1
|
Li R, Winward A, Lalonde LR, Hidalgo D, Sardella JP, Hwang Y, Swaminathan A, Thackeray S, Hu K, Zhu LJ, Socolovsky M. C-COUNT: a convolutional neural network-based tool for automated scoring of erythroid colonies. Exp Hematol 2025:104786. [PMID: 40287006 DOI: 10.1016/j.exphem.2025.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Despite advances in flow cytometry and single-cell transcriptomics, colony-formation assays (CFAs) remain an essential component in the evaluation of erythroid and hematopoietic progenitors. These assays provide functional information on progenitor differentiation and proliferative potential, making them a mainstay of hematology research and clinical diagnosis. However, the utility of CFAs is limited by the time-consuming and error-prone manual counting of colonies, which is also prone to bias and inconsistency. Here we present "C-COUNT," a convolutional neural network-based tool that scores the standard colony-forming-unit-erythroid (CFU-e) assay by reliably identifying CFU-e colonies from images collected by automated microscopy and outputs both their number and size. We tested the performance of C-COUNT against three experienced scientists and find that it is equivalent or better in reliably identifying CFU-e colonies on plates that also contain myeloid colonies and other cell aggregates. We further evaluated its performance in the response of CFU-e progenitors to increasing erythropoietin concentrations and to a spectrum of genotoxic agents. We provide the C-COUNT code, a Docker image, a trained model, and training data set to facilitate its download, usage, and model refinement in other laboratories. The C-COUNT tool transforms the traditional CFU-e CFA into a rigorous and efficient assay with potential applications in high-throughput screens for novel erythropoietic factors and therapeutic agents.
Collapse
Affiliation(s)
- Rui Li
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts
| | - Ashley Winward
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts
| | - Logan R Lalonde
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts
| | - Daniel Hidalgo
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts
| | - John P Sardella
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts
| | - Yung Hwang
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts
| | - Aishwarya Swaminathan
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts
| | - Sean Thackeray
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts.
| | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts.
| |
Collapse
|
2
|
Islam R, Islam MRR, Tanaka T, Alam MK, Ahmed HMA, Sano H. Direct pulp capping procedures - Evidence and practice. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:48-61. [PMID: 36880059 PMCID: PMC9985044 DOI: 10.1016/j.jdsr.2023.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
The aim of direct pulp capping (DPC) is to promote pulp healing and mineralized tissue barrier formation by placing a dental biomaterial directly over the exposed pulp. Successful application of this approach avoids the need for further and more extensive treatment. In order to ensure a complete pulp healing with the placement of restorative materials, a mineralized tissue barrier must form to protect the pulp from microbial invasion. The formation of mineralized tissue barrier can only be induced when there is a significant reduction in pulp inflammation and infection. Consequently, promoting the healing of pulp inflammation may provide a favorable therapeutic opportunity to maintain the sustainability of DPC treatment. Mineralized tissue formation was observed as the favorable reaction of exposed pulp tissue against a variety of dental biomaterials utilized for DPC. This observation reveals an intrinsic capacity of pulp tissue for healing. Therefore, this review focuses on the DPC and its healing procedure as well as the materials used for DPC treatment and their mechanisms of action to promote pulpal healing. In addition, the factors that can affect the healing process of DPC, clinical considerations and future perspective has been described.
Collapse
Affiliation(s)
- Rafiqul Islam
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Md Refat Readul Islam
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Toru Tanaka
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, 72345 Sakaka, Saudi Arabia
| | - Hany Mohamed Aly Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hidehiko Sano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
3
|
Luo C, Wang Q, Guo R, Zhang J, Zhang J, Zhang R, Ma X, Wang P, Adam FEA, Zeshan B, Yang Z, Zhou Y, Wang X. A novel Pseudorabies virus vaccine developed using HDR-CRISPR/Cas9 induces strong humoral and cellular immune response in mice. Virus Res 2022; 322:198937. [PMID: 36174845 DOI: 10.1016/j.virusres.2022.198937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control.
Collapse
Affiliation(s)
- Chen Luo
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing,Jiangsu 211171, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianqian Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruhai Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingnan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingya Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Basit Zeshan
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah 90509, Malaysia
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing,Jiangsu 211171, China.
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Evaluation of Myeloperoxidase as Target for Host-Directed Therapy in Tuberculosis In Vivo. Int J Mol Sci 2022; 23:ijms23052554. [PMID: 35269694 PMCID: PMC8910451 DOI: 10.3390/ijms23052554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the rise of tuberculosis cases infected with multi and extensively drug-resistant Mycobacterium tuberculosis strains and the emergence of isolates resistant to antibiotics newly in clinical use, host-directed therapies targeting pathogenesis-associated immune pathways adjunct to antibiotics may ameliorate disease and bacterial clearance. Active tuberculosis is characterized by neutrophil-mediated lung pathology and tissue destruction. Previously, we showed that preventing M. tuberculosis induced necrosis in human neutrophils by inhibition of myeloperoxidase (MPO) promoted default apoptosis and subsequent control of mycobacteria by macrophages taking up the mycobacteria-infected neutrophils. To translate our findings in an in vivo model, we tested the MPO inhibitor 4-aminobenzoic acid hydrazide (ABAH) in C3HeB/FeJ mice, which are highly susceptible to M. tuberculosis infection manifesting in neutrophil-associated necrotic granulomas. MPO inhibition alone or as co-treatment with isoniazid, a first-line antibiotic in tuberculosis treatment, did not result in reduced bacterial burden, improved pathology, or altered infiltrating immune cell compositions. MPO inhibition failed to prevent M. tuberculosis induced neutrophil necrosis in C3Heb/FeJ mice in vivo as well as in murine neutrophils in vitro. In contrast to human neutrophils, murine neutrophils do not respond to M. tuberculosis infection in an MPO-dependent manner. Thus, the murine C3HeB/FeJ model does not fully resemble the pathomechanisms in active human tuberculosis. Consequently, murine infection models of tuberculosis are not necessarily adequate to evaluate host-directed therapies targeting neutrophils in vivo.
Collapse
|
5
|
EFFICACY OF HUMAN RECOMBINANT GRANULOCYTE COLONY-STIMULATING FACTOR (G-CSF, FILGRASTIM; NEUPOGEN ®) IN NEUTROPENIC CETACEANS. J Zoo Wildl Med 2021; 52:1042-1053. [PMID: 34687523 DOI: 10.1638/2020-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Neutrophils are one of the initial cell lines of protection against pathogens, and when their concentrations in the blood are low, animals are highly susceptible to infections. Neutropenia has been reported in cetaceans secondary to administration of systemic sulfa antibiotics or antifungal medications and severe, overwhelming infection. Filgrastim was administered to treat neutropenia over a 15-y period in 11 cetaceans comprising four species-beluga (Delphinapterus leucas, n = 1), bottlenose dolphin (Tursiops truncatus, n = 4), killer whale (Orcinus orca, n = 5), and short-finned pilot whale (Globicephala macrorhynchus, n = 1)] ranging in age from 1 wk to >24 y. Seven study animals received multiple doses (2-6). All animals responded to at least one dose (1-7 µg/kg) of parenteral filgrastim characterized by an increase in peripheral immature (band) neutrophils, segmented neutrophils, or both. In most cases (9/11), neutrophil counts increased within 48 h of a single dose. Duration of response varied but was at least 2 wk in eight of the 11 animals and 5-9 d in the remaining animals. No adverse reactions were observed in any cases.
Collapse
|
6
|
Sinaga DS, Ho SL, Lu CA, Yu SM, Huang LF. Knockdown expression of a MYB-related transcription factor gene, OsMYBS2, enhances production of recombinant proteins in rice suspension cells. PLANT METHODS 2021; 17:99. [PMID: 34560901 PMCID: PMC8464127 DOI: 10.1186/s13007-021-00799-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/12/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Transgenic plant suspension cells show economic potential for the production of valuable bioproducts. The sugar starvation-inducible rice αAmy3 promoter, together with its signal peptide, is widely applied to produce recombinant proteins in rice suspension cells. The OsMYBS2 transcription factor was shown recently to reduce activation of the αAmy3 promoter by competing for the binding site of the TA box of the αAmy3 promoter with the potent OsMYBS1 activator. In this study, rice suspension cells were genetically engineered to silence OsMYBS2 to enhance the production of recombinant proteins. RESULTS The mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) gene was controlled by the αAmy3 promoter and expressed in OsMYBS2-silenced transgenic rice suspension cells. Transcript levels of the endogenous αAmy3 and the transgene mGM-CSF were increased in the OsMYBS2-silenced suspension cells. The highest yield of recombinant mGM-CSF protein attained in the OsMYBS2-silenced transgenic suspension cells was 69.8 µg/mL, which is 2.5-fold that of non-silenced control cells. The yield of recombinant mGM-CSF was further increased to 118.8 µg/mL in cultured cells derived from homozygous F5 seeds, which was 5.1 times higher than that of the control suspension cell line. CONCLUSIONS Our results demonstrate that knockdown of the transcription factor gene OsMYBS2 increased the activity of the αAmy3 promoter and improved the yield of recombinant proteins secreted in rice cell suspension cultures.
