1
|
Ceron RH, Báez-Cruz FA, Palmer NJ, Carman PJ, Boczkowska M, Heuckeroth RO, Ostap EM, Dominguez R. Molecular mechanisms linking missense ACTG2 mutations to visceral myopathy. SCIENCE ADVANCES 2024; 10:eadn6615. [PMID: 38820162 PMCID: PMC11141634 DOI: 10.1126/sciadv.adn6615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Visceral myopathy is a life-threatening disease characterized by muscle weakness in the bowel, bladder, and uterus. Mutations in smooth muscle γ-actin (ACTG2) are the most common cause of the disease, but the mechanisms by which the mutations alter muscle function are unknown. Here, we examined four prevalent ACTG2 mutations (R40C, R148C, R178C, and R257C) that cause different disease severity and are spread throughout the actin fold. R178C displayed premature degradation, R148C disrupted interactions with actin-binding proteins, R40C inhibited polymerization, and R257C destabilized filaments. Because these mutations are heterozygous, we also analyzed 50/50 mixtures with wild-type (WT) ACTG2. The WT/R40C mixture impaired filament nucleation by leiomodin 1, and WT/R257C produced filaments that were easily fragmented by smooth muscle myosin. Smooth muscle tropomyosin isoform Tpm1.4 partially rescued the defects of R40C and R257C. Cryo-electron microscopy structures of filaments formed by R40C and R257C revealed disrupted intersubunit contacts. The biochemical and structural properties of the mutants correlate with their genotype-specific disease severity.
Collapse
Affiliation(s)
- Rachel H. Ceron
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Faviolla A. Báez-Cruz
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Palmer
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J. Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert O. Heuckeroth
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. Michael Ostap
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Reindl T, Giese S, Greve JN, Reinke PY, Chizhov I, Latham SL, Mulvihill DP, Taft MH, Manstein DJ. Distinct actin–tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. iScience 2022; 25:104484. [PMID: 35720262 PMCID: PMC9204724 DOI: 10.1016/j.isci.2022.104484] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022] Open
Abstract
The effects of N-terminal acetylation of the high molecular weight tropomyosin isoforms Tpm1.6 and Tpm2.1 and the low molecular weight isoforms Tpm1.12, Tpm3.1, and Tpm4.2 on the actin affinity and the thermal stability of actin-tropomyosin cofilaments are described. Furthermore, we show how the exchange of cytoskeletal tropomyosin isoforms and their N-terminal acetylation affects the kinetic and chemomechanical properties of cytoskeletal actin-tropomyosin-myosin complexes. Our results reveal the extent to which the different actin-tropomyosin-myosin complexes differ in their kinetic and functional properties. The maximum sliding velocity of the actin filament as well as the optimal motor density for continuous unidirectional movement, parameters that were previously considered to be unique and invariant properties of each myosin isoform, are shown to be influenced by the exchange of the tropomyosin isoform and the N-terminal acetylation of tropomyosin. Tpm diversity is largely determined by sequences contributing to the overlap region Global sequence differences are of greater importance than variable exon 6 usage Tpm isoforms confer distinctly altered properties to cytoskeletal myosin motors Cytoskeletal myosins are differentially affected by N-terminal acetylation of Tpm
Collapse
|
3
|
Zot HG, Chase PB, Hasbun JE, Pinto JR. Mechanical contribution to muscle thin filament activation. J Biol Chem 2020; 295:15913-15922. [PMID: 32900850 DOI: 10.1074/jbc.ra120.014438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/04/2020] [Indexed: 11/06/2022] Open
Abstract
Vertebrate striated muscle thin filaments are thought to be thermodynamically activated in response to an increase in Ca2+ concentration. We tested this hypothesis by measuring time intervals for gliding runs and pauses of individual skeletal muscle thin filaments in cycling myosin motility assays. A classic thermodynamic mechanism predicts that if chemical potential is constant, transitions between runs and pauses of gliding thin filaments will occur at constant rate as given by a Poisson distribution. In this scenario, rate is given by the odds of a pause, and hence, run times between pauses fit an exponential distribution that slopes negatively for all observable run times. However, we determined that relative density of observed run times fits an exponential only at low Ca2+ levels that activate filament gliding. Further titration with Ca2+, or adding excess regulatory proteins tropomyosin and troponin, shifted the relative density of short run times to fit the positive slope of a gamma distribution, which derives from waiting times between Poisson events. Events that arise during a run and prevent the chance of ending a run for a random interval of time account for the observed run time distributions, suggesting that the events originate with cycling myosin. We propose that regulatory proteins of the thin filament require the mechanical force of cycling myosin to achieve the transition state for activation. During activation, combinations of cycling myosin that contribute insufficient activation energy delay deactivation.
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia, Carrollton, Georgia, USA; Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA.
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Javier E Hasbun
- Department of Physics, University of West Georgia, Carrollton, Georgia, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
4
|
Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1. J Muscle Res Cell Motil 2019; 41:39-53. [PMID: 31270709 PMCID: PMC7109180 DOI: 10.1007/s10974-019-09532-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Tropomyosin is the major regulator of the thin filament. In striated muscle its function is to bind troponin complex and control the access of myosin heads to actin in a Ca2+-dependent manner. It also participates in the maintenance of thin filament length by regulation of tropomodulin and leiomodin, the pointed end-binding proteins. Because the size of the overlap between actin and myosin filaments affects the number of myosin heads which interact with actin, the filament length is one of the determinants of force development. Numerous point mutations in genes encoding tropomyosin lead to single amino acid substitutions along the entire length of the coiled coil that are associated with various types of cardiomyopathy and skeletal muscle disease. Specific regions of tropomyosin interact with different binding partners; therefore, the mutations affect diverse tropomyosin functions. In this review, results of studies on mutations in the genes TPM1 and TPM3, encoding Tpm1.1 and Tpm3.12, are described. The paper is particularly focused on mutation-dependent alterations in the mechanisms of actin-myosin interactions and dynamics of the thin filament at the pointed end.
Collapse
|
5
|
Meiring JC, Bryce NS, Wang Y, Taft MH, Manstein DJ, Liu Lau S, Stear J, Hardeman EC, Gunning PW. Co-polymers of Actin and Tropomyosin Account for a Major Fraction of the Human Actin Cytoskeleton. Curr Biol 2018; 28:2331-2337.e5. [DOI: 10.1016/j.cub.2018.05.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
|
6
|
Barua B, Sckolnick M, White HD, Trybus KM, Hitchcock-DeGregori SE. Distinct sites in tropomyosin specify shared and isoform-specific regulation of myosins II and V. Cytoskeleton (Hoboken) 2018; 75:150-163. [PMID: 29500902 PMCID: PMC5899941 DOI: 10.1002/cm.21440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
Muscle contraction, cytokinesis, cellular movement, and intracellular transport depend on regulated actin-myosin interaction. Most actin filaments bind one or more isoform of tropomyosin, a coiled-coil protein that stabilizes the filaments and regulates interactions with other actin-binding proteins, including myosin. Isoform-specific allosteric regulation of muscle myosin II by actin-tropomyosin is well-established while that of processive myosins, such as myosin V, which transport organelles and macromolecules in the cell periphery, is less certain. Is the regulation by tropomyosin a universal mechanism, the consequence of the conserved periodic structures of tropomyosin, or is it the result of specialized interactions between particular isoforms of myosin and tropomyosin? Here, we show that striated muscle tropomyosin, Tpm1.1, inhibits fast skeletal muscle myosin II but not myosin Va. The non-muscle tropomyosin, Tpm3.1, in contrast, activates both myosins. To decipher the molecular basis of these opposing regulatory effects, we introduced mutations at conserved surface residues within the six periodic repeats (periods) of Tpm3.1, in positions homologous or analogous to those important for regulation of skeletal muscle myosin by Tpm1.1. We identified conserved residues in the internal periods of both tropomyosin isoforms that are important for the function of myosin Va and striated myosin II. Conserved residues in the internal and C-terminal periods that correspond to Tpm3.1-specific exons inhibit myosin Va but not myosin II function. These results suggest that tropomyosins may directly impact myosin function through both general and isoform-specific mechanisms that identify actin tracks for the recruitment and function of particular myosins.
Collapse
Affiliation(s)
- Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - Maria Sckolnick
- Department of Molecular Physiology & Biophysics University of Vermont, Burlington, VT 05405
| | - Howard D. White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Kathleen M. Trybus
- Department of Molecular Physiology & Biophysics University of Vermont, Burlington, VT 05405
| | - Sarah E. Hitchcock-DeGregori
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
7
|
Abstract
Tropomyosin is the archetypal-coiled coil, yet studies of its structure and function have proven it to be a dynamic regulator of actin filament function in muscle and non-muscle cells. Here we review aspects of its structure that deviate from canonical leucine zipper coiled coils that allow tropomyosin to bind to actin, regulate myosin, and interact directly and indirectly with actin-binding proteins. Four genes encode tropomyosins in vertebrates, with additional diversity that results from alternate promoters and alternatively spliced exons. At the same time that periodic motifs for binding actin and regulating myosin are conserved, isoform-specific domains allow for specific interaction with myosins and actin filament regulatory proteins, including troponin. Tropomyosin can be viewed as a universal regulator of the actin cytoskeleton that specifies actin filaments for cellular and intracellular functions.
