1
|
He S, Haikerwal A, Tiwari S, Dabbagh D, Alam MZ, Yoon JL, Hetrick B, Han Y, Shan L, Lockhart C, Wu Y. CD34 serves as an intrinsic innate immune guardrail protecting stem cells from replicating retroviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643450. [PMID: 40166202 PMCID: PMC11956995 DOI: 10.1101/2025.03.15.643450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stem cells are highly resistant to viral infection compared to their differentiated progeny, and this resistance is associated with stem cell-specific restriction factors and intrinsic interferon stimulated genes (ISGs). In HIV infection, proviral DNA has been detected in certain bone marrow hematopoietic stem cells, yet widespread stem cell infection in vivo is restricted. Intriguingly, exposing bone marrow stem cells to HIV in vitro led to viral replication selectively only in the CD34- population, but not in the CD34+ cells. The mechanism dictating this CD34-based HIV restriction remained a mystery, especially since HIV has a capacity to antagonize restriction factors and ISGs. CD34 is a common marker of hematopoietic stem and progenitor cells. Here, we report the intrinsic antiviral properties of CD34. Expression of CD34 in HIV-1 producer cells results in the loss of progeny virion infectivity. Conversely, removal of CD34 using CRISPR/Cas9 knockout or stem cell differentiation cytokines promotes HIV-1 replication in stem cells. These results suggest that in addition to restriction factors and intrinsic ISGs, CD34 serves as a host innate protection preventing retrovirus replication in stem cells. Mechanistically, CD34 does not block viral entry, integration, and release. Instead, it becomes incorporated onto progeny virions, which inactivates virus infectivity. These findings offer new insights into innate immunity in stem cells, and highlight intriguing retrovirus-host interactions in evolution.
Collapse
Affiliation(s)
- Sijia He
- Center for Infectious Disease Research, School of Systems Biology, George Mason University; Manassas, VA 20110, USA
| | - Amrita Haikerwal
- Center for Infectious Disease Research, School of Systems Biology, George Mason University; Manassas, VA 20110, USA
| | - Sameer Tiwari
- Center for Infectious Disease Research, School of Systems Biology, George Mason University; Manassas, VA 20110, USA
| | - Deemah Dabbagh
- Center for Infectious Disease Research, School of Systems Biology, George Mason University; Manassas, VA 20110, USA
- College of Applied Medical Sciences, Department of Clinical Laboratory Sciences, King Saud University; Riyadh, Saudi Arabia
| | - Mohammed Z. Alam
- Center for Infectious Disease Research, School of Systems Biology, George Mason University; Manassas, VA 20110, USA
| | - Janice L. Yoon
- Center for Infectious Disease Research, School of Systems Biology, George Mason University; Manassas, VA 20110, USA
| | - Brian Hetrick
- Center for Infectious Disease Research, School of Systems Biology, George Mason University; Manassas, VA 20110, USA
| | - Yang Han
- Center for Infectious Disease Research, School of Systems Biology, George Mason University; Manassas, VA 20110, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | - Yuntao Wu
- Center for Infectious Disease Research, School of Systems Biology, George Mason University; Manassas, VA 20110, USA
| |
Collapse
|
2
|
Buck AM, LaFranchi BH, Henrich TJ. Gaining momentum: stem cell therapies for HIV cure. Curr Opin HIV AIDS 2024; 19:194-200. [PMID: 38686850 PMCID: PMC11155292 DOI: 10.1097/coh.0000000000000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW Durable HIV-1 remission has been reported in a person who received allogeneic stem cell transplants (SCTs) involving CCR5 Δ32/Δ32 donor cells. Much of the reduction in HIV-1 burden following allogeneic SCT with or without donor cells inherently resistant to HIV-1 infection is likely due to cytotoxic graft-versus-host effects on residual recipient immune cells. Nonetheless, there has been growing momentum to develop and implement stem cell therapies that lead to durable long-term antiretroviral therapy (ART)-free remission without the need for SCT. RECENT FINDINGS Most current research leverages gene editing techniques to modify hematopoietic stem cells which differentiate into immune cells capable of harboring HIV-1. Approaches include targeting genes that encode HIV-1 co-receptors using Zinc Finger Nucleases (ZFN) or CRISPR-Cas-9 to render a pool of adult or progenitor cells resistant to de-novo infection. Other strategies involve harnessing multipotent mesenchymal stromal cells to foster immune environments that can more efficiently recognize and target HIV-1 while promoting tissue homeostasis. SUMMARY Many of these strategies are currently in a state of infancy or adolescence; nonetheless, promising preclinical and first-in-human studies have been performed, providing further rationale to focus resources on stem cell therapies.
