1
|
Karami Z, Duangmal K. Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zohreh Karami
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kiattisak Duangmal
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Yu H, Yang Q, Fu F, Li W. Three strategies of transgenic manipulation for crop improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:948518. [PMID: 35937379 PMCID: PMC9354092 DOI: 10.3389/fpls.2022.948518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression of exogenous genes, overexpression of endogenous genes, and suppressed expression of undesirable genes are the three strategies of transgenic manipulation for crop improvement. Up to 2020, most (227) of the singular transgenic events (265) of crops approved for commercial release worldwide have been developed by the first strategy. Thirty-eight of them have been transformed by synthetic sequences transcribing antisense or double-stranded RNAs and three by mutated copies for suppressed expression of undesirable genes (the third strategy). By the first and the third strategies, hundreds of transgenic events and thousands of varieties with significant improvement of resistance to herbicides and pesticides, as well as nutritional quality, have been developed and approved for commercial release. Their application has significantly decreased the use of synthetic pesticides and the cost of crop production and increased the yield of crops and the benefits to farmers. However, almost all the events overexpressing endogenous genes remain at the testing stage, except one for fertility restoration and another for pyramiding herbicide tolerance. The novel functions conferred by the heterologously expressing exogenous genes under the control of constitutive promoters are usually absent in the recipient crops themselves or perform in different pathways. However, the endogenous proteins encoded by the overexpressing endogenous genes are regulated in complex networks with functionally redundant and replaceable pathways and are difficult to confer the desirable phenotypes significantly. It is concluded that heterologous expression of exogenous genes and suppressed expression by RNA interference and clustered regularly interspaced short palindromic repeats-cas (CRISPR/Cas) of undesirable genes are superior to the overexpression of endogenous genes for transgenic improvement of crops.
Collapse
Affiliation(s)
| | | | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Somssich M. The Dawn of Plant Molecular Biology: How Three Key Methodologies Paved the Way. Curr Protoc 2022; 2:e417. [PMID: 35441802 DOI: 10.1002/cpz1.417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The adoption of Arabidopsis thaliana in the 1980s as a universal plant model finally enabled researchers to adopt and take full advantage of the molecular biology tools and methods developed in the bacterial and animal fields since the early 1970s. It further brought the plant sciences up to speed with other research fields, which had been employing widely accepted model organisms for decades. In parallel with this major development, the concurrent establishment of the plant transformation methodology and the description of the cauliflower mosaic virus (CaMV) 35S promoter enabled scientists to create robust transgenic plant lines for the first time, thereby providing a valuable tool for studying gene function. The ability to create transgenic plants launched the plant biotechnology sector, with Monsanto and Plant Genetic Systems developing the first herbicide- and pest-tolerant plants, initiating a revolution in the agricultural industry. Here I review the major developments over a less than 10-year span and demonstrate how they complemented each other to trigger a revolution in plant molecular biology and launch an era of unprecedented progress for the whole plant field. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S. Genetically modified crops: current status and future prospects. PLANTA 2020; 251:91. [PMID: 32236850 DOI: 10.1007/s00425-020-03372-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
Abstract
While transgenic technology has heralded a new era in crop improvement, several concerns have precluded their widespread acceptance. Alternative technologies, such as cisgenesis and genome-editing may address many of such issues and facilitate the development of genetically engineered crop varieties with multiple favourable traits. Genetic engineering and plant transformation have played a pivotal role in crop improvement via introducing beneficial foreign gene(s) or silencing the expression of endogenous gene(s) in crop plants. Genetically modified crops possess one or more useful traits, such as, herbicide tolerance, insect resistance, abiotic stress tolerance, disease resistance, and nutritional improvement. To date, nearly 525 different transgenic events in 32 crops have been approved for cultivation in different parts of the world. The adoption of transgenic technology has been shown to increase crop yields, reduce pesticide and insecticide use, reduce CO2 emissions, and decrease the cost of crop production. However, widespread adoption of transgenic crops carrying foreign genes faces roadblocks due to concerns of potential toxicity and allergenicity to human beings, potential environmental risks, such as chances of gene flow, adverse effects on non-target organisms, evolution of resistance in weeds and insects etc. These concerns have prompted the adoption of alternative technologies like cisgenesis, intragenesis, and most recently, genome editing. Some of these alternative technologies can be utilized to develop crop plants that are free from any foreign gene hence, it is expected that such crops might achieve higher consumer acceptance as compared to the transgenic crops and would get faster regulatory approvals. In this review, we present a comprehensive update on the current status of the genetically modified (GM) crops under cultivation. We also discuss the issues affecting widespread adoption of transgenic GM crops and comment upon the recent tools and techniques developed to address some of these concerns.