Collapse
|
8
|
Zot HG, Hasbun JE. Modeling Ca 2+-Bound Troponin in Excitation Contraction Coupling. Front Physiol 2016; 7:406. [PMID: 27708586 PMCID: PMC5030304 DOI: 10.3389/fphys.2016.00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
To explain disparate decay rates of cytosolic Ca2+ and structural changes in the thin filaments during a twitch, we model the time course of Ca2+-bound troponin (Tn) resulting from the free Ca2+ transient of fast skeletal muscle. In fibers stretched beyond overlap, the decay of Ca2+ as measured by a change in fluo-3 fluorescence is significantly slower than the intensity decay of the meridional 1/38.5 nm−1 reflection of Tn; this is not simply explained by considering only the Ca2+ binding properties of Tn alone (Matsuo et al., 2010). We apply a comprehensive model that includes the known Ca2+ binding properties of Tn in the context of the thin filament with and without cycling crossbridges. Calculations based on the model predict that the transient of Ca2+-bound Tn correlates with either the fluo-3 time course in muscle with overlapping thin and thick filaments or the intensity of the meridional 1/38.5 nm−1 reflection in overstretched muscle. Hence, cycling crossbridges delay the dissociation of Ca2+ from Tn. Correlation with the fluo-3 fluorescence change is not causal given that the transient of Ca2+-bound Tn depends on sarcomere length, whereas the fluo-3 fluorescence change does not. Transient positions of tropomyosin calculated from the time course of Ca2+-bound Tn are in reasonable agreement with the transient of measured perturbations of the Tn repeat in overlap and non-overlap muscle preparations.
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia Carrollton, GA, USA
| | - Javier E Hasbun
- Department of Physics, University of West Georgia Carrollton, GA, USA
| |
Collapse
|
9
|
Namgoong S, Kim NH. Roles of actin binding proteins in mammalian oocyte maturation and beyond. Cell Cycle 2016; 15:1830-43. [PMID: 27152960 DOI: 10.1080/15384101.2016.1181239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Actin nucleation factors, which promote the formation of new actin filaments, have emerged in the last decade as key regulatory factors controlling asymmetric division in mammalian oocytes. Actin nucleators such as formin-2, spire, and the ARP2/3 complex have been found to be important regulators of actin remodeling during oocyte maturation. Another class of actin-binding proteins including cofilin, tropomyosin, myosin motors, capping proteins, tropomodulin, and Ezrin-Radixin-Moesin proteins are thought to control actin cytoskeleton dynamics at various steps of oocyte maturation. In addition, actin dynamics controlling asymmetric-symmetric transitions after fertilization is a new area of investigation. Taken together, defining the mechanisms by which actin-binding proteins regulate actin cytoskeletons is crucial for understanding the basic biology of mammalian gamete formation and pre-implantation development.
Collapse
Affiliation(s)
- Suk Namgoong
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| | - Nam-Hyung Kim
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| |
Collapse
|
10
|
Zot HG, Hasbun JE, Michell CA, Landim-Vieira M, Pinto JR. Enhanced troponin I binding explains the functional changes produced by the hypertrophic cardiomyopathy mutation A8V of cardiac troponin C. Arch Biochem Biophys 2016; 601:97-104. [PMID: 26976709 DOI: 10.1016/j.abb.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/09/2016] [Accepted: 03/08/2016] [Indexed: 01/17/2023]
Abstract
Higher affinity for TnI explains how troponin C (TnC) carrying a causative hypertrophic cardiomyopathy mutation, TnC(A8V), sensitizes muscle cells to Ca(2+). Muscle fibers reconstituted with TnC(A8V) require ∼2.3-fold less [Ca(2+)] to achieve 50% maximum-tension compared to fibers reconstituted with wild-type TnC (TnC(WT)). Binding measurements rule out a significant change in N-terminus Ca(2+)-affinity of isolated TnC(A8V), and TnC(A8V) binds the switch-peptide of troponin-I (TnI(sp)) ∼1.6-fold more strongly than TnC(WT); thus we model the TnC-TnI(sp) interaction as competing with the TnI-actin interaction. Tension data are well-fit by a model constrained to conditions in which the affinity of TnC(A8V) for TnI(sp) is 1.5-1.7-fold higher than that of TnC(WT) at all [Ca(2+)]. Mean ATPase rates of reconstituted cardiac myofibrils is greater for TnC(A8V) than TnC(WT) at all [Ca(2+)], with statistically significant differences in the means at higher [Ca(2+)]. To probe TnC-TnI interaction in low Ca(2+), displacement of bis-ANS from TnI was monitored as a function of TnC. Whereas Ca(2+)-TnC(WT) displaces significantly more bis-ANS than Mg(2+)-TnC(WT), Ca(2+)-TnC(A8V) displaces probe equivalently to Mg(2+)-TnC(A8V) and Ca(2+)-TnC(WT), consistent with stronger Ca(2+)-independent TnC(A8V)-TnI(sp). A Matlab program for computing theoretical activation is reported. Our work suggests that contractility is constantly above normal in hearts made hypertrophic by TnC(A8V).
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia, Carrollton, GA 30118, USA.
| | - Javier E Hasbun
- Department of Physics, University of West Georgia, Carrollton, GA 30118, USA
| | - Clara A Michell
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
11
|
Fert-Bober J, Giles JT, Holewinski RJ, Kirk JA, Uhrigshardt H, Crowgey EL, Andrade F, Bingham CO, Park JK, Halushka MK, Kass DA, Bathon JM, Van Eyk JE. Citrullination of myofilament proteins in heart failure. Cardiovasc Res 2015; 108:232-42. [PMID: 26113265 PMCID: PMC4614685 DOI: 10.1093/cvr/cvv185] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 11/12/2022] Open
Abstract
AIMS Citrullination, the post-translational conversion of arginine to citrulline by the enzyme family of peptidylarginine deiminases (PADs), is associated with several diseases, and specific citrullinated proteins have been shown to alter function while others act as auto-antigens. In this study, we identified citrullinated proteins in human myocardial samples, from healthy and heart failure patients, and determined several potential functional consequences. Further we investigated PAD isoform cell-specific expression in the heart. METHODS AND RESULTS A citrullination-targeted proteomic strategy using data-independent (SWATH) acquisition method was used to identify the modified cardiac proteins. Citrullinated-induced sarcomeric proteins were validated using two-dimensional gel electrophoresis and investigated using biochemical and functional assays. Myocardial PAD isoforms were confirmed by RT-PCR with PAD2 being the major isoform in myocytes. In total, 304 citrullinated sites were identified that map to 145 proteins among the three study groups: normal, ischaemia, and dilated cardiomyopathy. Citrullination of myosin (using HMM fragment) decreased its intrinsic ATPase activity and inhibited the acto-HMM-ATPase activity. Citrullinated TM resulted in stronger F-actin binding and inhibited the acto-HMM-ATPase activity. Citrullinated TnI did not alter the binding to F-actin or acto-HMM-ATPase activity. Overall, citrullination of sarcomeric proteins caused a decrease in Ca(2+) sensitivity in skinned cardiomyocytes, with no change in maximal calcium-activated force or hill coefficient. CONCLUSION Citrullination unique to the cardiac proteome was identified. Our data indicate important structural and functional alterations to the cardiac sarcomere and the contribution of protein citrullination to this process.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Advanced Clinical BioSystems Research Institute, Advanced Health Science Building, 9229, Los Angeles, CA, USA Bayview Proteomics Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - John T Giles
- Division of Rheumatology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ronald J Holewinski
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Advanced Clinical BioSystems Research Institute, Advanced Health Science Building, 9229, Los Angeles, CA, USA
| | - Jonathan A Kirk
- Division of Cardiology, Department of Medicine, The Johns Hopkins University Medical Institutions, Baltimore, MD, USA
| | - Helge Uhrigshardt
- Bayview Proteomics Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Erin L Crowgey
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Advanced Clinical BioSystems Research Institute, Advanced Health Science Building, 9229, Los Angeles, CA, USA
| | - Felipe Andrade
- Division of Cardiology, Department of Medicine, The Johns Hopkins University Medical Institutions, Baltimore, MD, USA
| | - Clifton O Bingham
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA Division of Rheumatology, Department of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin Kyun Park
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA Division of Rheumatology, Department of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins University Medical Institutions, Baltimore, MD, USA
| | - Joan M Bathon
- Division of Rheumatology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jennifer E Van Eyk
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Advanced Clinical BioSystems Research Institute, Advanced Health Science Building, 9229, Los Angeles, CA, USA Bayview Proteomics Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Khaitlina SY. Tropomyosin as a Regulator of Actin Dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:255-91. [PMID: 26315888 DOI: 10.1016/bs.ircmb.2015.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tropomyosin is a major regulatory protein of contractile systems and cytoskeleton, an actin-binding protein that positions laterally along actin filaments and modulates actin-myosin interaction. About 40 tropomyosin isoforms have been found in a variety of cytoskeleton systems, not necessarily connected with actin-myosin interaction and contraction. Involvement of specific tropomyosin isoforms in the regulation of key cell processes was shown, and specific features of tropomyosin genes and protein structure have been investigated with molecular biology and genetics approaches. However, the mechanisms underlying the effects of tropomyosin on cytoskeleton dynamics are still unclear. As tropomyosin is primarily an F-actin-binding protein, it is important to understand how it interacts both with actin and actin-binding proteins functioning in muscles and cytoskeleton to regulate actin dynamics. This review focuses on biochemical data on the effects of tropomyosin on actin assembly and dynamics, as well as on the modulation of these effects by actin-binding proteins. The data indicate that tropomyosin can efficiently regulate actin dynamics via allosteric conformational changes within actin filaments.