Collapse
Affiliation(s)
- Amanda M Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
3
|
Sun Y, Lu Y, Xing R, Zhang Y, Zhang L. CD4 expression on monocytes correlates with recovery from multiple organ dysfunction syndrome and mortality in patients with septic shock. Front Med (Lausanne) 2024; 11:1328719. [PMID: 38799147 PMCID: PMC11116609 DOI: 10.3389/fmed.2024.1328719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Background To date, the correlation between CD4 on the monocytes (mCD4) expression and the prognosis of patients with septic shock remains unclear. The purpose of this study was to analyze the expression of mCD4 in these patients and further evaluate whether mCD4 expression correlates with either the recovery from multiple organ dysfunction syndrome (MODS) or mortality. Methods The study participants were recruited from a tertiary general hospital in China (Affiliated Dongyang Hospital of Wenzhou Medical University). Sepsis and septic shock were diagnosed based on the diagnostic criteria of Sepsis-3. MODS was defined as a Sequential Organ Failure Assessment score of at least two organ systems ≥2. Persistent MODS was defined as the continual meeting of the MODS criteria when re-evaluated one week after admission (day 7). A logistic regression model was used to test whether mCD4 was an independent prognostic factor for mortality in patients with septic shock. A paired sample rank sum test was used to examine the correlation between mCD4 expression and MODS recovery. Result The study recruited 79 patients with septic shock as the study group, 74 patients with sepsis as the disease control group, and 56 volunteers as healthy controls. In the first 24 h after admission (day 1), mCD4 expression was significantly reduced in patients with septic shock compared to healthy controls and patients with sepsis. Moreover, mCD4 expression was an independent prognostic factor for in-hospital and 28 day mortality in patients with septic shock. mCD4 expression did not show significant differences in patients with persistent MODS on day 7 compared to day 1. However, mCD4 expression was significantly higher in patients without persistent MODS on day 7 than on day 1. Conclusion mCD4 expression is significantly reduced in patients with septic shock, which is an independent prognostic factor for mortality and closely related to recovery from MODS.
Collapse
Affiliation(s)
- Yingqian Sun
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yan Lu
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Zhejiang, China
| | - Rui Xing
- The Department of Hematology, Affiliated Dongyang Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yongjun Zhang
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Zhejiang, China
| | - Longyi Zhang
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
4
|
Liu Z, Julius P, Kang G, West JT, Wood C. Subtype C HIV-1 reservoirs throughout the body in ART-suppressed individuals. JCI Insight 2022; 7:162604. [PMID: 36278485 PMCID: PMC9714794 DOI: 10.1172/jci.insight.162604] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/31/2022] [Indexed: 01/13/2023] Open
Abstract
Subtype B HIV-1 reservoirs have been intensively investigated, but reservoirs in other subtypes and how they respond to antiretroviral therapy (ART) is substantially less established. To characterize subtype C HIV-1 reservoirs, we implemented postmortem frozen, as well as formalin fixed paraffin embedded (FFPE) tissue sampling of central nervous system (CNS) and peripheral tissues. HIV-1 LTR, gag, envelope (env) DNA and RNA was quantified using genomic DNA and RNA extracted from frozen tissues. RNAscope was used to localize subtype C HIV-1 DNA and RNA in FFPE tissue. Despite uniform viral load suppression in our cohort, PCR results showed that subtype C HIV-1 proviral copies vary both in magnitude and tissue distribution, with detection primarily in secondary lymphoid tissues. Interestingly, the appendix harbored proviruses in all subjects. Unlike subtype B, subtype C provirus was rarely detectable in the CNS, and there was no detectable HIV-1 RNA. HIV-1 RNA was detected in peripheral lymphoid tissues of 6 out of 8 ART-suppressed cases. In addition to active HIV-1 expression in lymphoid tissues, RNAscope revealed HIV RNA detection in CD4-expressing cells in the appendix, suggesting that this tissue was a previously unreported potential treatment-resistant reservoir for subtype C HIV-1.
