1
|
He C, He G, Feng Y. Structural basis of phage transcriptional regulation. Structure 2024; 32:1031-1039. [PMID: 39067444 DOI: 10.1016/j.str.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Phages are the most prevalent and diverse entities in the biosphere and represent the simplest systems that are capable of self-replication. Many fundamental concepts of transcriptional regulation were revealed through phage studies. The replication of phages within bacteria entails the hijacking of the host transcription machinery. Typically, this is accomplished through proteins and RNAs encoded by the phage genome that bind to the host RNA polymerase and modify its characteristics. Understanding these processes offers valuable insights into the mechanisms of bacterial transcription itself. Historically, X-ray crystallography has been the major tool for elucidating the structural basis of phage transcriptional regulation. In recent years, the application of cryoelectron microscopy has not only allowed the exploration of protein-protein and protein-nucleic acid interactions at near-atomic resolution but also captured transient intermediate states, further expanding our mechanistic understanding of phage transcriptional regulation.
Collapse
Affiliation(s)
- Chuchu He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guanchen He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging Injury Diseases of Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
2
|
Zhang K, Li X, Wang Z, Li G, Ma B, Chen H, Li N, Yang H, Wang Y, Liu B. Systemic Expression, Purification, and Initial Structural Characterization of Bacteriophage T4 Proteins Without Known Structure Homologs. Front Microbiol 2021; 12:674415. [PMID: 33927712 PMCID: PMC8076793 DOI: 10.3389/fmicb.2021.674415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage T4 of Escherichia coli is one of the most studied phages. Research into it has led to numerous contributions to phage biology and biochemistry. Coding about 300 gene products, this double-stranded DNA virus is the best-understood model in phage study and modern genomics and proteomics. Ranging from viral RNA polymerase, commonly found in phages, to thymidylate synthase, whose mRNA requires eukaryotic-like self-splicing, its gene products provide a pool of fine examples for phage research. However, there are still up to 130 gene products that remain poorly characterized despite being one of the most-studied model phages. With the recent advancement of cryo-electron microscopy, we have a glimpse of the virion and the structural proteins that present in the final assembly. Unfortunately, proteins participating in other stages of phage development are absent. Here, we report our systemic analysis on 22 of these structurally uncharacterized proteins, of which none has a known homologous structure due to the low sequence homology to published structures and does not belong to the category of viral structural protein. Using NMR spectroscopy and cryo-EM, we provided a set of preliminary structural information for some of these proteins including NMR backbone assignment for Cef. Our findings pave the way for structural determination for the phage proteins, whose sequences are mainly conserved among phages. While this work provides the foundation for structural determinations of proteins like Gp57B, Cef, Y04L, and Mrh, other in vitro studies would also benefit from the high yield expression of these proteins.
Collapse
Affiliation(s)
- Kaining Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojiao Li
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhihao Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Guanglin Li
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Biyun Ma
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huaiyu Yang
- Department of Chemical Engineering, University of Loughborough, Leicestershire, United Kingdom
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Shi J, Wen A, Jin S, Gao B, Huang Y, Feng Y. Transcription activation by a sliding clamp. Nat Commun 2021; 12:1131. [PMID: 33602900 PMCID: PMC7892883 DOI: 10.1038/s41467-021-21392-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Transcription activation of bacteriophage T4 late genes is accomplished by a transcription activation complex containing RNA polymerase (RNAP), the promoter specificity factor gp55, the coactivator gp33, and a universal component of cellular DNA replication, the sliding clamp gp45. Although genetic and biochemical studies have elucidated many aspects of T4 late gene transcription, no precise structure of the transcription machinery in the process is available. Here, we report the cryo-EM structures of a gp55-dependent RNAP-promoter open complex and an intact gp45-dependent transcription activation complex. The structures reveal the interactions between gp55 and the promoter DNA that mediate the recognition of T4 late promoters. In addition to the σR2 homology domain, gp55 has a helix-loop-helix motif that chaperons the template-strand single-stranded DNA of the transcription bubble. Gp33 contacts both RNAP and the upstream double-stranded DNA. Gp45 encircles the DNA and tethers RNAP to it, supporting the idea that gp45 switches the promoter search from three-dimensional diffusion mode to one-dimensional scanning mode. Transcription activation of late genes in T4 bacteriophage requires the promoter specificity factor gp55, the coactivator gp33 and the sliding clamp gp45. Here, the authors provide structural insights into gp45- dependent transcription activation by determining the cryo-EM structures of a gp55-dependent RNA polymerase (RNAP)-promoter open complex and of an intact gp45-dependent transcription activation complex.
Collapse
Affiliation(s)
- Jing Shi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Jin
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Gao
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Huang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou, China.
| |
Collapse
|
4
|
Tabib-Salazar A, Mulvenna N, Severinov K, Matthews SJ, Wigneshweraraj S. Xenogeneic Regulation of the Bacterial Transcription Machinery. J Mol Biol 2019; 431:4078-4092. [DOI: 10.1016/j.jmb.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
5
|
Singh MI, Ganesh B, Jain V. On the domains of T4 phage sliding clamp gp45: An intermolecular crosstalk governs structural stability and biological activity. Biochim Biophys Acta Gen Subj 2016; 1861:3300-3310. [PMID: 27554844 DOI: 10.1016/j.bbagen.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND DNA polymerase processivity factors are ubiquitously present in all living organisms. Notwithstanding their high significance, the molecular details of clamps pertaining to the factors contributing to their stability are presently lacking. The bacteriophage T4 sliding clamp gp45 forms a homotrimer that besides being involved in DNA replication, moonlights as a transcription factor. Here we have carried out a detailed characterization of gp45 to understand the role of monomer-monomer interface interactions in stability and functioning of the protein. METHODS We generated several gp45 mutants harboring either Ala or Pro substitutions at the interface residues and performed a detailed investigation using biochemical and biophysical methods including circular dichroism, fluorescence anisotropy and quenching, differential scanning calorimetry, blue-native PAGE, cross-linking, size exclusion chromatography, and dynamic light scattering. We also carried out both transcription and DNA replication to understand the properties of the wild-type and the mutant proteins. RESULTS One specific mutation S88P leads not only to monomerization, but also results in an unstable molecule. Most interestingly, mutating either Q125 or K164 in the gp45 C-terminal domain negatively affects the stability of the N-terminal domain. We also report that these residues upon mutation to alanine make gp45 inactive for late promoter transcription, whereas strand-displacement DNA replication ability remains unaltered. CONCLUSIONS AND GENERAL SIGNIFICANCE The results suggest that the two domains of gp45 demonstrate an "inter-monomer" crosstalk that stabilizes the trimer. We also conclude that the residue-specific interactions at the interface allow the protein to function distinctly as replication and transcription factors.
Collapse
Affiliation(s)
- Manika Indrajit Singh
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Bylapudi Ganesh
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India.
| |
Collapse
|
6
|
Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid. J Virol 2015; 89:10945-58. [PMID: 26311868 PMCID: PMC4621102 DOI: 10.1128/jvi.01353-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/10/2015] [Indexed: 01/21/2023] Open
Abstract
Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors.
Collapse
|
7
|
What macromolecular crowding can do to a protein. Int J Mol Sci 2014; 15:23090-140. [PMID: 25514413 PMCID: PMC4284756 DOI: 10.3390/ijms151223090] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area.