Collapse
Affiliation(s)
- Sofia Yu Khaitlina
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
13
|
Schmidt WM, Lehman W, Moore JR. Direct observation of tropomyosin binding to actin filaments. Cytoskeleton (Hoboken) 2015; 72:292-303. [PMID: 26033920 DOI: 10.1002/cm.21225] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 01/02/2023]
Abstract
Tropomyosin is an elongated α-helical coiled coil that binds to seven consecutive actin subunits along the long-pitch helix of actin filaments. Once bound, tropomyosin polymerizes end-to-end and both stabilizes F-actin and regulates access of various actin-binding proteins including myosin in muscle and nonmuscle cells. Single tropomyosin molecules bind weakly to F-actin with millimolar Kd , whereas the end-to-end linked tropomyosin associates with about a 1000-fold greater affinity. Despite years of study, the assembly mechanism of tropomyosin onto actin filaments remains unclear. In this study, we used total internal reflection fluorescence microscopy to directly monitor the cooperative binding of fluorescently labeled tropomyosin molecules to phalloidin-stabilized actin filaments. We find that tropomyosin molecules assemble from multiple growth sites after random low-affinity binding of single molecules to actin. As the length of the tropomyosin chain increases, the probability of detachment decreases, which leads to further chain growth. Tropomyosin chain extension is linearly dependent on the concentration of tropomyosin, occurring at approximately 100 monomers/(μM*s). The random tropomyosin binding to F-actin leads to discontinuous end-to-end association where gaps in the chain continuity smaller than the required seven sequential actin monomers are available. Direct observation of tropomyosin detachment revealed the number of gaps in actin-bound tropomyosin, the time course of gap annealing, and the eventual filament saturation process.
Collapse
Affiliation(s)
- William M Schmidt
- Boston University School of Medicine, Physiology, & Biophysics, Boston, Massachusetts
| | - William Lehman
- Boston University School of Medicine, Physiology, & Biophysics, Boston, Massachusetts
| | - Jeffrey R Moore
- Boston University School of Medicine, Physiology, & Biophysics, Boston, Massachusetts
| |
Collapse
|
14
|
Ueda K, Kimura-Sakiyama C, Aihara T, Miki M, Arata T. Calcium-dependent interaction sites of tropomyosin on reconstituted muscle thin filaments with bound Myosin heads as studied by site-directed spin-labeling. Biophys J 2014; 105:2366-73. [PMID: 24268148 DOI: 10.1016/j.bpj.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/09/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
To identify the interaction sites of Tm, we measured the rotational motion of a spin-label covalently bound to the side chain of a cysteine that was genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, or 279. Most of the Tm residues were immobilized on actin filaments with myosin-S1 bound to them. The residues in the mid-portion of Tm, namely, 146, 174, 190, 209, and 230, were mobilized when the troponin (Tn) complex bound to the actin-Tm-S1 filaments. The addition of Ca(2+) ions partially reversed the Tn-induced mobilization. In contrast, residues at the joint region of Tm, 13, 36, 271, and 279 were unchanged or oppositely changed. All of these changes were detected using a maleimide spin label and less obviously using a methanesulfonate label. These results indicated that Tm was fixed on thin filaments with myosin bound to them, although a small change in the flexibility of the side chains of Tm residues, presumably interfaced with Tn, actin and myosin, was induced by the binding of Tn and Ca(2+). These findings suggest that even in the myosin-bound (open) state, Ca(2+) may regulate actomyosin contractile properties via Tm.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
15
|
Barua B, Nagy A, Sellers JR, Hitchcock-DeGregori SE. Regulation of nonmuscle myosin II by tropomyosin. Biochemistry 2014; 53:4015-24. [PMID: 24873380 PMCID: PMC4075986 DOI: 10.1021/bi500162z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The
actin cytoskeleton carries out cellular functions, including
division, migration, adhesion, and intracellular transport, that require
a variety of actin binding proteins, including myosins. Our focus
here is on class II nonmuscle myosin isoforms, NMIIA, NMIIB, and NMIIC,
and their regulation by the actin binding protein, tropomyosin. NMII
myosins are localized to different populations of stress fibers and
the contractile ring, structures involved in force generation required
for cell migration, adhesion, and cytokinesis. The stress fibers and
contractile ring that contain NMII myosins also contain tropomyosin.
Four mammalian genes encode more than 40 tropomyosins. Tropomyosins
inhibit or activate actomyosin MgATPase and motility depending on
the myosin and tropomyosin isoform. In vivo, tropomyosins
play a role in cell migration, adhesion, cytokinesis, and NMII isoform
localization in an isoform-specific manner. We postulate that the
isoform-specific tropomyosin localization and effect on NMII isoform
localization reflect modulation of NMII actomyosin kinetics and motile
function. In this study, we compare the ability of different tropomyosin
isoforms to support actin filament motility with NMIIA, NMIIB, and
NMIIC as well as skeletal muscle myosin. Tropomyosins activated, inhibited,
or had no effect on motility depending on the myosin, indicating that
the myosin isoform is the primary determinant of the isoform-specific
effect of tropomyosin on actomyosin regulation. Activation of motility
of nonmuscle tropomyosin–actin filaments by NMII myosin correlates
with an increased Vmax of the myosin MgATPase,
implying a direct effect on the myosin MgATPase, in contrast to the
skeletal tropomyosin–actin filament that has no effect on the Vmax or maximal filament velocity.
Collapse
Affiliation(s)
- Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University , Piscataway, New Jersey 08854, United States
| | | | | | | |
Collapse
|
16
|
Śliwińska M, Moraczewska J. Structural differences between C-terminal regions of tropomyosin isoforms. PeerJ 2013; 1:e181. [PMID: 24167776 PMCID: PMC3807590 DOI: 10.7717/peerj.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/26/2013] [Indexed: 12/04/2022] Open
Abstract
Tropomyosins are actin-binding regulatory proteins which overlap end-to-end along the filament. High resolution structures of the overlap regions were determined for muscle and non-muscle tropomyosins in the absence of actin. Conformations of the junction regions bound to actin are unknown. In this work, orientation of the overlap on actin alone and on actin–myosin complex was evaluated by measuring FRET distances between a donor (AEDANS) attached to tropomyosin and an acceptor (DABMI) bound to actin’s Cys374. Donor was attached to the Cys residue introduced by site-directed mutagenesis near the C-terminal half of the overlap. The recombinant alpha-tropomyosin isoforms used in this study – skeletal muscle skTM, non-muscle TM2 and TM5a, and chimeric TM1b9a had various amino acid sequences of the N- and C-termini involved in the end-to-end overlap. The donor-acceptor distances calculated for each isoform varied between 36.4 Å and 48.1 Å. Rigor binding of myosin S1 increased the apparent FRET distances of skTM and TM2, but decreased the distances separating TM5a and TM1b9a from actin. The results show that isoform-specific sequences of the end-to-end overlaps determine orientations and dynamics of tropomyosin isoforms on actin. This can be important for specificity of tropomyosin in the regulation of actin filament diverse functions.