Collapse
Affiliation(s)
- Krishan Kumar
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India.
| | - Geetika Gambhir
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Abhishek Dass
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Amit Kumar Tripathi
- National Institute for Research in Environmental Health, Bhopal, 462001, India
| | - Alla Singh
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| | - Abhishek Kumar Jha
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Pranjal Yadava
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| |
Collapse
|
5
|
Cody JP, Graham ND, Zhao C, Swyers NC, Birchler JA. Site-specific recombinase genome engineering toolkit in maize. PLANT DIRECT 2020; 4:e00209. [PMID: 32166212 PMCID: PMC7061458 DOI: 10.1002/pld3.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/08/2020] [Accepted: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Site-specific recombinase enzymes function in heterologous cellular environments to initiate strand-switching reactions between unique DNA sequences termed recombinase binding sites. Depending on binding site position and orientation, reactions result in integrations, excisions, or inversions of targeted DNA sequences in a precise and predictable manner. Here, we established five different stable recombinase expression lines in maize through Agrobacterium-mediated transformation of T-DNA molecules that contain coding sequences for Cre, R, FLPe, phiC31 Integrase, and phiC31 excisionase. Through the bombardment of recombinase activated DsRed transient expression constructs, we have determined that all five recombinases are functional in maize plants. These recombinase expression lines could be utilized for a variety of genetic engineering applications, including selectable marker removal, targeted transgene integration into predetermined locations, and gene stacking.
Collapse
Affiliation(s)
- Jon P. Cody
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Changzeng Zhao
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Nathan C. Swyers
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | |
Collapse
|
6
|
Mall T, Gupta M, Dhadialla TS, Rodrigo S. Overview of Biotechnology-Derived Herbicide Tolerance and Insect Resistance Traits in Plant Agriculture. Methods Mol Biol 2019; 1864:313-342. [PMID: 30415345 DOI: 10.1007/978-1-4939-8778-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biotechnology has been central for the acceleration of crop improvement over the last two decades. Since 1994, when the first commercial biotechnology-derived tomato crop was commercialized, the cultivated area for genetically modified crops has reached 185.1 million hactares worldwide. Both the number of crops and the number of traits developed using biotechnology have accounted for this increase. Among the most impactful biotechnology-derived traits are insect resistance and herbicide tolerance, which have greatly contributed to the worldwide increase in agricultural productivity and stabilization of food security. In this chapter, we provide an overview of the history of the biotechnology-derived input traits, the existing genetically engineered commercial crop products carrying insect resistance and herbicide tolerance traits, as well as a perspective on how new technologies could further impact the development of new traits in crops. With the projection of the world population to increase to 9.8 billion by the year 2050 and reduction in available farmland, one of the biggest challenges will be to provide sustainable nourishment to the projected population. Biotechnology will continue to be the key enabler for development of insect resistance and herbicide tolerance traits to overcome that imminent challenge.
Collapse
Affiliation(s)
- Tejinder Mall
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Manju Gupta
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | | | - Sarria Rodrigo
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Repurposing Macromolecule Delivery Tools for Plant Genetic Modification in the Era of Precision Genome Engineering. Methods Mol Biol 2019; 1864:3-18. [PMID: 30415325 DOI: 10.1007/978-1-4939-8778-8_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Efficient delivery of macromolecules into plant cells and tissues is important for both basic research and biotechnology product applications. In transgenic research, the goal is to deliver DNA molecules into regenerable cells and stably integrate them into the genome. Over the past 40 years, many macromolecule delivery methods have been studied. To generate transgenic plants, particle bombardment and Agrobacterium-mediated transformation are the methods of choice for DNA delivery. The rapid advance of genome editing technologies has generated new requirements on large biomolecule delivery and at the same time reinvigorated the development of new transformation technologies. Many of the gene delivery options that have been studied before are now being repurposed for delivering genome editing machinery for various applications. This article reviews the major progress in the development of tools for large biomolecule delivery into plant cells in the new era of precision genome engineering.
