1
|
DeRosa H, Richter T, Wilkinson C, Hunter RG. Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Front Genet 2022; 13:813510. [PMID: 35711940 PMCID: PMC9196244 DOI: 10.3389/fgene.2022.813510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Long regarded as “junk DNA,” transposable elements (TEs) have recently garnered much attention for their role in promoting genetic diversity and plasticity. While many processes involved in mammalian development require TE activity, deleterious TE insertions are a hallmark of several psychiatric disorders. Moreover, stressful events including exposure to gestational infection and trauma, are major risk factors for developing psychiatric illnesses. Here, we will provide evidence demonstrating the intersection of stressful events, atypical TE expression, and their epigenetic regulation, which may explain how neuropsychiatric phenotypes manifest. In this way, TEs may be the “bridge” between environmental perturbations and psychopathology.
Collapse
Affiliation(s)
- Holly DeRosa
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Troy Richter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Cooper Wilkinson
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Richard G Hunter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
2
|
Wang X, Ke L, Wang S, Fu J, Xu J, Hao Y, Kang C, Guo W, Deng X, Xu Q. Variation burst during dedifferentiation and increased CHH-type DNA methylation after 30 years of in vitro culture of sweet orange. HORTICULTURE RESEARCH 2022; 9:uhab036. [PMID: 35039837 PMCID: PMC8824543 DOI: 10.1093/hr/uhab036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/18/2022] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Somaclonal variation arising from tissue culture may provide a valuable resource for the selection of new germplasm, but may not preserve true-to-type characteristics, which is a major concern for germplasm conservation or genome editing. The genomic changes associated with dedifferentiation and somaclonal variation during long-term in vitro culture are largely unknown. Sweet orange was one of the earliest plant species to be cultured in vitro and induced via somatic embryogenesis. We compared four sweet orange callus lines after 30 years of constant tissue culture with newly induced calli by comprehensively determining the single-nucleotide polymorphisms, copy number variations, transposable element insertions, methylomic and transcriptomic changes. We identified a burst of variation during early dedifferentiation, including a retrotransposon outbreak, followed by a variation purge during long-term in vitro culture. Notably, CHH methylation showed a dynamic pattern, initially disappearing during dedifferentiation and then more than recovering after 30 years of in vitro culture. We also analyzed the effects of somaclonal variation on transcriptional reprogramming, and indicated subgenome dominance was evident in the tetraploid callus. We identified a retrotransposon insertion and DNA modification alternations in the potential regeneration-related gene CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 16. This study provides the foundation to harness in vitro variation and offers a deeper understanding of the variation introduced by tissue culture during germplasm conservation, somatic embryogenesis, gene editing, and breeding programs.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| | - Lili Ke
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| | - Shuting Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| | - Jialing Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| | - Jidi Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| | - Yujin Hao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University,
No. 1, Shizishan Street, Wuhan 430070, China
| |
Collapse
|
3
|
Lizamore D, Bicknell R, Winefield C. Elevated transcription of transposable elements is accompanied by het-siRNA-driven de novo DNA methylation in grapevine embryogenic callus. BMC Genomics 2021; 22:676. [PMID: 34544372 PMCID: PMC8454084 DOI: 10.1186/s12864-021-07973-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Somatic variation is a valuable source of trait diversity in clonally propagated crops. In grapevine, which has been clonally propagated worldwide for centuries, important phenotypes such as white berry colour are the result of genetic changes caused by transposable elements. Additionally, epiallele formation may play a role in determining geo-specific (‘terroir’) differences in grapes and thus ultimately in wine. This genomic plasticity might be co-opted for crop improvement via somatic embryogenesis, but that depends on a species-specific understanding of the epigenetic regulation of transposable element (TE) expression and silencing in these cultures. For this reason, we used whole-genome bisulphite sequencing, mRNA sequencing and small RNA sequencing to study the epigenetic status and expression of TEs in embryogenic callus, in comparison with leaf tissue. Results We found that compared with leaf tissue, grapevine embryogenic callus cultures accumulate relatively high genome-wide CHH methylation, particularly across heterochromatic regions. This de novo methylation is associated with an abundance of transcripts from highly replicated TE families, as well as corresponding 24 nt heterochromatic siRNAs. Methylation in the TE-specific CHG context was relatively low over TEs located within genes, and the expression of TE loci within genes was highly correlated with the expression of those genes. Conclusions This multi-‘omics analysis of grapevine embryogenic callus in comparison with leaf tissues reveals a high level of genome-wide transcription of TEs accompanied by RNA-dependent DNA methylation of these sequences in trans. This provides insight into the genomic conditions underlying somaclonal variation and epiallele formation in plants regenerated from embryogenic cultures, which is an important consideration when using these tissues for plant propagation and genetic improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07973-9.
Collapse
Affiliation(s)
| | - Ross Bicknell
- Plant and Food Research Ltd, Lincoln, Canterbury, New Zealand
| | - Chris Winefield
- Department Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand.
| |
Collapse
|
4
|
Bednarek PT, Pachota KA, Dynkowska WM, Machczyńska J, Orłowska R. Understanding In Vitro Tissue Culture-Induced Variation Phenomenon in Microspore System. Int J Mol Sci 2021; 22:7546. [PMID: 34299165 PMCID: PMC8304781 DOI: 10.3390/ijms22147546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
In vitro tissue culture plant regeneration is a complicated process that requires stressful conditions affecting the cell functioning at multiple levels, including signaling pathways, transcriptome functioning, the interaction between cellular organelles (retro-, anterograde), compounds methylation, biochemical cycles, and DNA mutations. Unfortunately, the network linking all these aspects is not well understood, and the available knowledge is not systemized. Moreover, some aspects of the phenomenon are poorly studied. The present review attempts to present a broad range of aspects involved in the tissue culture-induced variation and hopefully would stimulate further investigations allowing a better understanding of the phenomenon and the cell functioning.
Collapse
Affiliation(s)
- Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.A.P.); (W.M.D.); (J.M.); (R.O.)
| | | | | | | | | |
Collapse
|
5
|
Liang Z, Anderson SN, Noshay JM, Crisp PA, Enders TA, Springer NM. Genetic and epigenetic variation in transposable element expression responses to abiotic stress in maize. PLANT PHYSIOLOGY 2021; 186:420-433. [PMID: 33591319 PMCID: PMC8154091 DOI: 10.1093/plphys/kiab073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Transposable elements (TEs) pervade most eukaryotic genomes. The repetitive nature of TEs complicates the analysis of their expression. Evaluation of the expression of both TE families (using unique and multi-mapping reads) and specific elements (using uniquely mapping reads) in leaf tissue of three maize (Zea mays) inbred lines subjected to heat or cold stress reveals no evidence for genome-wide activation of TEs; however, some specific TE families generate transcripts only in stress conditions. There is substantial variation for which TE families exhibit stress-responsive expression in the different genotypes. In order to understand the factors that drive expression of TEs, we focused on a subset of families in which we could monitor expression of individual elements. The stress-responsive activation of a TE family can often be attributed to a small number of elements in the family that contains regions lacking DNA methylation. Comparisons of the expression of TEs in different genotypes revealed both genetic and epigenetic variation. Many of the specific TEs that are activated in stress in one inbred are not present in the other inbred, explaining the lack of activation. Among the elements that are shared in both genomes but only expressed in one genotype, we found that many exhibit differences in DNA methylation such that the genotype without expression is fully methylated. This study provides insights into the regulation of expression of TEs in normal and stress conditions and highlights the role of chromatin variation between elements in a family or between genotypes for contributing to expression variation. The highly repetitive nature of many TEs complicates the analysis of their expression. Although most TEs are not expressed, some exhibits expression in certain tissues or conditions. We monitored the expression of both TE families (using unique and multi-mapping reads) and specific elements (using uniquely mapping reads) in leaf tissue of three maize (Zea mays) inbred lines subjected to heat or cold stress. While genome-wide activation of TEs did not occur, some TE families generated transcripts only in stress conditions with variation by genotype. To better understand the factors that drive expression of TEs, we focused on a subset of families in which we could monitor expression of individual elements. In most cases, stress-responsive activation of a TE family was attributed to a small number of elements in the family. The elements that contained small regions lacking DNA methylation regions showed enriched expression while fully methylated elements were rarely expressed in control or stress conditions. The cause of varied expression in the different genotypes was due to both genetic and epigenetic variation. Many specific TEs activated by stress in one inbred were not present in the other inbred. Among the elements shared in both genomes, full methylation inhibited expression in one of the genotypes. This study provides insights into the regulation of TE expression in normal and stress conditions and highlights the role of chromatin variation between elements in a family or between genotypes for contributing to expression.