Collapse
|
8
|
Crystal structure of the bacteriophage T4 late-transcription coactivator gp33 with the β-subunit flap domain of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2011; 108:19961-6. [PMID: 22135460 DOI: 10.1073/pnas.1113328108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activated transcription of the bacteriophage T4 late genes, which is coupled to concurrent DNA replication, is accomplished by an initiation complex containing the host RNA polymerase associated with two phage-encoded proteins, gp55 (the basal promoter specificity factor) and gp33 (the coactivator), as well as the DNA-mounted sliding-clamp processivity factor of the phage T4 replisome (gp45, the activator). We have determined the 3.0 Å-resolution X-ray crystal structure of gp33 complexed with its RNA polymerase binding determinant, the β-flap domain. Like domain 4 of the promoter specificity σ factor (σ(4)), gp33 interacts with RNA polymerase primarily by clamping onto the helix at the tip of the β-flap domain. Nevertheless, gp33 and σ(4) are not structurally related. The gp33/β-flap structure, combined with biochemical, biophysical, and structural information, allows us to generate a structural model of the T4 late promoter initiation complex. The model predicts protein/protein interactions within the complex that explain the presence of conserved patches of surface-exposed residues on gp33, and provides a structural framework for interpreting and designing future experiments to functionally characterize the complex.
Collapse
|
9
|
Ferrer MD, Quiles-Puchalt N, Harwich MD, Tormo-Más MÁ, Campoy S, Barbé J, Lasa I, Novick RP, Christie GE, Penadés JR. RinA controls phage-mediated packaging and transfer of virulence genes in Gram-positive bacteria. Nucleic Acids Res 2011; 39:5866-78. [PMID: 21450808 PMCID: PMC3152322 DOI: 10.1093/nar/gkr158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phage-mediated transfer of microbial genetic elements plays a crucial role in bacterial life style and evolution. In this study, we identify the RinA family of phage-encoded proteins as activators required for transcription of the late operon in a large group of temperate staphylococcal phages. RinA binds to a tightly regulated promoter region, situated upstream of the terS gene, that controls expression of the morphogenetic and lysis modules of the phage, activating their transcription. As expected, rinA deletion eliminated formation of functional phage particles and significantly decreased the transfer of phage and pathogenicity island encoded virulence factors. A genetic analysis of the late promoter region showed that a fragment of 272 bp contains both the promoter and the region necessary for activation by RinA. In addition, we demonstrated that RinA is the only phage-encoded protein required for the activation of this promoter region. This region was shown to be divergent among different phages. Consequently, phages with divergent promoter regions carried allelic variants of the RinA protein, which specifically recognize its own promoter sequence. Finally, most Gram-postive bacteria carry bacteriophages encoding RinA homologue proteins. Characterization of several of these proteins demonstrated that control by RinA of the phage-mediated packaging and transfer of virulence factor is a conserved mechanism regulating horizontal gene transfer.
Collapse
Affiliation(s)
- María Desamparados Ferrer
- Departamento de Química, Bioquímica y Biología Molecular, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Geiduschek EP, Kassavetis GA. Transcription of the T4 late genes. Virol J 2010; 7:288. [PMID: 21029432 PMCID: PMC2988020 DOI: 10.1186/1743-422x-7-288] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/28/2010] [Indexed: 11/16/2022] Open
Abstract
This article reviews the current state of understanding of the regulated transcription of the bacteriophage T4 late genes, with a focus on the underlying biochemical mechanisms, which turn out to be unique to the T4-related family of phages or significantly different from other bacterial systems. The activator of T4 late transcription is the gene 45 protein (gp45), the sliding clamp of the T4 replisome. Gp45 becomes topologically linked to DNA through the action of its clamp-loader, but it is not site-specifically DNA-bound, as other transcriptional activators are. Gp45 facilitates RNA polymerase recruitment to late promoters by interacting with two phage-encoded polymerase subunits: gp33, the co-activator of T4 late transcription; and gp55, the T4 late promoter recognition protein. The emphasis of this account is on the sites and mechanisms of actions of these three proteins, and on their roles in the formation of transcription-ready open T4 late promoter complexes.
Collapse
Affiliation(s)
- E Peter Geiduschek
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
11
|
Abstract
This is a memoir of circumstances that have shaped my life as a scientist, some of the questions that have excited my interest, and some of the people with whom I have shared that pursuit. I was introduced to transcription soon after the discovery of RNA polymerase and have been fascinated by questions relating to gene regulation since that time. My account touches on early experiments dealing with the ability of RNA polymerase to selectively transcribe its DNA template. Temporal programs of transcription that control the multiplication cycles of viruses (phages) and the precise mechanisms generating this regulation have been a continuing source of fascination and new challenges. A longtime interest in eukaryotic RNA polymerase III has centered on yeast and on the enumeration and properties of its transcription initiation factors, the architecture of its promoter complexes, and the mechanism of transcriptional initiation. These areas of research are widely regarded as separate, but to my thinking they have posed similar questions, and I have been unwilling or unable to abandon either one for the other. An additional interest in archaeal transcription can be seen as stemming naturally from this point of view.
Collapse
Affiliation(s)
- E Peter Geiduschek
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
12
|
Nechaev S, Geiduschek EP. Dissection of the bacteriophage T4 late promoter complex. J Mol Biol 2008; 379:402-13. [PMID: 18455735 DOI: 10.1016/j.jmb.2008.03.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/13/2008] [Accepted: 03/31/2008] [Indexed: 11/29/2022]
Abstract
Activated transcription of the bacteriophage T4 late genes is generated by a mechanism that stands apart from the common modalities of transcriptional regulation: the activator is gp45, the viral replisome's sliding clamp; two sliding-clamp-binding proteins, gp33 and gp55, replace the host RNA polymerase (RNAP) sigma subunit. We have mutagenized, reconfigured and selectively disrupted individual interactions of the sliding clamp with gp33 and gp55 and have monitored effects on transcription. The C-terminal sliding-clamp-binding epitopes of gp33 and gp55 are perfectly interchangeable, but the functions of these two RNAP-sliding clamp connections differ: only the gp33-gp45 linkage is essential for activation, while loss of the gp55-gp45 linkage impairs but does not abolish activation. Formation of transcription-ready promoter complexes by the sliding-clamp-activated wild-type T4 RNAP resists competition by high concentrations of the polyanion heparin. This avid formation of promoter complexes requires both linkages of the T4 late RNAP to the sliding clamp. Preopening the promoter compensates for loss of the gp55-gp45 but not the gp33-gp45 linkage. We interpret the relationship of these findings and our prior analysis to the common model of transcriptional initiation in bacteria in terms of two parallel pathways, with two RNAP holoenzymes and two DNA templates: (1) gp55-RNAP and the T4 late promoter execute basal transcription; (2) gp55-gp33-RNAP and the T4 late promoter with its mobile enhancer, the T4 sliding clamp, execute activated transcription. gp55 and gp33 perform sigma-like functions, gp55 in promoter recognition and gp33 (as well as gp55) in enhancer recognition. gp33 operates the switch between these two pathways by repressing basal transcription.