Collapse
|
8
|
Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Crit Rev Food Sci Nutr 2018; 59:1949-1975. [DOI: 10.1080/10408398.2018.1434480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Domancar Orona-Tamayo
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - María Elena Valverde
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| |
Collapse
|
9
|
Kochetov AV, Shumny VK. Transgenic plants as genetic models for studying functions of plant genes. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Genetically modified (GM) crops: milestones and new advances in crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1639-55. [PMID: 27381849 DOI: 10.1007/s00122-016-2747-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/25/2016] [Indexed: 05/22/2023]
Abstract
New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Zhang Z, Finer JJ. Low Agrobacterium tumefaciens inoculum levels and a long co-culture period lead to reduced plant defense responses and increase transgenic shoot production of sunflower ( Helianthus annuus L.). IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2016; 52:354-366. [PMID: 27746666 PMCID: PMC5042984 DOI: 10.1007/s11627-016-9774-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/28/2016] [Indexed: 05/23/2023]
Abstract
Agrobacterium-mediated plant transformation is typically conducted by inoculating plant tissues with an Agrobacterium suspension containing approximately 108-109 bacteria mL-1, followed by a 2-3-d co-culture period. Use of longer co-culture periods could potentially increase transformation efficiencies by allowing more time for Agrobacterium to interact with plant cells, but bacterial overgrowth is likely to occur, leading to severe tissue browning and reduced transformation and regeneration. Low bacterial inoculum levels were therefore evaluated as a means to reduce the negative outcomes associated with long co-culture. The use of low inoculum bacterial suspensions (approximately 6 × 102 bacteria mL-1) followed by long co-culture (15 d) led to the production of an average of three transformed sunflower shoots per explant while the use of high inoculum (approximately 6 × 108 bacteria mL-1) followed by short co-culture (3 d) led to no transformed shoots. Low inoculum and long co-culture acted synergistically, and both were required for the improvement of sunflower transformation. Gene expression analysis via qRT-PCR showed that genes related to plant defense response were generally expressed at lower levels in the explants treated with low inoculum than those treated with high inoculum during 15 d of co-culture, suggesting that low inoculum reduced the induction of plant defense responses. The use of low inoculum with long co-culture (LI/LC) led to large increases in sunflower transformation efficiency. This method has great potential for improving transformation efficiencies and expanding the types of target tissues amenable for transformation of different plant species.
Collapse
Affiliation(s)
- Zhifen Zhang
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Department of Horticulture, The University of Georgia Tifton Campus, Tifton, GA 31793 USA
| | - John J. Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
12
|
Cardi T, Neal Stewart C. Progress of targeted genome modification approaches in higher plants. PLANT CELL REPORTS 2016; 35:1401-16. [PMID: 27025856 DOI: 10.1007/s00299-016-1975-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/21/2016] [Indexed: 05/07/2023]
Abstract
Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Orticoltura, Via Cavalleggeri 25, 84098, Pontecagnano, Italy.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
13
|
Poulsen LR, Palmgren MG, López-Marqués RL. Transient Expression of P-type ATPases in Tobacco Epidermal Cells. Methods Mol Biol 2016; 1377:383-93. [PMID: 26695049 DOI: 10.1007/978-1-4939-3179-8_34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellular space between leaf epidermal cells, which results in DNA transfer from the bacteria to the plant and expression of the corresponding proteins. By injecting mixes of Agrobacterium strains, this system offers the possibility to co-express a number of target proteins simultaneously, thus allowing for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits.
Collapse
Affiliation(s)
- Lisbeth R Poulsen
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease (PUMPKIN), University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Michael G Palmgren
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease (PUMPKIN), University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Rosa L López-Marqués
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease (PUMPKIN), University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
14
|
|
15
|
Sivamani E, Li X, Nalapalli S, Barron Y, Prairie A, Bradley D, Doyle M, Que Q. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize. Transgenic Res 2015; 24:1017-27. [PMID: 26338266 DOI: 10.1007/s11248-015-9902-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/14/2015] [Indexed: 01/16/2023]
Abstract
Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.
Collapse
Affiliation(s)
| | - Xianggan Li
- Syngenta Biotechnology China Co. Ltd, Beijing, People's Republic of China
| | | | - Yoshimi Barron
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Anna Prairie
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - David Bradley
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Michele Doyle
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
|
17
|
Palmgren MG, Edenbrandt AK, Vedel SE, Andersen MM, Landes X, Østerberg JT, Falhof J, Olsen LI, Christensen SB, Sandøe P, Gamborg C, Kappel K, Thorsen BJ, Pagh P. Are we ready for back-to-nature crop breeding? TRENDS IN PLANT SCIENCE 2015; 20:155-64. [PMID: 25529373 DOI: 10.1016/j.tplants.2014.11.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 05/03/2023]
Abstract
Sustainable agriculture in response to increasing demands for food depends on development of high-yielding crops with high nutritional value that require minimal intervention during growth. To date, the focus has been on changing plants by introducing genes that impart new properties, which the plants and their ancestors never possessed. By contrast, we suggest another potentially beneficial and perhaps less controversial strategy that modern plant biotechnology may adopt. This approach, which broadens earlier approaches to reverse breeding, aims to furnish crops with lost properties that their ancestors once possessed in order to tolerate adverse environmental conditions. What molecular techniques are available for implementing such rewilding? Are the strategies legally, socially, economically, and ethically feasible? These are the questions addressed in this review.