Collapse
Affiliation(s)
- Desyanti Saulina Sinaga
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, ROC
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Shin-Lon Ho
- Department of Agronomy, National Chiayi University, Chiayi City, 600, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei City, 115, Taiwan, ROC
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, ROC.
| |
Collapse
|
7
|
Ali N, Cooper B, Tomlinson B, Metheny L, Caimi P, Boughan K, Gallogly M, Otegbeye F, Malek E, Lazarus H, Creger R, de Lima M. Treatment-related mortality following autologous hematopoietic stem cell transplantation is unaffected by timing of G-CSF administration. Bone Marrow Transplant 2020; 55:1697-1700. [PMID: 32024994 DOI: 10.1038/s41409-020-0812-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/17/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Naveed Ali
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Brenda Cooper
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Tomlinson
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Leland Metheny
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Paolo Caimi
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Kirsten Boughan
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Molly Gallogly
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Folashade Otegbeye
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ehsan Malek
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hillard Lazarus
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Richard Creger
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Marcos de Lima
- Stem cell Transplant Program, University Hospitals of Cleveland Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Li S, Chen X, Li J, Li X, Zhang T, Hao G, Sun J. Extracellular ATP is a potent signaling molecule in the activation of the Japanese flounder ( Paralichthys olivaceus) innate immune responses. Innate Immun 2020; 26:413-423. [PMID: 31914841 PMCID: PMC7903527 DOI: 10.1177/1753425918804635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Innate immunity is the first line of defense against pathogen infections. Extracellular ATP (eATP) is one of the most studied danger-associated molecular pattern molecules that can activate host innate immune responses through binding with and activating purinergic receptors on the plasma membrane. The detailed actions of eATP on fish innate immunity, however, remain poorly understood. In this study, we investigated bacterial pathogen-induced ATP release in head kidney cells of the Japanese flounder Paralichthys olivaceus. We also examined the actions of eATP on pro-inflammatory cytokine and immune-related gene expression, the activity of induced NO synthase (iNOS), and the production of reactive oxygen species (ROS) and NO in Japanese flounder immune cells. We demonstrate that ATP is dynamically released from Japanese flounder head kidney cells into the extracellular milieu during immune challenge by formalin-inactivated Edwardsiella tarda and Vibrio anguillarum. In addition, we show that eATP administration results in profound up-regulation of pro-inflammatory cytokine gene expression, iNOS activity, and inflammatory mediator production, including ROS and NO, in Japanese flounder immune cells. Altogether, our findings demonstrate that eATP is a potent signaling molecule for the activation of innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Tianxu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| |
Collapse
|
9
|
Fox RI, Kang HI. Mechanism of Action of Antimalarial Drugs: Inhibition of Antigen Processing and Presentation. Lupus 2019. [DOI: 10.1177/0961203393002001031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have elucidated the steps involved in the association of antigenic peptides with major histocompatibility complex (MHC) encoded proteins and have suggested how antimalarial compounds might influence this important site of immune activation. These steps of antigen presentation in the macrophage (or other antigen-presenting cells) include: (a) the partial proteolytic degradation of endogenous and exogenous proteins into peptides within the lysosome; (b) the synthesis of MHC class II (i.e. HLA-D associated) α, β, and invariant (Ii) chains in the endoplasmic reticulum; (c) the initial association of α-Ii and β-li chains in the endoplasmic reticulum and the transport of these complexes to the primary endosome; (d) the fusion of lysosomal vacuoles and endosomal vacuoles, allowing the mixtures of lysosomal enzymes, peptides, α–Ii and β–Ii; (e) the displacement of Ii chains by peptides to form α–β–peptide complexes in the endosome; and (f) the migration of α–β–peptide complexes to the macrophage cell surface where they can stimulate CD4 T cells, resulting in release of cytokines. A low pH is required for digestion of the protein by acidic hydrolases in the lysosome, for assembly of the α–β–peptide complex and for its transport to the cell surface. Chloroquine and hydroxychloroquine are weak diprotic bases that can diffuse across the cell membrane and raise the pH within cell vesicles. This background provides the underlying basis for the theory that antimalarials may act to prevent autoimmunity by the following putative mechanism. Antimalarial compounds may: (a) stabilize the α-Ii and β-Ii interactions and prevent low-affinity peptides from forming α–β–peptide complexes; and (b) interfere with the efficient movement of α-Ii, β-Ii and α–β–peptide complexes to the correct locations within the cell cytoplasm or to the cell surfaces. Decreased presentation of autoantigenic peptides by macrophages might then lead to downregulation of autoimmune CD4+ T cells and diminish release of cytokines associated with clinical and laboratory signs of autoimmune disease.
Collapse
Affiliation(s)
- Robert I. Fox
- Department of Rheumatology, Scripps Clinic and Research Foundation, 10666 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ho-Il Kang
- Department of Rheumatology, Scripps Clinic and Research Foundation, 10666 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
10
|
Holder MJ, Wright HJ, Couve E, Milward MR, Cooper PR. Neutrophil Extracellular Traps Exert Potential Cytotoxic and Proinflammatory Effects in the Dental Pulp. J Endod 2019; 45:513-520.e3. [PMID: 30930016 DOI: 10.1016/j.joen.2019.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/14/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neutrophil extracellular traps (NETs) are an important innate immune mechanism aimed at limiting the dissemination of bacteria within tissues and localizing antibacterial killing mechanisms. There is significant interest in the role of NETs in a range of infectious and inflammatory diseases; however, their role in diseased pulp has yet to be explored. Our aim was to determine their relevance to infected pulp and how their components affect human dental pulp cell (HDPC) responses. METHODS Diseased pulp tissue was stained for the presence of extracellular DNA and elastase to detect the presence of NETs. Bacteria known to infect pulp were also assayed to determine their ability to stimulate NETs. Coculture studies and NET component challenge were used to determine the effect of extracellular NET release on HDPC viability and inflammatory response. NET-stimulated HDPC secretomes were assessed for their chemotactic activity for lymphocytes and macrophages. RESULTS Data indicate that NETs are present in infected pulp tissue and whole NETs, and their histone components, particularly H2A, decreased HDPC viability and stimulated chemokine release, resulting in an attraction of lymphocyte populations. CONCLUSIONS NETs are likely important in pulpal pathogenesis with injurious and chronic inflammatory effects on HDPCs, which may contribute to disease progression. Macrophages are chemoattracted to NET-induced apoptotic HDPCs, facilitating cellular debris removal. NETs and histones may provide novel prognostic markers and/or therapeutic targets for pulpal diseases.
Collapse
Affiliation(s)
- Michelle J Holder
- Oral Biology, Birmingham Dental School and Hospital, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Helen J Wright
- Oral Biology, Birmingham Dental School and Hospital, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Eduardo Couve
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Instituto de Biología, Laboratorio de Microscopía Electrónica, Universidad de Valparaíso, Valparaíso, Chile
| | - Michael R Milward
- Oral Biology, Birmingham Dental School and Hospital, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Paul R Cooper
- Oral Biology, Birmingham Dental School and Hospital, College of Medical and Dental Sciences, Birmingham, United Kingdom.
| |
Collapse
|
11
|
Frydrych LM, Bian G, Fattahi F, Morris SB, O'Rourke RW, Lumeng CN, Kunkel SL, Ward PA, Delano MJ. GM-CSF Administration Improves Defects in Innate Immunity and Sepsis Survival in Obese Diabetic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:931-942. [PMID: 30578307 DOI: 10.4049/jimmunol.1800713] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Sepsis is the leading cause of death in the intensive care unit with an overall mortality rate of 20%. Individuals who are obese and have type 2 diabetes have increased recurrent, chronic, nosocomial infections that worsen the long-term morbidity and mortality from sepsis. Additionally, animal models of sepsis have shown that obese, diabetic mice have lower survival rates compared with nondiabetic mice. Neutrophils are essential for eradication of bacteria, prevention of infectious complications, and sepsis survival. In diabetic states, there is a reduction in neutrophil chemotaxis, phagocytosis, and reactive oxygen species (ROS) generation; however, few studies have investigated the extent to which these deficits compromise infection eradication and mortality. Using a cecal ligation and puncture model of sepsis in lean and in diet-induced obese mice, we demonstrate that obese diabetic mice have decreased "emergency hematopoiesis" after an acute infection. Additionally, both neutrophils and monocytes in obese, diabetic mice have functional defects, with decreased phagocytic ability and a decreased capacity to generate ROS. Neutrophils isolated from obese diabetic mice have decreased transcripts of Axl and Mertk, which partially explains the phagocytic dysfunction. Furthermore, we found that exogenous GM-CSF administration improves sepsis survival through enhanced neutrophil and monocytes phagocytosis and ROS generation abilities in obese, diabetic mice with sepsis.