Collapse
Affiliation(s)
- Sergei Nechaev
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
13
|
Nechaev S, Geiduschek EP. The role of an upstream promoter interaction in initiation of bacterial transcription. EMBO J 2006; 25:1700-9. [PMID: 16601684 PMCID: PMC1440836 DOI: 10.1038/sj.emboj.7601069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 03/09/2006] [Indexed: 11/09/2022] Open
Abstract
The bacterial RNA polymerase (RNAP) recognizes promoters through sequence-specific contacts of its promoter-specificity components (sigma) with two DNA sequence motifs. Contacts with the upstream ('-35') promoter motif are made by sigma domain 4 attached to the flap domain of the RNAP beta subunit. Bacteriophage T4 late promoters consist solely of an extended downstream ('-10') motif specifically recognized by the T4 gene 55 protein (gp55). Low level basal transcription is sustained by gp55-RNAP holoenzyme. The late transcription coactivator gp33 binds to the beta flap and represses this basal transcription. Gp33 can also repress transcription by Escherichia coli sigma70-RNAP holoenzyme mutated to allow gp33 access to the beta flap. We propose that repression is due to gp33 blocking an upstream sequence-independent DNA-binding site on RNAP (as sigma70 domain 4 does) but, unlike sigma70 domain 4, providing no new DNA interaction. We show that this upstream interaction is essential only at an early step of transcription initiation, and discuss the role of this interaction in promoter recognition and transcriptional regulation.
Collapse
Affiliation(s)
- Sergei Nechaev
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
14
|
Nechaev S, Kamali-Moghaddam M, André E, Léonetti JP, Geiduschek EP. The bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2004; 101:17365-70. [PMID: 15574501 PMCID: PMC535105 DOI: 10.1073/pnas.0408028101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of bacteriophage T4 late genes requires concomitant DNA replication. T4 late promoters, which consist of a single 8-bp -10 motif, are recognized by a holoenzyme containing Escherichia coli RNA polymerase core and the T4-encoded promoter specificity subunit, gp55. Initiation of transcription at these promoters by gp55-holoenzyme is inefficient, but is greatly activated by the DNA-loaded DNA polymerase sliding clamp, gp45, and the coactivator, gp33. We report that gp33 attaches to the flap domain of the Escherichia coli RNA polymerase beta-subunit and that this interaction is essential for activation. The beta-flap also mediates recognition of -35 promoter motifs by binding to sigma(70) domain 4. The results suggest that gp33 is an analogue of sigma(70) domain 4 and that gp55 and gp33 together constitute two parts of the T4 late sigma. We propose a model for the role of the gp45 sliding clamp in activation of T4 late-gene transcription.
Collapse
Affiliation(s)
- Sergei Nechaev
- Division of Biological Sciences and Center for Molecular Genetics, University of California at San Diego, La Jolla, CA 92093-0634, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Bacteriophages have developed an impressive array of ingenious mechanisms to modify bacterial host RNA polymerase to make it serve viral needs. In this review we summarize the current knowledge about two types of host RNA polymerase modifications induced by double-stranded DNA phages: covalent modifications and modifications through RNA polymerase-binding proteins. We interpret the biochemical and genetic data within the framework of a structure-function model of bacterial RNA polymerase and viral biology.
Collapse
Affiliation(s)
- Sergei Nechaev
- Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0634, USA.
| | | |
Collapse
|
16
|
Kolesky SE, Ouhammouch M, Geiduschek EP. The mechanism of transcriptional activation by the topologically DNA-linked sliding clamp of bacteriophage T4. J Mol Biol 2002; 321:767-84. [PMID: 12206760 DOI: 10.1016/s0022-2836(02)00732-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three viral proteins participate directly in transcription of bacteriophage T4 late genes: the sigma-family protein gp55 provides promoter recognition, gp33 is the co-activator, and gp45 is the activator of transcription; gp33 also represses transcription in the absence of gp45. Transcriptional activation by gp45, the toroidal sliding clamp of the T4 DNA polymerase holoenzyme, requires assembly at primer-template junctions by its clamp loader. The mechanism of transcriptional activation has been analyzed by examining rates of formation of open promoter complexes. The basal gp55-RNA polymerase holoenzyme is only weakly held in its initially formed closed promoter complex, which subsequently opens very slowly. Activation ( approximately 320-fold in this work) increases affinity in the closed complex and accelerates promoter opening. Promoter opening by gp55 is also thermo-irreversible: the T4 late promoter does not open at 0 degrees C, but once opened at 30 degrees C remains open upon shift to the lower temperature. At a hybrid promoter for sigma(70) and gp55-holoenzymes, only gp55 confers thermo-irreversibility of promoter opening. Interaction of gp45 with a C-terminal epitope of gp33 is essential for the co-activator function of gp33.
Collapse
Affiliation(s)
- Scott E Kolesky
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla 92093-0634, USA.
| | | | | |
Collapse
|
17
|
Desplats C, Dez C, Tétart F, Eleaume H, Krisch HM. Snapshot of the genome of the pseudo-T-even bacteriophage RB49. J Bacteriol 2002; 184:2789-804. [PMID: 11976309 PMCID: PMC135041 DOI: 10.1128/jb.184.10.2789-2804.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RB49 is a virulent bacteriophage that infects Escherichia coli. Its virion morphology is indistinguishable from the well-known T-even phage T4, but DNA hybridization indicated that it was phylogenetically distant from T4 and thus it was classified as a pseudo-T-even phage. To further characterize RB49, we randomly sequenced small fragments corresponding to about 20% of the approximately 170-kb genome. Most of these nucleotide sequences lacked sufficient homology to T4 to be detected in an NCBI BlastN analysis. However, when translated, about 70% of them encoded proteins with homology to T4 proteins. Among these sequences were the numerous components of the virion and the phage DNA replication apparatus. Mapping the RB49 genes revealed that many of them had the same relative order found in the T4 genome. The complete nucleotide sequence was determined for the two regions of RB49 genome that contain most of the genes involved in DNA replication. This sequencing revealed that RB49 has homologues of all the essential T4 replication genes, but, as expected, their sequences diverged considerably from their T4 homologues. Many of the nonessential T4 genes are absent from RB49 and have been replaced by unknown sequences. The intergenic sequences of RB49 are less conserved than the coding sequences, and in at least some cases, RB49 has evolved alternative regulatory strategies. For example, an analysis of transcription in RB49 revealed a simpler pattern of regulation than in T4, with only two, rather than three, classes of temporally controlled promoters. These results indicate that RB49 and T4 have diverged substantially from their last common ancestor. The different T4-type phages appear to contain a set of common genes that can be exploited differently, by means of plasticity in the regulatory sequences and the precise choice of a large group of facultative genes.
Collapse
Affiliation(s)
- Carine Desplats
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, UMR 5100, 118 Route de Norbonne, 31062 Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
18
|
Shamoo Y, Steitz TA. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 1999; 99:155-66. [PMID: 10535734 DOI: 10.1016/s0092-8674(00)81647-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have solved the crystal structures of the bacteriophage RB69 sliding clamp, its complex with a peptide essential for DNA polymerase interactions, and the DNA polymerase complexed with primer-template DNA. The editing complex structure shows a partially melted duplex DNA exiting from the exonuclease domain at an unexpected angle and significant changes in the protein structure. The clamp complex shows the C-terminal 11 residues of polymerase bound in a hydrophobic pocket, and it allows docking of the editing and clamp structures together. The peptide binds to the sliding clamp at a position identical to that of a replication inhibitor peptide bound to PCNA, suggesting that the replication inhibitor protein p21CIP1 functions by competing with eukaryotic polymerases for the same binding pocket on the clamp.