Collapse
Affiliation(s)
- Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sarah N Anderson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter A Crisp
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tara A Enders
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
6
|
Rajewski A, Carter-House D, Stajich J, Litt A. Datura genome reveals duplications of psychoactive alkaloid biosynthetic genes and high mutation rate following tissue culture. BMC Genomics 2021; 22:201. [PMID: 33752605 PMCID: PMC7986286 DOI: 10.1186/s12864-021-07489-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/26/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Datura stramonium (Jimsonweed) is a medicinally and pharmaceutically important plant in the nightshade family (Solanaceae) known for its production of various toxic, hallucinogenic, and therapeutic tropane alkaloids. Recently, we published a tissue-culture based transformation protocol for D. stramonium that enables more thorough functional genomics studies of this plant. However, the tissue culture process can lead to undesirable phenotypic and genomic consequences independent of the transgene used. Here, we have assembled and annotated a draft genome of D. stramonium with a focus on tropane alkaloid biosynthetic genes. We then use mRNA sequencing and genome resequencing of transformants to characterize changes following tissue culture. RESULTS Our draft assembly conforms to the expected 2 gigabasepair haploid genome size of this plant and achieved a BUSCO score of 94.7% complete, single-copy genes. The repetitive content of the genome is 61%, with Gypsy-type retrotransposons accounting for half of this. Our gene annotation estimates the number of protein-coding genes at 52,149 and shows evidence of duplications in two key alkaloid biosynthetic genes, tropinone reductase I and hyoscyamine 6 β-hydroxylase. Following tissue culture, we detected only 186 differentially expressed genes, but were unable to correlate these changes in expression with either polymorphisms from resequencing or positional effects of transposons. CONCLUSIONS We have assembled, annotated, and characterized the first draft genome for this important model plant species. Using this resource, we show duplications of genes leading to the synthesis of the medicinally important alkaloid, scopolamine. Our results also demonstrate that following tissue culture, mutation rates of transformed plants are quite high (1.16 × 10- 3 mutations per site), but do not have a drastic impact on gene expression.
Collapse
Affiliation(s)
- Alex Rajewski
- Department of Botany and Plant Science, University of California, Riverside, California 92521 USA
| | - Derreck Carter-House
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521 USA
| | - Jason Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521 USA
| | - Amy Litt
- Department of Botany and Plant Science, University of California, Riverside, California 92521 USA
| |
Collapse
|
7
|
Tissue culture-induced DNA methylation in crop plants: a review. Mol Biol Rep 2021; 48:823-841. [PMID: 33394224 DOI: 10.1007/s11033-020-06062-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Plant tissue culture techniques have been extensively employed in commercial micropropagation to provide year-round production. Tissue culture regenerants are not always genotypically and phenotypically similar. Due to the changes in the tissue culture microenvironment, plant cells are exposed to additional stress which induces genetic and epigenetic instabilities in the regenerants. These changes lead to tissue culture-induced variations (TCIV) which are also known as somaclonal variations to categorically specify the inducing environment. TCIV includes molecular and phenotypic changes persuaded in the in vitro culture due to continuous sub-culturing and tissue culture-derived stress. Epigenetic variations such as altered DNA methylation pattern are induced due to the above-mentioned factors. Reportedly, alteration in DNA methylation pattern is much more frequent in the plant genome during the tissue culture process. DNA methylation plays an important role in gene expression and regulation of plant development. Variants originated in tissue culture process due to heritable methylation changes, can contribute to intra-species phenotypic variation. Several molecular techniques are available to detect DNA methylation at different stages of in vitro culture. Here, we review the aspects of TCIV with respect to DNA methylation and its effect on crop improvement programs. It is anticipated that a precise and comprehensive knowledge of molecular basis of in vitro-derived DNA methylation will help to design strategies to overcome the bottlenecks of micropropagation system and maintain the clonal fidelity of the regenerants.
Collapse
|
8
|
Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, Yassoralipour A, Nasehi A. Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:508-523. [PMID: 32349860 DOI: 10.1071/fp19077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
Chromatin modulation plays important roles in gene expression regulation and genome activities. In plants, epigenetic changes, including variations in histone modification and DNA methylation, are linked to alterations in gene expression. Despite the significance and potential of in vitro cell and tissue culture systems in fundamental research and marketable applications, these systems threaten the genetic and epigenetic networks of intact plant organs and tissues. Cell and tissue culture applications can lead to DNA variations, methylation alterations, transposon activation, and finally, somaclonal variations. In this review, we discuss the status of the current understanding of epigenomic changes that occur under in vitro conditions in plantation crops, including coconut, oil palm, rubber, cotton, coffee and tea. It is hoped that comprehensive knowledge of the molecular basis of these epigenomic variations will help researchers develop strategies to enhance the totipotent and embryogenic capabilities of tissue culture systems for plantation crops.
Collapse
Affiliation(s)
- Parisa Azizi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamed M Hanafi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Corresponding author.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jennifer A Harikrishna
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sima Taheri
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Yassoralipour
- Department of Agricultural and Food Science, Faculty of Science (Kampar Campus), Universiti Tunku Abdul Rahman (UTAR), Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Abbas Nasehi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Anderson SN, Stitzer MC, Zhou P, Ross-Ibarra J, Hirsch CD, Springer NM. Dynamic Patterns of Transcript Abundance of Transposable Element Families in Maize. G3 (BETHESDA, MD.) 2019; 9:3673-3682. [PMID: 31506319 PMCID: PMC6829137 DOI: 10.1534/g3.119.400431] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/08/2019] [Indexed: 12/21/2022]
Abstract
Transposable Elements (TEs) are mobile elements that contribute the majority of DNA sequences in the maize genome. Due to their repetitive nature, genomic studies of TEs are complicated by the difficulty of properly attributing multi-mapped short reads to specific genomic loci. Here, we utilize a method to attribute RNA-seq reads to TE families rather than particular loci in order to characterize transcript abundance for TE families in the maize genome. We applied this method to assess per-family expression of transposable elements in >800 published RNA-seq libraries representing a range of maize development, genotypes, and hybrids. While a relatively small proportion of TE families are transcribed, expression is highly dynamic with most families exhibiting tissue-specific expression. A large number of TE families were specifically detected in pollen and endosperm, consistent with reproductive dynamics that maintain silencing of TEs in the germ line. We find that B73 transcript abundance is a poor predictor of TE expression in other genotypes and that transcript levels can differ even for shared TEs. Finally, by assessing recombinant inbred line and hybrid transcriptomes, complex patterns of TE transcript abundance across genotypes emerged. Taken together, this study reveals a dynamic contribution of TEs to maize transcriptomes.
