lungs' gas exchange surfaces remain functional. In this Perspective, we describe our efforts to engineer artificial active surfaces that mimic active matter surfaces in biology. Specifically, we seek to assemble the basic active matter components─mechanical motor, driven constituent, and energy source─to design surfaces that support the continuous operation of molecular sensing, recognition, and exchange. The successful realization of this technology would generate multifunctional, "living" surfaces that combine the dynamic programmability of active matter and the molecular specificity of biological surfaces and apply them to applications in biosensors, chemical diagnostics, and other surface transport and catalytic processes. We describe our recent efforts in bio-enabled engineering of living surfaces through the design of molecular probes to understand and integrate native biological membranes into synthetic materials.
Collapse
Affiliation(s)
- Daniel
P. Arnold
- Department of Chemical Engineering, University of California, Santa
Barbara, California 93106, United States
| | - Sho C. Takatori
- Department of Chemical Engineering, University of California, Santa
Barbara, California 93106, United States
| |
Collapse
|
45
|
Ray S, Zhang J, Dogic Z. Rectified Rotational Dynamics of Mobile Inclusions in Two-Dimensional Active Nematics. PHYSICAL REVIEW LETTERS 2023; 130:238301. [PMID: 37354394 DOI: 10.1103/physrevlett.130.238301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/26/2023]
Abstract
We investigate the dynamics of mobile inclusions embedded in 2D active nematics. The interplay between the inclusion shape, boundary-induced nematic order, and autonomous flows powers the inclusion motion. Disks and achiral gears exhibit unbiased rotational motion, but with distinct dynamics. In comparison, chiral gear-shaped inclusions exhibit long-term rectified rotation, which is correlated with dynamics and polarization of nearby +1/2 topological defects. The chirality of defect polarities and the active nematic texture around the inclusion correlate with the inclusion's instantaneous rotation rate. Inclusions provide a promising tool for probing the rheological properties of active nematics and extracting ordered motion from their inherently chaotic motion.
Collapse
Affiliation(s)
- Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Jie Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
46
|
Langeslay B, Juarez G. Microdomains and stress distributions in bacterial monolayers on curved interfaces. SOFT MATTER 2023; 19:3605-3613. [PMID: 37161525 DOI: 10.1039/d2sm01498j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Monolayers of growing non-motile rod-shaped bacteria act as active nematic materials composed of hard particles rather than the flexible components of other commonly studied active nematics. The organization of these granular monolayers has been studied on flat surfaces but not on curved surfaces, which are known to change the behavior of other active nematics. We use molecular dynamics simulations to track alignment and stress in growing monolayers fixed to curved surfaces, and investigate how these vary with changing surface curvature and cell aspect ratio. We find that the length scale of alignment (measured by average microdomain size) increases with cell aspect ratio and decreases with curvature. Additionally, we find that alignment controls the distribution of extensile stresses in the monolayer by concentrating stress in negative-order regions. These results connect active nematic physics to bacterial monolayers and can be applied to model bacteria growing on droplets, such as oil-degrading marine bacteria.
Collapse
Affiliation(s)
- Blake Langeslay
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gabriel Juarez
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
47
|
Bera A, Binder K, Egorov SA, Das SK. Phase behavior and dynamics in a colloid-polymer mixture under spherical confinement. SOFT MATTER 2023; 19:3386-3397. [PMID: 37128824 DOI: 10.1039/d3sm00362k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
From studies via molecular dynamics simulations, we report results on structure and dynamics in mixtures of active colloids and passive polymers that are confined inside a spherical container with a repulsive boundary. All interactions in the fully passive limit are chosen in such a way that in equilibrium coexistence between colloid-rich and polymer-rich phases occurs. For most part of the studies the chosen compositions give rise to Janus-like structure: nearly one side of the sphere is occupied by the colloids and the rest by the polymers. This partially wet situation mimics approximately a neutral wall in the fully passive scenario. Following the introduction of a velocity-aligning activity to the colloids, the shape of the polymer-rich domain changes to that of an ellipsoid, around the long axis of which the colloid-rich domain attains a macroscopic angular momentum. In the steady state, the orientation of this axis evolves via diffusion, magnitude of which depends upon the strength of activity, but only weakly.