Collapse
Affiliation(s)
- Michael G Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Anna Kristina Edenbrandt
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Suzanne Elizabeth Vedel
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Martin Marchman Andersen
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, DK-2300 Copenhagen S, Denmark
| | - Xavier Landes
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, DK-2300 Copenhagen S, Denmark
| | - Jeppe Thulin Østerberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Janus Falhof
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Lene Irene Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Søren Brøgger Christensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Peter Sandøe
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark; Department of Large Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Christian Gamborg
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Klemens Kappel
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, DK-2300 Copenhagen S, Denmark
| | - Bo Jellesmark Thorsen
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Peter Pagh
- Centre for Public Regulation and Administration, Faculty of Law, University of Copenhagen, Studiestræde 6, DK-1455 Copenhagen K, Denmark
| |
Collapse
|
18
|
Yau YY, Stewart CN. Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 2013; 13:36. [PMID: 23617583 PMCID: PMC3689633 DOI: 10.1186/1472-6750-13-36] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
Collapse
Affiliation(s)
- Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
19
|
Halford NG. Toward two decades of plant biotechnology: successes, failures, and prospects. Food Energy Secur 2012. [DOI: 10.1002/fes3.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Nigel G. Halford
- Plant Biology and Crop Science Department Rothamsted Research Harpenden Hertfordshire AL5 2JQ United Kingdom
| |
Collapse
|
20
|
A BioBrick compatible strategy for genetic modification of plants. J Biol Eng 2012; 6:8. [PMID: 22716313 PMCID: PMC3537565 DOI: 10.1186/1754-1611-6-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/06/2012] [Indexed: 11/10/2022] Open
Abstract
Background Plant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process. Results This paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (http://www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin. Conclusions Our work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis. Our workflow simplifies the use of standardized parts in plant systems, allowing the construction and expression of heterologous genes in plants within the timeframe allotted for typical iGEM projects.
Collapse
|
21
|
Lee S, Su G, Lasserre E, Aghazadeh MA, Murai N. Small high-yielding binary Ti vectors pLSU with co-directional replicons for Agrobacterium tumefaciens-mediated transformation of higher plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 187:49-58. [PMID: 22404832 DOI: 10.1016/j.plantsci.2012.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
Small high-yielding binary Ti vectors of Agrobacterium tumefaciens were constructed to increase the cloning efficiency and plasmid yield in Escherichia coli and A. tumefaciens for transformation of higher plants. We reduced the size of the binary vector backbone to 4566bp with ColE1 replicon (715bp) for E. coli and VS1 replicon (2654bp) for A. tumefaciens, a bacterial kanamycin resistance gene (999bp), and the T-DNA region (152bp). The binary Ti vectors with the truncated VS1 replicon were stably maintained with more than 98% efficiency in A. tumefaciens without antibiotic selection for 4 days of successive transfers. The transcriptional direction of VS1 replicon can be the same as that of ColE1 replicon (co-directional transcription), or opposite (head-on transcription) as in the case of widely used vectors (pPZP or pCambia). New binary vectors with co-directional transcription yielded in E. coli up to four-fold higher transformation frequency than those with the head-on transcription. In A. tumefaciens the effect of co-directional transcription is still positive in up to 1.8-fold higher transformation frequency than that of head-on transcription. Transformation frequencies of new vectors are over six-fold higher than those of pCambia vector in A. tumefaciens. DNA yields of new vectors were three to five-fold greater than pCambia in E. coli. The proper functions of the new T-DNA borders and new plant selection marker genes were confirmed after A. tumefaciens-mediated transformation of tobacco leaf discs, resulting in virtually all treated leaf discs transformed and induced calli. Genetic analysis of kanamycin resistance trait among the progeny showed that the kanamycin resistance and sensitivity traits were segregated into the 3:1 ratio, indicating that the kanamycin resistance genes were integrated stably into a locus or closely linked loci of the nuclear chromosomal DNA of the primary transgenic tobacco plants and inherited to the second generation.
Collapse
Affiliation(s)
- Seokhyun Lee
- Department of Plant Pathology and Crop Physiology, 302 Life Sciences Building, Louisiana State University and LSU Agricultural Center, Baton Rouge, LA 70803-1720, USA
| | | | | | | | | |
Collapse
|
22
|
Su G, Park S, Lee S, Murai N. Low Co-Cultivation Temperature at 20°C Resulted in the Reproducible Maximum Increase in Both the Fresh Weight Yield and Stable Expression of GUS Activity after <i>Agrobacterium tumefaciens</i>-Mediated Transformation of Tobacco Leaf Disks. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajps.2012.34064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Wang Y, Yau YY, Perkins-Balding D, Thomson JG. Recombinase technology: applications and possibilities. PLANT CELL REPORTS 2011; 30:267-85. [PMID: 20972794 PMCID: PMC3036822 DOI: 10.1007/s00299-010-0938-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 05/02/2023]
Abstract
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087-2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes.