Collapse
Affiliation(s)
| | - Michelle C Stitzer
- Department of Evolution and Ecology and Center for Population Biology and
| | - Peng Zhou
- Department of Plant and Microbial Biology and
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology and Center for Population Biology and
- Genome Center, University of California, Davis, California 95616
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, and
| | | |
Collapse
|
10
|
|
11
|
Heritable Epigenomic Changes to the Maize Methylome Resulting from Tissue Culture. Genetics 2018; 209:983-995. [PMID: 29848487 DOI: 10.1534/genetics.118.300987] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/26/2018] [Indexed: 12/22/2022] Open
Abstract
DNA methylation can contribute to the maintenance of genome integrity and regulation of gene expression. In most situations, DNA methylation patterns are inherited quite stably. However, changes in DNA methylation can occur at some loci as a result of tissue culture resulting in somaclonal variation. To investigate heritable epigenetic changes as a consequence of tissue culture, a sequence-capture bisulfite sequencing approach was implemented to monitor context-specific DNA methylation patterns in ∼15 Mb of the maize genome for a population of plants that had been regenerated from tissue culture. Plants that have been regenerated from tissue culture exhibit gains and losses of DNA methylation at a subset of genomic regions. There was evidence for a high rate of homozygous changes to DNA methylation levels that occur consistently in multiple independent tissue culture lines, suggesting that some loci are either targeted or hotspots for epigenetic variation. The consistent changes inherited following tissue culture include both gains and losses of DNA methylation and can affect CG, CHG, or both contexts within a region. Only a subset of the tissue culture changes observed in callus plants are observed in the primary regenerants, but the majority of DNA methylation changes present in primary regenerants are passed onto offspring. This study provides insights into the susceptibility of some loci and potential mechanisms that could contribute to altered DNA methylation and epigenetic state that occur during tissue culture in plant species.
Collapse
|
12
|
|
13
|
|
14
|
Orłowska R, Machczyńska J, Oleszczuk S, Zimny J, Bednarek PT. DNA methylation changes and TE activity induced in tissue cultures of barley (Hordeum vulgare L.). JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2016; 23:19. [PMID: 27508170 PMCID: PMC4977862 DOI: 10.1186/s40709-016-0056-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/25/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND In vitro plant regeneration via androgenesis or somatic embryogenesis is capable of inducing (epi)mutations that may affect sexual progenies. While epimutations are associated with DNA methylation, mutations could be due to the movement of transposons. The common notion is that both processes are linked. It is being assumed that demethylation activates transposable elements (TEs). Analysis of methylation changes and their relation with TEs activation in tissue cultures requires uniquely derived donor plants (Ds), their regenerants (Rs) and respective progeny (Ps) that would allow discrimination of processes not related to changes introduced via in vitro cultures. Moreover, a set of methods (RP-HPLC, SSAP, and MSTD) is needed to study whether different TEs families are being activated during in vitro tissue culture plant regeneration and whether their activity could be linked to DNA methylation changes or alternative explanations should be considered. RESULTS The in vitro tissue culture plant regeneration in barley was responsible for the induction of DNA methylation in regenerants and conservation of the methylation level in the progeny as shown by the RP-HPLC approach. No difference between andro- and embryo-derived Rs and Ps was observed. The SSAP and MSTD approach revealed that Ds and Rs were more polymorphic than Ps. Moreover, Rs individuals exhibited more polymorphisms with the MSTD than SSAP approach. The differences between Ds, Rs and Ps were also evaluated via ANOVA and AMOVA. CONCLUSIONS Stressful conditions during plant regeneration via in vitro tissue cultures affect regenerants and their sexual progeny leading to an increase in global DNA methylation of Rs and Ps compared to Ds in barley. The increased methylation level noted among regenerants remains unchanged in the Ps as indicated via RP-HPLC data. Marker-based experiments suggest that TEs are activated via in vitro tissue cultures and that, independently of the increased methylation, their activity in Rs is greater than in Ps. Thus, the increased methylation level may not correspond to the stabilization of TEs movement at least at the level of regenerants. The presence of TEs variation among Ds that were genetically and epigenetically uniform may suggest that at least some mobile elements may be active, and they may mask variation related to tissue cultures. Thus, tissue cultures may activate some TEs whereas the others remain intact, or their level of movement is changed. Finally, we suggest that sexual reproduction may be responsible for the stabilization of TEs.
Collapse
Affiliation(s)
- Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Joanna Machczyńska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Sylwia Oleszczuk
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
15
|
Grandbastien MA. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:403-16. [DOI: 10.1016/j.bbagrm.2014.07.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
|
16
|
Matsunaga W, Ohama N, Tanabe N, Masuta Y, Masuda S, Mitani N, Yamaguchi-Shinozaki K, Ma JF, Kato A, Ito H. A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:48. [PMID: 25709612 PMCID: PMC4321352 DOI: 10.3389/fpls.2015.00048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/17/2015] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are key elements that facilitate genome evolution of the host organism. A number of studies have assessed the functions of TEs, which change gene expression in the host genome. Activation of TEs is controlled by epigenetic modifications such as DNA methylation and histone modifications. Several recent studies have reported that TEs can also be activated by biotic or abiotic stress in some plants. We focused on a Ty1/copia retrotransposon, ONSEN, that is activated by heat stress (HS) in Arabidopsis. We found that transcriptional activation of ONSEN was regulated by a small interfering RNA (siRNA)-related pathway, and the activation could also be induced by oxidative stress. Mutants deficient in siRNA biogenesis that were exposed to HS at the initial stages of vegetative growth showed transgenerational transposition. The transposition was also detected in the progeny, which originated from tissue that had differentiated after exposure to the HS. The results indicated that in some undifferentiated cells, transpositional activity could be maintained quite long after exposure to the HS.
Collapse
Affiliation(s)
| | - Naohiko Ohama
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, TokyoJapan
| | - Noriaki Tanabe
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, NaraJapan
| | - Yukari Masuta
- Faculty of Science, Hokkaido University, SapporoJapan
| | - Seiji Masuda
- Faculty of Science, Hokkaido University, SapporoJapan
| | - Namiki Mitani
- Institute of Plant Science and Resources, Okayama University, KurashikiJapan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, TokyoJapan
| | - Jian F. Ma
- Institute of Plant Science and Resources, Okayama University, KurashikiJapan
| | - Atsushi Kato
- Faculty of Science, Hokkaido University, SapporoJapan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, SapporoJapan
- PRESTO, Japan Science and Technology Agency, KawaguchiJapan
- *Correspondence: Hidetaka Ito, Faculty of Science, Hokkaido University, Kita10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan e-mail:
| |
Collapse
|
17
|
Xuan YH, Zhang J, Peterson T, Han CD. Ac/Ds-induced chromosomal rearrangements in rice genomes. Mob Genet Elements 2014; 2:67-71. [PMID: 22934239 PMCID: PMC3429523 DOI: 10.4161/mge.20264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A closely-linked pair of Ac/Ds elements induces chromosomal rearrangements in Arabidopsis and maize. This report summarizes the Ac/Ds systems that generate an exceptionally high frequency of chromosomal rearrangements in rice genomes. From a line containing a single Ds element inserted at the OsRLG5 locus, plants containing a closely-linked pair of inversely-oriented Ds elements were obtained at 1% frequency among the population regenerated from tissue culture. Subsequent regeneration of the lines containing cis-paired Ds elements via tissue culture led to a high frequency (35.6%) of plants containing chromosomal rearrangements at the OsRLG5 locus. Thirty-four rearrangement events were characterized, revealing diverse chromosomal aberrations including deletions, inversions and duplications. Many rearrangements could be explained by sister chromatid transposition (SCT) and homologous recombination (HR), events previously demonstrated in Arabidopsis and maize. In addition, novel events were detected and presumably generated via a new alternative transposition mechanism. This mechanism, termed single chromatid transposition (SLCT), resulted in juxtaposed inversions and deletions on the same chromosome. This study demonstrated that the Ac/Ds system coupled with tissue culture-mediated plant regeneration could induce higher frequencies and a greater diversity of chromosomal rearrangements than previously reported.
Understanding transposon-induced chromosomal rearrangements can provide new insights into the relationship between transposable elements and genome evolution, as well as a means to perform chromosomal engineering for crop improvement. Rice is a staple cereal crop worldwide. Complete genome sequencing and rich genetic resources are great advantages for the study of the genomic complexity induced by transposable elements.1–2 The combination of tissue culture with genetic lines carrying a pair of closely located Ac/Ds elements greatly increases the frequency and diversity of rearrangements in rice genomes. The methodology and its efficiency and significance are briefly summarized.
