1
|
Zhang R, Wang Y, Gaspard P, Kruse N. The oscillating Fischer-Tropsch reaction. Science 2023; 382:99-103. [PMID: 37797023 DOI: 10.1126/science.adh8463] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023]
Abstract
The mechanistic steps that underlie the formation of higher hydrocarbons in catalytic carbon monoxide (CO) hydrogenation at atmospheric pressure over cobalt-based catalysts (Fischer-Tropsch synthesis) have remained poorly understood. We reveal nonisothermal rate-and-selectivity oscillations that are self-sustained over extended periods of time (>24 hours) for a cobalt/cerium oxide catalyst with an atomic ratio of cobalt to cerium of 2:1 (Co2Ce1) at 220°C and equal partial pressures of the reactants. A microkinetic mechanism was used to generate rate-and-selectivity oscillations through forced temperature oscillations. Experimental and theoretical oscillations were in good agreement over an extended range of reactant pressure ratios. Additionally, phase portraits for hydrocarbon production were constructed that support the thermokinetic origin of our rate-and-selectivity oscillations.
Collapse
Affiliation(s)
- Rui Zhang
- Voiland School of Chemical Engineering and Bioengineering at Washington State University, Pullman, WA 99164, USA
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering at Washington State University, Pullman, WA 99164, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99332, USA
| | - Pierre Gaspard
- Centre for Nonlinear Phenomena and Complex Systems, CP231, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Norbert Kruse
- Voiland School of Chemical Engineering and Bioengineering at Washington State University, Pullman, WA 99164, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99332, USA
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), CP243, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| |
Collapse
|
2
|
Peters S, Semenov DA, Hochleitner R, Trapp O. Synthesis of prebiotic organics from CO 2 by catalysis with meteoritic and volcanic particles. Sci Rep 2023; 13:6843. [PMID: 37231067 DOI: 10.1038/s41598-023-33741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The emergence of prebiotic organics was a mandatory step toward the origin of life. The significance of the exogenous delivery versus the in-situ synthesis from atmospheric gases is still under debate. We experimentally demonstrate that iron-rich meteoritic and volcanic particles activate and catalyse the fixation of CO2, yielding the key precursors of life-building blocks. This catalysis is robust and produces selectively aldehydes, alcohols, and hydrocarbons, independent of the redox state of the environment. It is facilitated by common minerals and tolerates a broad range of the early planetary conditions (150-300 °C, ≲ 10-50 bar, wet or dry climate). We find that up to 6 × 108 kg/year of prebiotic organics could have been synthesized by this planetary-scale process from the atmospheric CO2 on Hadean Earth.
Collapse
Affiliation(s)
- Sophia Peters
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
| | - Dmitry A Semenov
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
| | - Rupert Hochleitner
- Mineralogische Staatssammlung München, Theresienstr. 41, 80333, Munich, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
- Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany.
| |
Collapse
|
3
|
Arya A, Ray J, Sharma S, Cruz Simbron R, Lozano A, Smith HB, Andersen JL, Chen H, Meringer M, Cleaves HJ. An open source computational workflow for the discovery of autocatalytic networks in abiotic reactions. Chem Sci 2022; 13:4838-4853. [PMID: 35655880 PMCID: PMC9067619 DOI: 10.1039/d2sc00256f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
A central question in origins of life research is how non-entailed chemical processes, which simply dissipate chemical energy because they can do so due to immediate reaction kinetics and thermodynamics, enabled the origin of highly-entailed ones, in which concatenated kinetically and thermodynamically favorable processes enhanced some processes over others. Some degree of molecular complexity likely had to be supplied by environmental processes to produce entailed self-replicating processes. The origin of entailment, therefore, must connect to fundamental chemistry that builds molecular complexity. We present here an open-source chemoinformatic workflow to model abiological chemistry to discover such entailment. This pipeline automates generation of chemical reaction networks and their analysis to discover novel compounds and autocatalytic processes. We demonstrate this pipeline's capabilities against a well-studied model system by vetting it against experimental data. This workflow can enable rapid identification of products of complex chemistries and their underlying synthetic relationships to help identify autocatalysis, and potentially self-organization, in such systems. The algorithms used in this study are open-source and reconfigurable by other user-developed workflows.