Collapse
Affiliation(s)
- Yueju Wang
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| | - Yuan-Yeu Yau
- Department of Plant and Microbial Biology, Plant Gene Expression Center, USDA-ARS, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710 USA
| | | | - James G. Thomson
- Crop Improvement and Utilization Unit, USDA-ARS WRRC, 800 Buchanan St., Albany, CA 94710 USA
| |
Collapse
|
24
|
Sengupta-Gopalan C, Reichert NA, Barker RF, Hall TC, Kemp JD. Developmentally regulated expression of the bean beta-phaseolin gene in tobacco seed. Proc Natl Acad Sci U S A 2010; 82:3320-4. [PMID: 16578787 PMCID: PMC397767 DOI: 10.1073/pnas.82.10.3320] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant phage lambda177.4 contains a gene for beta phaseolin, a major storage glycoprotein of French bean seed. A 3.8-kilobase Bgl II-BamHI fragment containing the entire 1700-base-pair coding region, together with 863 base pairs of 5' and 1226 base pairs of 3' flanking sequence, was inserted into the A66 Ti plasmid of Agrobacterium tumefaciens and used to transform tobacco. The level of phaseolin in the seeds of plants regenerated from cloned tissue was 1000-fold higher than in other tissues. The molecular weight of the phaseolin RNA transcript in tobacco seeds was identical to that found in bean seeds. The phaseolin protein in tobacco seed was glycosylated and appeared to undergo removal of the signal peptide. However, a large proportion of the phaseolin was cleaved into discrete peptides. These same peptides were formed as phaseolin was degraded during tobacco seed germination. The phaseolin gene appeared to be inserted as a single copy, and the proportion of phaseolin per genome copy in tobacco seeds (up to 3% of the total embryo proteins) resembled that in the bean seeds (40% of total seed protein, expressed from about 14 copies per diploid genome). Furthermore, the transplanted gene was turned on during tobacco seed development, and its protein product, phaseolin, was localized in the embryonic tissues. Finally, the phaseolin gene was inherited as a Mendelian dominant trait in tobacco.
Collapse
Affiliation(s)
- C Sengupta-Gopalan
- Agrigenetics Advanced Research Division, 5649 East Buckeye Road, Madison, WI 53716
| | | | | | | | | |
Collapse
|
25
|
Cramer JH, Lea K, Slightom JL. Expression of phaseolin cDNA genes in yeast under control of natural plant DNA sequences. Proc Natl Acad Sci U S A 2010; 82:334-8. [PMID: 16593534 PMCID: PMC397032 DOI: 10.1073/pnas.82.2.334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have constructed a strain of Saccharomyces cerevisiae that expresses two different members of the multigene family encoding phaseolin, the major seed storage glycoprotein from the French bean, Phaseolus vulgaris. Yeast vector plasmids have been engineered to include a Phaseolus DNA segment that contains the natural 5' and 3' plant genomic regulatory sequences flanking a cDNA copy of the protein-encoding region. Characterization of phaseolin transcripts isolated from transformed yeast cells revealed the presence of two classes of polyadenylylated RNA, approximately 1400 and 1800 bases, which initiate and terminate in plant DNA sequences. Protein extracts from transformants contain phaseolin-immunoreactive proteins similar in size to those isolated from plant tissue. These polypeptides are glycosylated in yeast and their molecular weights are consistent with the possibility that the phaseolin signal peptide has been cleaved to form the mature protein.
Collapse
Affiliation(s)
- J H Cramer
- Agrigenetics Advanced Research Division, 5649 East Buckeye Road, Madison, WI 53716
| | | | | |
Collapse
|
26
|
Fluhr R, Chua NH. Developmental regulation of two genes encoding ribulose-bisphosphate carboxylase small subunit in pea and transgenic petunia plants: Phytochrome response and blue-light induction. Proc Natl Acad Sci U S A 2010; 83:2358-62. [PMID: 16593682 PMCID: PMC323296 DOI: 10.1073/pnas.83.8.2358] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the effects of light quality on the light-induced expression of two genes (rbcS-3A and rbcS-3C) encoding the ribulose-1,5-bisphosphate carboxylase small subunit of pea plants. These two genes exhibit distinctive photoresponses depending on the developmental stages of the leaves. In etiolated primary leaves, changes in the rbcS-3A and rbcS-3C transcript levels are regulated by phytochrome. In mature green leaves, on the other hand, the transcript levels are modulated by a putative blue-light photoreceptor working in concert with phytochrome. We transferred the two pea rbcS genes into the petunia genome and found that their phytochrome (rbcS-3A and -3C) and blue-light responses (rbcS-3C) are recapitulated in the appropriate developmental stages of the transgenic plants. Moreover, the transgenic plants express the pea rbcS genes in leaves at levels close to those in pea leaves. Our results show that 0.4 kilobases of the rbcS-3A and 2 kilobases of the rbcS-3C upstream regions are sufficient for these photoresponses.