Collapse
|
18
|
Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize. Genetics 2014; 198:209-18. [PMID: 25023398 DOI: 10.1534/genetics.114.165480] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Plants regenerated from tissue culture and their progenies are expected to be identical clones, but often display heritable molecular and phenotypic variation. We characterized DNA methylation patterns in callus, primary regenerants, and regenerant-derived progenies of maize using immunoprecipitation of methylated DNA (meDIP) to assess the genome-wide frequency, pattern, and heritability of DNA methylation changes. Although genome-wide DNA methylation levels remained similar following tissue culture, numerous regions exhibited altered DNA methylation levels. Hypomethylation events were observed more frequently than hypermethylation following tissue culture. Many of the hypomethylation events occur at the same genomic sites across independent regenerants and cell lines. The DNA methylation changes were often heritable in progenies produced from self-pollination of primary regenerants. Methylation changes were enriched in regions upstream of genes and loss of DNA methylation at promoters was associated with altered expression at a subset of loci. Differentially methylated regions (DMRs) found in tissue culture regenerants overlap with the position of naturally occurring DMRs more often than expected by chance with 8% of tissue culture hypomethylated DMRs overlapping with DMRs identified by profiling natural variation, consistent with the hypotheses that genomic stresses similar to those causing somaclonal variation may also occur in nature, and that certain loci are particularly susceptible to epigenetic change in response to these stresses. The consistency of methylation changes across regenerants from independent cultures suggests a mechanistic response to the culture environment as opposed to an overall loss of fidelity in the maintenance of epigenetic states.
Collapse
|
19
|
Zhang D, Wang Z, Wang N, Gao Y, Liu Y, Wu Y, Bai Y, Zhang Z, Lin X, Dong Y, Ou X, Xu C, Liu B. Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications. PLoS One 2014; 9:e96879. [PMID: 24804838 PMCID: PMC4013045 DOI: 10.1371/journal.pone.0096879] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Somaclonal variation generally occurs in plants regenerated from tissue culture. However, fundamental issues regarding molecular characteristics, mutation rates and mutation spectra of plant somatic variation as well as their phenotypic relevance have been addressed only recently. Moreover, these studies have reported highly discrepant results in different plant species and even in the same plant genotype. METHODOLOGY/PRINCIPAL FINDINGS We investigated heritable genomic variation induced by tissue culture in rice by whole genome re-sequencing of an extensively selfed somaclonal line (TC-reg-2008) and its wild type (WT) donor (cv. Hitomebore). We computed the overall mutation rate, single nucleotide polymorphisms (SNPs), small scale insertions/deletions (Indels) and mobilization of transposable elements (TEs). We assessed chromosomal distribution of the various types of genomic variations, tested correlations between SNPs and Indels, and examined concomitancy between TE activity and its cytosine methylation states. We also performed gene ontology (GO) analysis of genes containing nonsynonymous mutations and large-effect mutations, and assayed effects of the genomic variations on phenotypes under both normal growing condition and several abiotic stresses. We found that heritable somaclonal genomic variation occurred extensively in rice. The genomic variations distributed non-randomly across each of the 12 rice chromosomes, and affected a large number of functional genes. The phenotypic penetrance of the genomic variations was condition-dependent. CONCLUSIONS/SIGNIFICANCE Tissue culture is a potent means to generate heritable genetic variations in rice, which bear distinct difference at least in space (chromosomal distribution) from those occurred under natural settings. Our findings have provided new information regarding the mutation rate and spectrum as well as chromosomal distribution pattern of somaclonal variation in rice. Our data also suggest that rice possesses a strong capacity to canalize genetic variations under normal growing conditions to maintain phenotypic robustness, which however can be released by certain abiotic stresses to generate variable phenotypes.
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yang Gao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yan Bai
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
20
|
Transgenic plants: performance, release and containment. World J Microbiol Biotechnol 2014; 10:139-44. [PMID: 24420934 DOI: 10.1007/bf00360874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1993] [Accepted: 08/29/1993] [Indexed: 10/26/2022]
Abstract
This review focuses on transgenic plants, from the initial stages of the genetic modification process in the laboratory to their release stage in the field and indicates possible areas of concern and strategies for dealing with them. The classes of marker genes and issues about their safety, the gene flow and strategies that are used to isolate transgenic plants genetically are specifically examined. In addition, an assessment is provided of the phenomena which affect the performance of transgenic plants, such as gene disruption, the pleiotropic effect on plant phenotype and genetic variation. Finally, strategies are suggested for preventing unexpected consequences of transgenic plant production.
Collapse
|
21
|
Matsuda S, Sato M, Ohno S, Yang SJ, Doi M, Hosokawa M. Cutting Leaves and Plant Growth Regulator Application Enhance Somaclonal Variation Induced by Transposition of VGs1 of Saintpaulia. ACTA ACUST UNITED AC 2014. [DOI: 10.2503/jjshs1.mi-009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Rival A, Ilbert P, Labeyrie A, Torres E, Doulbeau S, Personne A, Dussert S, Beulé T, Durand-Gasselin T, Tregear JW, Jaligot E. Variations in genomic DNA methylation during the long-term in vitro proliferation of oil palm embryogenic suspension cultures. PLANT CELL REPORTS 2013; 32:359-368. [PMID: 23179461 DOI: 10.1007/s00299-012-1369-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/03/2012] [Accepted: 11/06/2012] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE : The long-term proliferation of embryogenic cell suspensions of oil palm is associated with changes in both genomic methylation rates and embryogenic capacities. In the aim of exploring the relationship between epigenetic stability and the long-term in vitro proliferation of plant tissues, we have studied changes in genomic DNA methylation levels in embryogenic suspensions of oil palm (Elaeis guineensis Jacq.). Five embryogenic callus lines were obtained from selected hybrid seeds and then proliferated as suspension cultures. Each clonal line obtained from a single genotype was subdivided into three independent subclonal lines. Once established, cultures proliferated for 12 months and genomic DNA was sampled at 4 months intervals for the estimation of global DNA methylation rates through high performance liquid chromatography (HPLC) quantitation of deoxynucleosides. Our results show that in vitro proliferation induces DNA hypermethylation in a time-dependent fashion. Moreover, this trend is statistically significant in several clonal lines and shared between subclonal lines originating from the same genotype. Interestingly, the only clonal line undergoing loss of genomic methylation in the course of proliferation has been found unable to generate somatic embryos. We discuss the possible implications of genome-wide DNA methylation changes in proliferating cells with a view to the maintenance of genomic and epigenomic stability.
Collapse
Affiliation(s)
- Alain Rival
- CIRAD, UMR DIADE (IRD, UMSF), 34394, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bobadilla Landey R, Cenci A, Georget F, Bertrand B, Camayo G, Dechamp E, Herrera JC, Santoni S, Lashermes P, Simpson J, Etienne H. High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate. PLoS One 2013; 8:e56372. [PMID: 23418563 PMCID: PMC3572038 DOI: 10.1371/journal.pone.0056372] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/08/2013] [Indexed: 01/30/2023] Open
Abstract
Embryogenic suspensions that involve extensive cell division are risky in respect to genome and epigenome instability. Elevated frequencies of somaclonal variation in embryogenic suspension-derived plants were reported in many species, including coffee. This problem could be overcome by using culture conditions that allow moderate cell proliferation. In view of true-to-type large-scale propagation of C. arabica hybrids, suspension protocols based on low 2,4-D concentrations and short proliferation periods were developed. As mechanisms leading to somaclonal variation are often complex, the phenotypic, genetic and epigenetic changes were jointly assessed so as to accurately evaluate the conformity of suspension-derived plants. The effects of embryogenic suspensions and secondary embryogenesis, used as proliferation systems, on the genetic conformity of somatic embryogenesis-derived plants (emblings) were assessed in two hybrids. When applied over a 6 month period, both systems ensured very low somaclonal variation rates, as observed through massive phenotypic observations in field plots (0.74% from 200,000 plant). Molecular AFLP and MSAP analyses performed on 145 three year-old emblings showed that polymorphism between mother plants and emblings was extremely low, i.e. ranges of 0-0.003% and 0.07-0.18% respectively, with no significant difference between the proliferation systems for the two hybrids. No embling was found to cumulate more than three methylation polymorphisms. No relation was established between the variant phenotype (27 variants studied) and a particular MSAP pattern. Chromosome counting showed that 7 of the 11 variant emblings analyzed were characterized by the loss of 1-3 chromosomes. This work showed that both embryogenic suspensions and secondary embryogenesis are reliable for true-to-type propagation of elite material. Molecular analyses revealed that genetic and epigenetic alterations are particularly limited during coffee somatic embryogenesis. The main change in most of the rare phenotypic variants was aneuploidy, indicating that mitotic aberrations play a major role in somaclonal variation in coffee.