Collapse
Affiliation(s)
| | - Joanna Moraczewska
- Institute of Experimental Biology, Kazimierz Wielki University, Bydgoszcz, Poland
| |
Collapse
|
17
|
Zhang Y, Zhang H, Tang Z, Kohama K, Lin Y. Inverse interaction between tropomyosin and phosphorylated myosin in the presence or absence of caldesmon. Acta Biochim Biophys Sin (Shanghai) 2013; 45:601-6. [PMID: 23665794 DOI: 10.1093/abbs/gmt047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the present study, co-sedimentation assay, intrinsic fluorescence intensity measurement, and Mg²⁺-ATPase activity analysis were carried out to investigate the direct effect of tropomyosin (TM) on unphosphorylated myosin (UM) or phosphorylated myosin (PM) in the presence or absence of caldesmon (CaD). Results showed that TM significantly decreased the sedimentation, intrinsic fluorescence intensity, and the Mg²⁺-ATPase activity of PM, but not UM. In the presence of CaD, TM also significantly decreased these parameters irrespective of myosin phosphorylation, suggesting that the interaction between TM and CaD abolished the effects of TM on PM or UM and that there was an inverse interaction between TM and PM, characterized by the decreased PM sedimentation and intrinsic fluorescence intensity.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | |
Collapse
|
18
|
A study of tropomyosin's role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil 2013; 34:295-310. [PMID: 23700264 DOI: 10.1007/s10974-013-9343-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Tropomyosin (Tm) is the key regulatory component of the thin-filament and plays a central role in the cardiac muscle's cooperative activation mechanism. Many mutations of cardiac Tm are related to hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and left ventricular noncompaction (LVNC). Using the thin-filament extraction/reconstitution technique, we are able to incorporate various Tm mutants and protein isoforms into a muscle fiber environment to study their roles in Ca(2+) regulation, cross-bridge kinetics, and force generation. The thin-filament reconstitution technique poses several advantages compared to other in vitro and in vivo methods: (1) Tm mutants and isoforms are placed into the real muscle fiber environment to exhibit their effect on a level much higher than simple protein complexes; (2) only the primary and immediate effects of Tm mutants are studied in the thin-filament reconstituted myocardium; (3) lethal mutants of Tm can be studied without causing a problem; and (4) inexpensive. In transgenic models, various secondary effects (myocyte disarray, ECM fibrosis, altered protein phosphorylation levels, etc.) also affect the performance of the myocardium, making it very difficult to isolate the primary effect of the mutation. Our studies on Tm have demonstrated that: (1) Tm positively enhances the hydrophobic interaction between actin and myosin in the "closed state", which in turn enhances the isometric tension; (2) Tm's seven periodical repeats carry distinct functions, with the 3rd period being essential for the tension enhancement; (3) Tm mutants lead to HCM by impairing the relaxation on one hand, and lead to DCM by over inhibition of the AM interaction on the other hand. Ca(2+) sensitivity is affected by inorganic phosphate, ionic strength, and phosphorylation of constituent proteins; hence it may not be the primary cause of the pathogenesis. Here, we review our current knowledge regarding Tm's effect on the actomyosin interaction and the early molecular pathogenesis of Tm mutation related to HCM, DCM, and LVNC.
Collapse
|
19
|
Regulation of actin-myosin interaction by conserved periodic sites of tropomyosin. Proc Natl Acad Sci U S A 2012; 109:18425-30. [PMID: 23091026 DOI: 10.1073/pnas.1212754109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cooperative activation of actin-myosin interaction by tropomyosin (Tm) is central to regulation of contraction in muscle cells and cellular and intracellular movements in nonmuscle cells. The steric blocking model of muscle regulation proposed 40 y ago has been substantiated at both the kinetic and structural levels. Even with atomic resolution structures of the major players, how Tm binds and is designed for regulatory function has remained a mystery. Here we show that a set of periodically distributed evolutionarily conserved surface residues of Tm is required for cooperative regulation of actomyosin. Based on our results, we propose a model of Tm on a structure of actin-Tm-myosin in the "open" (on) state showing potential electrostatic interactions of the residues with both actin and myosin. The sites alternate with a second set of conserved surface residues that are important for actin binding in the inhibitory state in the absence of myosin. The transition from the closed to open states requires the sites identified here, even when troponin + Ca(2+) is present. The evolutionarily conserved residues are important for actomyosin regulation, a universal function of Tm that has a common structural basis and mechanism.
Collapse
|
20
|
Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S. Structure of the rigor actin-tropomyosin-myosin complex. Cell 2012; 150:327-38. [PMID: 22817895 DOI: 10.1016/j.cell.2012.05.037] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/13/2012] [Accepted: 05/20/2012] [Indexed: 01/13/2023]
Abstract
Regulation of myosin and filamentous actin interaction by tropomyosin is a central feature of contractile events in muscle and nonmuscle cells. However, little is known about molecular interactions within the complex and the trajectory of tropomyosin movement between its "open" and "closed" positions on the actin filament. Here, we report the 8 Å resolution structure of the rigor (nucleotide-free) actin-tropomyosin-myosin complex determined by cryo-electron microscopy. The pseudoatomic model of the complex, obtained from fitting crystal structures into the map, defines the large interface involving two adjacent actin monomers and one tropomyosin pseudorepeat per myosin contact. Severe forms of hereditary myopathies are linked to mutations that critically perturb this interface. Myosin binding results in a 23 Å shift of tropomyosin along actin. Complex domain motions occur in myosin, but not in actin. Based on our results, we propose a structural model for the tropomyosin-dependent modulation of myosin binding to actin.
Collapse
Affiliation(s)
- Elmar Behrmann
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Nevzorov IA, Levitsky DI. Tropomyosin: double helix from the protein world. BIOCHEMISTRY (MOSCOW) 2012; 76:1507-27. [PMID: 22339601 DOI: 10.1134/s0006297911130098] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review concerns the structure and functions of tropomyosin (TM), an actin-binding protein that plays a key role in the regulation of muscle contraction. The TM molecule is a dimer of α-helices, which form a coiled-coil. Recent views on the TM structure are analyzed, and special attention is concentrated on those structural traits of the TM molecule that distinguish it from the other coiled-coil proteins. Modern data are presented on TM functional properties, such as its interaction with actin and ability to move on the surface of actin filaments, which underlies the regulation of the actin-myosin interaction upon contraction of skeletal and cardiac muscles. Also, part of the review is devoted to analysis of the effects of mutations in TM genes associated with muscle diseases (myopathies) on the structure and functions of TM.
Collapse
Affiliation(s)
- I A Nevzorov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
22
|
Oguchi Y, Ishizuka J, Hitchcock-DeGregori SE, Ishiwata S, Kawai M. The role of tropomyosin domains in cooperative activation of the actin-myosin interaction. J Mol Biol 2011; 414:667-80. [PMID: 22041451 DOI: 10.1016/j.jmb.2011.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/15/2022]
Abstract
To establish α-tropomyosin (Tm)'s structure-function relationships in cooperative regulation of muscle contraction, thin filaments were reconstituted with a variety of Tm mutants (Δ2Tm, Δ3Tm, Δ6Tm, P2sTm, P3sTm, P2P3sTm, P1P5Tm, and wtTm), and force and sliding velocity of the thin filament were studied using an in vitro motility assay. In the case of deletion mutants, Δ indicates which of the quasi-equivalent repeats in Tm was deleted. In the case of period (P) mutants, an Ala cluster was introduced into the indicated period to strengthen the Tm-actin interaction. In P1P5Tm, the N-terminal half of period 5 was substituted with that of period 1 to test the quasi-equivalence of these two Tm periods. The reconstitution included bovine cardiac troponin. Deletion studies revealed that period 3 is important for the positive cooperative effect of Tm on actin filament regulation and that period 2 also contributes to this effect at low ionic strength, but to a lesser degree. Furthermore, Tm with one extra Ala cluster at period 2 (P2s) or period 3 (P3s) did not increase force or velocity, whereas Tm with two extra Ala clusters (P2P3s) increased both force and velocity, demonstrating interaction between these periods. Most mutants did not move in the absence of Ca(2+). Notable exceptions were Δ6Tm and P1P5Tm, which moved near at the full velocity, but with reduced force, which indicate impaired relaxation. These results are consistent with the mechanism that the Tm-actin interaction cooperatively affects actin to result in generation of greater force and velocity.
Collapse
Affiliation(s)
- Yusuke Oguchi
- Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
23
|
Rao VS, Clobes AM, Guilford WH. Force spectroscopy reveals multiple "closed states" of the muscle thin filament. J Biol Chem 2011; 286:24135-41. [PMID: 21597115 DOI: 10.1074/jbc.m110.167957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tropomyosin (Tm) plays a critical role in regulating the contraction of striated muscle. The three-state model of activation posits that Tm exists in three positions on the thin filament: "blocked" in the absence of calcium when myosin cannot bind, "closed" when calcium binds troponin and Tm partially covers the myosin binding site, and "open" after myosin binding forces Tm completely off neighboring sites. However, we recently showed that actin filaments decorated with phosphorylated Tm are driven by myosin with greater force than bare actin filaments. This result cannot be explained by simple steric hindrance and suggests that Tm may have additional effects on actin-myosin interactions. We therefore tested the hypothesis that Tm and its phosphorylation state affect the rate at which single actin-myosin bonds form and rupture. Using a laser trap, we measured the time necessary for the first bond to form between actin and rigor heavy meromyosin and the load-dependent durations of those bonds. Measurements were repeated in the presence of subsaturating myosin-S1 to force Tm from the closed to the open state. Maximum bond lifetimes increased in the open state, but only when Tm was phosphorylated. While the frequency with which bonds formed was extremely low in the closed state, when a bond did form it took significantly less time to do so than with bare actin. These data suggest there are at least two closed states of the thin filament, and that Tm provides additional points of contact for myosin.