Collapse
Affiliation(s)
- Aayush Arya
- Department of Physics, Lovely Professional University Jalandhar Delhi-GT Road Phagwara Punjab 144411 India
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
| | - Jessica Ray
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
| | - Siddhant Sharma
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Department of Biochemistry, Deshbandhu College, University of Delhi New Delhi 110019 India
| | - Romulo Cruz Simbron
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Laboratorio de Investigación Fisicoquímica (LABINFIS), Universidad Nacional de Ingeniería Av. Túpac Amaru 210 Lima Peru
- Centro de Tecnologías de la Información y Comunicaciones (CTIC UNI), Universidad Nacional de Ingenieria Av. Túpac Amaru 210 Lima Peru
| | - Alejandro Lozano
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Unidad Profesional Interdisciplinaria de Biotecnología - Instituto Politécnico Nacional 550 Av. Acueducto 07340 Mexico City Mexico
| | - Harrison B Smith
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo Japan
| | - Jakob Lykke Andersen
- Department of Mathematics and Computer Science, University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Huan Chen
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Markus Meringer
- German Aerospace Center (DLR) 82234 Oberpfaffenhofen Wessling Germany
| | - Henderson James Cleaves
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo Japan
| |
Collapse
|
4
|
Zellner NEB, McCaffrey VP, Butler JHE. Cometary Glycolaldehyde as a Source of pre-RNA Molecules. ASTROBIOLOGY 2020; 20:1377-1388. [PMID: 32985898 DOI: 10.1089/ast.2020.2216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over 200 molecules have been detected in multiple extraterrestrial environments, including glycolaldehyde (C2(H2O)2, GLA), a two-carbon sugar precursor that has been detected in regions of the interstellar medium. Its recent in situ detection on the nucleus of comet 67P/Churyumov-Gerasimenko and through remote observations in the comae of others provides tantalizing evidence that it is common on most (if not all) comets. Impact experiments conducted at the Experimental Impact Laboratory at NASA's Johnson Space Center have shown that samples of GLA and GLA mixed with montmorillonite clays can survive impact delivery in the pressure range of 4.5 to 25 GPa. Extrapolated to amounts of GLA observed on individual comets and assuming a monotonic impact rate in the first billion years of Solar System history, these experimental results show that up to 1023 kg of cometary GLA could have survived impact delivery, with substantial amounts of threose, erythrose, glycolic acid, and ethylene glycol also produced or delivered. Importantly, independent of the profile of the impact flux in the early Solar System, comet delivery of GLA would have provided (and may continue to provide) a reservoir of starting material for the formose reaction (to form ribose) and the Strecker reaction (to form amino acids). Thus, comets may have been important delivery vehicles for starting molecules necessary for life as we know it.
Collapse
Affiliation(s)
| | | | - Jayden H E Butler
- Department of Physics, Albion College, Albion, Michigan, USA
- Department of Physics, California State University - Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Mariscal C, Barahona A, Aubert-Kato N, Aydinoglu AU, Bartlett S, Cárdenas ML, Chandru K, Cleland C, Cocanougher BT, Comfort N, Cornish-Bowden A, Deacon T, Froese T, Giovannelli D, Hernlund J, Hut P, Kimura J, Maurel MC, Merino N, Moreno A, Nakagawa M, Peretó J, Virgo N, Witkowski O, James Cleaves H. Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report. ORIGINS LIFE EVOL B 2019; 49:111-145. [PMID: 31399826 DOI: 10.1007/s11084-019-09580-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.
Collapse
Affiliation(s)
- Carlos Mariscal
- Department of Philosophy, Ecology, Evolution, and Conservation Biology (EECB) Program, and Integrative Neuroscience Program, University of Nevada, Reno (UNR), Reno, Nevada, USA
| | - Ana Barahona
- Department of Evolutionary Biology, School of Sciences, UNAM, 04510, CDMX, Coyoacán, Mexico
| | - Nathanael Aubert-Kato
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Department of Information Sciences, Ochanomizu University, Bunkyoku, Otsuka, 2-1-1, Tokyo, 112-0012, Japan
| | - Arsev Umur Aydinoglu
- Blue Marble Space Institute of Science, Washington, DC, 20011, USA
- Science and Technology Policies Department, Middle East Technical University (METU), 06800, Ankara, Turkey
| | - Stuart Bartlett
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | | | - Kuhan Chandru
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Space Science Centre (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628, Prague, 6, Dejvice, Czech Republic
| | - Carol Cleland
- Department of Philosophy, University of Colorado, Boulder, Colorado, USA
| | - Benjamin T Cocanougher
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Nathaniel Comfort
- Department of the History of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Terrence Deacon
- Department of Anthropology & Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Tom Froese
- Institute for Applied Mathematics and Systems Research (IIMAS), National Autonomous University of Mexico (UNAM), 04510, Mexico City, Mexico
- Centre for the Sciences of Complexity (C3), National Autonomous University of Mexico (UNAM), 04510, Mexico City, Mexico
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
- Department of Marine and Coastal Science, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901, USA
- YHouse, Inc., NY, 10159, New York, USA
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80156, Naples, Italy
| | - John Hernlund
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Piet Hut
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - Jun Kimura
- Department of Earth and Space Science, Osaka University, Machikaneyama-Chou 1-1, Toyonaka City, Osaka, 560-0043, Japan
| | | | - Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Department of Earth Sciences, University of Southern California, California, Los Angeles, 90089, USA
| | - Alvaro Moreno
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country, Avenida de Tolosa 70, 20018, Donostia-San Sebastian, Spain
| | - Mayuko Nakagawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Juli Peretó
- Department of Biochemistry and Molecular Biology, University of Valéncia and Institute for Integrative Systems Biology I2SysBio (University of Valéncia-CSIC), València, Spain
| | - Nathaniel Virgo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- European Centre for Living Technology, Venice, Italy
| | - Olaf Witkowski
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
- Blue Marble Space Institute of Science, Washington, DC, 20011, USA.
- Institute for Advanced Study, Princeton, NJ, 08540, USA.
- European Centre for Living Technology, Venice, Italy.
- Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
6
|
Burton AS, Berger EL. Insights into Abiotically-Generated Amino Acid Enantiomeric Excesses Found in Meteorites. Life (Basel) 2018; 8:life8020014. [PMID: 29757224 PMCID: PMC6027462 DOI: 10.3390/life8020014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 11/16/2022] Open
Abstract
Biology exhibits homochirality, in that only one of two possible molecular configurations (called enantiomers) is used in both proteins and nucleic acids. The origin of this phenomenon is currently unknown, as nearly all known abiotic mechanisms for generating these compounds result in equal (racemic) mixtures of both enantiomers. However, analyses of primitive meteorites have revealed that a number of amino acids of extraterrestrial origin are present in enantiomeric excess, suggesting that there was an abiotic route to synthesize amino acids in a non-racemic manner. Here we review the amino acid contents of a range of meteorites, describe mechanisms for amino acid formation and their potential to produce amino acid enantiomeric excesses, and identify processes that could have amplified enantiomeric excesses.