Collapse
Affiliation(s)
- Y Shamoo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8814, USA
| | | |
Collapse
|
19
|
Alley SC, Jones AD, Soumillion P, Benkovic SJ. The carboxyl terminus of the bacteriophage T4 DNA polymerase contacts its sliding clamp at the subunit interface. J Biol Chem 1999; 274:24485-9. [PMID: 10455110 DOI: 10.1074/jbc.274.35.24485] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The location of the interaction of the COOH terminus of the bacteriophage T4 DNA polymerase with its trimeric, circular sliding clamp has been established. A peptide corresponding to the COOH terminus of the DNA polymerase was labeled with a fluorophore and fluorescence spectroscopy used to show that it forms a specific complex with the sliding clamp by virtue of its low K(D) value (7.1 +/- 1.0 microM). The same peptide was labeled with a photoaffinity probe and cross-linked to the sliding clamp. Mass spectrometry of tryptic digests determined the sole linkage point to be Ala-159 on the sliding clamp, an amino acid that lies on the subunit interface. These results demonstrate that the COOH terminus of the DNA polymerase is inserted into the subunit interface of its sliding clamp, thereby conferring processivity to the DNA polymerase.
Collapse
Affiliation(s)
- S C Alley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
20
|
Kolesky S, Ouhammouch M, Brody EN, Geiduschek EP. Sigma competition: the contest between bacteriophage T4 middle and late transcription. J Mol Biol 1999; 291:267-81. [PMID: 10438620 DOI: 10.1006/jmbi.1999.2953] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In bacterial transcription, diverse sigma-family promoter recognition proteins compete for a common RNA polymerase core. Bacteriophage T4 infection ultimately reduces this competition to a duel between activated viral middle and enhanced late transcription, involving two sigma proteins, two phage-encoded activator proteins and two phage-specific co-activators. This competition has been analyzed in vitro, and the relative abundances in T4-infected Escherichia coli of the participating proteins have been measured. Activated late transcription holds an advantage over activated middle transcription, especially at higher ionic strength. This advantage is further compounded by ADP-ribosylation of the RNA polymerase alpha subunits, and by the phage-specific, RNA polymerase core-bound RpbA subunit. The largest contribution to the middle-late competition is made by gp55, the late sigma factor, but not enough of gp55 is produced during T4 infection to shut off middle transcription by direct competition with sigma(70). AsiA, the originally identified anti-sigma protein is not a major determinant of middle-late competition.
Collapse
Affiliation(s)
- S Kolesky
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0634, USA.
| | | | | | | |
Collapse
|
21
|
Fu TJ, Geiduschek EP, Kassavetis GA. Abortive initiation of transcription at a hybrid promoter. An analysis of the sliding clamp activator of bacteriophage T4 late transcription, and a comparison of the sigma70 and T4 gp55 promoter recognition proteins. J Biol Chem 1998; 273:34042-8. [PMID: 9852060 DOI: 10.1074/jbc.273.51.34042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 late promoters are transcribed by an RNA polymerase holoenzyme comprising the Escherichia coli core, E, the phage gene 55-encoded promoter recognition subunit, gp55, and the gene 33-encoded co-activator, gp33. Transcriptional initiation is activated by the T4 gene 45-encoded sliding clamp, which is loaded on to DNA at enhancer-like sites by its clamp-loader. Correct initiation of transcription at late promoters in basal mode requires only RNA polymerase core and gp55 (E.gp55). Dinucleotide-primed abortive initiation of basal and activated T4 late transcription has been compared. Only the trinucleotide non-productive transcript is made at a high rate; all other short transcripts are made at rates of less than one molecule per productive transcript. Gp45 increases abortive trinucleotide synthesis along with productive transcription, although the proportion of productive transcripts is also elevated. Nevertheless, this increase accounts for only a small part of the activation of T4 late transcription that is generated by its activator and co-activator. The pattern of production of short transcripts differs subtly between basal and enhanced transcription, indicating that linking the RNA polymerase with its sliding clamp activator only generates minor changes in the transition from abortive to productive RNA chain elongation. The T4 late promoter is converted to a strong sigma70 promoter by inserting an appropriate -35 promoter element. A direct comparison at such a hybrid promoter shows sigma70 and gp55 generating qualitatively and quantitative different patterns of abortive initiation at the same start site.
Collapse
Affiliation(s)
- T J Fu
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA
| | | | | |
Collapse
|
22
|
Wong K, Geiduschek EP. Activator-sigma interaction: A hydrophobic segment mediates the interaction of a sigma family promoter recognition protein with a sliding clamp transcription activator. J Mol Biol 1998; 284:195-203. [PMID: 9813112 DOI: 10.1006/jmbi.1998.2166] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of transcription at bacteriophage T4 late promoters and coupling of late transcription to concurrent replication requires a peculiar transcriptional activator, the gp45 sliding clamp of the T4 DNA polymerase. In order to activate transcription, the topologically DNA-linked trimeric gp45 must interact with two T4-encoded RNA polymerase-binding proteins, the gp33 co-activator, and the gp55 late sigma factor. The carboxy termini of gp55 and gp33 share a similar sequence, which has been shown to be required for response of late transcription to activation by gp45. Alanine-scanning mutagenesis of the C terminus of gp55 shows that residues within the short hydrophobic sequence L(D/A)FLYE, are necessary for gp55 to bind to gp45, and to respond maximally to transcriptional activation by gp45. When fused to GST, the peptide SLDFLYE suffices for specific gp45 binding. Thus, it constitutes the main gp55 epitope for gp45 interaction.
Collapse
Affiliation(s)
- K Wong
- Department of Biology and Center for Molecular Genetics, University of California, 9500 Gilman Drive, San Diego, CA, 92093-0634, USA.
| | | |
Collapse
|
23
|
Travers A, Muskhelishvili G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J Mol Biol 1998; 279:1027-43. [PMID: 9642081 DOI: 10.1006/jmbi.1998.1834] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prokaryotic transcriptional activation often involves the formation of DNA microloops upstream of the polymerase binding site. There is substantial evidence that these microloops function to bring activator and polymerase into close spatial proximity. However additional functions are suggested by the ability of certain activators, of which FIS is the best characterised example, to facilitate polymerase binding, promoter opening and polymerase escape. We review here the evidence for the concept that the topology of the microloop formed by such activators is tightly coupled to the structural transitions in DNA mediated by RNA polymerase. In this process, which we term torsional transmission, a major function of the activator is to act as a local topological homeostat. We argue that the same mechanism may also be employed in site-specific DNA inversion.