Collapse
Affiliation(s)
- Lynn M Frydrych
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Guowu Bian
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Susan B Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Michigan Medicine, and Ann Arbor Veterans Administration Hospital, Ann Arbor, MI 48105; and
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Peter A Ward
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Matthew J Delano
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
12
|
Cooper PR, Chicca IJ, Holder MJ, Milward MR. Inflammation and Regeneration in the Dentin-pulp Complex: Net Gain or Net Loss? J Endod 2018; 43:S87-S94. [PMID: 28844308 DOI: 10.1016/j.joen.2017.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The balance between the immune/inflammatory and regenerative responses in the diseased pulp is central to the clinical outcome, and this response is unique within the body because of its tissue site. Cariogenic bacteria invade the dentin and pulp tissues, triggering molecular and cellular events dependent on the disease stage. At the early onset, odontoblasts respond to bacterial components in an attempt to protect the tooth's hard and soft tissues and limit disease progression. However, as disease advances, the odontoblasts die, and cells central to the pulp core, including resident immune cells, pulpal fibroblasts, endothelial cells, and stem cells, respond to the bacterial challenge via their expression of a range of pattern recognition receptors that identify pathogen-associated molecular patterns. Subsequently, recruitment and activation occurs of a range of immune cell types, including neutrophils, macrophages, and T and B cells, which are attracted to the diseased site by cytokine/chemokine chemotactic gradients initially generated by resident pulpal cells. Although these cells aim to disinfect the tooth, their extravasation, migration, and antibacterial activity (eg, release of reactive oxygen species [ROS]) along with the bacterial toxins cause pulp damage and impede tissue regeneration processes. Recently, a novel bacterial killing mechanism termed neutrophil extracellular traps (NETs) has also been described that uses ROS signaling and results in cellular DNA extrusion. The NETs are decorated with antimicrobial peptides (AMPs), and their interaction with bacteria results in microbial entrapment and death. Recent data show that NETs can be stimulated by bacteria associated with endodontic infections, and they may be present in inflamed pulp tissue. Interestingly, some bacteria associated with pulpal infections express deoxyribonuclease enzymes, which may enable their evasion of NETs. Furthermore, although NETs aim to localize and kill invading bacteria using AMPs and histones, limiting the spread of the infection, data also indicate that NETs can exacerbate inflammation and their components are cytotoxic. This review considers the potential role of NETs within pulpal infections and how these structures may influence the pulp's vitality and regenerative responses.
Collapse
Affiliation(s)
- Paul R Cooper
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK.
| | - Ilaria J Chicca
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael J Holder
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael R Milward
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| |
Collapse
|
13
|
Gogesch P, Schülke S, Scheurer S, Mühlebach MD, Waibler Z. Modular MLV-VLPs co-displaying ovalbumin peptides and GM-CSF effectively induce expansion of CD11b + APC and antigen-specific T cell responses in vitro. Mol Immunol 2018; 101:19-28. [PMID: 29852456 DOI: 10.1016/j.molimm.2018.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022]
Abstract
The development of novel vaccination strategies is a persistent challenge to provide effective prophylactic treatments to encounter viral infections. In general, the physical conjugation of selected vaccine components, e.g. antigen and adjuvant, has been shown to enhance the immunogenicity and hence, can increase effectiveness of the vaccine. In our proof-of-concept study, we generated non-infectious, replication deficient Murine Leukemia Virus (MLV)-derived virus-like particles (VLPs) that physically link antigen and adjuvant in a modular fashion by co-displaying them on their surface. For this purpose, we selected the immunodominant peptides of the model antigen ovalbumin (OVA) and the cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) as non-classical adjuvant. Our results show that murine GM-CSF displayed on MLV-VLPs mediates expansion and proliferation of CD11b+ cells within murine bone marrow and total spleen cells. Moreover, we show increased immunogenicity of modular VLPs co-displaying OVA peptides and GM-CSF by their elevated capacity to induce OVA-specific T cell-activation and -proliferation within OT-I and OT-II splenocyte cultures. These enhanced effects were not achieved by using an equimolar mixture of VLPs displaying either OVA or GM-CSF. Taken together, OVA and GM-CSF co-displaying MLV-VLPs are able to target and expand antigen presenting cells which in turn results in enhanced antigen-specific T cell activation and proliferation in vitro. These data suggest MLV-VLPs to be an attractive platform to flexibly combine antigen and adjuvant for novel modular vaccination approaches.
Collapse
Affiliation(s)
- Patricia Gogesch
- Section "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Stephan Scheurer
- Section Molecular Allergology, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Michael D Mühlebach
- Section Product Testing of IVMP, Paul-Ehrlich-Institut, Langen, Paul-Ehrlich-Institut, D-63225, Langen, Germany.
| | - Zoe Waibler
- Section "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225, Langen, Germany.
| |
Collapse
|
14
|
Nayak D, Boxi A, Ashe S, Thathapudi NC, Nayak B. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:406-416. [PMID: 28183626 DOI: 10.1016/j.msec.2016.12.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
Abstract
Despite continuous research and availability of 25 different active compounds for treating chronic HIV-1 infection, there is no absolute cure for this deadly disease. Primarily, the residual viremia remains hidden in latently infected reservoir sites and persistently release the viral RNA into the blood stream. The study proposes the dual utilization of the prepared stavudine-containing nanoformulations to control the residual viremia as well as target the reservoir sites. Gelatin nanoformulations containing very low dosage of stavudine were prepared through classical desolvation process and were later loaded in soya lecithin-liposomes. The nanoformulations were characterized through dynamic light scattering (DLS), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and ATR-FTIR. All the formulations were in nano regime with high hemocompatibility and exhibited dose-dependent cytotoxicity towards Raw 264.7 macrophages. Among the various formulations, SG-3 (Stavudine-Gelatin Nanoformulation sample 3) and SG-LP-3 (Stavudine-Gelatin Nano-Liposome formulation sample 3) showed the best results in terms of yield, size, charge, encapsulation efficiency, hemocompatibility and % cell viability. For the first time, liposomal delivery of antiretroviral drugs using nanocarriers has been demonstrated using very low dosage (lower than the recommended WHO dosage) showing the prominent linear release of stavudine for up to 12h which would reduce the circulatory viremia as well as reach the sanctuary reservoir sites due to their nanosize. This method of liposomal delivery of antiretroviral drugs in very low concentrations using nanocarriers could provide a novel therapeutic alternative to target HIV reservoir sites.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Ankita Boxi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Neethi Chandra Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India.
| |
Collapse
|
15
|
d'Almeida SM, Kauffenstein G, Roy C, Basset L, Papargyris L, Henrion D, Catros V, Ifrah N, Descamps P, Croue A, Jeannin P, Grégoire M, Delneste Y, Tabiasco J. The ecto-ATPDase CD39 is involved in the acquisition of the immunoregulatory phenotype by M-CSF-macrophages and ovarian cancer tumor-associated macrophages: Regulatory role of IL-27. Oncoimmunology 2016; 5:e1178025. [PMID: 27622030 DOI: 10.1080/2162402x.2016.1178025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAM) are immunosuppressive cells that can massively accumulate in the tumor microenvironment. In patients with ovarian cancer, their density is correlated with poor prognosis. Targeting mediators that control the generation or the differentiation of immunoregulatory macrophages represents a therapeutic challenge to overcome tumor-associated immunosuppression. The ectonucleotidase CD39 hydrolyzes ATP into extracellular adenosine that exhibits potent immunosuppressive properties when signaling through the A2A adenosine receptor. We report here that CD14(+) CD163(+) TAM isolated from ovarian cancer patients and macrophages generated in vitro with M-CSF, express high levels of the membrane ectonucleotidase CD39 compared to classically activated macrophages. The CD39 inhibitor POM-1 and adenosine deaminase (ADA) diminished some of the immunosuppressive functions of CD14(high) CD163(high) CD39(high) macrophages, such as IL-10 secretion. We identified the cytokine IL-27, secreted by tumor-infiltrating neutrophils, located close to infiltrating CD163(+) macrophages, as a major rheostat of CD39 expression and consequently, on the acquisition of immunoregulatory properties by macrophages. Accordingly, the depletion of IL-27 downregulated CD39 and PD-L1 expression as well as IL-10 secretion by M-CSF-macrophages. Collectively, these data suggest that CD39, drived by IL-27 and CD115 ligands in ovarian cancer, maintains the immunosuppressive phenotype of TAM. This work brings new information on the acquisition of immunosuppressive properties by tumor-infiltrating macrophages.