Collapse
Affiliation(s)
- Aaron S Burton
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA.
| | - Eve L Berger
- GeoControl Systems, Jacobs JETS contract, NASA Johnson Space Center, Houston, TX 77058, USA.
| |
Collapse
|
7
|
Holm NG, Oze C, Mousis O, Waite JH, Guilbert-Lepoutre A. Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets). ASTROBIOLOGY 2015; 15:587-600. [PMID: 26154779 PMCID: PMC4523005 DOI: 10.1089/ast.2014.1188] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 01/28/2015] [Indexed: 05/22/2023]
Abstract
Serpentinization involves the hydrolysis and transformation of primary ferromagnesian minerals such as olivine ((Mg,Fe)2SiO4) and pyroxenes ((Mg,Fe)SiO3) to produce H2-rich fluids and a variety of secondary minerals over a wide range of environmental conditions. The continual and elevated production of H2 is capable of reducing carbon, thus initiating an inorganic pathway to produce organic compounds. The production of H2 and H2-dependent CH4 in serpentinization systems has received significant interdisciplinary interest, especially with regard to the abiotic synthesis of organic compounds and the origins and maintenance of life in Earth's lithosphere and elsewhere in the Universe. Here, serpentinization with an emphasis on the formation of H2 and CH4 are reviewed within the context of the mineralogy, temperature/pressure, and fluid/gas chemistry present in planetary environments. Whether deep in Earth's interior or in Kuiper Belt Objects in space, serpentinization is a feasible process to invoke as a means of producing astrobiologically indispensable H2 capable of reducing carbon to organic compounds.
Collapse
Affiliation(s)
- N G Holm
- 1 Department of Geological Sciences, Stockholm University , Stockholm, Sweden
| | - C Oze
- 2 Department of Geological Sciences, University of Canterbury , Christchurch, New Zealand
| | - O Mousis
- 3 Aix Marseille Université , CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Marseille, France
| | - J H Waite
- 4 Space Science and Engineering Division, Southwest Research Institute , San Antonio, Texas, USA
| | | |
Collapse
|
8
|
|
9
|
Jungclaus G, Yuen G, Moore C, Lawless J. EVIDENCE FOR THE PRESENCE OF LOW MOLECULAR WEIGHT ALCOHOLS AND CARBONYL COMPOUNDS IN THE MURCHISON METEORITE†. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1945-5100.1976.tb00324.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Huss GR, Lewis RS. Noble gases in presolar diamonds II: Component abundances reflect thermal processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1945-5100.1994.tb01095.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Establishing a molecular relationship between chondritic and cometary organic solids. Proc Natl Acad Sci U S A 2011; 108:19171-6. [PMID: 21464292 DOI: 10.1073/pnas.1015913108] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state (13)C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites.
Collapse
|
12
|
Kurakin A. The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor Biol Med Model 2011; 8:4. [PMID: 21447162 PMCID: PMC3080324 DOI: 10.1186/1742-4682-8-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/29/2011] [Indexed: 12/15/2022] Open
Abstract
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy.An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter.The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Summons RE, Amend JP, Bish D, Buick R, Cody GD, Des Marais DJ, Dromart G, Eigenbrode JL, Knoll AH, Sumner DY. Preservation of martian organic and environmental records: final report of the Mars biosignature working group. ASTROBIOLOGY 2011; 11:157-81. [PMID: 21417945 DOI: 10.1089/ast.2010.0506] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.
Collapse
Affiliation(s)
- Roger E Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dorn ED, Nealson KH, Adami C. Monomer abundance distribution patterns as a universal biosignature: examples from terrestrial and digital life. J Mol Evol 2011; 72:283-95. [PMID: 21253717 DOI: 10.1007/s00239-011-9429-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/03/2011] [Indexed: 11/24/2022]
Abstract
Organisms leave a distinctive chemical signature in their environment because they synthesize those molecules that maximize their fitness. As a result, the relative concentrations of related chemical monomers in life-bearing environmental samples reflect, in part, those compounds' adaptive utility. In contrast, rates of molecular synthesis in a lifeless environment are dictated by reaction kinetics and thermodynamics, so concentrations of related monomers in abiotic samples tend to exhibit specific patterns dominated by small, easily formed, low-formation-energy molecules. We contend that this distinction can serve as a universal biosignature: the measurement of chemical concentration ratios that belie formation kinetics or equilibrium thermodynamics indicates the likely presence of life. We explore the features of this biosignature as observed in amino acids and carboxylic acids, using published data from numerous studies of terrestrial sediments, abiotic (spark, UV, and high-energy proton) synthesis experiments, and meteorite bodies. We then compare these data to the results of experimental studies of an evolving digital life system. We observe the robust and repeatable evolution of an analogous biosignature in a digital lifeform, suggesting that evolutionary selection necessarily constrains organism composition and that the monomer abundance biosignature phenomenon is universal to evolved biosystems.