Collapse
Affiliation(s)
- Roberto Bobadilla Landey
- Unité Mixte de Recherche Résistance des Plantes aux Bioagresseurs, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Alberto Cenci
- Unité Mixte de Recherche Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Frédéric Georget
- Unité Mixte de Recherche Résistance des Plantes aux Bioagresseurs, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Benoît Bertrand
- Unité Mixte de Recherche Résistance des Plantes aux Bioagresseurs, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Gloria Camayo
- Centro Nacional de Investigaciones de Café, Manizales, Colombia
| | - Eveline Dechamp
- Unité Mixte de Recherche Résistance des Plantes aux Bioagresseurs, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | | | - Sylvain Santoni
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Tropicales et Méditerranéennes, Institut National de la Recherche Agronomique, Montpellier, France
| | - Philippe Lashermes
- Unité Mixte de Recherche Résistance des Plantes aux Bioagresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - June Simpson
- Department of Plant Genetic Engineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Hervé Etienne
- Unité Mixte de Recherche Résistance des Plantes aux Bioagresseurs, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| |
Collapse
|
24
|
Wang QM, Wang L. An evolutionary view of plant tissue culture: somaclonal variation and selection. PLANT CELL REPORTS 2012; 31:1535-47. [PMID: 22610486 DOI: 10.1007/s00299-012-1281-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 05/20/2023]
Abstract
Plants regenerated from in vitro cultures possess an array of genetic and epigenetic changes. This phenomenon is known as 'somaclonal variation' and the frequency of somaclonal variation (SV) is usually elevated far beyond that expected in nature. Initially, the relationship between time in culture and detected SV was found to support the widespread belief that SV accumulates with culture age. However, a few studies indicated that older cultures yielded regenerants with less SV. What leads to this seemed contradiction? In this article, we have proposed a novel in vitro callus selection hypothesis, differentiation bottleneck (D-bottleneck) and dedifferentiation bottleneck (Dd-bottleneck), which consider natural selection theory to be fit for cell population in vitro. The results of multiplication races between the cells with the true-to-type phenotype and the deleterious cells determine the increase/decrease of SV frequencies in calli or regenerants as in vitro culture time goes on. The possibility of interpreting the complex situation of time-related SV by the evolutionary theory is discussed in this paper. In addition, the SV threshold, space-determined hypothesis and D-bottleneck are proposed to interpret the loss of the regenerability through a long period of plant tissue culture (PTC).
Collapse
Affiliation(s)
- Qin-Mei Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, People's Republic of China.
| | | |
Collapse
|
25
|
Rapid divergence of prolamin gene promoters of maize after gene amplification and dispersal. Genetics 2012; 192:507-19. [PMID: 22798485 DOI: 10.1534/genetics.112.142372] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seeds have evolved to accommodate complicated processes like senescence, dormancy, and germination. Central to these is the storage of carbohydrates and proteins derived from sugars and amino acids synthesized during photosynthesis. In the grasses, the bulk of amino acids is stored in the prolamin superfamily that specifically accumulates in seed endosperm during senescence. Their promoters contain a conserved cis-element, called prolamin-box (P-box), recognized by the trans-activator P-box binding factor (PBF). Because of the lack of null mutants in all grass species, its physiological role in storage-protein gene expression has been elusive. In contrast, a null mutant of another endosperm-specific trans-activator Opaque2 (O2) has been shown to be required for the transcriptional activation of subsets of this superfamily by binding to the O2 box. Here, we used RNAi to knockdown Pbf expression and found that only 27-kDa γ- and 22-kDa α-zein gene expression were affected, whereas the level of other zeins remained unchanged. Still, transgenic seeds had an opaque seed phenotype. Combination of PbfRNAi and o2 resulted in further reduction of α-zein expression. We also tested the interaction of promoters and constitutively expressed PBF and O2. Whereas transgenic promoters could be activated, endogenous promoters appeared to be not accessible to transcriptional activation, presumably due to differential chromatin states. Although analysis of the methylation of binding sites of PBF and O2 correlated with the expression of endogenous 22-kDa α-zein promoters, a different mechanism seems to apply to the 27-kDa γ-zein promoter, which does not undergo methylation changes.
Collapse
|
26
|
Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. PLANT CELL REPORTS 2012; 31:597-620. [PMID: 22179259 DOI: 10.1007/s00299-011-1202-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 05/23/2023]
Abstract
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.
Collapse
|
27
|
Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2561] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Smith AM, Hansey CN, Kaeppler SM. TCUP: A Novel hAT Transposon Active in Maize Tissue Culture. FRONTIERS IN PLANT SCIENCE 2012; 3:6. [PMID: 22639634 PMCID: PMC3355664 DOI: 10.3389/fpls.2012.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 01/04/2012] [Indexed: 05/08/2023]
Abstract
Transposable elements (TEs) are capable of inducing heritable de novo genetic variation. The sequences capable of reactivation, and environmental factors that induce mobilization, remain poorly defined even in well-studied genomes such as maize. We treated maize tissue culture with the demethylating agent 5-aza-2-deoxcytidine and examined long-term tissue culture lines to discover silenced TEs that have the potential to induce heritable genetic variation. Through these screens we have identified a novel low copy number hAT transposon, Tissue Culture Up-Regulated (TCUP), which is transcribed at high levels in long-term maize black Mexican sweet (BMS) tissue culture and is transcribed in response to treatment with 5-aza-2-deoxycytidine. Analysis of the TIGR Maize Gene Index revealed that this element is the most frequently represented EST from the BMS cell culture library and is not represented in other tissue libraries, which is the basis for its name. A full-length sequence was assembled in inbred B73 that contains the putative functional motifs required for autonomous movement of a hAT transposon. Transposon display detected novel TCUP insertions in two long-term tissue-cultured cell lines of the genotype Hi-II A × B and BMS. This research implicates TCUP as a transposon that is capable of reactivation and which may also be particularly sensitive to the stress of the tissue culture environment. Our findings are consistent with the hypothesis that epigenetic alterations potentiate genomic responses to stress during clonal propagation of plants.
Collapse
Affiliation(s)
| | - Candice N. Hansey
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Shawn M. Kaeppler
- Department of Agronomy, University of WisconsinMadison, WI, USA
- *Correspondence: Shawn M. Kaeppler, Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA. e-mail:
| |
Collapse
|
29
|
Abstract
Transposable elements are powerful mutagens. Along with genomic sequences, knock-out phenotypes and expression patterns are important information to elucidate the function of genes. In this review, I propose a strategy to develop tranposant lines on a large scale by combining genetic cross and tissue culture of Ac and Ds lines. Based on the facts that Ds tends to be inactive in F2 or later generation and Ds becomes reactivated via tissue culture, a large scale of transposants can be produced by tissue culture of seeds carrying Ac and inactive Ds. In this review, I describe limitations and considerations in operating transposon tagging systems in rice. Also, I discuss the efficiency of our gene trap system and technical procedures to clone Ds flanking DNA.