Collapse
Affiliation(s)
- R Fluhr
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399
| | | |
Collapse
|
27
|
Chory J. Light signal transduction: an infinite spectrum of possibilities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:982-91. [PMID: 20409272 PMCID: PMC3124631 DOI: 10.1111/j.1365-313x.2009.04105.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The past 30 years has seen a tremendous increase in our understanding of the light-signaling networks of higher plants. This short review emphasizes the role that Arabidopsis genetics has played in deciphering this complex network. Importantly, it outlines how genetic studies led to the identification of photoreceptors and signaling components that are not only relevant in plants, but play key roles in mammals.
Collapse
Affiliation(s)
- Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Zhang H, Ogas J. An epigenetic perspective on developmental regulation of seed genes. MOLECULAR PLANT 2009; 2:610-627. [PMID: 19825643 DOI: 10.1093/mp/ssp027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The developmental program of seeds is promoted by master regulators that are expressed in a seed-specific manner. Ectopic expression studies reveal that expression of these master regulators and other transcriptional regulators is sufficient to promote seed-associated traits, including generation of somatic embryos. Recent work highlights the importance of chromatin-associated factors in restricting expression of seed-specific genes, in particular PcG proteins and ATP-dependent remodelers. This review summarizes what is known regarding factors that promote zygotic and/or somatic embryogenesis and the chromatin machinery that represses their expression. Characterization of the regulation of seed-specific genes reveals that plant chromatin-based repression systems exhibit broad conservation with and surprising differences from animal repression systems.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-2063, USA
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-2063, USA.
| |
Collapse
|
29
|
Rose RJ. Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:253-264. [PMID: 32688781 DOI: 10.1071/fp07297] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/16/2008] [Indexed: 05/08/2023]
Abstract
Medicago truncatula Gaertn. cv. Jemalong, a pasture species used in Australian agriculture, was first proposed as a model legume in 1990. Since that time M. truncatula, along with Lotus japonicus (Regal) Larsen, has contributed to major advances in understanding rhizobia Nod factor perception and the signalling pathway involved in nodule formation. Research using M. truncatula as a model has expanded beyond nodulation and the allied mycorrhizal research to investigate interactions with insect pests, plant pathogens and nematodes. In addition to biotic stresses the genetic mechanisms to ameliorate abiotic stresses such as salinity and drought are being investigated. Furthermore, M. truncatula is being used to increase understanding of plant development and cellular differentiation, with nodule differentiation providing a different perspective to organogenesis and meristem biology. This legume plant represents one of the major evolutionary success stories of plant adaptation to its environment, and it is particularly in understanding the capacity to integrate biotic and abiotic plant responses with plant growth and development that M. truncatula has an important role to play. The expanding genomic and genetic toolkit available with M. truncatula provides many opportunities for integrative biological research with a plant which is both a model for functional genomics and important in agricultural sustainability.
Collapse
Affiliation(s)
- Ray J Rose
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia. Email
| |
Collapse
|
30
|
HENEEN WAHEEBK. Molecular biology and plant breeding. Hereditas 2008. [DOI: 10.1111/j.1601-5223.1985.tb00756.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Abstract
A variety of techniques have been used to examine plant viral genomes, the functions of virus-encoded proteins, plant responses induced by virus infection and plant-virus interactions. This overview considers these technologies and how they have been used to identify novel viral and plant proteins or genes involved in disease and resistance responses, as well as defense signaling. These approaches include analysis of spatial and temporal responses by plants to infection, and techniques that allow the expression of viral genes transiently or transgenically in planta, the expression of plant and foreign genes from virus vectors, the silencing of plants genes, imaging of live, infected cells, and the detection of interactions between viral proteins and plant gene products, both in planta and in various in vitro or in vivo systems. These methods and some of the discoveries made using these approaches are discussed.
Collapse
Affiliation(s)
- Peter Palukaitis
- Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | |
Collapse
|
32
|
Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB. Using genomics to study legume seed development. PLANT PHYSIOLOGY 2007; 144:562-74. [PMID: 17556519 PMCID: PMC1914191 DOI: 10.1104/pp.107.100362] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/18/2007] [Indexed: 05/15/2023]
Affiliation(s)
- Brandon H Le
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
33
|
Piruzian ES. From the mechanisms of genetic transposition to the functional genomics. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Zakharov A, Giersberg M, Hosein F, Melzer M, Müntz K, Saalbach I. Seed-specific promoters direct gene expression in non-seed tissue. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1463-71. [PMID: 15181101 DOI: 10.1093/jxb/erh158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The organ specificity of four promoters that are known to direct seed-specific gene expression was tested. Whereas the phaseolin (phas)- and legumin B4 (leB4)-promoters were from genes encoding 7S and 11S globulins from Phaseolus vulgaris and Vicia faba, respectively, the usp- and the sbp-promoters were from non-storage protein genes of V. faba. The expression of different promoter-reporter gene fusions was followed either by RT-PCR or by registering the reporter enzyme activity in organs of transgenic tobacco, pea, narbon bean, or linseed. In addition to seeds, the promoters directed reporter gene expression in pollen and in seed coats. USP-, vicilin- and legumin-mRNA were detected by RT-PCR in pollen of Pisum sativum and V. faba. Expression during microsporogenesis and embryogenesis seems to be a general character of various seed protein genes.