Collapse
Affiliation(s)
- Vijay S Rao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
24
|
Śliwińska M, Żukowska M, Borys D, Moraczewska J. Different positions of tropomyosin isoforms on actin filament are determined by specific sequences of end-to-end overlaps. Cytoskeleton (Hoboken) 2011; 68:300-12. [DOI: 10.1002/cm.20513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Ali LF, Cohen JM, Tobacman LS. Push and pull of tropomyosin's opposite effects on myosin attachment to actin. A chimeric tropomyosin host-guest study. Biochemistry 2010; 49:10873-80. [PMID: 21114337 DOI: 10.1021/bi101632f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tropomyosin is a ubiquitous actin-binding protein with an extended coiled-coil structure. Tropomyosin-actin interactions are weak and loosely specific, but they potently influence myosin. One such influence is inhibitory and is due to tropomyosin's statistically preferred positions on actin that sterically interfere with actin's strong attachment site for myosin. Contrastingly, tropomyosin's other influence is activating. It increases myosin's overall actin affinity ∼4-fold. Stoichiometric considerations cause this activating effect to equate to an ∼4(7)-fold effect of myosin on the actin affinity of tropomyosin. These positive, mutual, myosin-tropomyosin effects are absent if Saccharomyces cerevisiae tropomyosin replaces mammalian tropomyosin. To investigate these phenomena, chimeric tropomyosins were generated in which 38-residue muscle tropomyosin segments replaced a natural duplication within S. cerevisiae tropomyosin TPM1. Two such chimeric tropomyosins were sufficiently folded coiled coils to allow functional study. The two chimeras differed from TPM1 but in opposite ways. Consistent with steric interference, myosin greatly decreased the actin affinity of chimera 7, which contained muscle tropomyosin residues 228-265. On the other hand, myosin S1 increased by an order of magnitude the actin affinity of chimera 3, which contained muscle tropomyosin residues 74-111. Similarly, myosin S1-ADP binding to actin was strengthened 2-fold by substitution of chimera 3 tropomyosin for wild-type TPM1. Thus, a yeast tropomyosin was induced to mimic the activating behavior of mammalian tropomyosin by inserting a mammalian tropomyosin sequence. The data were not consistent with direct tropomyosin-myosin binding. Rather, they suggest an allosteric mechanism, in which myosin and tropomyosin share an effect on the actin filament.
Collapse
Affiliation(s)
- Laith F Ali
- Department of Medicine, University of Illinois at Chicago,Chicago, Illinois 60612, United States
| | | | | |
Collapse
|
26
|
Somara S, Gilmont RR, Varadarajan S, Bitar KN. Phosphorylated HSP20 modulates the association of thin-filament binding proteins: caldesmon with tropomyosin in colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1164-76. [PMID: 20829522 PMCID: PMC2993172 DOI: 10.1152/ajpgi.00479.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Small heat shock proteins HSP27 and HSP20 have been implicated in regulation of contraction and relaxation in smooth muscle. Activation of PKC-α promotes contraction by phosphorylation of HSP27 whereas activation of PKA promotes relaxation by phosphorylation of HSP20 in colonic smooth muscle cells (CSMC). We propose that the balance between the phosphorylation states of HSP27 and HSP20 represents a molecular signaling switch for contraction and relaxation. This molecular signaling switch acts downstream on a molecular mechanical switch [tropomyosin (TM)] regulating thin-filament dynamics. We have examined the role of phosphorylation state(s) of HSP20 on HSP27-mediated thin-filament regulation in CSMC. CSMC were transfected with different HSP20 phosphomutants. These transfections had no effect on the integrity of actin cytoskeleton. Cells transfected with 16D-HSP20 (phosphomimic) exhibited inhibition of acetylcholine (ACh)-induced contraction whereas cells transfected with 16A-HSP20 (nonphosphorylatable) had no effect on ACh-induced contraction. CSMC transfected with 16D-HSP20 cDNA showed significant decreases in 1) phosphorylation of HSP27 (ser78); 2) phosphorylation of PKC-α (ser657); 3) phosphorylation of TM and CaD (ser789); 4) ACh-induced phosphorylation of myosin light chain; 5) ACh-induced association of TM with HSP27; and 6) ACh-induced dissociation of TM from caldesmon (CaD). We thus propose the crucial physiological relevance of molecular signaling switch (phosphorylation state of HSP27 and HSP20), which dictates 1) the phosphorylation states of TM and CaD and 2) their dissociations from each other.
Collapse
Affiliation(s)
- Sita Somara
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Robert R. Gilmont
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Saranyaraajan Varadarajan
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Khalil N. Bitar
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
27
|
Somara S, Gilmont R, Bitar KN. Role of thin-filament regulatory proteins in relaxation of colonic smooth muscle contraction. Am J Physiol Gastrointest Liver Physiol 2009; 297:G958-66. [PMID: 20501443 PMCID: PMC2777455 DOI: 10.1152/ajpgi.00201.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coordinated regulation of smooth muscle contraction and relaxation is required for colonic motility. Contraction is associated with phosphorylation of myosin light chain (MLC(20)) and interaction of actin with myosin. Thin-filament regulation of actomyosin interaction is modulated by two actin-binding regulatory proteins: tropomyosin (TM) and caldesmon (CaD). TM and CaD are known to play crucial role in actomyosin interaction promoting contraction. Contraction is associated with phosphorylation of the small heat shock protein HSP27, concomitant with the phosphorylation of TM and CaD. Phosphorylation of HSP27 is attributed as being the prime modulator of thin-filament regulation of contraction. Preincubation of colonic smooth muscle cells (CSMC) with the relaxant neurotransmitter vasoactive intestinal peptide (VIP) showed inhibition in phosphorylation of HSP27 (ser78). Attenuation of HSP27 phosphorylation can result in modulation of thin-filament-mediated regulation of contraction leading to relaxation; thus the role of thin-filament regulatory proteins in a relaxation milieu was investigated. Preincubation of CSMC with VIP exhibited a decrease in phosphorylation of TM and CaD. Furthermore, CSMC preincubated with VIP showed a reduced association of TM with HSP27 and with phospho-HSP27 (ser78) whereas there was reduced dissociation of TM from CaD and from phospho-CaD. We thus propose that, in addition to alteration in phosphorylation of MLC(20), relaxation is associated with alterations in thin-filament-mediated regulation that results in termination of contraction.
Collapse
Affiliation(s)
- Sita Somara
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Robert Gilmont
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Khalil N. Bitar
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
28
|
Kawai M, Lu X, Hitchcock-DeGregori SE, Stanton KJ, Wandling MW. Tropomyosin period 3 is essential for enhancement of isometric tension in thin filament-reconstituted bovine myocardium. JOURNAL OF BIOPHYSICS (HINDAWI PUBLISHING CORPORATION : ONLINE) 2009; 2009:380967. [PMID: 20130792 PMCID: PMC2814127 DOI: 10.1155/2009/380967] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/29/2009] [Accepted: 07/05/2009] [Indexed: 05/28/2023]
Abstract
Tropomyosin (Tm) consists of 7 quasiequivalent repeats known as "periods," and its specific function may be associated with these periods. To test the hypothesis that either period 2 or 3 promotes force generation by inducing a positive allosteric effect on actin, we reconstituted the thin filament with mutant Tm in which either period 2 (Delta2Tm) or period 3 (Delta3Tm) was deleted. We then studied: isometric tension, stiffness, 6 kinetic constants, and the pCa-tension relationship. N-terminal acetylation of Tm did not cause any differences. The isometric tension in Delta2Tm remained unchanged, and was reduced to approximately 60% in Delta3Tm. Although the kinetic constants underwent small changes, the occupancy of strongly attached cross-bridges was not much different. The Hill factor (cooperativity) did not differ significantly between Delta2Tm (1.79 +/- 0.19) and the control (1.73 +/- 0.21), or Delta3Tm (1.35 +/- 0.22) and the control. In contrast, pCa(50) decreased slightly in Delta2Tm (5.11 +/- 0.07), and increased significantly in Delta3Tm (5.57 +/- 0.09) compared to the control (5.28 +/- 0.04). These results demonstrate that, when ions are present at physiological concentrations in the muscle fiber system, period 3 (but not period 2) is essential for the positive allosteric effect that enhances the interaction between actin and myosin, and increases isometric force of each cross-bridge.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Xiaoying Lu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Kristen J. Stanton
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael W. Wandling
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Somara S, Bitar KN. Direct association of calponin with specific domains of PKC-alpha. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1246-54. [PMID: 18948438 PMCID: PMC2604804 DOI: 10.1152/ajpgi.90461.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/17/2008] [Indexed: 01/31/2023]
Abstract
Calponin contributes to the regulation of smooth muscle contraction through its interaction with F-actin and inhibition of the actin-activated Mg-ATPase activity of phosphorylated myosin. Previous studies have shown that the contractile agonist acetylcholine induced a direct association of translocated calponin and PKC-alpha in the membrane. In the present study, we have determined the domain of PKC-alpha involved in direct association with calponin. In vitro binding assay was carried out by incubating glutathione S-transferase-calponin aa 92-229 with His-tagged proteins of individual domains and different combinations of domains of PKC-alpha. Calponin was found to bind directly to the full-length PKC-alpha. Calponin bound to C2 and C4 domains but not to C1 and C3 domains of PKC-alpha. When incubated with proteins of different combination of domains, calponin bound to C2-C3, C3-C4, and C2-C3-C4 but not to C1-C2 or C1-C2-C3. To determine whether these in vitro bindings mimic the in vivo associations, and in vivo binding assay was performed by transfecting colonic smooth muscle cells with His-tagged proteins of individual domains and different combinations of domains of PKC-alpha. Coimmunoprecipitation of calponin with His-tagged truncated forms of PKC-alpha showed that C1-C2, C1-C2-C3, C2-C3, and C3-C4 did not associate with calponin. Calponin associated only with full-length PKC-alpha and with C2-C3-C4 in cells in the resting state, and this association increased upon stimulation with acetylcholine. These data suggest that calponin bound to fragments that may mimic the active form of PKC-alpha and that the functional association of PKC-alpha with calponin requires both C2 and C4 domains during contraction of colonic smooth muscle cells.