Collapse
Affiliation(s)
- Evan D Dorn
- Digital Life Laboratory 136-93, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
15
|
Suo Z, Avci R, Schweitzer MH, Deliorman M. Porphyrin as an ideal biomarker in the search for extraterrestrial life. ASTROBIOLOGY 2007; 7:605-15. [PMID: 17723092 DOI: 10.1089/ast.2006.0120] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A key issue in astrobiological research is identifying target molecules that are unambiguously biological in origin and can be easily detected and recognized. We suggest porphyrin derivatives as an ideal target, because these chromophores are global in distribution and found in virtually all living organisms on Earth, including microorganisms that may approximate the early evolution of life on Earth. We discuss the inherent qualities that make porphyrin ideally suited for astrobiological research and discuss methods for detecting porphyrin molecules in terrestrial sedimentary environments. We present preliminary data to support the use of ToFSIMS as a powerful technique in the identification of porphyrins.
Collapse
Affiliation(s)
- Zhiyong Suo
- ICAL Facility, Department of Physics, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
16
|
Hud NV, Jain SS, Li X, Lynn DG. Addressing the problems of base pairing and strand cyclization in template-directed synthesis: a case for the utility and necessity of 'molecular midwives' and reversible backbone linkages for the origin of proto-RNA. Chem Biodivers 2007; 4:768-83. [PMID: 17443888 DOI: 10.1002/cbdv.200790063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nucleic acid synthesis is precisely controlled in living organisms by highly evolved protein enzymes. The remarkable fidelity of information transfer realized between template and product strands is the result of both the spatial selectivity of the polymerase active site for Watson-Crick base pairs at the point of nucleotide coupling and subsequent proof-reading mechanisms. In the absence of naturally derived polymerases, in vitro template-directed synthesis by means of chemically activated mononucleotides has proven remarkably inefficient and error-prone. Nevertheless, the spontaneous emergence of RNA polymers and their protein-free replication is frequently taken as a prerequisite for the hypothetical 'RNA world'. We present two specific difficulties that face the de novo synthesis of RNA-like polymers in a prebiotic (enzyme-free) environment: nucleoside base selection and intramolecular strand cyclization. These two problems are inherent to the assumption that RNA formed de novo from pre-existing, chemically-activated mononucleotides in solution. As a possible resolution to these problems, we present arguments and experimental support for our hypothesis that small molecules (referred to as 'molecular midwives') and alternative backbone linkages (under equilibrium control) facilitated the emergence of the first RNA-like polymers of life.
Collapse
Affiliation(s)
- Nicholas V Hud
- Center for Fundamental and Applied Molecular Evolution, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
17
|
Fujiwara S, Nishimoto Y. Discrimination of D-enantiomers of amino acids from L-ones through an inorganic reaction. ANAL SCI 2005; 21:359-60. [PMID: 15844325 DOI: 10.2116/analsci.21.359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper reports on an inorganic reaction that performs complete discrimination of D- and L-enantiomers from each other in an aqueous solution at room temperature. This is the first finding of an inorganic reaction that acts like an organic biosystem in the sense that such a kind of complete discrimination of enantiomers is a matter solely done through biosystems in nature. We also assume that they suggest significant concerns with not only analytical chemistry in regards to the discrimination of isomers, but also with cosmo/geo-chemistry.
Collapse
Affiliation(s)
- Shizuo Fujiwara
- Research Institute for Integrated Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan
| | | |
Collapse
|
18
|
Agarwal VK, Schutte W, Greenberg JM, Ferris JP, Briggs R, Connor S, Van de Bult CP, Baas F. Photochemical reactions in interstellar grains photolysis of CO, NH3, and H2O. ORIGINS LIFE EVOL B 2001; 16:21-40. [PMID: 11542015 DOI: 10.1007/bf01808047] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A simulation of the organic layer accreted onto interstellar dust particles was prepared by slow deposition of a CO:NH2:H2O gas mixture on an Al block at 10 K, with concomitant irradiation with vacuum UV. The residues were analyzed by GC-MS, HPLC, and near IR; a reaction pathway leading from NH3 to complex alcohol, fatty acid, and amide products in 27 stages is postulated. The astronomical relevance and significance of the observations are discussed.
Collapse
Affiliation(s)
- V K Agarwal
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fisher DE. Searching for life on Mars and in meteorites in the 20th century. EOS 1999; 80:245-6, 248-9. [PMID: 11589221 DOI: 10.1029/99eo00180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D E Fisher
- Department of Geological Sciences, University of Miami, Coral Gables, FL 33124-0401, USA.
| |
Collapse
|
20
|
Carbon isotopic fractionation in the process of Fischer-Tropsch reaction in primitive solar nebula. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/bf02932441] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Alexander CM, Russell SS, Arden JW, Ash RD, Grady MM, Pillinger CT. The origin of chondritic macromolecular organic matter: a carbon and nitrogen isotope study. METEORITICS & PLANETARY SCIENCE 1998; 33:603-622. [PMID: 11543070 DOI: 10.1111/j.1945-5100.1998.tb01667.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The N and C abundances and isotopic compositions of acid-insoluble carbonaceous material in thirteen primitive chondrites (five unequilibrated ordinary chondrites, three CM chondrites, three enstatite chondrites, a CI chondrite and a CR chondrite) have been measured by stepped combustion. While the range of C isotopic compositions observed is only delta 13C = 30%, the N isotopes range from delta 15N approximately -40 to 260%. After correction for metamorphism, presolar nanodiamonds appear to have made up a fairly constant 3-4 wt% of the insoluble C in all the chondrites studied. The apparently similar initial presolar nanodiamond to organic C ratios, and the correlations of elemental and isotopic compositions with metamorphic indicators in the ordinary and enstatite chondrites, suggest that the chondrites all accreted similar organic material. This original material probably most closely resembles that now found in Renazzo and Semarkona. These two meteorites have almost M-shaped N isotope release profiles that can be explained most simply by the super-position of two components, one with a composition between delta 15N = -20 and -40% and a narrow combustion interval, the other having a broader release profile and a composition of delta 15N approximately 260%. Although isotopically more subdued, the CI and the three CM chondrites all appear to show vestiges of this M-shaped profile. How and where the components in the acid-insoluble organics formed remains poorly constrained. The small variation in nanodiamond to organic C ratio between the chondrite groups limits the local synthesis of organic matter in the various chondrite formation regions to at most 30%. The most 15N-rich material probably formed in the interstellar medium, and the fraction of organic N in Renazzo in this material ranges from 40 to 70%. The isotopically light component may have formed in the solar system, but the limited range in nanodiamond to total organic C ratios in the chondrite groups is consistent with most of the organic material being, presolar.