Collapse
Affiliation(s)
- A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | |
Collapse
|
24
|
Léonetti JP, Wong K, Geiduschek EP. Core-sigma interaction: probing the interaction of the bacteriophage T4 gene 55 promoter recognition protein with E.coli RNA polymerase core. EMBO J 1998; 17:1467-75. [PMID: 9482743 PMCID: PMC1170494 DOI: 10.1093/emboj/17.5.1467] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The bacterial RNA polymerase sigma subunits are key participants in the early steps of RNA synthesis, conferring specificity of promoter recognition, facilitating promoter opening and promoter clearance, and responding to diverse transcriptional regulators. The T4 gene 55 protein (gp55), the sigma protein of the bacteriophage T4 late genes, is one of the smallest and most divergent members of this family. Protein footprinting was used to identify segments of gp55 that become buried upon binding to RNA polymerase core, and are therefore likely to constitute its interface with the core enzyme. Site-directed mutagenesis in two parts of this contact surface generated gene 55 proteins that are defective in polymerase-binding to different degrees. Alignment with the sequences of the sigma proteins and with a recently determined structure of a large segment of sigma70 suggests that the gp55 counterpart of sigma70 regions 2.1 and 2.2 is involved in RNA polymerase core binding, and that sigma70 and gp55 may be structurally similar in this region. The diverse phenotypes of the mutants implicate this region of gp55 in multiple aspects of sigma function.
Collapse
Affiliation(s)
- J P Léonetti
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | | | |
Collapse
|
25
|
Abstract
In cells productively infected with adenovirus type 5, transcription is not terminated between the E1a gene and the adjacent downstream E1b gene. Insertion of the mouse beta(maj)-globin transcription termination sequence (GGT) into the E1a coding region dramatically reduces early, but not late, E1b expression (E. Falck-Pedersen, J. Logan, T. Shenk, and J. E. Darnell, Jr., Cell 40:897-905, 1985). In the study described herein, we showed that base substitution mutations in the globin DNA that specifically relieved transcription termination also restored early E1b promoter activity in cis, establishing that maximal early E1b expression requires readthrough transcription originating from the adjacent upstream gene. To identify potential targets of readthrough activation, a series of recombinant viruses with double mutations was constructed. Each double-mutant virus strain had the transcription termination sequences in the first exon of E1a and a deletion within the transcription control region of E1b. Early E1b expression from the double-mutant strains was more defective than that from strains containing either mutation alone, indicating that the deleted regions (positions -362 to -35) are not the target for readthrough activation. Two findings suggested that a cis-dominant property of early viral templates is important for readthrough activation. First, the early E1b defect caused by the GGT insertion was not complemented in trans by factors present in late-infected cells. Second, restoration of E1b transcription at late times occurred concurrently with viral DNA replication. Readthrough activation may help convert virion DNA into a transcriptionally competent template prior to DNA replication and late transcription.
Collapse
Affiliation(s)
- L F Maxfield
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey 17033, USA
| | | |
Collapse
|
26
|
Ouhammouch M, Sayre MH, Kadonaga JT, Geiduschek EP. Activation of RNA polymerase II by topologically linked DNA-tracking proteins. Proc Natl Acad Sci U S A 1997; 94:6718-23. [PMID: 9192631 PMCID: PMC21224 DOI: 10.1073/pnas.94.13.6718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Almost all proteins mediating transcriptional activation from promoter-distal sites attach themselves, directly or indirectly, to specific DNA sequence elements. Nevertheless, a single instance of activation by a prokaryotic topologically linked DNA-tracking protein has also been demonstrated. The scope of the latter class of transcriptional activators is broadened in this work. Heterologous fusion proteins linking the transcriptional activation domain of herpes simplex virus VP16 protein to the sliding clamp protein beta of the Escherichia coli DNA polymerase III holoenzyme are shown to function as topologically DNA-linked activators of yeast and Drosophila RNA polymerase II. The beta:VP16 fusion proteins must be loaded onto DNA by the clamp-loading E. coli gamma complex to be transcriptionally active, but they do not occupy fixed sites on the DNA. The DNA-loading sites of these activators have all the properties of enhancers: they can be inverted and their locations relative to the transcriptional start site are freely adjustable.
Collapse
Affiliation(s)
- M Ouhammouch
- Department of Biology and Center for Molecular Genetics, 9500 Gilman Drive, University of California at San Diego, La Jolla, CA 92093-0634, USA.
| | | | | | | |
Collapse
|
27
|
Shao W, Kearns DR, Sanders GM. Secondary structure of T4 gene 33 protein. Fourier transform infrared and circular dichroic spectroscopic studies. Int J Biol Macromol 1997; 20:115-21. [PMID: 9184943 DOI: 10.1016/s0141-8130(97)01154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The secondary structure of bacteriophage T4 gene 33 protein (gp33) has been quantitatively examined by using Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy. Resolution enhancement techniques, including Fourier deconvolution and derivative spectroscopy were used to quantitate the spectral information from the amide I bands. The relative areas of these component bands indicate 21% alpha-helix, 25% beta-sheet, 34% turn, 12% random coil and 8% other undefined structures in gp33. An analysis of the CD spectrum of gp33 at the same pH and temperature revealed 19% alpha-helix, 25% beta-sheet, 13% turn and 43% random coil structures. The possible reasons for the discrepancies in estimates of the contributions to the secondary structure from turns and random coils are discussed.
Collapse
Affiliation(s)
- W Shao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0343, USA
| | | | | |
Collapse
|
28
|
Transcriptional Activation by a Topologically Linkable Protein: Forging a Connection Between Replication and Gene Activity. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/978-3-642-60691-5_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Tinker RL, Sanders GM, Severinov K, Kassavetis GA, Geiduschek EP. The COOH-terminal domain of the RNA polymerase alpha subunit in transcriptional enhancement and deactivation at the bacteriophage T4 late promoter. J Biol Chem 1995; 270:15899-907. [PMID: 7797594 DOI: 10.1074/jbc.270.26.15899] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many activator proteins generate their positive control of transcription through interactions with the COOH-terminal domain of the Escherichia coli RNA polymerase alpha subunit. We have examined the participation of this alpha-domain in transcriptional enhancement and suppression at bacteriophage T4 late promoters. Enhancement is generated by the T4 gene 45 protein, which is the DNA-tracking processivity factor of viral DNA replication; suppression of unenhanced transcription is generated by the RNA polymerase-binding co-activator T4 gene 33 protein. Enhanced and unenhanced transcription by RNA polymerase reconstituted with intact and truncated alpha subunits and by RNA polymerase containing ADP-ribosylated alpha has been compared; the internal structures of transcription complexes formed with these RNA polymerases have also been analyzed by footprinting and photocross-linking. Comparison of these structural and functional analyses suggests that enhancement of T4 late transcription by gp45 is not compatible with any significant role of the COOH-terminal domain of the RNA polymerase core alpha subunit in transcriptional initiation. Suppression of unenhanced T4 late transcription by the gene 33 protein also does not require the COOH-terminal domain of alpha.
Collapse
Affiliation(s)
- R L Tinker
- Department of Biology, University of California, San Diego 92093-0634, USA
| | | | | | | | | |
Collapse
|
30
|
Brody EN, Kassavetis GA, Ouhammouch M, Sanders GM, Tinker RL, Geiduschek EP. Old phage, new insights: two recently recognized mechanisms of transcriptional regulation in bacteriophage T4 development. FEMS Microbiol Lett 1995; 128:1-8. [PMID: 7744235 DOI: 10.1111/j.1574-6968.1995.tb07491.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The regulation of bacteriophage T4 middle and late gene expression involves previously unrecognized mechanisms. Middle transcription requires a DNA-binding transcriptional activator and a sigma 70-binding co-activator. The coupling of late transcription to DNA replication is effected by a DNA-tracking protein that is loaded onto DNA by an assembly factor at enhancer-like entry sites. Late transcription also requires an RNA polymerase core-binding co-activator. The co-activators of T4 middle and late transcription share the property of depressing unactivated, basal transcription.