Collapse
Affiliation(s)
- Sita Somara
- Division of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, MI 48109-5656, USA
| | | |
Collapse
|
30
|
Skórzewski R, Sliwińska M, Borys D, Sobieszek A, Moraczewska J. Effect of actin C-terminal modification on tropomyosin isoforms binding and thin filament regulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:237-43. [PMID: 19041430 PMCID: PMC2628472 DOI: 10.1016/j.bbapap.2008.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/14/2008] [Accepted: 10/27/2008] [Indexed: 12/17/2022]
Abstract
Tropomyosins, a family of actin-binding regulatory proteins, are present in muscle and non-muscle cells. Multiple tropomyosin (TM) isoforms differ in actin affinity and regulatory properties, but little is known about the molecular bases of these differences. The C-terminus of actin stabilizes contacts between actin subunits in the filament and interacts with myosin and regulatory proteins. The goal of this work was to reveal how structural changes in actin and differences between TM isoforms affect binding between these proteins and affect thin filament regulation. Actin proteolytically truncated by three C-terminal amino acids exhibited 1.2–1.5 fold reduced affinity for non-muscle and smooth muscle tropomyosin isoforms. The truncation increased the cooperativity of myosin S1-induced tropomyosin binding for short tropomyosins (TM5a and TM1b9a), but it was neutral for long isoforms (smTM and TM2). Actin modification affected regulation of actomyosin ATPase activity in the presence of all tropomyosins by shifting the filament into a more active state. We conclude that the integrity of the actin C-terminus is important for actin–tropomyosin interactions, however the increased affinity of tropomyosin binding in the S1-induced state of the filament appears not to be involved in the tropomyosin isoform-dependent mechanism of the actomyosin ATPase activation.
Collapse
Affiliation(s)
- Radosław Skórzewski
- Kazimierz Wielki University in Bydgoszcz, Department of Experimental Biology, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | | | | | | | | |
Collapse
|
31
|
Maytum R, Hatch V, Konrad M, Lehman W, Geeves MA. Ultra Short Yeast Tropomyosins Show Novel Myosin Regulation. J Biol Chem 2008; 283:1902-10. [DOI: 10.1074/jbc.m708593200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Abstract
In striated muscle, regulation of actin-myosin interactions depends on a series of conformational changes within the thin filament that result in a shifting of the tropomyosin-troponin complex between distinct locations on actin. The major factors activating the filament are Ca(2+) and strongly bound myosin heads. Many lines of evidence also point to an active role of actin in the regulation. Involvement of the actin C-terminus in binding of tropomyosin-troponin in different activation states and the regulation of actin-myosin interactions were examined using actin modified by proteolytic removal of three C-terminal amino acids. Actin C-terminal modification has no effect on the binding of tropomyosin or tropomyosin-troponin + Ca(2+), but it reduces tropomyosin-troponin affinity in the absence of Ca(2+). In contrast, myosin S1 induces binding of tropomyosin to truncated actin more readily than to native actin. The rate of actin-activated myosin S1 ATPase activity is reduced by actin truncation both in the absence and presence of tropomyosin. The Ca(2+)-dependent regulation of the ATPase activity is preserved. Without Ca(2+) the ATPase activity is fully inhibited, but in the presence of Ca(2+) the activation does not reach the level observed for native actin. The results suggest that through long-range allosteric interactions the actin C-terminus participates in the thin filament regulation.
Collapse
|
33
|
Hitchcock-DeGregori SE, Greenfield NJ, Singh A. Tropomyosin: regulator of actin filaments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:87-97. [PMID: 17278358 DOI: 10.1007/978-4-431-38453-3_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Sarah E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
34
|
Lu X, Tobacman LS, Kawai M. Temperature-dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant. Biophys J 2006; 91:4230-40. [PMID: 16980359 PMCID: PMC1635655 DOI: 10.1529/biophysj.106.084608] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 08/30/2006] [Indexed: 11/18/2022] Open
Abstract
The effect of temperature on isometric tension and cross-bridge kinetics was studied with a tropomyosin (Tm) internal deletion mutant AS-Delta23Tm (Ala-Ser-Tm Delta(47-123)) in bovine cardiac muscle fibers by using the thin filament extraction and reconstitution technique. The results are compared with those from actin reconstituted alone, cardiac muscle-derived control acetyl-Tm, and recombinant control AS-Tm. In all four reconstituted muscle groups, isometric tension and stiffness increased linearly with temperature in the range 5-40 degrees C for fibers activated in the presence of saturating ATP and Ca(2+). The slopes of the temperature-tension plots of the two controls were very similar, whereas the slope derived from fibers with actin alone had approximately 40% the control value, and the slope from mutant Tm had approximately 36% the control value. Sinusoidal analysis was performed to study the temperature dependence of cross-bridge kinetics. All three exponential processes A, B, and C were identified in the high temperature range (30-40 degrees C); only processes B and C were identified in the mid-temperature range (15-25 degrees C), and only process C was identified in the low temperature range (5-10 degrees C). At a given temperature, similar apparent rate constants (2pia, 2pib, 2pic) were observed in all four muscle groups, whereas their magnitudes were markedly less in the order of AS-Delta23Tm < Actin < AS-Tm approximately Acetyl-Tm groups. Our observations are consistent with the hypothesis that Tm enhances hydrophobic and stereospecific interactions (positive allosteric effect) between actin and myosin, but Delta23Tm decreases these interactions (negative allosteric effect). Our observations further indicate that tension/cross-bridge is increased by Tm, but is diminished by Delta23Tm. We conclude that Tm affects the conformation of actin so as to increase the area of hydrophobic interaction between actin and myosin molecules.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
35
|
Patchell VB, Gallon CE, Evans JS, Gao Y, Perry SV, Levine BA. The regulatory effects of tropomyosin and troponin-I on the interaction of myosin loop regions with F-actin. J Biol Chem 2005; 280:14469-75. [PMID: 15695827 DOI: 10.1074/jbc.m414202200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N terminus of skeletal myosin light chain 1 and the cardiomyopathy loop of human cardiac myosin have been shown previously to bind to actin in the presence and absence of tropomyosin (Patchell, V. B., Gallon, C. E., Hodgkin, M. A., Fattoum, A., Perry, S. V., and Levine, B. A. (2002) Eur. J. Biochem. 269, 5088-5100). We have extended this work and have shown that segments corresponding to other regions of human cardiac beta-myosin, presumed to be sites of interaction with F-actin (residues 554-584, 622-646, and 633-660), likewise bind independently to actin under similar conditions. The binding to F-actin of a peptide spanning the minimal inhibitory segment of human cardiac troponin I (residues 134-147) resulted in the dissociation from F-actin of all the myosin peptides bound to it either individually or in combination. Troponin C neutralized the effect of the inhibitory peptide on the binding of the myosin peptides to F-actin. We conclude that the binding of the inhibitory region of troponin I to actin, which occurs during relaxation in muscle when the calcium concentration is low, imposes conformational changes that are propagated to different locations on the surface of actin. We suggest that the role of tropomyosin is to facilitate the transmission of structural changes along the F-actin filament so that the monomers within a structural unit are able to interact with myosin.
Collapse
Affiliation(s)
- Valerie B Patchell
- Division of Medical Sciences, School of Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Somara S, Pang H, Bitar KN. Agonist-induced association of tropomyosin with protein kinase Calpha in colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2005; 288:G268-76. [PMID: 15486343 DOI: 10.1152/ajpgi.00330.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Smooth muscle contraction regulated by myosin light chain phosphorylation is also regulated at the thin-filament level. Tropomyosin, a thin-filament regulatory protein, regulates contraction by modulating actin-myosin interactions. Present investigation shows that acetylcholine induces PKC-mediated and calcium-dependent phosphorylation of tropomyosin in colonic smooth muscle cells. Our data also shows that acetylcholine induces a significant and sustained increase in PKC-mediated association of tropomyosin with PKCalpha in the particulate fraction of colonic smooth muscle cells. Immunoblotting studies revealed that in colonic smooth muscle cells, there is no significant change in the amount of tropomyosin or actin in particulate fraction in response to acetylcholine, indicating that the increased association of tropomyosin with PKCalpha in the particulate fraction may be due to acetylcholine-induced translocation of PKCalpha to the particulate fraction. To investigate whether the association of PKCalpha with tropomyosin was due to a direct interaction, we performed in vitro direct binding assay. Tropomyosin cDNA amplified from colonic smooth muscle mRNA was expressed as GST-tropomyosin fusion protein. In vitro binding experiments using GST-tropomyosin and recombinant PKCalpha indicated direct interaction of tropomyosin with PKCalpha. PKC-mediated phosphorylation of tropomyosin and direct interaction of PKCalpha with tropomyosin suggest that tropomyosin could be a substrate for PKC. Phosphorylation of tropomyosin may aid in holding the slided tropomyosin away from myosin binding sites on actin, resulting in actomyosin interaction and sustained contraction.