Collapse
Affiliation(s)
- C M Alexander
- Department of Earth Sciences, The Open University, Milton Keynes, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Most of the material of chondrites was heavily reprocessed in the early Solar System, and hence retains only a dim memory of its interstellar origin even in the least altered meteorites. Opaque matrix, the most primitive material, seems to have taken up Fe2+ and changed its mineralogy and texture. Chondrules and Ca, Al-rich inclusions have been further altered by melting, oxidation or reduction, loss of volatiles, etc. None the less, small amounts of exotic components have survived, as indicated by isotopic anomalies. A dust component enriched in ieO is the most abundant and widespread. It survives in Ca, Al-rich inclusions as anomalous spinel grains, but is recognizable even in highly evolved meteorites and planets from variations in bulk oxygen isotopic composition. A few inclusions show small nucleosynthetic anomalies for many elements (Si, Ca, Ti, Cr, Sr, Ba, Nd, Sm), always coupled with mass fractionation of several of these elements, as well as 0 and Mg. Seven extinct radionuclides (
26
AI,
41
Ca,
53
Mn,
107
Pd,
129
I,
146
Sm, and
244
Pu) have been recognized from their decay products, and provide clues to the chronology and nucleosynthetic sources of the early Solar System. Highly volatile elements, such as C, N and the noble gases, show especially large and numerous isotopic anomalies. The noble-gas components include Ne-E (monoisotopic
22
Ne from the (B+ decay of 2.6a
22
Na), Xe-HL (enriched 2-fold in the light and heavy isotopes), and Xe-S (enriched in the even-numbered, middle isotopes 128, 130 and 132). They are located in carriers that themselves are anomalous, e.g. carbon enriched up to 2.4-fold in
13
C or depleted by more than 30 % in
15
N, or spinel enriched in
16
O and
13
C. Other anomalies include nitrogen enriched 2-fold in
15
N and hydrogen enriched 5-fold in D ; probably relict interstellar molecules. A variety of astronomical sources seem to be required: novae, red giants, supernovae and molecular clouds.
Collapse
|
23
|
Abstract
D/H ratios of two meteorites (Renazzo CR and Semarkona LL3), which are known to exhibit the largest departures from the terrestrial hydrogen isotopic ratios, have been determined with the CRPG Nancy ion microprobe. Correlations between the D/H ratios and the chemical compositions (H2O, K, Si, C/H) of plausible hydrogen carriers were observed. From these correlations, it is possible to show that, contrary to previous interpretations, phyllosilicates are the carriers of the deuterium-rich hydrogen in Semarkona and Renazzo: 870 x 10(-6) > or = D/H > or = 670 x 10(-6) (+4600 > or = deltaD > or = 3300%) and > or = 320 x 10(-6) (deltaD > or = 1050%), respectively. Hydrogen is also present in the chondrules of these two deuterium-rich meteorites. The large differences in D/H ratios between matrix (up to 700 x 10(-6), deltaD up to +3500%) and chondrules (from 120 x 10(-6) (deltaD = -230%) to 230 x 10(-6) (deltaD = +475%)) show that hydrogen in chondrules cannot originate from the matrix by simple contamination or diffusion processes. The high D/H ratios measured in water-bearing minerals could not have been produced thermally within a dense solar nebula. Chemical reactions (i.e., involving ions or radicals), taking place in interstellar space or in the outer regions of the nebula at 110-140K are presently the only conceivable mechanisms capable of yielding such isotopic enrichments. Water in these meteorites should no longer be considered as a simple product of nebular condensation under equilibrium thermodynamic conditions at T > or = 160K.
Collapse
|
24
|
|
25
|
Shimoyama A, Ikeda H, Nomoto S, Harada K. Formation of Carboxylic Acids from Elemental Carbon and Water by Arc-Discharge Experiments. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1994. [DOI: 10.1246/bcsj.67.257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
|
27
|
Krishnamurthy RV, Epstein S, Cronin JR, Pizzarello S, Yuen GU. Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. GEOCHIMICA ET COSMOCHIMICA ACTA 1992; 56:4045-4058. [PMID: 11537206 DOI: 10.1016/0016-7037(92)90015-b] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The monocarboxylic acids and hydrocarbons of the Murchison meteorite (CM2) were isolated for isotopic analysis. The nonvolatile hydrocarbons were analyzed as crude methanol and benzene-methanol extracts and also after separation by silica gel chromatography into predominantly aliphatic, aromatic, and polar hydrocarbon fractions. The volatile hydrocarbons were obtained after progressive decomposition of the meteorite matrix by freeze-thaw, hot water, and acid treatment. Molecular analyses of the aromatic hydrocarbons showed them to comprise a complex suite of compounds in which pyrene, fluoranthene, phenanthrene, and acenaphthene were the most abundant components, a result similar to earlier analyses. The polar hydrocarbons also comprise a very complex mixture in which aromatic ketones, nitrogen, and sulfur heterocycles were identified. Both delta 13C and delta D values were obtained for all preparations. The monocarboxylic acids, aliphatic, aromatic, and polar hydrocarbons, and the indigenous volatile hydrocarbons were found to be D-rich with delta D values ranging from about +100 to +1000. The delta 13C values ranged overall from -13 to +17. The deuterium enrichment observed in these compounds is suggestive of a relationship to interstellar organic compounds. In two separate analyses, the delta D values of the nonvolatile hydrocarbons were observed to increase in the following order: aliphatic < aromatic < polar. This finding is consistent with an early solar system or parent body conversion of aromatic to aliphatic compounds as well as the earlier suggestion of pyrolytic formation of aromatic from aliphatic compounds.