Collapse
Affiliation(s)
- Chang-deok Han
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
30
|
Xuan YH, Piao HL, Je BI, Park SJ, Park SH, Huang J, Zhang JB, Peterson T, Han CD. Transposon Ac/Ds-induced chromosomal rearrangements at the rice OsRLG5 locus. Nucleic Acids Res 2011; 39:e149. [PMID: 21965541 PMCID: PMC3239180 DOI: 10.1093/nar/gkr718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies have shown that pairs of closely-linked Ac/Ds transposable elements can induce various chromosomal rearrangements in plant genomes. To study chromosomal rearrangements in rice, we isolated a line (OsRLG5-161) that contains two inversely-oriented Ds insertions in OsRLG5 (Oryza sativa Receptor like kinase Gene 5). Among approximately 300 plants regenerated from OsRLG5-161 heterozygous seeds, 107 contained rearrangements including deletions, duplications and inversions of various sizes. Most rearrangements were induced by previously identified alternative transposition mechanism. Furthermore, we also detected a new class of rearrangements that contain juxtaposed inversions and deletions on the same chromosome. We propose that these novel alleles were generated by a previously unreported type of alternative transposition reactions involving the 5' and 3' termini of two inversely-oriented Ds elements located on the same chromatid. Finally, 11% of rearrangements contained inversions resulting from homologous recombination between the two inverted Ds elements in OsRLG5-161. The high frequency inheritance and great variety of rearrangements obtained suggests that the rice regeneration system results in a burst of transposition activity and a relaxation of the controls which normally limit the transposition competence of individual Ds termini. Together, these results demonstrate a greatly enlarged potential of the Ac/Ds system for plant chromosome engineering.
Collapse
Affiliation(s)
- Yuan Hu Xuan
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jiang C, Mithani A, Gan X, Belfield EJ, Klingler JP, Zhu JK, Ragoussis J, Mott R, Harberd NP. Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol 2011; 21:1385-90. [PMID: 21802297 PMCID: PMC3162137 DOI: 10.1016/j.cub.2011.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/27/2011] [Accepted: 07/01/2011] [Indexed: 11/30/2022]
Abstract
Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1–3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic (“somaclonal”) variation [4–7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation.
Collapse
Affiliation(s)
- Caifu Jiang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sato M, Kawabe T, Hosokawa M, Tatsuzawa F, Doi M. Tissue culture-induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3', 5' hydroxylase (F3'5'H) promoter. PLANT CELL REPORTS 2011; 30:929-939. [PMID: 21293860 DOI: 10.1007/s00299-011-1016-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/12/2011] [Accepted: 01/16/2011] [Indexed: 05/30/2023]
Abstract
The variegated Saintpaulia cultivar Thamires (Saintpaulia sp.), which has pink petals with blue splotches, is generally maintained by leaf cuttings. In contrast, tissue culture-derived progeny of the cultivar showed not only a high percentage of mutants with solid-blue petals but also other solid-color variants, which have not been observed from leaf cuttings. Solid-color phenotypes were inherited stably by their progeny from tissue culture. Petals from each solid-color variant were analyzed by high-performance liquid chromatography and shown to contain different proportions of three main anthocyanin derivatives: malvidin, peonidin, and pelargonidin. Analysis of flavonoid 3', 5'-hydroxylase (F3'5'H) sequences showed no differences in the coding region among the variants and variegated individuals. However, a transposon belonging to the hAT superfamily was found in the promoter region of variegated individuals, and the presence of transposon-related insertions or deletions correlated with the observed flower-color phenotypes. Solid-blue flower mutants contained 8-base pair (bp) insertions (transposon excision footprints), while solid-pink mutants had 58- to 70-bp insertions, and purple- and deep-purple mutants had 21- and 24-bp deletions, respectively. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis showed that F3'5'H expression levels correlated with insertions and deletions (indels) caused by hAT excision, resulting in flower-color differences. Our results showed that tissue culture of Saintpaulia 'Thamires' elicits transposon excision, which in turn alters F3'5'H expression levels and flower colors.
Collapse
MESH Headings
- Anthocyanins/biosynthesis
- Base Sequence
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- DNA Transposable Elements
- DNA, Complementary/genetics
- Flowers/chemistry
- Flowers/enzymology
- Flowers/genetics
- Flowers/growth & development
- Gene Expression Regulation, Plant
- INDEL Mutation
- Magnoliopsida/chemistry
- Magnoliopsida/enzymology
- Magnoliopsida/genetics
- Magnoliopsida/growth & development
- Molecular Sequence Data
- Phenotype
- Phylogeny
- Pigments, Biological/biosynthesis
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Mitsuru Sato
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
33
|
Tissue culture-induced novel epialleles of a Myb transcription factor encoded by pericarp color1 in maize. Genetics 2010; 186:843-55. [PMID: 20823340 DOI: 10.1534/genetics.110.117929] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Plants regenerated from tissue culture often display somaclonal variation, that is, somatic and often meiotically heritable phenotypic variation that can result from both genetic and epigenetic modifications. To better understand the molecular basis of somaclonal variation, we have characterized four unique tissue culture-derived epialleles of the pericarp color1 (p1) gene of maize (Zea mays L.). The progenitor p1 allele, P1-wr, is composed of multiple head-to-tail tandemly arranged copies of the complete gene unit and specifies brick-red phlobaphene pigmentation in the cob glumes. The novel epialleles identified in progeny plants regenerated from tissue culture showed partial to complete loss of p1 function indicated by pink or colorless cob glumes. Loss of pigmentation was correlated with nearly complete loss of p1 steady-state transcripts. DNA gel-blot analysis and genomic bisulfite sequencing showed that silencing of the epialleles was associated with hypermethylation of a region in the second intron of P1-wr. Presence of Unstable factor for orange1 (Ufo1), an unlinked epigenetic modifier of p1, restored the cob glume pigmentation in the silenced alleles, and such reactivation was accompanied by hypomethylation of the p1 sequence. This observation confirmed that silencing of the epialleles is indeed due to epigenetic modifications and that the p1 epialleles were capable of functioning in the presence of the correct trans-acting factors. While the low-copy regions of the genome generally undergo hypomethylation during tissue culture, our study shows that the tandemly repeated genes are also prone to hypermethylation and epigenetic silencing.
Collapse
|
34
|
Abstract
Miniature inverted-repeat transposable elements (MITEs) are dispersed in large numbers within the genomes of eukaryotes although almost all are thought to be inactive. Plants have two major groups of such MITEs: Tourist and Stowaway. Mobile MITEs have been reported previously in rice but no active MITEs have been found in dicotyledons. Here, we provide evidence that Stowaway MITEs can be mobilized in the potato and that one of them causes a change of tuber skin color as an obvious phenotypic variation. In an original red-skinned potato clone, the gene encoding for a flavonoid 3',5'-hydroxylase, which is involved in purple anthocyanin synthesis, has been inactivated by the insertion of a Stowaway MITE named dTstu1 within the first exon. However, dTstu1 is absent from this gene in a purple somaclonal variant that was obtained as a regenerated plant from a protoplast culture of the red-skinned potato. The color change was attributed to reversion of flavonoid 3',5'-hydroxylase function by removal of dTstu1 from the gene. In this purple variant another specific transposition event has occurred involving a MITE closely related to dTstu1. Instead of being fossil elements, Stowaway MITEs, therefore, still have the ability to become active under particular conditions as represented by tissue culturing.
Collapse
|
35
|
Elkonin LA, Gerashchenkov GA, Tsvetova MI, Rozhnova NA. Genetic variation in a sorghum line with multiple genetic instability induced with ethidium bromide in an in vitro culture. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410070057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Jiang SY, Ramachandran S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. Int J Biol Sci 2010; 6:228-51. [PMID: 20440406 PMCID: PMC2862397 DOI: 10.7150/ijbs.6.228] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/20/2010] [Indexed: 12/31/2022] Open
Abstract
With the completion of rice genome sequencing, large collection of expression data and the great efforts in annotating rice genomes, the next challenge is to systematically assign functions to all predicted genes in the genome. The generations and collections of mutants at the genome-wide level form technological platform of functional genomics. In this study, we have reviewed currently employed tools to generate such mutant populations. These tools include natural, physical, chemical, tissue culture, T-DNA, transposon or gene silencing based mutagenesis. We also reviewed how these tools were used to generate a large collection of mutants and how these mutants can be screened and detected for functional analysis of a gene. The data suggested that the current population of mutants might be large enough to tag all predicted genes. However, the collection of flanking sequencing tags (FSTs) is limited due to the relatively higher cost. Thus, we have proposed a new strategy to generate gene-silencing mutants at the genome-wide level. Due to the large collection of insertion mutants, the next step to rice functional genomics should be focusing on functional characterization of tagged genes by detailed survey of corresponding mutants. Additionally, we also evaluated the utilization of these mutants as valuable resources for molecular breeding.