Collapse
Affiliation(s)
- Sènan M d'Almeida
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| | | | - Charlotte Roy
- BNMI, INSERM, CNRS, Université d'Angers , Angers, France
| | - Laetitia Basset
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| | - Loukas Papargyris
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| | - Daniel Henrion
- BNMI, INSERM, CNRS, Université d'Angers , Angers, France
| | - Véronique Catros
- INSERM, Université de Rennes 1, CRB santé de Rennes , Rennes, France
| | - Norbert Ifrah
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France; Services des maladies du sang, CHU Angers, Angers, France
| | | | - Anne Croue
- Laboratoire de Pathologie Cellulaire et Tissulaire, CHU Angers , Angers, France
| | - Pascale Jeannin
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France; Laboratoire d'Immunologie et d'Allergologie, CHU Angers, Angers, France
| | - Marc Grégoire
- LabEx ImmunoGraftOnco, Angers, France; CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Yves Delneste
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France; Laboratoire d'Immunologie et d'Allergologie, CHU Angers, Angers, France
| | - Julie Tabiasco
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| |
Collapse
|
16
|
Beer PA, Eaves CJ. Modeling Normal and Disordered Human Hematopoiesis. Trends Cancer 2015; 1:199-210. [DOI: 10.1016/j.trecan.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023]
|
17
|
Huang LF, Tan CC, Yeh JF, Liu HY, Liu YK, Ho SL, Lu CA. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide. PLoS One 2015; 10:e0140812. [PMID: 26473722 PMCID: PMC4608814 DOI: 10.1371/journal.pone.0140812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp.
Collapse
Affiliation(s)
- Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan, Taiwan, ROC
- * E-mail: (L-FH); (C-AL)
| | - Chia-Chun Tan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan, Taiwan, ROC
| | - Ju-Fang Yeh
- Department of Life Science, National Central University, Taoyuan, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Science, National Central University, Taoyuan, Taiwan, ROC
| | - Yu-Kuo Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Shin-Lon Ho
- Department of Agronomy, National Chi-Yi University, Chiayi, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Science, National Central University, Taoyuan, Taiwan, ROC
- * E-mail: (L-FH); (C-AL)
| |
Collapse
|
18
|
White PC, Chicca IJ, Cooper PR, Milward MR, Chapple ILC. Neutrophil Extracellular Traps in Periodontitis: A Web of Intrigue. J Dent Res 2015; 95:26-34. [PMID: 26442948 DOI: 10.1177/0022034515609097] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neutrophil extracellular traps (NETs) represent a novel paradigm in neutrophil-mediated immunity. NETs are believed to constitute a highly conserved antimicrobial strategy comprising decondensed nuclear DNA and associated histones that are extruded into the extracellular space. Associated with the web-like strands of DNA is an array of antimicrobial peptides (AMPs), which facilitate the extracellular destruction of microorganisms that become entrapped within the NETs. NETs can be released by cells that remain viable or following a unique form of programmed cell death known as NETosis, which is dependent on the production of reactive oxygen species (ROS) and the decondensing of the nuclear DNA catalyzed by peptidyl arginine deiminase-4. NETs are produced in response to a range of pathogens, including bacteria, viruses, fungi, and protozoa, as well as host-derived mediators. NET release is, however, not without cost, as the concomitant release of cytotoxic molecules can also cause host tissue damage. This is evidenced by a number of immune-mediated diseases, in which excess or dysfunctional NET production, bacterial NET evasion, and decreased NET removal are associated with disease pathogenesis. Periodontitis is the most prevalent infectious-inflammatory disease of humans, characterized by a dysregulated neutrophilic response to specific bacterial species within the subgingival plaque biofilm. Neutrophils are the predominant inflammatory cell involved in periodontitis and have previously been found to exhibit hyperactivity and hyperreactivity in terms of ROS production in chronic periodontitis patients. However, the contribution of ROS-dependent NET formation to periodontal health or disease remains unclear. In this focused review, we discuss the mechanisms, stimuli, and requirements for NET production; the ability of NET-DNA and NET-associated AMPs to entrap and kill pathogens; and the potential immunogenicity of NETs in disease. We also speculate on the potential role of NETs in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- P C White
- Periodontal Research Group & MRC Centre for Immune Regulation, University of Birmingham Dental School, Birmingham, UK
| | - I J Chicca
- Periodontal Research Group & MRC Centre for Immune Regulation, University of Birmingham Dental School, Birmingham, UK Imagen Biotech Ltd, Alderley Edge, Cheshire, UK
| | - P R Cooper
- Periodontal Research Group & MRC Centre for Immune Regulation, University of Birmingham Dental School, Birmingham, UK
| | - M R Milward
- Periodontal Research Group & MRC Centre for Immune Regulation, University of Birmingham Dental School, Birmingham, UK
| | - I L C Chapple
- Periodontal Research Group & MRC Centre for Immune Regulation, University of Birmingham Dental School, Birmingham, UK
| |
Collapse
|
19
|
Kwon-Chung KJ, Saijo T. Is Cryptococcus gattii a Primary Pathogen? J Fungi (Basel) 2015; 1:154-167. [PMID: 27795955 PMCID: PMC5084617 DOI: 10.3390/jof1020154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/09/2015] [Indexed: 01/01/2023] Open
Abstract
The two etiologic agents of cryptococcal meningoencephalitis, Cryptococcus neoformans and C. gattii, have been commonly designated as either an opportunistic pathogen for the first species or as a primary pathogen for the second species. Such a distinction has been based on epidemiological findings that the majority of patients presenting meningoencephalitis caused by C. neoformans are immunocompromised while C. gattii infection has been reported more often in immunocompetent patients. A recent report, however, showed that GM-CSF (granulocyte-macrophage colony-stimulating factor) neutralizing antibodies were prevalent in the plasma of "apparently immunocompetent" C. gattii patients with meningoencephalitis. Because GM-CSF is essential for differentiation of monocytes to macrophages and modulating the immune response, it is not surprising that the lack of GM-CSF function predisposes otherwise healthy individuals to infection via inhalation of environmental pathogens such as C. gattii. Since the test for anti-GM-CSF autoantibodies is not included in routine immunological profiling at most hospitals, healthy patients with GM-CSF neutralizing antibodies are usually categorized as immunocompetent. It is likely that a comprehensive immunological evaluation of patients with C. gattii meningoencephalitis, who had been diagnosed as immunocompetent, would reveal a majority of them had hidden immune dysfunction. This paper reviews the relationship between GM-CSF neutralizing antibodies and the risk for C. gattii infection with CNS involvement.
Collapse
Affiliation(s)
- Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tomomi Saijo
- Second Department of Internal Medicine, Nagasaki University Hospital, Sakamoto 1-7-1, Nagasaki-city, 851-8501, Japan; E-Mail:
| |
Collapse
|
20
|
Sakai H, Sagara A, Matsumoto K, Jo A, Hirosaki A, Takase K, Sugiyama R, Sato K, Ikegami D, Horie S, Matoba M, Narita M. Neutrophil recruitment is critical for 5-fluorouracil-induced diarrhea and the decrease in aquaporins in the colon. Pharmacol Res 2014; 87:71-9. [DOI: 10.1016/j.phrs.2014.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/14/2014] [Accepted: 05/28/2014] [Indexed: 01/01/2023]
|
21
|
Tunc T, Cekmez F, Cetinkaya M, Kalayci T, Fidanci K, Saldir M, Babacan O, Sari E, Erdem G, Cayci T, Kul M, Kavuncuoglu S. Diagnostic value of elevated CXCR4 and CXCL12 in neonatal sepsis. J Matern Fetal Neonatal Med 2014; 28:356-61. [DOI: 10.3109/14767058.2014.916683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Rubinstein MP, Salem ML, Doedens AL, Moore CJ, Chiuzan C, Rivell GL, Cole DJ, Goldrath AW. G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses. J Hematol Oncol 2013; 6:75. [PMID: 24279871 PMCID: PMC3850648 DOI: 10.1186/1756-8722-6-75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo. METHODS We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice. RESULTS We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation. CONCLUSIONS Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF.
Collapse
Affiliation(s)
- Mark P Rubinstein
- Department of Biological Sciences, The University of California, San Diego, La Jolla, CA 92093, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, 86 Jonathan Lucas Street, HO506, SC 29403, USA
| | - Mohamed L Salem
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Andrew L Doedens
- Department of Biological Sciences, The University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin J Moore
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Cody Chiuzan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Guillermo L Rivell
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Ananda W Goldrath
- Department of Biological Sciences, The University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Yoder MC. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med (Berl) 2013; 91:285-95. [PMID: 23371317 PMCID: PMC3704045 DOI: 10.1007/s00109-013-1002-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/13/2013] [Indexed: 12/15/2022]
Abstract
The first reports of circulating cells that displayed the capacity to repair and regenerate damaged vascular endothelial cells as progenitor cells for the endothelial lineage (EPC) were met with great enthusiasm. However, the cell surface antigens and colony assays used to identify the putative EPC were soon found to overlap with those of the hematopoietic lineage. Over the past decade, it has become clear that specific hematopoietic subsets play important roles in vascular repair and regeneration. This review will provide some overview of the hematopoietic hierarchy and methods to segregate distinct subsets that may provide clarity in identifying the proangiogenic hematopoietic cells. This review will not discuss those circulating viable endothelial cells that play a role as EPC and are called endothelia colony-forming cells. The review will conclude with identification of some roadblocks to progress in the field of identification of circulating cells that participate in vascular repair and regeneration.