Collapse
Affiliation(s)
- R V Krishnamurthy
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125
| | | | | | | | | |
Collapse
|
28
|
|
29
|
|
30
|
Shock EL, Schulte MD. Summary and implications of reported amino acid concentrations in the Murchison meteorite. GEOCHIMICA ET COSMOCHIMICA ACTA 1990; 54:3159-3173. [PMID: 11541223 DOI: 10.1016/0016-7037(90)90131-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A study of literature reports of the concentrations of amino acids in extracts from the Murchison meteorite shows that many of the concentration ratios are constant. There are two possible interpretations of these ratios. One is that they are controlled by the pathways through which the amino acids formed, from which it follows that the amino acids are distributed in the same proportions throughout the meteorite. The other interpretation is that the ratios result from the analytical procedures used to extract the amino acids from the meteorite. These methods rely heavily on high-temperature (100 degrees C) aqueous extraction and subsequent high-temperature acid hydrolysis. A correlation was observed in the present study between the relative concentrations of several amino acids in the meteorite extracts and their relative aqueous solubilities at 100 degrees C (alanine, valine, leucine, isoleucine, norleucine, aspartic acid, glutamic acid and glycine). The extract solutions are dilute, and far from the saturation limits, but these correlations suggest that the sampling procedure affects directly the reported concentrations for these amino acids. Ratios of the concentration of serine to those of glycine are also constant but cannot be accounted for solely by relative solubilities, and, as suggested elsewhere, serine as well as phenylalanine and methionine may be terrestrial contaminants. Data for beta-alanine, alpha-aminobutyric acid, proline, sarcosine, alloisoleucine, beta-aminoisobutyric acid, beta-aminobutyric acid, and threonine also show constant abundances relative to glycine, but lack of solubility data at extraction conditions prohibits evaluating the extent of possible sampling bias for these amino acids. If the extraction process does not bias the results, and all extractable amino acids are removed from meteorite samples, then the properties of amino acids which control both their solubilities and their concentrations in the meteorite need to be established. The possibility of sampling bias needs to be tested experimentally before concluding that extraction is complete, and that the constant relative abundances indicate that the relative concentrations of amino acids are homogeneous in the meteorite.
Collapse
Affiliation(s)
- E L Shock
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
31
|
Cronin JR, Pizzarello S. Aliphatic hydrocarbons of the Murchison meteorite. GEOCHIMICA ET COSMOCHIMICA ACTA 1990; 54:2859-2868. [PMID: 11537195 DOI: 10.1016/0016-7037(90)90020-l] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The indigenous organic compounds of carbonaceous chondrites have been difficult to characterize because of problems arising from terrestrial contamination. The fall of the Murchison meteorite (CM2) provided pristine samples which allowed the resolution of some prior ambiguities as, for example, in the case of the amino acids. However, the nature of the aliphatic hydrocarbons has remained unclear. Shortly after the Murchison fall, one laboratory found them to be mainly cycloalkanes; another found, in order of abundance, branched alkanes, olefins, and cycloalkanes; while a third reported predominantly n-alkanes followed by methyl alkanes and olefins. We have reinvestigated this question using benzene-methanol as the extraction solvent, silica-gel chromatography for fractionation of the extract, and GC-MS, and IR and NMR spectroscopic techniques for the analyses. When interior samples were obtained and the analyses carried out under conditions that minimized environmental contaminants, we have found the principal aliphatic components of the Murchison meteorite to be a structurally diverse suite of C15 to C30 branched alkyl-substituted mono-, di-, and tricyclic alkanes. Comparative analyses were carried out on the Murray (CM2), Allende (CV3), and New Concord (L6) chondrites that illustrate the nature of the contamination problem encountered with carbonaceous chondrites.
Collapse
Affiliation(s)
- J R Cronin
- Department of Chemistry and Center for Meteorite Studies, Arizona State University, Tempe 85287-1604
| | | |
Collapse
|
32
|
Abstract
Several authors have suggested that comets or carbonaceous asteroids contributed large amounts of organic matter to the primitive Earth, and thus possibly played a vital role in the origin of life. But organic matter cannot survive the extremely high temperatures (>10(4) K) reached on impact, which atomize the projectile and break all chemical bonds. Only fragments small enough to be gently decelerated by the atmosphere--principally meteors of 10(-12)-10(-6) g--can deliver their organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only approximately 0.006 g cm-2 intact organic carbon would accumulate in 10(8) yr, but at the higher rates of approximately 4 x 10(9) yr ago, about 20 g cm-2 may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on Earth.