Collapse
Affiliation(s)
| | - Srinivasan Ramachandran
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604
| |
Collapse
|
37
|
Grafi G. The complexity of cellular dedifferentiation: implications for regenerative medicine. Trends Biotechnol 2009; 27:329-32. [DOI: 10.1016/j.tibtech.2009.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 12/15/2022]
|
38
|
Abstract
SummaryWe have searched for evidence of historical transpositions ofAc-like sequences in four standard maize lines using the recombinant-inbred mapping technique. Thirty restriction fragments were mapped usingEcoR I,EcoR V, andHindIII. The four inbreds contained 24 fragments which mapped to independent sites within each line; the other 6 fragments probably represented multiple mappings of the same element. Possible allelism between lines reduced this number to a minimum of 15 different sites containingAc-like elements. The distribution of these sequences does not fit the expected Poisson distribution; instead, an unusually large number of these elements were found on chromosome 4. The other sequences were scattered randomly throughout the genome. With few exceptions, each line had sequences in different locations; however, the overall distribution ofAc-like sequences was similar for all lines. The non-random distribution ofAc-like sequences suggests that they have undergone a limited number of transpositions in maize; the distribution is incompatible with either complete immobility or frequent transposition.
Collapse
|
39
|
Tanurdzic M, Vaughn MW, Jiang H, Lee TJ, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 2009; 6:2880-95. [PMID: 19071958 PMCID: PMC2596858 DOI: 10.1371/journal.pbio.0060302] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022] Open
Abstract
Plant cells grown in culture exhibit genetic and epigenetic instability. Using a combination of chromatin immunoprecipitation and DNA methylation profiling on tiling microarrays, we have mapped the location and abundance of histone and DNA modifications in a continuously proliferating, dedifferentiated cell suspension culture of Arabidopsis. We have found that euchromatin becomes hypermethylated in culture and that a small percentage of the hypermethylated genes become associated with heterochromatic marks. In contrast, the heterochromatin undergoes dramatic and very precise DNA hypomethylation with transcriptional activation of specific transposable elements (TEs) in culture. High throughput sequencing of small interfering RNA (siRNA) revealed that TEs activated in culture have increased levels of 21-nucleotide (nt) siRNA, sometimes at the expense of the 24-nt siRNA class. In contrast, TEs that remain silent, which match the predominant 24-nt siRNA class, do not change significantly in their siRNA profiles. These results implicate RNA interference and chromatin modification in epigenetic restructuring of the genome following the activation of TEs in immortalized cell culture.
Collapse
Affiliation(s)
- Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Messing J. Synergy of two reference genomes for the grass family. PLANT PHYSIOLOGY 2009; 149:117-24. [PMID: 19126702 PMCID: PMC2613724 DOI: 10.1104/pp.108.128520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/10/2008] [Indexed: 05/19/2023]
Affiliation(s)
- Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854-8020, USA.
| |
Collapse
|
41
|
Guo WL, Gong L, Ding ZF, Li YD, Li FX, Zhao SP, Liu B. Genomic instability in phenotypically normal regenerants of medicinal plant Codonopsis lanceolata Benth. et Hook. f., as revealed by ISSR and RAPD markers. PLANT CELL REPORTS 2006; 25:896-906. [PMID: 16575572 DOI: 10.1007/s00299-006-0131-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/16/2006] [Accepted: 01/22/2006] [Indexed: 05/08/2023]
Abstract
Codonopsis lanceolata Benth. et Hook. f., commonly known as bonnet bellflower, is a high-valued herb medicine and vegetable. In this study, a large number of plants were regenerated via organogenesis from immature seed-derived calli in C. lanceolata by a simple and efficient method. Compared with the mother donor plant, the regenerated plants did not exhibit visible phenotypic variations in six major morphological traits examined at the stage of one-season-maturity under field conditions. To gain insight into the genomic stability of these regenerated plants, 63 individuals were randomly tagged among a population of more than 2,000 regenerants, and were compared with the single mother donor plant by two molecular markers, the inter-simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD). Apparent genomic variation was detected in the 63 regenerants, whereas preexisting heterozygosiy in the donor plant was deemed minimal by testing 30 seedlings germinated from selfed seeds of the same donor plant. The percentages of polymorphic bands (PPB) in the ISSR and RAPD analysis were respectively 15.7 and 24.9% for the 63 regenerated plants. Cluster analysis indicates that the genetic similarity values calculated on the basis of RAPD and ISSR data among the 64 plants (63 regenerated and one donor) were respectively 0.894 and 0.933, which allow classification of the plants into distinct groups. Nineteen randomly isolated bands underlying the changed RAPD or ISSR patterns were sequenced, and three of them showed significant homology to known-function genes. Detailed pairwise sequence comparison at one locus between the donor plant and a regenerant revealed that insertion of two short (24 and 19 bp) stretches of nucleotides in the regenerated plant relative to the donor plant occurred in an apparently stochastic manner.
Collapse
Affiliation(s)
- W L Guo
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Swigonová Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J. Close split of sorghum and maize genome progenitors. Genome Res 2004; 14:1916-23. [PMID: 15466289 PMCID: PMC524415 DOI: 10.1101/gr.2332504] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Accepted: 04/06/2004] [Indexed: 02/04/2023]
Abstract
It is generally believed that maize (Zea mays L. ssp. mays) arose as a tetraploid; however, the two progenitor genomes cannot be unequivocally traced within the genome of modern maize. We have taken a new approach to investigate the origin of the maize genome. We isolated and sequenced large genomic fragments from the regions surrounding five duplicated loci from the maize genome and their orthologous loci in sorghum, and then we compared these sequences with the orthologous regions in the rice genome. Within the studied segments, we identified 11 genes that were conserved in location, order, and orientation. We performed phylogenetic and distance analyses and examined the patterns of estimated times of divergence for sorghum and maize gene orthologs and also the time of divergence for maize orthologs. Our results support a tetraploid origin of maize. This analysis also indicates contemporaneous divergence of the ancestral sorghum genome and the two maize progenitor genomes about 11.9 million years ago (Mya). On the basis of a putative conversion event detected for one of the genes, tetraploidization must have occurred before 4.8 Mya, and therefore, preceded the major maize genome expansion by gene amplification and retrotransposition.
Collapse
Affiliation(s)
- Zuzana Swigonová
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim CM, Piao HL, Park SJ, Chon NS, Je BI, Sun B, Park SH, Park JY, Lee EJ, Kim MJ, Chung WS, Lee KH, Lee YS, Lee JJ, Won YJ, Yi G, Nam MH, Cha YS, Yun DW, Eun MY, Han CD. Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:252-63. [PMID: 15225289 DOI: 10.1111/j.1365-313x.2004.02116.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rapid, large-scale generation of a Ds transposant population was achieved using a regeneration procedure involving tissue culture of seed-derived calli carrying Ac and inactive Ds elements. In the F(2) progeny from genetic crosses between the same Ds and Ac starter lines, most of the crosses produced an independent germinal transposition frequency of 10-20%. Also, many Ds elements underwent immobilization even though Ac was expressed. By comparison, in a callus-derived regenerated population, over 70% of plants carried independent Ds insertions, indicating transposition early in callus formation. In the remaining population, the majority of plants carried only Ac. Most of the new Ds insertions were stably transmitted to a subsequent generation. An exceptionally high proportion of independent transposants in the regenerated population means that selection markers for transposed Ds and continual monitoring of Ac/Ds activities may not necessarily be required. By analyzing 1297 Ds-flanking DNA sequences, a genetic map of 1072 Ds insertion sites was developed. The map showed that Ds elements were transposed onto all of the rice chromosomes, with preference not only near donor sites (36%) but also on certain physically unlinked arms. Populations from both genetic crossing and tissue culture showed the same distribution patterns of Ds insertion sites. The information of these mapped Ds insertion sites was deposited in GenBank. Among them, 55% of Ds elements were on predicted open-reading frame (ORF) regions. Thus, we propose an optimal strategy for the rapid generation of a large population of Ds transposants in rice.