Collapse
Affiliation(s)
- Mervin C Yoder
- Hermann B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
24
|
Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, Delneste Y, Jeannin P. IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. antagonistic effects of GM-CSF and IFNγ. PLoS One 2013; 8:e56045. [PMID: 23409120 PMCID: PMC3568045 DOI: 10.1371/journal.pone.0056045] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022] Open
Abstract
IL-34 is a recently identified cytokine that signals via the M-CSF receptor and promotes monocyte survival. Depending on the environment, monocytes can differentiate into macrophages (Mφ) or dendritic cells (DC). A wide spectrum of Mφ and DC subsets, with distinct phenotypes and functions, has been described. To date, the phenotype of monocytes exposed to IL-34 remains unexplored. We report here that IL-34 induces the differentiation of monocytes into CD14high CD163high CD1a− Mφ (IL-34-Mφ). Upon LPS stimulation, IL-34-Mφ exhibit an IL-10high IL-12low M2 profile and express low levels of the costimulatory molecules CD80 and CD86. IL-34-Mφ exhibit poor T cell costimulatory properties, and have potent immunosuppressive properties (decrease of TCR-stimulated T cell proliferation). For all the parameters analyzed, IL-34-Mφ are phenotypically and functionally similar to M-CSF-Mφ. IL-34 appears as efficient as M-CSF in inducing the generation of immunosuppressive Mφ. Moreover, the generation of IL-34-Mφ is mediated through the M-CSF receptor, is independent of endogenous M-CSF consumption and is potentiated by IL-6. In an attempt to identify strategies to prevent a deleterious M2 cell accumulation in some pathological situations, we observed that IFNγ and GM-CSF prevent the generation of immunosuppressive Mφ induced by IL-34. IFNγ also switches established IL-34-Mφ into immunostimulatory Mφ. In conclusion, we demonstrate that IL-34 drives the differentiation of monocytes into immunosuppressive M2, in a manner similar to M-CSF, and that IFNγ and GM-CSF prevent this effect.
Collapse
Affiliation(s)
- Etienne D. Foucher
- LUNAM Université, Université d'Angers, Angers, France
- Inserm, unit 892, Angers, France
- CNRS, unit 6299, Angers, France
| | - Simon Blanchard
- LUNAM Université, Université d'Angers, Angers, France
- Inserm, unit 892, Angers, France
- CNRS, unit 6299, Angers, France
- Université d'Angers, Centre Hospitalier Universitaire, Laboratoire d'Immunologie et d'Allergologie, Angers, France
| | - Laurence Preisser
- LUNAM Université, Université d'Angers, Angers, France
- Inserm, unit 892, Angers, France
- CNRS, unit 6299, Angers, France
| | - Erwan Garo
- LUNAM Université, Université d'Angers, Angers, France
- Inserm, unit 892, Angers, France
- CNRS, unit 6299, Angers, France
- Université d'Angers, Centre Hospitalier Universitaire, Laboratoire d'Immunologie et d'Allergologie, Angers, France
| | - Norbert Ifrah
- LUNAM Université, Université d'Angers, Angers, France
- Inserm, unit 892, Angers, France
- CNRS, unit 6299, Angers, France
- Université d'Angers, Centre Hospitalier Universitaire, Service des Maladies du Sang, Angers, France
| | - Philippe Guardiola
- LUNAM Université, Université d'Angers, Angers, France
- Inserm, unit 892, Angers, France
- CNRS, unit 6299, Angers, France
- Plateforme SNP, Transcriptome & Epigénomique, Centre Hospitalier Universitaire, Angers, France
| | - Yves Delneste
- LUNAM Université, Université d'Angers, Angers, France
- Inserm, unit 892, Angers, France
- CNRS, unit 6299, Angers, France
- Université d'Angers, Centre Hospitalier Universitaire, Laboratoire d'Immunologie et d'Allergologie, Angers, France
| | - Pascale Jeannin
- LUNAM Université, Université d'Angers, Angers, France
- Inserm, unit 892, Angers, France
- CNRS, unit 6299, Angers, France
- Université d'Angers, Centre Hospitalier Universitaire, Laboratoire d'Immunologie et d'Allergologie, Angers, France
- * E-mail:
| |
Collapse
|
25
|
Shim S, Lee SB, Lee JG, Jang WS, Lee SJ, Park S, Lee SS. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation. Exp Hematol 2013; 41:346-53.e2. [PMID: 23333483 DOI: 10.1016/j.exphem.2013.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/26/2012] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
This study evaluated the clinical and pathologic effects of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in the recovery from total body irradiation by comparing it with the effects of granulocyte-colony stimulating factor (G-CSF), an efficacious drug in the treatment of acute bone marrow radiation syndrome. BALB/c mice were treated with G-CSF or hUCB-MSCs after they were irradiated with 7 Gy cobalt-60 γ-rays. Circulating blood counts, histopathologic changes in the bone marrow, and plasma level of Flt-3L and transforming growth factor (TGF-β1) were monitored in the postirradiation period. Hematologic analysis revealed that the peripheral leukocyte counts were markedly increased in the hUCB-MSCs-treated group, whereas G-CSF-treated mice did not recover significantly. Moreover, differential counts showed that hUCB-MSC treatment has regenerative effects on white blood cells, lymphocytes, and monocytes compared with the irradiated group. Treatment with hUCB-MSCs or G-CSF significantly increased immunoreactivity of Ki-67 until 3 weeks after total body irradiation. However, at 3 weeks, the number of Ki-67 immunoreactive cells significantly increased in the hUCB-MSCs-treated group compared with the G-CSF-treated group. Furthermore, hUCB-MSC treatment significantly modulated plasma levels of the hematopoietic cytokines Flt-3L and TGF-β1, whereas G-CSF treatment failed to decrease the plasma Flt-3L levels at 2 weeks after irradiation. Based on the differences in circulating blood cell reconstitution and cell density of bone marrow, the authors suggest that MSC treatment is superior to G-CSF treatment for hematopoietic reconstitution following sublethal dose radiation exposure.
Collapse
Affiliation(s)
- Sehwan Shim
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Hematopoietic progenitors are regulated in their respective niches by cells of the bone marrow microenvironment. The bone marrow microenvironment is composed of a variety of cell types, and the relative contribution of each of these cells for hematopoietic lineage maintenance has remained largely unclear. Osteocytes, the most abundant yet least understood cells in bone, are thought to initiate adaptive bone remodeling responses via osteoblasts and osteoclasts. Here we report that these cells regulate hematopoiesis, constraining myelopoiesis through a Gsα-mediated mechanism that affects G-CSF production. Mice lacking Gsα in osteocytes showed a dramatic increase in myeloid cells in bone marrow, spleen, and peripheral blood. This hematopoietic phenomenon was neither intrinsic to the hematopoietic cells nor dependent on osteoblasts but was a consequence of an altered bone marrow microenvironment imposed by Gsα deficiency in osteocytes. Conditioned media from osteocyte-enriched bone explants significantly increased myeloid colony formation in vitro, which was blocked by G-CSF–neutralizing antibody, indicating a critical role of osteocyte-derived G-CSF in the myeloid expansion.
Collapse
|
27
|
Buret A. Pseudomonas aeruginosa Infections in Patients with Cystic Fibrosis. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03258527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
CXCR2 in acute lung injury. Mediators Inflamm 2012; 2012:740987. [PMID: 22719179 PMCID: PMC3375097 DOI: 10.1155/2012/740987] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 01/13/2023] Open
Abstract
In pulmonary inflammation, recruitment of circulating polymorphonuclear leukocytes is essential for host defense and initiates the following specific immune response. One pathological hallmark of acute lung injury and acute respiratory distress syndrome is the uncontrolled transmigration of neutrophils into the lung interstitium and alveolar space. Thereby, the extravasation of leukocytes from the vascular system into the tissue is induced by chemokines that are released from the site of inflammation. The most relevant chemokine receptors of neutrophils are CXC chemokine receptor (CXCR) 1 and CXCR2. CXCR2 is of particular interest since several studies implicate a pivotal role of this receptor in development and promotion of numerous inflammatory disorders. CXCR2 gets activated by ELR(+) chemokines, including MIP-2, KC (rodents) and IL-8 (human). Since multiple ELR(+) CXC chemokines act on both receptors--CXCR1 and CXCR2--a pharmacologic agent blocking both receptors seems to be advantageous. So far, several CXCR1/2 antagonists have been developed and have been tested successfully in experimental studies. A newly designed CXCR1 and CXCR2 antagonist can be orally administered and was for the first time found efficient in humans. This review highlights the role of CXCR2 in acute lung injury and discusses its potential as a therapeutic target.