Collapse
Affiliation(s)
- E N Brody
- Department of Biological Sciences, State University of New York, Buffalo 14260-1300, USA
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Bartholomew B, Tinker RL, Kassavetis GA, Geiduschek EP. Photochemical cross-linking assay for DNA tracking by replication proteins. Methods Enzymol 1995; 262:476-94. [PMID: 8594372 DOI: 10.1016/0076-6879(95)62039-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B Bartholomew
- Department of Medical Biochemistry, Southern Illinois University School of Medicine, Carbondale 62901-6503, USA
| | | | | | | |
Collapse
|
33
|
Sanders GM, Kassavetis GA, Geiduschek EP. Use of a macromolecular crowding agent to dissect interactions and define functions in transcriptional activation by a DNA-tracking protein: bacteriophage T4 gene 45 protein and late transcription. Proc Natl Acad Sci U S A 1994; 91:7703-7. [PMID: 8052646 PMCID: PMC44470 DOI: 10.1073/pnas.91.16.7703] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have used a molecular crowding reagent to define functions in the transcriptional activation of bacteriophage T4 late genes. This activation normally requires the three T4 DNA polymerase accessory proteins encoded by T4 genes 44, 62, and 45 (the gp44/62 complex and gp45), an enhancer-like cis-acting site, an RNA polymerase-bound coactivator, and an unobstructed path along the DNA joining the promoter to the enhancer. We show that molecular crowding eliminates the requirement for the gp44/62 complex and for the enhancer, retains the requirement for gp45 and its coactivator, and generates activated promoter complexes with nearly unchanged DNase I footprints. These experiments identify gp45 as the direct activator of transcription, and the gp44/62 complex as the assembly factor for gp45. They suggest that the enhancer serves as the normal, but not invariably essential, entry site for the gp45 DNA-tracking protein.
Collapse
Affiliation(s)
- G M Sanders
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
34
|
Ouhammouch M, Orsini G, Brody EN. The asiA gene product of bacteriophage T4 is required for middle mode RNA synthesis. J Bacteriol 1994; 176:3956-65. [PMID: 8021178 PMCID: PMC205593 DOI: 10.1128/jb.176.13.3956-3965.1994] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The asiA gene of bacteriophage T4 encodes a 10-kDa peptide which binds strongly in vitro to the sigma 70 subunit of Escherichia coli RNA polymerase, thereby weakening sigma 70-core interactions and inhibiting sigma 70-dependent transcription. To assess the physiological role of this protein, we have introduced an amber mutation into the proximal portion of the asiA gene. On suppressor-deficient hosts, this mutant phage (amS22) produces minute plaques and exhibits a pronounced delay in phage production. During these mutant infections, T4 DNA synthesis is strongly delayed, suggesting that the AsiA protein plays an important role during the prereplicative period of phage T4 development. The kinetics of protein synthesis show clearly that while T4 early proteins are synthesized normally, those expressed primarily via the middle mode exhibit a marked inhibition. In fact, the pattern of protein synthesis after amS22 infection resembles greatly that seen after infection by amG1, an amber mutant in motA, a T4 gene whose product is known to control middle mode RNA synthesis. The amber mutations in the motA and asiA genes complement, both for phage growth and for normal kinetics of middle mode protein synthesis. Furthermore, primer extension analyses show that three different MotA-dependent T4 middle promoters are not recognized after infection by the asiA mutant phage. Thus, in conjunction with the MotA protein, the AsiA protein is required for transcription activation at T4 middle mode promoters.
Collapse
Affiliation(s)
- M Ouhammouch
- Department of Biological Sciences, State University of New York at Buffalo 14260
| | | | | |
Collapse
|
35
|
Tinker RL, Williams KP, Kassavetis GA, Geiduschek EP. Transcriptional activation by a DNA-tracking protein: structural consequences of enhancement at the T4 late promoter. Cell 1994; 77:225-37. [PMID: 8168131 DOI: 10.1016/0092-8674(94)90315-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcriptional initiation at bacteriophage T4 late promoters is activated from enhancer-like distal sites by the T4 gene 44, 62, and 45 DNA polymerase accessory proteins (gp44, gp62, and gp45, respectively). Enhancement is ATP hydrolysis-dependent and requires protein tracking along DNA. The structural analysis of the enhanced transcription initiation complex shows gp45 located at the upstream end of this promoter complex in the vicinity of its transcriptional coactivator, the T4 gene 33 protein. The ATP-cleaving gene 44 protein-gene 62 protein complex serves as the assembly factor for gp45, but does not stably associate with the enhanced promoter complex. Transcriptional enhancement quantitatively favors, but does not qualitatively change, DNA strand separation in the transcription bubble. A model of the transcriptional activation that rationalizes its DNA-tracking and activation-polarity properties is presented.
Collapse
Affiliation(s)
- R L Tinker
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | | | |
Collapse
|
36
|
Winkelman JW, Kassavetis GA, Geiduschek EP. Molecular genetic analysis of a prokaryotic transcriptional coactivator: functional domains of the bacteriophage T4 gene 33 protein. J Bacteriol 1994; 176:1164-71. [PMID: 8106327 PMCID: PMC205169 DOI: 10.1128/jb.176.4.1164-1171.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The bacteriophage T4 gene 33 encodes a small, acidic RNA polymerase-binding protein that mediates enhancement of transcriptional initiation at T4 late promoters by the T4 DNA replication accessory proteins. A set of nested deletions in the gene 33 open reading frame was constructed by oligonucleotide site-directed mutagenesis. The resulting variant gene 33 proteins were radiolabeled during overexpression employing a T7 RNA polymerase-based system and substantially purified. Each variant was analyzed for three properties of gp33: RNA polymerase binding activity, ability to mediate enhancer-dependent transcriptional activation, and repression of unenhanced transcription. Two separate regions of gp33 were required to form stable complexes with RNA polymerase, whereas the extreme carboxyl terminus of gp33 was essential for mediating late gene activation. Variant gene 33 proteins lacking the carboxyl terminus nevertheless repressed nonenhanced transcription, demonstrating that the functional domains required for transcriptional activation and repression of unenhanced transcription are separable. The possible roles of gp33 in mediating late gene expression are discussed in the light of the identification of these functional domains.
Collapse
Affiliation(s)
- J W Winkelman
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
37
|
Nguyen LH, Jensen DB, Thompson NE, Gentry DR, Burgess RR. In vitro functional characterization of overproduced Escherichia coli katF/rpoS gene product. Biochemistry 1993; 32:11112-7. [PMID: 8218173 DOI: 10.1021/bi00092a021] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The katF/rpoS gene product (sigma s), a central regulator of stationary-phase gene expression in Escherichia coli, has been purified from an overproducing strain. sigma s was used as an immunogen for the production of monoclonal antibodies. Previous sequence analysis of sigma s strongly indicated homology to the sigma factor family. We show biochemically in this paper that sigma s is a sigma factor. This protein can bind to core RNA polymerase (E), and this binding can be competed effectively by the major E. coli transcription initiation factor, sigma 70. Immunopurified sigma s holoenzyme (E sigma s) transcribes the promoters of the bolAp1 gene and the xthA gene. Interestingly, both promoters can also be transcribed by sigma 70 holoenzyme (E sigma 70).