Collapse
Affiliation(s)
- Chul Min Kim
- Division of Applied Life Science, BK21 Program, Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Greco R, Ouwerkerk PBF, De Kam RJ, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer AH, Hoge Dagger JHC, Pereira A. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 108:10-24. [PMID: 14513217 DOI: 10.1007/s00122-003-1416-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 05/31/2003] [Indexed: 05/21/2023]
Abstract
A collection of transposon Ac/ Ds enhancer trap lines is being developed in rice that will contribute to the development of a rice mutation machine for the functional analysis of rice genes. Molecular analyses revealed high transpositional activity in early generations, with 62% of the T0 primary transformants and more than 90% of their T1 progeny lines showing ongoing active transposition. About 10% of the lines displayed amplification of the Ds copy number. However, inactivation of Ds seemed to occur in about 70% of the T2 families and in the T3 generation. Southern blot analyses revealed a high frequency of germinal insertions inherited in the T1 progeny plants, and transmitted preferentially over the many other somatic inserts to later generations. The sequencing of Ds flanking sites in subsets of T1 plants indicated the independence of insertions in different T1 families originating from the same T0 line. Almost 80% of the insertion sites isolated showing homology to the sequenced genome, resided in genes or within a range at which neighbouring genes could be revealed by enhancer trapping. A strategy involving the propagation of a large number of T0 and T1 independent lines is being pursued to ensure the recovery of a maximum number of independent insertions in later generations. The inactive T2 and T3 lines produced will then provide a collection of stable insertions to be used in reverse genetics experiments. The preferential insertion of Ds in gene-rich regions and the use of lines containing multiple Ds transposons will enable the production of a large population of inserts in a smaller number of plants. Additional features provided by the presence of lox sites for site-specific recombination, or the use of different transposase sources and selectable markers, are discussed.
Collapse
Affiliation(s)
- R Greco
- Plant Research International, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Itoh Y, Hasebe M, Davies E, Takeda J, Ozeki Y. Survival of Tdc transposable elements of the En/Spm superfamily in the carrot genome. Mol Genet Genomics 2003; 269:49-59. [PMID: 12715153 DOI: 10.1007/s00438-002-0798-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2002] [Accepted: 12/03/2002] [Indexed: 10/25/2022]
Abstract
Three subfamilies of the En/Spm-type transposable element of carrot, Tdc A, B, and C, were characterized. It was supposed that the Tdc A subfamily may include autonomous elements which can produce transposases. Tdc B elements are defective, but still generate transcripts containing mutant open reading frame (ORF) sequences for transposases. The single member of the Tdc C group recovered seems to be a pseudogene. The sequences of the transposase ORFs of Tdc A and Tdc B elements are more highly conserved than those of the 5; and 3; untranslated regions and introns, as is found in other structural genes that are subject to selection. These observations indicate that the mutations in the nucleotide sequences of the Tdc elements occurred in the host genome. However, the mutations in the 5; and 3; untranslated regions and introns, which may not be sufficient to prevent transposition, accumulated in autonomous elements, which could transpose and produce copies. When the reproduction rate and the rate of disabling mutations reached an equilibrium, that is, when the birth rate of the transposable elements in the genome equalled the death rate, the population of elements achieved a stationary state in the genome, and could thus survive.
Collapse
Affiliation(s)
- Y Itoh
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, 184-8588 Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Song R, Llaca V, Linton E, Messing J. Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family. Genome Res 2001; 11:1817-25. [PMID: 11691845 PMCID: PMC311139 DOI: 10.1101/gr.197301] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2001] [Accepted: 08/07/2001] [Indexed: 12/20/2022]
Abstract
We have isolated and sequenced all 23 members of the 22-kD alpha zein (z1C) gene family of maize. This is one of the largest plant gene families that has been sequenced from a single genetic background and includes the largest contiguous genomic DNA from maize with 346,292 bp to date. Twenty-two of the z1C members are found in a roughly tandem array on chromosome 4S forming a dense gene cluster 168,489-bp long. The twenty-third copy of the gene family is also located on chromosome 4S at a site approximately 20 cM closer to the centromere and appears to be the wild-type allele of the floury-2 (fl2) mutation. On the basis of an analysis of maize cDNA databases, only seven of these genes appear to be expressed including the fl2 allele. The expressed genes in the cluster are interspersed with nonexpressed genes. Interestingly, some of the expressed genes differ in their transcriptional regulation. Gene amplification appears to be in blocks of genes explaining the rapid and compact expansion of the cluster during the evolution of maize.
Collapse
Affiliation(s)
- R Song
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
47
|
Mizuhiro M, Kenichi Y, Ito K, Kadowaki S, Ohashi H, Mii M. Plant regeneration from cell suspension-derived protoplasts of Primula malacoides and Primula obconica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:1221-1228. [PMID: 11337079 DOI: 10.1016/s0168-9452(01)00390-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protoplasts were isolated from cell suspension cultures of Primula malacoides cv. 'Lovely Tokyo' and P. obconica cv. 'Aalsmeer Giant White'. P. obconica protoplasts were embedded in 0.1% (w/v) gellan gum-solidified discs comprising MS medium supplemented with 3 mg/l of 2,4-D or picloram, 0.1 mg/l of zeatin, 0.2 M glucose and 0.2 M mannitol, and surrounded by a liquid medium of the same composition except for the addition of 0.1% (w/v) activated charcoal. The protoplasts formed visible colonies, which were transferred to the regeneration medium containing 30 g/l of sucrose, 0.1 mg/l of picloram and 2 mg/l of zeatin for shoot induction. P. malacoides protoplasts formed visible colonies when cultured in disc culture using 0.1% (w/v) gellan gum-solidified MS medium containing 5 mg/l of 2,4-D, 1 mg/l of NAA, 0.1 mg/l of zeatin and 0.4 M glucose. Small calli were transferred to MS medium supplemented with 5 mg/l of zeatin for shoot regeneration. The shoots of both species readily rooted on plant growth regulator-free 1/2 MS medium and successfully acclimatized to greenhouse conditions. The protoplast-derived plants showed some alterations in morphological characteristics from those of the in-vitro-germinated control plants.
Collapse
Affiliation(s)
- M Mizuhiro
- Plant Cell Technology Laboratory, Faculty of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Matsudo-City, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Molecular genetics teaches three lessons relevant to the nature of genetic change during evolution: (1) Genomes are organized as hierarchies of composite systems (multidomain protein-coding sequences; functional loci made up of regulatory, coding, processing, and intervening sequences; and multilocus regulons and replicons) interconnected and organized into specific "system architectures" by repetitive DNA elements. (2) Genetic change often occurs via natural genetic engineering systems (cellular biochemical functions, such as recombination complexes, topoisomerases, and mobile elements, capable of altering DNA sequence information and joining together different genomic components). (3) The activity of natural genetic systems is regulated by cellular control circuits with respect to the timing, activity levels, and specificities of DNA rearrangements (e.g., adaptive mutation, Ty element mobility, and P factor insertions). These three lessons provide plausible molecular explanations for the episodic, multiple, nonrandom DNA rearrangements needed to account for the evolution of novel genomic system architectures and complex multilocus adaptations. This molecular genetic perspective places evolutionary change in the biologically responsive context of cellular biochemistry.
Collapse
Affiliation(s)
- J A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA.
| |
Collapse
|
49
|
Gupta PK. Chromosomal Basis of Somaclonal Variation in Plants. SOMACLONAL VARIATION AND INDUCED MUTATIONS IN CROP IMPROVEMENT 1998. [DOI: 10.1007/978-94-015-9125-6_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Brar DS, Jain SM. Somaclonal Variation: Mechanism and Applications in Crop Improvement. SOMACLONAL VARIATION AND INDUCED MUTATIONS IN CROP IMPROVEMENT 1998. [DOI: 10.1007/978-94-015-9125-6_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|