Collapse
Affiliation(s)
- Zhou Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - Peter Julius
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Guobin Kang
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - Charles Wood
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Corley MJ, Sacdalan C, Pang APS, Chomchey N, Ratnaratorn N, Valcour V, Kroon E, Cho KS, Belden AC, Colby D, Robb M, Hsu D, Spudich S, Paul R, Vasan S, Ndhlovu LC, the SEARCH010/RV254 and SEARCH013/RV304 study groups. Abrupt and altered cell-type specific DNA methylation profiles in blood during acute HIV infection persists despite prompt initiation of ART. PLoS Pathog 2021; 17:e1009785. [PMID: 34388205 PMCID: PMC8386872 DOI: 10.1371/journal.ppat.1009785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/25/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
HIV-1 disrupts the host epigenetic landscape with consequences for disease pathogenesis, viral persistence, and HIV-associated comorbidities. Here, we examined how soon after infection HIV-associated epigenetic changes may occur in blood and whether early initiation of antiretroviral therapy (ART) impacts epigenetic modifications. We profiled longitudinal genome-wide DNA methylation in monocytes and CD4+ T lymphocytes from 22 participants in the RV254/SEARCH010 acute HIV infection (AHI) cohort that diagnoses infection within weeks after estimated exposure and immediately initiates ART. We identified monocytes harbored 22,697 differentially methylated CpGs associated with AHI compared to 294 in CD4+ T lymphocytes. ART minimally restored less than 1% of these changes in monocytes and had no effect upon T cells. Monocyte DNA methylation patterns associated with viral load, CD4 count, CD4/CD8 ratio, and longitudinal clinical phenotypes. Our findings suggest HIV-1 rapidly embeds an epigenetic memory not mitigated by ART and support determining epigenetic signatures in precision HIV medicine. Trial Registration:NCT00782808 and NCT00796146. The epigenetic marker, DNA methylation, plays a key role regulating the immune system during host-pathogen interactions. Using cell-type specific DNA methylation profiling, we explored whether epigenetic changes occurred soon after HIV infection and following early treatment with anti-HIV drugs. Acute infection was associated with early DNA methylation changes in purified monocytes and CD4+ T cells isolated from blood. In monocytes, rapid anti-HIV treatment minimally restored DNA methylation changes associated with infection and unexpectedly had no impact in CD4+ T cells. DNA methylation patterns before treatment informed long term clinical outcomes including CD4+ T cell counts and favorable clinical phenotypes. These findings identify candidates for consideration in epigenome editing approaches in HIV prevention, treatment, and cure strategies.
Collapse
Affiliation(s)
- Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine; New York, New York, United States of America
| | - Carlo Sacdalan
- Institute of HIV Research and Innovation; Bangkok, Thailand
- SEARCH, South East Asia Research Collaboration in HIV; Bangkok, Thailand
| | - Alina P. S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine; New York, New York, United States of America
| | - Nitiya Chomchey
- Institute of HIV Research and Innovation; Bangkok, Thailand
- SEARCH, South East Asia Research Collaboration in HIV; Bangkok, Thailand
| | | | - Victor Valcour
- Memory and Aging Center, University of California San Francisco; San Francisco, California, United States of America
| | - Eugene Kroon
- Institute of HIV Research and Innovation; Bangkok, Thailand
- SEARCH, South East Asia Research Collaboration in HIV; Bangkok, Thailand
| | - Kyu S. Cho
- Missouri Institute of Mental Health University of Missouri; St. Louis, Missouri, United States of America
| | - Andrew C. Belden
- Missouri Institute of Mental Health University of Missouri; St. Louis, Missouri, United States of America
| | - Donn Colby
- Institute of HIV Research and Innovation; Bangkok, Thailand
- SEARCH, South East Asia Research Collaboration in HIV; Bangkok, Thailand
| | - Merlin Robb
- Armed Forces Research Institute of Medical Sciences; Bangkok, Thailand
- Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, Maryland, United States of America
| | - Denise Hsu
- Armed Forces Research Institute of Medical Sciences; Bangkok, Thailand
- Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, Maryland, United States of America
| | - Serena Spudich
- Department of Neurology, Yale University; New Haven, Connecticut, United States of America
| | - Robert Paul
- Missouri Institute of Mental Health University of Missouri; St. Louis, Missouri, United States of America
| | - Sandhya Vasan
- Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, Maryland, United States of America
- US Military HIV Research Program; Silver Spring, Maryland, United States of America
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine; New York, New York, United States of America