Collapse
Affiliation(s)
- Sita Somara
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109-0658, USA
| | | | | |
Collapse
|
37
|
Kostyukova AS, Hitchcock-DeGregori SE. Effect of the Structure of the N Terminus of Tropomyosin on Tropomodulin Function. J Biol Chem 2004; 279:5066-71. [PMID: 14660556 DOI: 10.1074/jbc.m311186200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomodulins (Tmod) bind to the N terminus of tropomyosin and cap the pointed end of actin filaments. Tropomyosin alone also inhibits the rate of actin depolymerization at the pointed end of filaments. Here we have defined 1) the structural requirements of the N terminus of tropomyosin important for regulating the pointed end alone and with erythrocyte Tmod (Tmod1), and 2) the Tmod1 subdomains required for binding to tropomyosin and for regulating the pointed end. Changes in pyrene-actin fluorescence during polymerization and depolymerization were measured with actin filaments blocked at the barbed end with gelsolin. Three tropomyosin isoforms differently influence pointed end dynamics. Recombinant TM5a, a short non-muscle alpha-tropomyosin, inhibited depolymerization. Recombinant (unacetylated) TM2 and N-acetylated striated muscle TM (stTM), long alpha-tropomyosin isoforms with the same N-terminal sequence, different from TM5a, also inhibited depolymerization but were less effective than TM5a. All blocked the pointed end with Tmod1 in the order of effectiveness TM5a >stTM >TM2, showing the importance of the N-terminal sequence and modification. Tmod1-(1-344), lacking the C-terminal 15 residues, did not nucleate polymerization but blocked the pointed end with all three tropomyosin isoforms as does a shorter fragment, Tmod1-(1-92), lacking the C-terminal "capping" domain though higher concentrations were required. An even shorter fragment, Tmod1-(1-48), bound tropomyosin but did not influence actin filament elongation. Tropomyosin-Tmod may function to locally regulate cytoskeletal dynamics in cells by stabilizing actin filaments.
Collapse
Affiliation(s)
- Alla S Kostyukova
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
38
|
Miki M. Structural changes between regulatory proteins and actin: a regulation model by tropomyosin-troponin based on FRET measurements. Results Probl Cell Differ 2002; 36:191-203. [PMID: 11892280 DOI: 10.1007/978-3-540-46558-4_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Masao Miki
- Department of Applied Chemistry and Biotechnology, Fukui University, 3-9-1 Bunkyo, Fukui-Shi 910-8507, Japan
| |
Collapse
|
39
|
Strand J, Nili M, Homsher E, Tobacman LS. Modulation of myosin function by isoform-specific properties of Saccharomyces cerevisiae and muscle tropomyosins. J Biol Chem 2001; 276:34832-9. [PMID: 11457840 DOI: 10.1074/jbc.m104750200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomyosin is an extended coiled-coil protein that influences actin function by binding longitudinally along thin filaments. The present work compares cardiac tropomyosin and the two tropomyosins from Saccharomyces cerevisiae, TPM1 and TPM2, that are much shorter than vertebrate tropomyosins. Unlike cardiac tropomyosin, the phase of the coiled-coil-forming heptad repeat of TPM2 is discontinuous; it is interrupted by a 4-residue deletion. TPM1 has two such deletions, which flank the 38-residue partial gene duplication that causes TPM1 to span five actins instead of the four of TPM2. Each of the three tropomyosin isoforms modulates actin-myosin interactions, with isoform-specific effects on cooperativity and strength of myosin binding. These different properties can be explained by a model that combines opposite effects, steric hindrance between myosin and tropomyosin when the latter is bound to a subset of its sites on actin, and also indirect, favorable interactions between tropomyosin and myosin, mediated by mutually promoted changes in actin. Both of these effects are influenced by which tropomyosin isoform is present. Finally, the tropomyosins have isoform-specific effects on in vitro sliding speed and on the myosin concentration dependence of this movement, suggesting that non-muscle tropomyosin isoforms exist, at least in part, to modulate myosin function.
Collapse
Affiliation(s)
- J Strand
- Departments of Internal Medicine and Biochemistry, the University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
40
|
Burhop J, Rosol M, Craig R, Tobacman LS, Lehman W. Effects of a cardiomyopathy-causing troponin t mutation on thin filament function and structure. J Biol Chem 2001; 276:20788-94. [PMID: 11262409 DOI: 10.1074/jbc.m101110200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is caused by missense or premature truncation mutations in proteins of the cardiac contractile apparatus. Mutant proteins are incorporated into the thin filament or thick filament and eventually produce cardiomyopathy. However, it has been unclear how the several, genetically identified defects in protein structure translate into impaired protein and muscle function. We have studied the basis of FHC caused by premature truncation of the most frequently implicated thin filament target, troponin T. Electron microscope observations showed that the thin filament undergoes normal structural changes in response to Ca(2+) binding. On the other hand, solution studies showed that the mutation alters and destabilizes troponin binding to the thin filament to different extents in different regulatory states, thereby affecting the transitions among states that regulate myosin binding and muscle contraction. Development of hypertrophic cardiomyopathy can thus be traced to a defect in the primary mechanism controlling cardiac contraction, switching between different conformations of the thin filament.
Collapse
Affiliation(s)
- J Burhop
- Departments of Internal Medicine and Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
41
|
Moraczewska J, Greenfield NJ, Liu Y, Hitchcock-DeGregori SE. Alteration of tropomyosin function and folding by a nemaline myopathy-causing mutation. Biophys J 2000; 79:3217-25. [PMID: 11106625 PMCID: PMC1301196 DOI: 10.1016/s0006-3495(00)76554-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mutations in the human TPM3 gene encoding gamma-tropomyosin (alpha-tropomyosin-slow) expressed in slow skeletal muscle fibers cause nemaline myopathy. Nemaline myopathy is a rare, clinically heterogeneous congenital skeletal muscle disease with associated muscle weakness, characterized by the presence of nemaline rods in muscle fibers. In one missense mutation the codon corresponding to Met-8, a highly conserved residue, is changed to Arg. Here, a rat fast alpha-tropomyosin cDNA with the Met8Arg mutation was expressed in Escherichia coli to investigate the effect of the mutation on in vitro function. The Met8Arg mutation reduces tropomyosin affinity for regulated actin 30- to 100-fold. Ca(2+)-sensitive regulatory function is retained, although activation of the actomyosin S1 ATPase in the presence of Ca(2+) is reduced. The poor activation may reflect weakened actin affinity or reduced effectiveness in switching the thin filament to the open, force-producing state. The presence of the Met8Arg mutation severely, but locally, destabilizes the tropomyosin coiled coil in a model peptide, and would be expected to impair end-to-end association between TMs on the thin filament. In muscle, the mutation may alter thin filament assembly consequent to lower actin affinity and altered binding of the N-terminus to tropomodulin at the pointed end of the filament. The mutation may also reduce force generation during activation.
Collapse
Affiliation(s)
- J Moraczewska
- Department of Neuroscience and Cell Biology, UMDMJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Cooperative myosin binding to the thin filament is critical to regulation of cardiac and skeletal muscle contraction. This report delineates and fits to experimental data a new model of this process, in which specific tropomyosin-actin interactions are important, the tropomyosin-tropomyosin polymer is continuous rather than disjointed, and tropomyosin affects myosin-actin binding by shifting among three positions as in recent structural studies. A myosin- and tropomyosin-induced conformational change in actin is proposed, rationalizing the approximately 10,000-fold strengthening effect of myosin on tropomyosin-actin binding. Also, myosin S1 binding to regulated filaments containing mutant tropomyosins with internal deletions exhibited exaggerated cooperativity, implying an allosteric effect of tropomyosin on actin and allowing the effect's measurement. Comparisons among the mutants suggest the change in actin is promoted much more strongly by the middle of tropomyosin than by its ends. Regardless of calcium binding to troponin, this change in actin facilitates the shift in tropomyosin position to the actin inner domain, which is required for tight myosin-actin association. It also increases myosin-actin affinity 7-fold compared with the absence of troponin-tropomyosin. Finally, initiation of a shift in tropomyosin position is 100-fold more difficult than is its extension from one actin to the next, producing the myosin binding cooperativity that underlies cooperative activation of muscle contraction.