Collapse
Affiliation(s)
- L H Nguyen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison 53706
| | | | | | | | | |
Collapse
|
38
|
Scarlato V, Aricò B, Rappuoli R. DNA topology affects transcriptional regulation of the pertussis toxin gene of Bordetella pertussis in Escherichia coli and in vitro. J Bacteriol 1993; 175:4764-71. [PMID: 8393006 PMCID: PMC204928 DOI: 10.1128/jb.175.15.4764-4771.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The bvg locus of Bordetella pertussis encodes an environmentally inducible operon essential for the expression of virulence genes. We show that in Escherichia coli, the PTOX promoter cloned in cis of the bvg locus is activated and environmentally regulated. Cotransformation of E. coli with the bvg locus cloned in a low-copy-number plasmid and with the PTOX promoter cloned in a high-copy-number plasmid can give rise to two different results. If the PTOX promoter is cloned in the pGem-3 vector, transcription is absent. If the PTOX promoter is cloned in the plasmid pKK232, containing the PTOX promoter between two ribosomal gene terminators of transcription, transcription occurs, although regulation of transcription is abolished. Under these conditions, the intracellular amount of RNA transcripts is increased by adding to the culture medium novobiocin, an inhibitor of bacterial gyrases. In vitro, the transcription of the PTOX promoter is activated on E. coli RNA polymerase supplemented with cell extracts from wild-type B. pertussis. Addition of DNA gyrase to the mixture dramatically reduces the amount of RNA synthesized. Our data show that the products of the bvg locus, BvgA and BvgS, are directly involved in the regulation of the PTOX promoter in E. coli and that DNA topology may play a role in the induction of transcription.
Collapse
MESH Headings
- Bordetella pertussis/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Bacterial/genetics
- DNA, Bacterial/physiology
- Escherichia coli
- Gene Expression Regulation, Bacterial/physiology
- Genes, Bacterial/genetics
- Genes, Bacterial/physiology
- Pertussis Toxin
- Plasmids/genetics
- Plasmids/physiology
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
- Virulence Factors, Bordetella/genetics
Collapse
Affiliation(s)
- V Scarlato
- Immunobiological Research Institute Siena, Italy
| | | | | |
Collapse
|
39
|
Abstract
We deleted the essential gene 24 from the genome of bacteriophage T4. The delta 24 phage is a conditional lethal mutant that can grow only when the host strain supplies the product of gene 24 in trans, or when the phage acquires a functional gene 24 by some type of recombination event. Thus, gene 24 can be used as a selectable marker, for example permitting transposition into the T4 genome and analyses of plasmid-phage recombination [Woodworth and Kreuzer, Mol. Microbiol. 6 (1992) 1289-1296; H.W.E. and K.N.K., manuscript submitted]. We also found that the promoter region of gene 24 allows a low level of autonomous plasmid replication in T4-infected cells, raising the possibility of a previously unrecognized mode of T4 replication initiation.
Collapse
Affiliation(s)
- H W Engman
- Department of Microbiology, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
40
|
|
41
|
Herendeen DR, Kassavetis GA, Geiduschek EP. A transcriptional enhancer whose function imposes a requirement that proteins track along DNA. Science 1992; 256:1298-303. [PMID: 1598572 DOI: 10.1126/science.1598572] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcriptional regulation of the bacteriophage T4 late genes requires the participation of three DNA polymerase accessory proteins that are encoded by T4 genes 44, 62, and 45, and that act at an enhancer-like site. Transcriptional activation by these DNA replication proteins also requires the function of an RNA polymerase-bound coactivator protein that is encoded by T4 gene 33 and a promoter recognition protein that is encoded by T4 gene 55. Transcriptional activation in DNA constructs, in which the enhancer and a T4 late promoter can be segregated on two rings of a DNA catenane, has now been analyzed. The ability of an interposed DNA-binding protein to affect communication between the enhancer and the promoter was also examined. Together, these experiments demonstrate that this transcription-activating signal is conveyed between its enhancer and a T4 late promoter by a DNA-tracking mechanism. Alternative activation mechanisms relying entirely on through-space interactions of enhancer-bound and promoter-bound proteins are excluded.
Collapse
Affiliation(s)
- D R Herendeen
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
42
|
Abstract
Regulation of RNA transcription in eukaryotic polymerase II promoters involves a complex assembly of protein factors. Some of the factors bind to their cognate DNA-sequence elements while others mediate between the DNA bound ones. In order to enable protein-protein interaction, their spatial positioning with respect to each other is critical. Here two DNA-sequence-elements are investigated, the CCAAT and the TATA boxes and their spacers. Whereas the position of the TATA is fixed at about -30, that of the CCAAT can vary substantially from -50 to -200. Despite the variable loop sizes, the CTF (CCAAT-binding) protein interacts--either directly or indirectly via a co-activator--with the general basal TATA-binding transcription factors. Sequence analysis of the spacers, as a function of their sizes, reveals that in the upstream regions of the spacers RR and YY are abundant. In the downstream, 3' region of the spacers RY and YR are very frequent. The DNA sequence elements and their intervening spacers are analyzed in terms of their geometry, anisotropic flexibility and local superhelical density. Our results indicate that the CCAAT and its vicinity is rigid, whereas the TATA and its surroundings is flexible. It is the large flexibility of this region in twist and in roll which allows DNA looping. General mechanistic implications for pol II promoters are discussed.
Collapse
Affiliation(s)
- R Nussinov
- Laboratory of Mathematical Biology, Frederick Cancer, Research and Development Center, Maryland 21702-1201
| |
Collapse
|
43
|
Gogol EP, Young MC, Kubasek WL, Jarvis TC, von Hippel PH. Cryoelectron microscopic visualization of functional subassemblies of the bacteriophage T4 DNA replication complex. J Mol Biol 1992; 224:395-412. [PMID: 1532838 DOI: 10.1016/0022-2836(92)91003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A specific complex of proteins involved in bacteriophage T4 replication has been visualized by cryoelectron microscopy as distinctive structures in association with DNA. Formation of these structures, which we term "hash-marks" for their characteristic appearance in association with DNA, requires the presence of the T4 polymerase accessory proteins (the products of T4 genes 44, 45 and 62), ATP and appropriate DNA cofactors. ATP hydrolysis by the DNA-stimulated ATPase activity of the accessory proteins is required for visualization of the hash-mark structures. If ATP hydrolysis is stopped by chelation of Mg2+, by dilution with a non-hydrolyzable ATP analogue, or by exhaustion of the ATP supply, the DNA-associated structures disappear within seconds to minutes, indicating that they have a finite and relatively short lifetime. The labile nature of the structures makes their study by more conventional methods of electron microscopy, as well as by most other structural approaches, difficult if not impossible. Addition of T4 gene 32 protein increases the number of hash-mark structures, as well as increasing the rate of ATP hydrolysis. Using plasmid DNA in either a native (supercoiled) or enzymatically modified state, we have shown that nicked or gapped DNA is required as a cofactor for hash-mark formation. Stimulation of the ATPase activity of the accessory proteins has a similar cofactor requirement. These conditions for the formation and visualization of the structures parallel those required for the action of these complexes in promoting the enzymatic activity of the T4 DNA polymerase, as well as the transcription of late T4 genes. Substructure in the hash-marks has been examined by image analysis, which reveals a variation in the projected density of the subunits comprising the structures. The three-dimensional size of the hash-marks, modeled as a solid ellipsoid, is consistent with that of the gene 44/62 protein subcomplex. Density variations suggest an arrangement of subunits, either tetragonal or trigonal, viewed from a variety of angles about the DNA axis. The hash-mark structures often appear in clusters, even in DNA that has a single nick. We interpret this distribution as the result of one-dimensional translocation of the hash-marks along the DNA after their ATP-dependent initial association with, and injection into, the DNA at nicks or gaps.