Collapse
|
29
|
Qujeq D, Abassi R, Faeizi F, Parsian H, Faraji AS, Taheri H, Tatar M, Elmi MM, Halalkhor S. Effect of granulocyte colony-stimulating factor administration on tissue regeneration due to carbon tetrachloride–induced liver damage in experimental model. Toxicol Ind Health 2012; 29:498-503. [DOI: 10.1177/0748233712440136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism by which granulocyte colony-stimulating factor (G-CSF) could lead to the protection from liver injury is not well known. Therefore, the resolution of this role needs further basic and clinical experimental investigation. Acute liver injury was induced in rats by single intraperitoneal injection of a 0.50-mL/kg dose of carbon tetrachloride (CCl4 ). Granulocyte colony-stimulating factor or vehicle of 150 µg/kg was given immediately after intoxicating the liver by CCl4 . The animals were divided into four groups of twelve each. Administration of G-CSF caused a decrease in the activity of liver enzymes, aminotransferases, compared with the untreated group.
Collapse
Affiliation(s)
- Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Roya Abassi
- Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Faeizi
- Department of Anatomical Sciences, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alieh Sohan Faraji
- Department of Anatomical Sciences, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hassan Taheri
- Department of Internal Medicine, Ayatollah Rouhani Hospital, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohsen Tatar
- Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Marym M Elmi
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran
| | - Sohhrab Halalkhor
- Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
30
|
Liu YK, Huang LF, Ho SL, Liao CY, Liu HY, Lai YH, Yu SM, Lu CA. Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture. Biotechnol Bioeng 2011; 109:1239-47. [PMID: 22125231 DOI: 10.1002/bit.24394] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/04/2011] [Accepted: 11/16/2011] [Indexed: 12/14/2022]
Abstract
To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway-compatible binary T-DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium-mediated transformation. We used the approach to produce mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) in a rice suspension cell system. The promoter for the αAmy3 amylase gene, which is induced strongly by sugar depletion, drove the expression of mGM-CSF. The resulting recombinant protein was fused with the αAmy3 signal peptide and was secreted into the culture medium. The production of rice-derived mGM-CSF (rmGM-CSF) was scaled up successfully in a 2-L bioreactor, in which the highest yield of rmGM-CSF was 24.6 mg/L. Due to post-translational glycosylation, the molecular weight of rmGM-CSF was larger than that of recombinant mGM-CSF produced in Escherichia coli. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60.
Collapse
Affiliation(s)
- Yu-Kuo Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Kwei-Shan, Taoyuan County, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
An animal model supporting human erythropoiesis will be highly valuable for assessing the biologic function of human RBCs under physiologic and disease settings, and for evaluating protocols of in vitro RBC differentiation. Herein, we analyzed human RBC reconstitution in NOD/SCID or NOD/SCID/γc(-/-) mice that were transplanted with human CD34+ fetal liver cells and fetal thymic tissue. Although a large number of human CD45- CD71+ nucleated immature erythroid cells were detected in the bone marrow, human RBCs were undetectable in the blood of these mice. Human RBCs became detectable in blood after macrophage depletion but disappeared again after withdrawal of treatment. Furthermore, treatment with human erythropoietin and IL-3 significantly increased human RBC reconstitution in macrophage-depleted, but not control, humanized mice. Significantly more rapid rejection of human RBCs than CD47-deficient mouse RBCs indicates that mechanisms other than insufficient CD47-SIRPα signaling are involved in human RBC xenorejection in mice. All considered, our data demonstrate that human RBCs are highly susceptible to rejection by macrophages in immunodeficient mice. Thus, strategies for preventing human RBC rejection by macrophages are required for using immunodeficient mice as an in vivo model to study human erythropoiesis and RBC function.
Collapse
|
32
|
Knudsen E, Iversen PO, Bøyum A, Seierstad T, Nicolaysen G, Benestad HB. G-CSF enhances the proliferation and mobilization, but not the maturation rate, of murine myeloid cells. Eur J Haematol 2011; 87:302-11. [PMID: 21623923 DOI: 10.1111/j.1600-0609.2011.01658.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eirunn Knudsen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
33
|
Delano MJ, Kelly-Scumpia KM, Thayer TC, Winfield RD, Scumpia PO, Cuenca AG, Harrington PB, O’Malley KA, Warner E, Gabrilovich S, Mathews CE, Laface D, Heyworth PG, Ramphal R, Strieter RM, Moldawer LL, Efron PA. Neutrophil mobilization from the bone marrow during polymicrobial sepsis is dependent on CXCL12 signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:911-8. [PMID: 21690321 PMCID: PMC3635667 DOI: 10.4049/jimmunol.1100588] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neutrophils are essential for successful host eradication of bacterial pathogens and for survival to polymicrobial sepsis. During inflammation, the bone marrow provides a large reserve of neutrophils that are released into the peripheral circulation where they traverse to sites of infection. Although neutrophils are essential for survival, few studies have investigated the mechanisms responsible for neutrophil mobilization from the bone marrow during polymicrobial sepsis. Using a cecal ligation and puncture model of polymicrobial sepsis, we demonstrated that neutrophil mobilization from the bone marrow is not dependent on TLR4, MyD88, TRIF, IFNARα/β, or CXCR2 pathway signaling during sepsis. In contrast, we observed that bone marrow CXCL12 mRNA abundance and specific CXCL12 levels are sharply reduced, whereas splenic CXCR4 mRNA and cell surface expression are increased during sepsis. Blocking CXCL12 activity significantly reduced blood neutrophilia by inhibiting bone marrow release of granulocytes during sepsis. However, CXCL12 inhibition had no impact on the expansion of bone marrow neutrophil precursors and hematopoietic progenitors. Bone marrow neutrophil retention by CXCL12 blockade prevented blood neutrophilia, inhibited peritoneal neutrophil accumulation, allowed significant peritoneal bacterial invasion, and increased polymicrobial sepsis mortality. We concluded that changes in the pattern of CXCL12 signaling during sepsis are essential for neutrophil bone marrow mobilization and host survival but have little impact on bone marrow granulopoiesis.
Collapse
Affiliation(s)
- Matthew J. Delano
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Kindra M. Kelly-Scumpia
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Terri C. Thayer
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Robert D. Winfield
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Philip O. Scumpia
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Alex G. Cuenca
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Phillips B. Harrington
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Kerri A. O’Malley
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Elizabeth Warner
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Sonia Gabrilovich
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Clayton E. Mathews
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Drake Laface
- Merck Research Laboratories (formerly DNAX), Palo Alto, California, 94304
| | - Paul G. Heyworth
- Merck Research Laboratories (formerly DNAX), Palo Alto, California, 94304
| | - Reuben Ramphal
- Department of Infectious Diseases, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Robert M. Strieter
- Department of Medicine, University of Virginia, Charlottesville, Virginia, 22908
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Philip A. Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, 32610
| |
Collapse
|
34
|
St Denis TG, Aziz K, Waheed AA, Huang YY, Sharma SK, Mroz P, Hamblin MR. Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochem Photobiol Sci 2011; 10:792-801. [PMID: 21479313 PMCID: PMC3449163 DOI: 10.1039/c0pp00326c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/08/2011] [Indexed: 01/23/2023]
Abstract
Photodynamic therapy (PDT) has been used as a cancer therapy for forty years but has not advanced to a mainstream cancer treatment. Although it has been shown to be an efficient way to destroy local tumors by a combination of non-toxic dyes and harmless visible light, it is its additional effects in mediating the stimulation of the host immune system that gives PDT great potential to become more widely used. Although the stimulation of tumor-specific cytotoxic T-cells that can destroy distant tumor deposits after PDT has been reported in some animal models, it remains the exception rather than the rule. This realization has prompted several investigators to test various combination approaches that could potentiate the immune recognition of tumor antigens that have been released after PDT. This review will cover these combination approaches using immunostimulants including various microbial preparations that activate Toll-like receptors and other receptors for pathogen-associated molecular patterns, cytokines growth factors, and approaches that target regulatory T-cells. We believe that by understanding the methods employed by tumors to evade immune response and neutralizing them, more precise ways of potentiating PDT-induced immunity can be devised.