Collapse
Affiliation(s)
- E Anders
- Department of Chemistry, University of Chicago, Illinois 60637-1433, USA
| |
Collapse
|
33
|
Deamer DW, Pashley RM. Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. ORIGINS LIFE EVOL B 1989; 19:21-38. [PMID: 2748144 DOI: 10.1007/bf01808285] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have investigated physicochemical properties of amphiphilic compounds in carbonaceous meteorites. The primary aim was to determine whether such materials represent plausible sources of lipid-like compounds that could have been involved as membrane components in primitive cells. Samples of the Murchison CM2 chondrite were extracted with chloroform-methanol, and the chloroform-soluble material was separated by two-dimensional thin layer chromatography. Fluorescence, iodine stains and charring were used to identify major components on the plates. These were then scraped and eluted as specific fractions which were investigated by fluorescence and absorption spectra, surface chemical methods, gas chromatography-mass spectrometry, and electron microscopy. Fraction 5 was strongly fluorescent, and contained pyrene and fluoranthene, the major polycyclic aromatic hydrocarbons of the Murchison chondrite. This fraction was also present in extracts from the Murray and Mighei CM2 chondrites. Fraction 3 was surface active, forming apparent monomolecular films at air-water interfaces. Surface force measurements suggested that fraction 3 contained acidic groups. Fraction 1 was also surface active, and certain components could self-assemble into membranous vesicles which encapsulated polar solutes. The observations reported here demonstrate that organic compounds plausibly available on the primitive Earth through meteoritic infall are surface active, and have the ability to self-assemble into membranes.
Collapse
Affiliation(s)
- D W Deamer
- Department of Zoology, University of California, Davis 95616
| | | |
Collapse
|
34
|
Cronin JR. Origin of organic compounds in carbonaceous chondrites. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1989; 9:59-64. [PMID: 11537361 DOI: 10.1016/0273-1177(89)90364-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbonaceous chondrites, a class of primitive meteorite, have long been known to contain their complement of carbon largely in the form of organic, i.e., hydrocarbon-related, matter. Both discrete organic compounds and an insoluble, macromolecular material are present. Several characteristics of these materials provide evidence for their abiotic origin. The principal formation hypotheses have invoked chemistry occurring either in the solar nebula or on the parent body. However, recent stable isotope analyses of the meteorite carboxylic acids and amino acids indicate that they may be related to interstellar cloud compounds. These results suggest a formation scheme in which interstellar compounds were incorporated into the parent body and subsequently converted to the present suite of meteorite organics by the hydrothermal process believed to have formed the clay minerals of the meteorite matrix.
Collapse
Affiliation(s)
- J R Cronin
- Department of Chemistry, Arizona State University, Tempe 85287-1604, USA
| |
Collapse
|
35
|
McClendon JH. The relationship between the biosynthetic paths to the amino acids and their coding. I: The aliphatic amino acids and proline. ORIGINS LIFE EVOL B 1987; 17:401-17. [PMID: 3627773 DOI: 10.1007/bf02386478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The genetic code could not have been fixed until the means for biosynthesis of the amino acids was at hand. The biosynthetic enzymes could not be optimized until the genetic code ceased to be rearranged. Therefore the development of the code and the development of the biosynthesis of the amino acids occurred concurrently. The present day biosynthetic pathways of amino acids, examined from this point of view, help to explain the present set of coded amino acids, in particular the absence of norvaline, norleucine, homoserine, ornithine, and alpha-aminobutyric acid. An order of development of biosyntheses is also proposed. Lysine was first, followed by valine and isoleucine. The more common primordial amino acids did not need biosyntheses so early. The central pathways of metabolism probably developed in response to a need for amino acid biosynthesis.
Collapse
|
36
|
|
37
|
Deamer DW. Boundary structures and the non-polar organic components of the murchison carbonaceous chondrite. ORIGINS LIFE EVOL B 1986. [DOI: 10.1007/bf02422075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Deamer DW. Role of amphiphilic compounds in the evolution of membrane structure on the early earth. ORIGINS LIFE EVOL B 1986; 17:3-25. [PMID: 3796965 DOI: 10.1007/bf01809809] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A variety of amphiphilic compounds have the capacity to self-assemble into membranous structures in the form of bilayers. The earliest cellular organisms must have incorporated such compounds into boundary membranes, and this review discusses amphiphilic components of the prebiotic environment which would be candidates. One possible source is organic material carried to the earth's surface by meteoritic infall. To test this, we have extracted and analysed non-polar substances from the Murchison carbonaceous chondrite, and found that at least some of the components can produce boundary structures which resemble membranes. This observation suggests that membranous boundary structures were present on the early earth, and available to participate in the origin and evolution of the first cellular forms of life.
Collapse
|
39
|
Abstract
A value of 1.7 x 10(-3) has been reported for the ratio of CH3D to CH4 in the stratosphere of the saturnian moon Titan. A lower value of 6 x 10(-4) for this ratio in the deeper part of Titan's atmosphere was reported by de Bergh et al. For comparison we note that the CH3D to CH4 ratio on Saturn and Jupiter is 8.7 x 10(-5) and 6.7 x 10(-5), respectively. We estimate the uncertainties in all these observations and data reduction to be about a factor of 2. Despite these uncertainties it appears that Titan's atmosphere is enriched in deuterium by a factor of > or = 3 relative to Jupiter and Saturn. Potential causative factors examined here for this enrichment are condensation to form tropospheric methane clouds, fractionation occurring over a hypothetical CH4-C2H6 ocean and between the ocean and the clathrate crust beneath, fractionation which occurred during the formation of Titan and fractionation occurring as a result of the evolution of Titan's atmosphere. We conclude that the greater part of the observed fractionation is probably derived from the formation of Titan and the subsequent evolution of Titan's atmosphere driven by photochemistry.