Collapse
Affiliation(s)
- Alexander Zakharov
- Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Paparini A, Romano-Spica V. Public health issues related with the consumption of food obtained from genetically modified organisms. BIOTECHNOLOGY ANNUAL REVIEW 2004; 10:85-122. [PMID: 15504704 DOI: 10.1016/s1387-2656(04)10004-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Genetically Modified Organisms (GMOs) are a fact of modern agriculture and a major field of discussion in biotechnology. As science incessantly achieves innovative and unexpected breakthroughs, new medical, political, ethical and religious debates arise over the production and consumption of transgenic organisms. Despite no described medical condition being directly associated with a diet including approved GM crops in large exposed populations such as 300,000,000 Americans and a billion Chinese, public opinion seems to look at this new technology with either growing concern or even disapproval. It is generally recognized that a high level of vigilance is necessary and highly desirable, but it should also be considered that GMOs are a promising new challenge for the III Millennium societies, with remarkable impact on many disciplines and fields related to biotechnology. To acquire a basic knowledge on GMO production, GM-food consumption, GMO interaction with humans and environment is of primary importance for risk assessment. It requires availability of clear data and results from rigorous experiments. This review will focus on public health risks related with a GMO-containing diet. The objective is to summarize state of the art research, provide fundamental technical information, point out problems and perspectives, and make available essential tools for further research. Are GMO based industries and GMO-derived foods safe to human health? Can we consider both social, ethical and public health issues by means of a constant and effective monitoring of the food chain and by a clear, informative labeling of the products? Which are the so far characterized or alleged hazards of GMOs? And, most importantly, are these hazards actual, potential or merely contrived? Several questions remain open; answers and solutions belong to science, to politics and to the personal opinion of each social subject.
Collapse
|
36
|
Guo BZ, Yu J, Holbrook CC, Lee RD, Lynch RE. Application of Differential Display RT‐PCR and EST/Microarray Technologies to the Analysis of Gene Expression in Response to Drought Stress and Elimination of Aflatoxin Contamination in Corn and Peanut. ACTA ACUST UNITED AC 2003. [DOI: 10.1081/txr-120024095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Goldberg RB. From cot curves to genomics. How gene cloning established new concepts in plant biology. PLANT PHYSIOLOGY 2001; 125:4-8. [PMID: 11154284 PMCID: PMC1539313 DOI: 10.1104/pp.125.1.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- R B Goldberg
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095-1606, USA.
| |
Collapse
|
38
|
Weber S, Zarhloul K, Friedt W. Modification of Oilseed Quality by Genetic Transformation. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-3-642-56849-7_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
39
|
Aragão F, Barros L, Sousa MD, Grossi de Sá M, Almeida E, Gander E, Rech E. Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genet Mol Biol 1999. [DOI: 10.1590/s1415-47571999000300026] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bean (Phaseolus vulgaris), an important component in the diet of people in developing countries, has low levels of the essential amino acid, methionine. We have attempted to correct this deficiency by introducing a transgene coding for a methionine-rich storage albumin from the Brazil nut via biolistic methods. The transgene's coding sequence was driven by a doubled 35S CaMV promoter and AMV enhancer sequences. The transgene was stable and correctly expressed in homozygous R2 to R5 seeds. In two of the five transgenic lines the methionine content was significantly increased (14 and 23%) over the values found in untransformed plants.
Collapse
|
40
|
Abstract
High-temperature stress or heat shock induces the vigorous synthesis of heat-shock proteins in many organisms including the higher plants. This response has been implicated in the acquisition of thermotolerance. The biological importance of a group of low-molecular-mass proteins in the response of plants is indicated by the conservation of the corresponding genes. The steady-state levels of mRNAs for these proteins shift from undetectable levels at normal temperature to about 20 000 molecules per gene in the cell after heat shock. The analysis of ‘run-off’ transcripts from isolated soybean nuclei suggests a transcriptional control of gene expression. The DNA sequence analysis of soybean heat-shock genes revealed a conservation of promoter sequences and 5'-upstream elements. A comparison of the deduced amino acid sequences of polypeptides showed a conservation of structural features in heat-shock proteins between plants and animals. The implication of a common regulatory concept in the heat-shock response makes genes belonging to this family (15-18 kDa proteins) in soybean favourable candidates for investigating thermoregulation of transcription. We have exploited the natural gene transfer system ofAgrobacterium tumefaciensto introduce a soybean heat-shock gene into the genomes of sunflower and tobacco. The gene is thermoinducibly transcribed and transcripts are faithfully initiated in transgenic plants. Experiments are in progress to define the regulatory sequences 5'-upstream from the gene. The expression of heat-shock genes in a heterologous genetic background also provides the basis for studying the function of the proteins and their possible role in thermoprotection.