Collapse
Affiliation(s)
- Tyler G. St Denis
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- John Jay High School, Cross River, NY, 10518, USA
| | - Kanza Aziz
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Aga Khan University Medical College, Stadium Road, Karachi, 75950, Pakistan
| | - Anam A. Waheed
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Aga Khan University Medical College, Stadium Road, Karachi, 75950, Pakistan
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Aesthetic and Plastic Center of Guangxi Medical University, Nanning, PR China
| | - Sulbha K. Sharma
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA, 02114, USA; Fax: +1 617-726-8566; Tel: +1 617-726-6182
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
35
|
Wegmann M. Targeting eosinophil biology in asthma therapy. Am J Respir Cell Mol Biol 2011; 45:667-74. [PMID: 21474432 DOI: 10.1165/rcmb.2011-0013tr] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Due to their role as main effector cells in immune reactions against invading parasites, eosinophils have a plethora of molecules available to destroy these complex pathogens. Their role in allergic diseases such as bronchial asthma, where they do not have to conquer pathogens, is discussed controversially. However, since eosinophils were identified by Paul Ehrlich in tissue and sputum of patients with asthma, it was regarded that their important defensive role turns into its direct opposite so that these cells cause destruction of the airway tissue, ultimately leading to the formation of disease phenotype. Thus, eosinophils were identified as a prime target in therapeutic intervention of bronchial asthma. Over the last years, a number of mediators and receptors involved in the regulation of eosinophil recruitment, chemotaxis, activation, survival, and apoptosis have been identified. Some of these molecules have been addressed in vitro and in animal models of experimental asthma to evaluate their therapeutic potential in asthma. A few of these candidates have been tested in clinical studies, which produced surprising results questioning the role of eosinophils in asthma pathogenesis. This article summarizes these approaches and gives a critical overview about further candidate molecules that have been recently discussed as targets for an eosinophil-specific asthma therapy.
Collapse
Affiliation(s)
- Michael Wegmann
- Experimental Pneumology, Research Center Borstel, Parkallee 1, D-23845 Borstel, Germany 1887402.
| |
Collapse
|
36
|
Alenzi FQ, Lotfy M, Tamimi WG, Wyse RKH. Review: Stem cells and gene therapy. ACTA ACUST UNITED AC 2011; 16:53-73. [PMID: 20858588 DOI: 10.1532/lh96.10010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both stem cell and gene therapy research are currently the focus of intense research in institutions and companies around the world. Both approaches hold great promise by offering radical new and successful ways of treating debilitating and incurable diseases effectively. Gene therapy is an approach to treat, cure, or ultimately prevent disease by changing the pattern of gene expression. It is mostly experimental, but a number of clinical human trials have already been conducted. Gene therapy can be targeted to somatic or germ cells; the most common vectors are viruses. Scientists manipulate the viral genome and thus introduce therapeutic genes to the target organ. Viruses, in this context, can cause adverse events such as toxicity, immune and inflammatory responses, as well as gene control and targeting issues. Alternative modalities being considered are complexes of DNA with lipids and proteins. Stem cells are primitive cells that have the capacity to self renew as well as to differentiate into 1 or more mature cell types. Pluripotent embryonic stem cells derived from the inner cell mass can develop into more than 200 different cells and differentiate into cells of the 3 germ cell layers. Because of their capacity of unlimited expansion and pluripotency, they are useful in regenerative medicine. Tissue or adult stem cells produce cells specific to the tissue in which they are found. They are relatively unspecialized and predetermined to give rise to specific cell types when they differentiate. The current review provides a summary of our current knowledge of stem cells and gene therapy as well as their clinical implications and related therapeutic options.
Collapse
Affiliation(s)
- Faris Q Alenzi
- College of Applied Medical Sciences, Al-Kharj University, Al-Kharj, Saudi Arabia.
| | | | | | | |
Collapse
|
37
|
Abstract
Sepsis has continuously been a leading cause of neonatal morbidity and mortality despite current advances in chemotherapy and patient intensive care facilities. Neonates are at high risk for developing bacterial infections due to quantitative and qualitative insufficiencies of innate immunity, particularly granulocyte lineage development and response to infection. Although antibiotics remain the mainstay of treatment, adjuvant therapies enhancing immune function have shown promise in treating sepsis in neonates. This article reviews current strategies for the clinical management of neonatal sepsis and analyzes mechanisms underlying insufficiencies of neutrophil defense in neonates with emphasis on new directions for adjuvant therapy development.
Collapse
Affiliation(s)
- John Nicholas Melvan
- Department of Physiology and Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
38
|
Góra-Sochacka A, Redkiewicz P, Napiórkowska B, Gaganidze D, Brodzik R, Sirko A. Recombinant mouse granulocyte-macrophage colony-stimulating factor is glycosylated in transgenic tobacco and maintains its biological activity. J Interferon Cytokine Res 2010; 30:135-42. [PMID: 20038209 DOI: 10.1089/jir.2009.0053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with many important applications and, due to its immunostimulatory properties, could also be used as a vaccine adjuvant. A simple strategy to produce recombinant mouse GM-CSF (mGM-CSF) in transgenic Nicotiana tabacum plants was used in this study. The mGM-CSF cDNA followed by the sequence encoding endoplasmic reticulum retention signal (KDEL) was cloned into the ImpactVector under the control of the strong promoter from the gene encoding a small subunit of Rubisco. In transgenic plants the accumulation level of recombinant mGM-CSF varied in the individual transformants from 8 to 19 microg/g of fresh leaf tissue, which makes up to 0.22% of total soluble protein. In most analyzed plants, the apparent molecular weight of the recombinant protein was larger than predicted due to its N-glycosylation, presumably in 2 sites. The recombinant plant-produced murine GM-CSF retained its biological activity as confirmed in vitro in proliferation assay using a mouse cell line, which is growth-dependent on GM-CSF.
Collapse
Affiliation(s)
- Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
39
|
Ex vivo expansion of hematopoietic cells from CD34+ cord blood cells in various culture conditions. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Abstract
The disciplines of reproduction and immunology, once quite discrete, are now closely associated, with compelling evidence to suggest that immune mechanisms play important roles in the cervix, uterus, fallopian tubes and ovary. Cells and mediators classically described as part of the immune system are found throughout the reproductive tract. Disorders of reproduction, including pre-eclampsia, unexplained infertility, endometriosis, recurrent miscarriage and disturbed fetal growth almost certainly have some of their origins in the dysfunction of immune regulation. There appears to be some evidence that immune disorders, such as rheumatoid arthritis and scleroderma, can manifest as infertility, before clinical disease becomes apparent.
Collapse
|
41
|
Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol 2009; 86:411-21. [PMID: 19406830 DOI: 10.1189/jlb.1108702] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
M-CSF and GM-CSF are mediators involved in regulating the numbers and function of macrophage lineage populations and have been shown to contribute to macrophage heterogeneity. Type I IFN is an important mediator produced by macrophages and can have profound regulatory effects on their properties. In this study, we compared bone marrow-derived macrophages (BMM) and GM-CSF-induced BMM (GM-BMM) from wild-type and IFNAR1(-/-) mice to assess the contribution of endogenous type I IFN to the phenotypic differences between BMM and GM-BMM. BMM were capable of higher constitutive IFN-beta production, which contributed significantly to their basal transcriptome. Microarray analysis found that of the endogenous type I IFN-regulated genes specific to either BMM or GM-BMM, 488 of these gene alterations were unique to BMM, while only 50 were unique to GM-BMM. Moreover, BMM displayed enhanced basal mRNA levels, relative to GM-BMM, of a number of genes identified as being dependent on type I IFN signaling, including Stat1, Stat2, Irf7, Ccl5, Ccl12, and Cxcl10. As a result of prior type I IFN "priming," upon LPS stimulation BMM displayed increased activation of the MyD88-independent IRF-3/STAT1 pathways compared with GM-BMM, which correlated with the distinct cytokine/chemokine profiles of the two macrophage subsets. Furthermore, the autocrine type I IFN signaling loop regulated the production of the M1 and M2 signature cytokines, IL-12p70 and IL-10. Collectively, these findings demonstrate that constitutive and LPS-induced type I IFN play significant roles in regulating the differences in phenotype and function between BMM and GM-BMM.
Collapse
Affiliation(s)
- Andrew J Fleetwood
- Department of Medicine, University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
42
|
Abstract
After hematopoietic SCT (HSCT), G-CSF is commonly used to enhance stem cell engraftment to minimize the morbidity and mortality associated with prolonged neutropenia. However, there is no consensus on the optimal use of G-CSF after high-dose chemotherapy followed by HSCT. This review was performed to evaluate the evidence regarding the use of G-CSF after autologous and allogeneic HSCT. Studies investigating the use of G-CSF in comparison to control (observation or placebo), early vs delayed initiation of G-CSF, and other approaches driven by patient-specific parameters to identify optimal use of G-CSF have been reviewed. Various outcomes such as neutrophil and platelet engraftment, post-transplant length of hospital stay, post-transplant complications such as infection and GVHD, and survival have been assessed. Finally, we provide the level of evidence for each of the outcomes analyzed while evaluating strategies for using G-CSF in patients undergoing autologous or allogeneic HSCT.