Collapse
Affiliation(s)
- E P Gogol
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | | | |
Collapse
|
44
|
Geiduschek EP. Two prokaryotic transcriptional enhancer systems. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 43:109-33. [PMID: 1410444 DOI: 10.1016/s0079-6603(08)61046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- E P Geiduschek
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|
45
|
Kustu S, North AK, Weiss DS. Prokaryotic transcriptional enhancers and enhancer-binding proteins. Trends Biochem Sci 1991; 16:397-402. [PMID: 1776167 DOI: 10.1016/0968-0004(91)90163-p] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A number of prokaryotic enhancer-binding proteins activate transcription by specialized forms of RNA polymerase. The enhancer-binding proteins catalyse isomerization of the initial complex formed between RNA polymerase and a promoter from the closed to the open state. To do so, one class of enhancer-binding proteins contacts its cognate polymerase by DNA loop formation but the other, which is represented by a single member, does not. Despite this difference, both classes of enhancer-binding proteins must hydrolyse ATP to catalyse open complex formation.
Collapse
Affiliation(s)
- S Kustu
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | |
Collapse
|
46
|
Weiss DS, Batut J, Klose KE, Keener J, Kustu S. The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell 1991; 67:155-67. [PMID: 1833069 DOI: 10.1016/0092-8674(91)90579-n] [Citation(s) in RCA: 266] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The NTRC protein of enteric bacteria is an enhancer-binding protein that activates transcription in response to limitation of combined nitrogen. NTRC activates transcription by catalyzing formation of open complexes by RNA polymerase (sigma 54 holoenzyme form) in an ATP-dependent reaction. To catalyze open complex formation, NTRC must be phosphorylated. We show that phosphorylated NTRC has an ATPase activity, and we present biochemical and genetic evidence that NTRC must hydrolyze ATP to catalyze open complex formation. It is likely that all activators of sigma 54 holoenzyme have an ATPase activity.
Collapse
Affiliation(s)
- D S Weiss
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
47
|
Hinton D. Transcription from a bacteriophage T4 middle promoter using T4 motA protein and phage-modified RNA polymerase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55233-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Gruidl ME, Chen TC, Gargano S, Storlazzi A, Cascino A, Mosig G. Two bacteriophage T4 base plate genes (25 and 26) and the DNA repair gene uvsY belong to spatially and temporally overlapping transcription units. Virology 1991; 184:359-69. [PMID: 1871975 DOI: 10.1016/0042-6822(91)90852-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The bacteriophage T4 DNA recombination-repair gene uvsY located at or near an origin of DNA replication and adjacent to the late base plate genes 25 and 26. Our present results reveal a complex transcription pattern in the region encompassing these genes. Most significantly, uvsY and two ORFs, downstream of it, all of which are transcribed from a middle promoter before the onset of DNA replication, are also part of a larger late transcription unit which includes the base plate genes 25 and 26. The late genes 25 and 26 are transcribed not only late, but also early from one or several early promoters further upstream. Translation, however, is inhibited by secondary structures which sequester the ribosome binding site in the early transcript. We discuss possible advantages of these transcriptional patterns for T4 DNA recombination, replication, and repair. The predicted and in vivo-expressed 23.9-kDa product of gene 26 is smaller than the reported size of gene 26 protein isolated from base plates, suggesting that nascent gp26 might be processed to a larger protein during assembly.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- DNA Repair
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Escherichia coli/genetics
- Genes, Viral
- Genetic Complementation Test
- Models, Structural
- Molecular Sequence Data
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- RNA Probes
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Restriction Mapping
- T-Phages/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- M E Gruidl
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
49
|
Krassa KB, Green LS, Gold L. Protein-protein interactions with the acidic COOH terminus of the single-stranded DNA-binding protein of the bacteriophage T4. Proc Natl Acad Sci U S A 1991; 88:4010-4. [PMID: 2023949 PMCID: PMC51583 DOI: 10.1073/pnas.88.9.4010] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The single-stranded DNA-binding protein of the bacteriophage T4 is encoded by gene 32. Monoclonal antibodies were raised against intact gene 32 protein (gp32). We mapped the epitopes recognized by 12 of these monoclonal antibodies; the epitopes are all within the COOH-terminal region of gp32. As shown by others, removal of the COOH terminus of gp32 abolishes the ability of the intact protein to bind to many T4 proteins involved in replication, recombination, repair, and late transcription. These results suggest that the COOH terminus of gp32 is a protein-binding domain. The COOH terminus is attached to a DNA-binding domain that includes a zinc finger. We propose a model in which the DNA-binding and protein-binding domains are used in T4 replication, recombination, repair, and late transcription. The COOH terminus of gp32 is very acidic and may form four negatively charged amphipathic alpha-helices, which could fold into a four-helix bundle when associated with other proteins. At least six of the monoclonal anti-gp32 antibodies bind to the COOH terminus of gp32 and to DNA. Similarities between the COOH terminus of gp32 and DNA are explored.
Collapse
Affiliation(s)
- K B Krassa
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309
| | | | | |
Collapse
|
50
|
Gao M, Knipe DM. Potential role for herpes simplex virus ICP8 DNA replication protein in stimulation of late gene expression. J Virol 1991; 65:2666-75. [PMID: 1850040 PMCID: PMC240625 DOI: 10.1128/jvi.65.5.2666-2675.1991] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have identified a trans-dominant mutant form of the herpes simplex virus (HSV) DNA-binding protein ICP8 which inhibits viral replication. When expressed by the V2.6 cell line, the mutant gene product inhibited wild-type HSV production by 50- to 150-fold when the multiplicity of infection was less than 5. Production of HSV types 1 and 2 but not production of pseudorabies virus was inhibited in V2.6 cells. The inhibitory effect was not due solely to the high levels of expression, because the levels of expression were comparable to those in the permissive wild-type ICP8-expressing S-2 cell line. Experiments designed to define the block in viral production in V2.6 cells demonstrated (i) that viral alpha and beta gene expression was comparable in the different cell lines, (ii) that viral DNA replication proceeded but was reduced to approximately 20% of the control cell level, and (iii) that late gene expression was similar to that in cells in which viral DNA replication was completely blocked. Genetic experiments indicated that the mutant gene product inhibits normal functions of ICP8. Thus, ICP8 may play distinct roles in replication of viral DNA and in stimulation of late gene expression. The dual roles of ICP8 in these two processes could provide a mechanism for controlling the transition from viral DNA synthesis to late gene expression during the viral growth cycle.
Collapse
Affiliation(s)
- M Gao
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|