Collapse
Affiliation(s)
- Arabinda Bera
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
| | - Kurt Binder
- Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Staudinger Weg 7, Germany
| | - Sergei A Egorov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Subir K Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
| |
Collapse
|
48
|
Hoffmann LA, Carenza LN, Giomi L. Tuneable defect-curvature coupling and topological transitions in active shells. SOFT MATTER 2023; 19:3423-3435. [PMID: 37129899 DOI: 10.1039/d2sm01370c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent experimental observations have suggested that topological defects can facilitate the creation of sharp features in developing embryos. Whereas these observations echo established knowledge about the interplay between geometry and topology in two-dimensional passive liquid crystals, the role of activity has mostly remained unexplored. In this article we focus on deformable shells consisting of either polar or nematic active liquid crystals and demonstrate that activity renders the mechanical coupling between defects and curvature much more involved and versatile than previously thought. Using a combination of linear stability analysis and three-dimensional computational fluid dynamics, we demonstrate that such a coupling can in fact be tuned, depending on the type of liquid crystal order, the specific structure of the defect (i.e. asters or vortices) and the nature of the active forces. In polar systems, this can drive a spectacular transition from spherical to toroidal topology, in the presence of large extensile activity. Our analysis strengthens the idea that defects could serve as topological morphogens and provides a number of predictions that could be tested in in vitro studies, for instance in the context of organoids.
Collapse
Affiliation(s)
- Ludwig A Hoffmann
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
49
|
Brandstätter T, Brückner DB, Han YL, Alert R, Guo M, Broedersz CP. Curvature induces active velocity waves in rotating spherical tissues. Nat Commun 2023; 14:1643. [PMID: 36964141 PMCID: PMC10039078 DOI: 10.1038/s41467-023-37054-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/26/2023] [Indexed: 03/26/2023] Open
Abstract
The multicellular organization of diverse systems, including embryos, intestines, and tumors relies on coordinated cell migration in curved environments. In these settings, cells establish supracellular patterns of motion, including collective rotation and invasion. While such collective modes have been studied extensively in flat systems, the consequences of geometrical and topological constraints on collective migration in curved systems are largely unknown. Here, we discover a collective mode of cell migration in rotating spherical tissues manifesting as a propagating single-wavelength velocity wave. This wave is accompanied by an apparently incompressible supracellular flow pattern featuring topological defects as dictated by the spherical topology. Using a minimal active particle model, we reveal that this collective mode arises from the effect of curvature on the active flocking behavior of a cell layer confined to a spherical surface. Our results thus identify curvature-induced velocity waves as a mode of collective cell migration, impacting the dynamical organization of 3D curved tissues.
Collapse
Affiliation(s)
- Tom Brandstätter
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - David B Brückner
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
van der Wee EB, Blackwell BC, Balboa Usabiaga F, Sokolov A, Katz IT, Delmotte B, Driscoll MM. A simple catch: Fluctuations enable hydrodynamic trapping of microrollers by obstacles. SCIENCE ADVANCES 2023; 9:eade0320. [PMID: 36888698 PMCID: PMC9995068 DOI: 10.1126/sciadv.ade0320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
It is known that obstacles can hydrodynamically trap bacteria and synthetic microswimmers in orbits, where the trapping time heavily depends on the swimmer flow field and noise is needed to escape the trap. Here, we use experiments and simulations to investigate the trapping of microrollers by obstacles. Microrollers are rotating particles close to a bottom surface, which have a prescribed propulsion direction imposed by an external rotating magnetic field. The flow field that drives their motion is quite different from previously studied swimmers. We found that the trapping time can be controlled by modifying the obstacle size or the colloid-obstacle repulsive potential. We detail the mechanisms of the trapping and find two remarkable features: The microroller is confined in the wake of the obstacle, and it can only enter the trap with Brownian motion. While noise is usually needed to escape traps in dynamical systems, here, we show that it is the only means to reach the hydrodynamic attractor.
Collapse
Affiliation(s)
- Ernest B. van der Wee
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Brendan C. Blackwell
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | | | - Andrey Sokolov
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Isaiah T. Katz
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Blaise Delmotte
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau 91120, France
| | - Michelle M. Driscoll
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|