Collapse
|
41
|
The Biochemistry and Cell Biology of Embryo Storage Proteins. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS 1997. [DOI: 10.1007/978-94-015-8909-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Motto M, Thompson R, Salamini F. Genetic Regulation of Carbohydrate and Protein Accumulation in Seeds. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS 1997. [DOI: 10.1007/978-94-015-8909-3_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
|
44
|
Apical and lateral shoot apex-specific expression is conferred by promoter of the seed storage protein β-phaseolin gene. Transgenic Res 1993. [DOI: 10.1007/bf01977677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Bustos MM, Kalkan FA, VandenBosch KA, Hall TC. Differential accumulation of four phaseolin glycoforms in transgenic tobacco. PLANT MOLECULAR BIOLOGY 1991; 16:381-95. [PMID: 1893109 DOI: 10.1007/bf00023990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
An intron-less phaseolin gene was used to express phaseolin polypeptides in transgenic tobacco plants. The corresponding amounts of phaseolin immunoreactive polypeptides and mRNA were similar to those found in plants transformed with a bean genomic DNA sequence that encodes an identical beta-phaseolin subunit. These results justified the use of the intron-less gene for engineering of the phaseolin protein by oligonucleotide-directed mutagenesis. Each and both of the two Asn residues that serve as glycan acceptors in wild-type phaseolin were modified to prevent N-linked glycosylation. Wild-type (beta wti-) and mutant phaseolin glycoforms (beta dgly1, beta dgly2 and beta dgly1,2) were localized to the protein body matrix by immunogold microscopy. Although quantitative slot-blot hybridization analysis showed similar levels of phaseolin mRNA in transgenic seed derived from all constructs, seed from the beta dgly1 and beta dgly2 mutations contained only 41% and 73% of that expressed from the wild-type control; even less (23%) was present in seed of plants transformed with the phaseolin beta dgly1,2 gene. Additionally, the profile of 25-29 kDa processed peptides was different for each of the glycoforms, indicating that processing of the full-length phaseolin polypeptides was modified. Thus, although targeting of phaseolin to the protein body was not eliminated by removal of the glycan side-chains, decreased accumulation and stability of the full-length phaseolin protein in transgenic tobacco seed were evident.
Collapse
Affiliation(s)
- M M Bustos
- Department of Biology, Texas A & M University, College Station 77843-3258
| | | | | | | |
Collapse
|
46
|
Fukushima D. Structures of plant storage proteins and their functions. FOOD REVIEWS INTERNATIONAL 1991. [DOI: 10.1080/87559129109540916] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Affiliation(s)
- P P Chee
- Upjohn Company, Kalamazoo, Michigan 49007
| | | |
Collapse
|
48
|
Bewley JD, Marcus A. Gene expression in seed development and germination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:165-93. [PMID: 2183293 DOI: 10.1016/s0079-6603(08)60711-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J D Bewley
- Department of Botany, University of Guelph, Ontario, Canada
| | | |
Collapse
|
49
|
|
50
|
Altenbach SB, Pearson KW, Meeker G, Staraci LC, Sun SM. Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. PLANT MOLECULAR BIOLOGY 1989; 13:513-22. [PMID: 2491669 DOI: 10.1007/bf00027311] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have constructed a chimeric gene encoding a Brazil nut methionine-rich seed protein which contains 18% methionine. This gene has been transferred to tobacco and expressed in the developing seeds. Tobacco seeds are able to process the methionine-rich protein efficiently from a larger precursor polypeptide of 17 kDa to the 9 kDa and 3 kDa subunits of the mature protein, a procedure which involves three proteolytic cleavage steps in the Brazil nut seed. The accumulation of the methionine-rich protein in the seeds of tobacco results in a significant increase (30%) in the levels of the methionine in the seed proteins of the transgenic plants. Our data indicate that the introduction of a chimeric gene encoding a methionine-rich seed protein into crop plants, particularly legumes whose seeds are deficient in the essential sulfur-containing amino acids, represents a feasible method for improving the nutritional quality of seed proteins.
Collapse
Affiliation(s)
- S B Altenbach
- Plant Cell Research Institute, Inc., Dublin, CA 94568
| | | | | | | | | |
Collapse
|