Collapse
Affiliation(s)
- L S Tobacman
- Departments of Internal Medicine and Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
43
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
44
|
Rosol M, Lehman W, Craig R, Landis C, Butters C, Tobacman LS. Three-dimensional reconstruction of thin filaments containing mutant tropomyosin. Biophys J 2000; 78:908-17. [PMID: 10653803 PMCID: PMC1300693 DOI: 10.1016/s0006-3495(00)76648-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interactions of the components of reconstituted thin filaments were investigated using a tropomyosin internal deletion mutant, D234, in which actin-binding pseudo-repeats 2, 3, and 4 are missing. D234 retains regions of tropomyosin that bind troponin and form end-to-end tropomyosin bonds, but has a length to span only four instead of seven actin monomers. It inhibits acto-myosin subfragment 1 ATPase (acto-S-1 ATPase) and filament sliding in vitro in both the presence and absence of Ca(2+) (, J. Biol. Chem. 272:14051-14056) and lowers the affinity of S-1.ADP for actin while increasing its cooperative binding. Electron microscopy and three-dimensional reconstruction of reconstituted thin filaments containing actin, troponin, and wild-type or D234 tropomyosin were carried out to determine if Ca(2+)-induced movement of D234 occurred in the filaments. In the presence and absence of Ca(2+), the D234 position was indistinguishable from that of the wild-type tropomyosin, demonstrating that the mutation did not affect normal tropomyosin movement induced by Ca(2+) and troponin. These results suggested that, in the presence of Ca(2+) and troponin, D234 tropomyosin was trapped on filaments in the Ca(2+)-induced position and was unable to undergo a transition to a completely activated position. By adding small amounts of rigor-bonded N-ethyl-maleimide-treated S-1 to mutant thin filaments, thus mimicking the myosin-induced "open" state, inhibition could be overcome and full activation restored. This myosin requirement for full activation provides support for the existence of three functionally distinct thin filament states (off, Ca(2+)-induced, myosin-induced; cf.;, J. Mol. Biol. 266:8-14). We propose a further refinement of the three-state model in which the binding of myosin to actin causes allosteric changes in actin that promote the binding of tropomyosin in an otherwise energetically unfavorable "open" state.
Collapse
Affiliation(s)
- M Rosol
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
45
|
Golitsina NL, Lehrer SS. Smooth muscle alpha-tropomyosin crosslinks to caldesmon, to actin and to myosin subfragment 1 on the muscle thin filament. FEBS Lett 1999; 463:146-50. [PMID: 10601656 DOI: 10.1016/s0014-5793(99)01589-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To obtain proximity information between tropomyosin (Tm) and caldesmon (CaD) on the muscle thin filament, we cloned gizzard alphaTm and created two single Cys mutants S56C/C190S (56Tm) and D100C/C190S (100Tm). They were labeled with benzophenone maleimide (BPM) and UV-irradiated on thin filaments. One chain of BPM-56Tm and two chains of BPM-100Tm crosslinked to CaD. Only BPM-100Tm crosslinked to actin in the absence and presence of CaD and binding of low ratios of myosin subfragment 1 (S1) prevented the crosslinking. Tm-S1 crosslinks were produced when actin.Tm was saturated with S1. Thus, CaD on the actin.Tm filament is located <10 A away from Tm amino acids 56 and 100; in the closed state of the actin.Tm filament, Tm residue 100 is located close to the actin surface and is moved further away in the S1-induced open state; in the open state, S1 binds close to Tm.
Collapse
Affiliation(s)
- N L Golitsina
- Muscle Research Group, Boston Biomedical Research Institute, Boston, MA 02115, USA
| | | |
Collapse
|
46
|
Landis C, Back N, Homsher E, Tobacman LS. Effects of tropomyosin internal deletions on thin filament function. J Biol Chem 1999; 274:31279-85. [PMID: 10531325 DOI: 10.1074/jbc.274.44.31279] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Striated muscle tropomyosin spans seven actin monomers and contains seven quasi-repeating regions with loose sequence similarity. Each region contains a hypothesized actin binding motif. To examine the functions of these regions, full-length tropomyosin was compared with tropomyosin internal deletion mutants spanning either five or four actins. Actin-troponin-tropomyosin filaments lacking tropomyosin regions 2-3 exhibited calcium-sensitive regulation in in vitro motility and myosin S1 ATP hydrolysis experiments, similar to filaments with full-length tropomyosin. In contrast, filaments lacking tropomyosin regions 3-4 were inhibitory to these myosin functions. Deletion of regions 2-4, 3-5, or 4-6 had little effect on tropomyosin binding to actin in the presence of troponin or troponin-Ca(2+), or in the absence of troponin. However, all of these mutants inhibited myosin cycling. Deletion of the quasi-repeating regions diminished the prominent effect of myosin S1 on tropomyosin-actin binding. Interruption of this cooperative, myosin-tropomyosin interaction was least severe for the mutant lacking regions 2-3 and therefore correlated with inhibition of myosin cycling. Regions 3, 4, and 5 each contributed about 1.5 kcal/mol to this process, whereas regions 2 and 6 contributed much less. We suggest that a myosin-induced conformational change in actin facilitates the azimuthal repositioning of tropomyosin which is an essential part of regulation.
Collapse
Affiliation(s)
- C Landis
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
47
|
Landis CA, Bobkova A, Homsher E, Tobacman LS. The active state of the thin filament is destabilized by an internal deletion in tropomyosin. J Biol Chem 1997; 272:14051-6. [PMID: 9162027 DOI: 10.1074/jbc.272.22.14051] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The function of three of tropomyosin's sequential quasiequivalent regions was studied by deletion from skeletal muscle alpha-tropomyosin of internal residues 49-167. This deletion mutant tropomyosin spans four instead of the normal seven actins, and most of the tropomyosin region believed to interact with troponin is retained and uninterrupted in the mutant. The mutant tropomyosin was compared with a full-length control molecule that was modified to functionally resemble muscle tropomyosin (Monteiro, P. B., Lataro, R. C., Ferro, J. A., and Reinach, F. C. (1994) J. Biol. Chem. 269, 10461-10466). The tropomyosin deletion suppressed the actin-myosin subfragment 1 MgATPase rate and the in vitro sliding of thin filaments over a heavy meromyosin-coated surface. This inhibition was not reversed by troponin plus Ca2+. Comparable tropomyosin affinities for actin, regardless of the deletion, suggest that the deleted region has little interaction with actin in the absence of other proteins. Similarly, the deletion did not weaken binding of the troponin-tropomyosin complex to actin. Furthermore, Ca2+ had a 2-fold effect on troponin-tropomyosin's affinity for actin, regardless of the deletion. Notably, the deletion greatly weakened tropomyosin binding to myosin subfragment 1-decorated actin, with the full-length tropomyosin having a 100-fold greater affinity. The inhibitory properties resulting from the deletion are attributed to defective stabilization of the myosin-induced active state of the thin filament.
Collapse
Affiliation(s)
- C A Landis
- Departments of Internal Medicine and Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
48
|
Cassell M, Tobacman LS. Opposite effects of myosin subfragment 1 on binding of cardiac troponin and tropomyosin to the thin filament. J Biol Chem 1996; 271:12867-72. [PMID: 8662810 DOI: 10.1074/jbc.271.22.12867] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To better understand the regulation of striated muscle contraction, the effects of myosin subfragment 1 (S-1) on the actin binding of cardiac troponin and tropomyosin were investigated. Troponin's affinity for actin-tropomyosin was 4-fold stronger in the absence than in the presence of myosin S-1. CaCl2 had no effect on troponin binding to the thin filament in the presence of myosin S-1. The binding curve was weakly cooperative, implying interactions between adjacent troponin molecules. Myosin S-1 increased (40-200-fold) the affinity of tropomyosin for the thin filament, an effect opposite to the effect of myosin on troponin. This effect was highly cooperative and occurred in the presence of ADP or in the absence of nucleotide. Myosin altered the effect of ionic conditions on tropomyosin-actin binding, consistent with tropomyosin binding to a different site on F-actin in the presence of myosin. The results indicate that troponin-tropomyosin and strongly binding myosin cross-bridges do not compete for an F-actin binding site. Although repositioning of troponin-tropomyosin on the actin filament may be sterically required for tight myosin-actin binding, a myosin-induced conformational change in actin provides a better explanation for the complex effects of myosin on thin filament assembly.
Collapse
Affiliation(s)
- M Cassell
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | | |
Collapse
|
49
|
Abstract
Striated and smooth muscles have different mechanisms of regulation of contraction which can be the basis for selective pharmacological alteration of the contractility of these muscle types. The progression in our understanding of the tropomyosin-troponin regulatory system of striated muscle from the early 1970s through the early 1990s is described along with key concepts required for understanding this complex system. This review also examines the recent history of the putative contractile regulatory proteins of smooth muscle, caldesmon and calponin. A contrast is made between the actin linked regulatory systems of striated and smooth muscle.
Collapse
Affiliation(s)
- J M Chalovich
- Department of Biochemistry, East Carolina University, School of Medicine, Greenville, NC 27858-4354
| |
Collapse
|
50
|
Abstract
Most current textbooks of cell biology and histology use the steric blocking model to describe the protein mechanism by which vertebrate striated muscle contraction is regulated. Evidence accumulated in the past decade, however, reveals the regulation of muscle contraction to be far more complex than this model predicts.
Collapse
|