Collapse
|
43
|
Luo J, Ning T, Sun Y, Zhu J, Zhu Y, Lin Q, Yang D. Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF. J Proteome Res 2009; 8:829-37. [PMID: 18778094 DOI: 10.1021/pr8002968] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The accumulation of significant levels of transgenic products in plant cells is required not only for crop improvement, but also for molecular pharming. However, knowledge about the fate of transgenic products and endogenous proteins in grain cells is lacking. Here, we utilized a quantitative mass spectrometry-based proteomic approach for comparative analysis of expression profiles of transgenic rice endosperm cells in response to expression of a recombinant pharmaceutical protein, human granulocyte-macrophage colony stimulation factor (hGM-CSF). This study provided the first available evidence concerning the fate of exogenous and endogenous proteins in grain cells. Among 1883 identified proteins with a false positive rate of 5%, 103 displayed significant changes (p-value < 0.05) between the transgenic and the wild-type endosperm cells. Notably, endogenous storage proteins and most carbohydrate metabolism-related proteins were down-regulated, while 26S proteasome-related proteins and chaperones were up-regulated in the transgenic rice endosperm. Furthermore, it was observed that expression of hGM-CSF induced endoplasmic reticulum stress and activated the ubiquitin/26S-proteasome pathway, which led to ubiquitination of this foreign gene product in the transgenic rice endosperm.
Collapse
Affiliation(s)
- Junling Luo
- Department of Genetics, College of Life Sciences, Wuhan University, 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Alenzi FQ, Alenazi BQ, Ahmad SY, Salem ML, Al-Jabri AA, Wyse RKH. The haemopoietic stem cell: between apoptosis and self renewal. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2009; 82:7-18. [PMID: 19325941 PMCID: PMC2660591 DOI: pmid/19325941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self renewal and apoptosis of haemopoietic stem cells (HSC) represent major factors that determine the size of the haemopoietic cell mass. Changes in self renewal above or below the steady state value of 0.5 will result in either bone marrow expansion or aplasia, respectively. Despite the growing body of research that describes the potential role of HSC, there is still very little information on the mechanisms that govern HSC self renewal and apoptosis. Considerable insight into the role of HSC in many diseases has been gained in recent years. In light of their crucial importance, this article reviews recent developments in the understanding of the molecular, biological, and physiological characteristics of haemopoietic stem cells.
Collapse
Affiliation(s)
- Faris Q Alenzi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
45
|
Jia N, Dong P, Huang Q, Jin W, Zhang J, Dai Q, Liu S. CARDIOPROTECTIVE EFFECTS OF GRANULOCYTE COLONY-STIMULATING FACTOR IN ANGIOTENSIN II-INDUCED CARDIAC REMODELLING. Clin Exp Pharmacol Physiol 2009; 36:262-6. [DOI: 10.1111/j.1440-1681.2008.05052.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Ji JE, Lee JM, Choi JM, Choi YH, Kim EK, Chu SJ, Kim SK, Ahn KH, Lee DH, Kim HH, Han K, Kim DK. Subcutaneous Four-Week Repeated Dose Toxicity Studies of Rice Cell-Derived Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor in Rats. Toxicol Res 2008; 24:315-320. [PMID: 32038810 PMCID: PMC7006265 DOI: 10.5487/tr.2008.24.4.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 11/20/2022] Open
Abstract
Recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) is a glycoprotein and hematopoietic growth factors that regulates the proliferation of myeloid precursor cells and activates mature granulocytes and macrophages. In a previous study, we reported that hGM-CSF could be produced in transgenic rice cell suspension culture, termed rhGM-CSF. In the present study, we examined the repeated dose toxicity of rhGM-CSF in SD rats. The repeated dose toxicity study was performed at each dose of 50 and 200 µg/kg subcutaneous administration of rhGM-CSF everyday for 28-days period. The results did not show any changes in food and water intake. There were also no significant changes in both body and organ weights between the control and the tested groups. The hematological and blood biochemical parameters were statistically not different in all groups. These results suggest that rhGM-CSF may show no repeated dose toxicity in SD rats under the conditions.
Collapse
Affiliation(s)
- Jung Eun Ji
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - Jung Min Lee
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - Jong Min Choi
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - Young Hwa Choi
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - Eun Kyung Kim
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - So Jung Chu
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - Seok Kyun Kim
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - Kyong Hoon Ahn
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - Dong Hoon Lee
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - Ha Hyung Kim
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| | - Kyuboem Han
- Department of Environmental & Health Chemistry, Hanson Biotech Co., Ltd., Daejeon, 305-811 Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul, 156-756 Korea
| |
Collapse
|
47
|
Kim NS, Kim TG, Kim OH, Ko EM, Jang YS, Jung ES, Kwon TH, Yang MS. Improvement of recombinant hGM-CSF production by suppression of cysteine proteinase gene expression using RNA interference in a transgenic rice culture. PLANT MOLECULAR BIOLOGY 2008; 68:263-75. [PMID: 18587653 DOI: 10.1007/s11103-008-9367-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/16/2008] [Indexed: 05/20/2023]
Abstract
Recombinant proteins have been previously synthesized in a transgenic rice cell suspension culture system with the rice amylase 3D promoter, which can be induced via sugar starvation. However, the secreted recombinant proteins have been shown to be rapidly decreased as the result of proteolytic degradation occurring during prolonged incubation. The secreted proteases were identified via two-dimensional electrophoresis (2-DE) and ESI/Q-TOF mass spectrometry analyses. The internal amino acid sequences of 8 of 37 spots corresponded to cysteine proteinase (CysP), which is encoded for by Rep1 and EP3A. This result shows that CysP is a major secreted protease in rice cell suspension cultures following induction via sugar starvation. Intron-containing self-complementary hairpin RNA (ihpRNA)-mediated post-transcriptional gene silencing (PTGS) was applied to suppress the expression of CysP in rice cell suspension cultures. The reduction of rice CysP mRNA and the detection of siRNA specific to CysP, an initiator of RNAi, were verified via Northern blot analysis and RNase protection assays, respectively, thereby indicating that PTGS operated successfully in this system. The analysis of total secreted protease and CysP activities evidenced lower activity than was observed with the wild-type. Furthermore, suspension cultures of rice cells transformed with both hGM-CSF and the gene expressing the ihpRNA of CysP evidenced a reduction in total protease and CysP activities, and an up to 1.9-fold improvement in hGM-CSF production as compared to that observed in a rice cell line expressing hGM-CSF only. These results demonstrate the feasibility of the suppression of CysP via RNA interference to reduce protease activity and to increase target protein accumulation in rice cell suspension cultures.
Collapse
Affiliation(s)
- Nan-Sun Kim
- Division of Biological Sciences, Chonbuk National University, Dukjindong 664-14, Jeonju, Chonbuk 561-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nelson SM, Greer IA. The potential role of heparin in assisted conception. Hum Reprod Update 2008; 14:623-45. [DOI: 10.1093/humupd/dmn031] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
49
|
Ning T, Xie T, Qiu Q, Yang W, Zhou S, Zhou L, Zheng C, Zhu Y, Yang D. Oral administration of recombinant human granulocyte-macrophage colony stimulating factor expressed in rice endosperm can increase leukocytes in mice. Biotechnol Lett 2008; 30:1679-86. [PMID: 18425430 DOI: 10.1007/s10529-008-9717-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
Abstract
Human granulocyte-macrophage colony stimulating factor (hGM-CSF) is used clinically to treat leucopenia typically caused by cancer chemotherapy or radiotherapy. This study used multiple strategies to obtain very high expression levels of OsrhGM-CSF (14 microg/seed) in rice endosperm. Electron micrographs of immunogold-labeled transgenic endosperm showed that rhGM-CSF was not only localized in protein bodies but was also distributed in the apoplast. A biological activity assay indicated that OsrhGM-CSF stimulated the growth of TF-1 cells in vitro. In addition, the transgene was used to effectively treat leucopenia by oral administration of the unprocessed transgenic grains. In cyclophosphamide-induced leucopenic mice, transgenic seeds produced a 27% (t=0.021) gain in leukocytes after 14 days feeding. Even in non-leucopenic mice, leukocyte gain was 37% (t=0.002) more than that of mice fed non-transgenic seeds. This study provides a novel approach to the use of oral unprocessed transgenic OsrhGM-CSF seeds to treat leucopenia.
Collapse
Affiliation(s)
- Tingting Ning
- Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 2008; 38:709-50. [PMID: 18384431 DOI: 10.1111/j.1365-2222.2008.02958.x] [Citation(s) in RCA: 573] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of diverse inflammatory responses, as well as modulators of innate and adaptive immunity. In this review, the biology of eosinophils is summarized, focusing on transcriptional regulation of eosinophil differentiation, characterization of the growing properties of eosinophil granule proteins, surface proteins and pleiotropic mediators, and molecular mechanisms of eosinophil degranulation. New views on the role of eosinophils in homeostatic function are examined, including developmental biology and innate and adaptive immunity (as well as their interaction with mast cells and T cells) and their proposed role in disease processes including infections, asthma, and gastrointestinal disorders. Finally, strategies for targeted therapeutic intervention in eosinophil-mediated mucosal diseases are conceptualized.
Collapse
|