Collapse
Affiliation(s)
- J P Pinto
- Hoffman Laboratory, Department of Geological Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
40
|
Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 1985. [DOI: 10.1038/317792a0] [Citation(s) in RCA: 185] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
|
42
|
Peltzer ET, Bada JL, Schlesinger G, Miller SL. The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1984; 4:69-74. [PMID: 11537797 DOI: 10.1016/0273-1177(84)90546-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Amino and hydroxy acids have been identified in the Murchison meteorite. Their presence is consistent with a synthetic pathway involving aldehydes, hydrogen cyanide and ammonia in an aqueous environment (Strecker-cyanohydrin synthesis). From the various equilibrium and rate constants involved in this synthesis, four independent estimates of the ammonium ion concentrations on the parent body at the time of compound synthesis are obtained; all values are about 2 x 10(-3) M. Succinic acid and beta-alanine have also been detected in the Murchison meteorite. Their presence is consistent with a synthesis from acrylonitrile, hydrogen cyanide and ammonia. Using the equilibrium and rate constants for this synthetic pathway, and the succinic acid/beta-alanine ratio measured in the Murchison meteorite, an estimate of the hydrogen cyanide concentration of 10(-3) to 10(-2) M is obtained. Since hydrogen cyanide hydrolyzes relatively rapidly in an aqueous environment (t1/2 < 10(4) yrs) this high concentration implies a period of synthesis of organic compounds as short as 10(4) years on the Murchison meteorite parent body.
Collapse
Affiliation(s)
- E T Peltzer
- Scripps Institution of Oceanography, Woods Hole, MA 92543, USA
| | | | | | | |
Collapse
|
43
|
Cronin JR, Pizzarello S. Amino acids in meteorites. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1983; 3:5-18. [PMID: 11542462 DOI: 10.1016/0273-1177(83)90036-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbonaceous chondrites carry a record of chemical evolution that is unparalleled among presently accessible natural materials. Within the complex suite of organic compounds that characterize these meteorites, amino acids occur at a total concentration that may reach 0.6 micromole g-1 meteorite (approximately 60 ppm). Both free amino acids and acid-labile amino acid derivatives have been found in hot-water extracts of a CI1 and seven CM2 chondrites. Although the amino acid composition of all CM2 chondrites is not the same, differences may be largely explicable on the basis of spontaneous and biologically-caused decomposition occurring during their terrestrial residence. The amino acids of the Murchison meteorite (CM2) have been extensively analyzed and 52 amino acids have been positively identified. Thirty three of these amino acids are unknown in natural materials other than carbonaceous chondrites. Thus the Murchison meteorite has recently been the major source of new naturally-occurring amino acids. The Murchison amino acids comprise a mixture of C2 through C8 cyclic and acyclic monoamino alkanoic and alkandioic acids of nearly complete structural diversity. Within the acyclic monoamino alkanoic acid series, primary alpha-amino alpha-branched amino acids are predominant. The concentrations of individual amino acids decline exponentially with increasing carbon number within homologous series. Amino acid enantiomers are found in approximately equal amounts. Eight of the terrestrial protein amino acids have been found.
Collapse
Affiliation(s)
- J R Cronin
- Department of Chemistry, Arizona State University, Tempe 85287, USA
| | | |
Collapse
|
44
|
|
45
|
|
46
|
Hayatsu R, Scott RG, Studier MH, Lewis RS, Anders E. Carbynes in Meteorites: Detection, Low-Temperature Origin, and Implications for Interstellar Molecules. Science 1980; 209:1515-8. [PMID: 17745960 DOI: 10.1126/science.209.4464.1515] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Carbon from the Allende meteorite is not graphite but carbyne (triply bonded elemental carbon), inasmuch as on heating to 250 degrees to 330 degrees C it releases mainly triply bonded fragments: -(C identical withC)(n),- with n = 1 to 5, and -(C identical withC)(n)-CN, with n = 1 to 3. Although carbynes have been known to form only by condensation of carbon vapor above 2600 K or by explosive shock of > 600 kilobars, it is found that they also form metastably by the reaction 2CO --> CO(2) + C (solid) at 300 degrees to 400 degrees C in the presence of a chromite catalyst. Such low-temperature formation by surface catalysis may be the dominant source of carbynes on the earth and in meteorites, and a major source of interstellar carbynes and cyanopolyacetylenes.
Collapse
|
47
|
Hayatsu R, Winans RE, Scott RG, McBeth RL, Moore LP, Studier MH. Phenolic Ethers in the Organic Polymer of the Murchison Meteorite. Science 1980; 207:1202-4. [PMID: 17776856 DOI: 10.1126/science.207.4436.1202] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Seven phenolic acids and many nonphenolic organic acids, including large amounts of meta-hydroxy (3-hydroxy) benzoic acid and 3-hydroxy-1,5-benzene-dicarboxylic acid, were obtained from the organic polymer of the Murchison C2 chondrite upon oxidation with alkaline cupric oxide. The phenolic acids apparently were derived from phenolic ethers in the polymer, which in turn probably were formed from carbon monoxide and hydrogen by catalytic Fischer-Tropsch type reactions in the solar nebula. In contrast, terrestrial polymers such as lignin, humic acid, and coal yield mainly para-hydroxy (4-hydroxy) benzene derivatives by the same oxidation procedure.
Collapse
|
48
|
|
49
|
Irvine WM, Leschine SB, Schloerb FP. Thermal history, chemical composition and relationship of comets to the origin of life. Nature 1980. [DOI: 10.1038/283748a0] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
|