- * E-mail:
| | | |
Collapse
|
6
|
Yuan NY, Kaul M. Beneficial and Adverse Effects of cART Affect Neurocognitive Function in HIV-1 Infection: Balancing Viral Suppression against Neuronal Stress and Injury. J Neuroimmune Pharmacol 2021; 16:90-112. [PMID: 31385157 PMCID: PMC7233291 DOI: 10.1007/s11481-019-09868-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) persist despite the successful introduction of combination antiretroviral therapy (cART). While insufficient concentration of certain antiretrovirals (ARV) may lead to incomplete viral suppression in the brain, many ARVs are found to cause neuropsychiatric adverse effects, indicating their penetration into the central nervous system (CNS). Several lines of evidence suggest shared critical roles of oxidative and endoplasmic reticulum stress, compromised neuronal energy homeostasis, and autophagy in the promotion of neuronal dysfunction associated with both HIV-1 infection and long-term cART or ARV use. As the lifespans of HIV patients are increased, unique challenges have surfaced. Longer lives convey prolonged exposure of the CNS to viral toxins, neurotoxic ARVs, polypharmacy with prescribed or illicit drug use, and age-related diseases. All of these factors can contribute to increased risks for the development of neuropsychiatric conditions and cognitive impairment, which can significantly impact patient well-being, cART adherence, and overall health outcome. Strategies to increase the penetration of cART into the brain to lower viral toxicity may detrimentally increase ARV neurotoxicity and neuropsychiatric adverse effects. As clinicians attempt to control peripheral viremia in an aging population of HIV-infected patients, they must navigate an increasingly complex myriad of comorbidities, pharmacogenetics, drug-drug interactions, and psychiatric and cognitive dysfunction. Here we review in comparison to the neuropathological effects of HIV-1 the available information on neuropsychiatric adverse effects and neurotoxicity of clinically used ARV and cART. It appears altogether that future cART aiming at controlling HIV-1 in the CNS and preventing HAND will require an intricate balancing act of suppressing viral replication while minimizing neurotoxicity, impairment of neurocognition, and neuropsychiatric adverse effects. Graphical abstract Schematic summary of the effects exerted on the brain and neurocognitive function by HIV-1 infection, comorbidities, psychostimulatory, illicit drugs, therapeutic drugs, such as antiretrovirals, the resulting polypharmacy and aging, as well as the potential interactions of all these factors.
Collapse
Affiliation(s)
- Nina Y Yuan
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Veenhuis RT, Abreu CM, Shirk EN, Gama L, Clements JE. HIV replication and latency in monocytes and macrophages. Semin Immunol 2021; 51:101472. [PMID: 33648815 PMCID: PMC10171083 DOI: 10.1016/j.smim.2021.101472] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The relevance of monocyte and macrophage reservoirs in virally suppressed people with HIV (vsPWH) has previously been debatable. Macrophages were assumed to have a moderate life span and lack self-renewing potential. However, recent studies have challenged this dogma and now suggest an important role of these cell as long-lived HIV reservoirs. Lentiviruses have a long-documented association with macrophages and abundant evidence exists that macrophages are important target cells for HIV in vivo. A critical understanding of HIV infection, replication, and latency in macrophages is needed in order to determine the appropriate method of measuring and eliminating this cellular reservoir. This review provides a brief discussion of the biology and acute and chronic infection of monocytes and macrophages, with a more substantial focus on replication, latency and measurement of the reservoir in cells of myeloid origin.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Celina M Abreu
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erin N Shirk
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Janice E Clements
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
8
|
Ladinsky MS, Khamaikawin W, Jung Y, Lin S, Lam J, An DS, Bjorkman PJ, Kieffer C. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. eLife 2019; 8:46916. [PMID: 31657719 PMCID: PMC6839903 DOI: 10.7554/elife.46916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Immune progenitor cells differentiate in bone marrow (BM) and then migrate to tissues. HIV-1 infects multiple BM cell types, but virus dissemination within BM has been poorly understood. We used light microscopy and electron tomography to elucidate mechanisms of HIV-1 dissemination within BM of HIV-1–infected BM/liver/thymus (BLT) mice. Tissue clearing combined with confocal and light sheet fluorescence microscopy revealed distinct populations of HIV-1 p24-producing cells in BM early after infection, and quantification of these populations identified macrophages as the principal subset of virus-producing cells in BM over time. Electron tomography demonstrated three modes of HIV-1 dissemination in BM: (i) semi-synchronous budding from T-cell and macrophage membranes, (ii) mature virus association with virus-producing T-cell uropods contacting putative target cells, and (iii) macrophages engulfing HIV-1–producing T-cells and producing virus within enclosed intracellular compartments that fused to invaginations with access to the extracellular space. These results illustrate mechanisms by which the specialized environment of the BM can promote virus spread locally and to distant lymphoid tissues.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Wannisa Khamaikawin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yujin Jung
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Samantha Lin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Jennifer Lam
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Dong Sung An
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Collin Kieffer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
9
|
Wong ME, Jaworowski A, Hearps AC. The HIV Reservoir in Monocytes and Macrophages. Front Immunol 2019; 10:1435. [PMID: 31297114 PMCID: PMC6607932 DOI: 10.3389/fimmu.2019.01435] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
In people living with HIV (PLWH) who are failing or unable to access combination antiretroviral therapy (cART), monocytes and macrophages are important drivers of pathogenesis and progression to AIDS. The relevance of the monocyte/macrophage reservoir in PLWH receiving cART is debatable as in vivo evidence for infected cells is limited and suggests the reservoir is small. Macrophages were assumed to have a moderate life span and lack self-renewing potential, but recent discoveries challenge this dogma and suggest a potentially important role of these cells as long-lived HIV reservoirs. This, combined with new HIV infection animal models, has led to a resurgence of interest in monocyte/macrophage reservoirs. Infection of non-human primates with myeloid-tropic SIV implicates monocyte/macrophage activation and infection in the brain with neurocognitive disorders, and infection of myeloid-only humanized mouse models are consistent with the potential of the monocyte/macrophage reservoir to sustain infection and be a source of rebound viremia following cART cessation. An increased resistance to HIV-induced cytopathic effects and a reduced susceptibility to some antiretroviral drugs implies macrophages may be relevant to residual replication under cART and to rebound viremia. With a reappraisal of monocyte circulation dynamics, and the development of techniques to differentiate between self-renewing tissue-resident, and monocyte-derived macrophages in different tissues, a new framework exists to contextualize and evaluate the significance and relevance of the monocyte/macrophage HIV reservoir. In this review, we discuss recent developments in monocyte and macrophage biology and appraise current and emerging techniques to quantify the reservoir. We discuss how this knowledge influences our evaluation of the myeloid HIV reservoir, the implications for HIV pathogenesis in both viremic and virologically-suppressed PLWH and the need to address the myeloid reservoir in future treatment and cure strategies.
Collapse
Affiliation(s)
- Michelle E Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- Chronic Inflammatory and Infectious Diseases Program, School of Health and Biomedical Sciences, Bundoora, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Gong Z, Shang B, Chu Y, Chen X, Li Q, Liu K, Chen Y, Huang Y, Han Y, Shang Q, Zheng Z, Song L, Li Y, Liu R, Xu C, Zhang X, Liu B, Wang L, Shao C, Wang Y, Shi Y. Fibrotic liver microenvironment promotes Dll4 and SDF-1-dependent T-cell lineage development. Cell Death Dis 2019; 10:440. [PMID: 31165736 PMCID: PMC6549170 DOI: 10.1038/s41419-019-1630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
The reconstitution of the T-cell repertoire and quantity is a major challenge in the clinical management of HIV infection/AIDS, cancer, and aging-associated diseases. We previously showed that autologous bone marrow transfusion (BMT) via the hepatic portal vein could effectively restore CD4+ T-cell count in AIDS patients also suffering from decompensated liver cirrhosis. In the current study, we characterized T-cell reconstitution in a mouse model of liver fibrosis induced by CCl4 and found that T-cell reconstitution after BMT via hepatic portal vein was also greatly enhanced. The expression of Dll4 (Delta-like 4), which plays an important role in T-cell progenitor expansion, was elevated in hepatocytes of fibrotic livers when compared to normal livers. This upregulation of Dll4 expression was found to be induced by TNFα in an NFκB-dependent manner. Liver fibroblasts transfected with Dll4 (LF-Dll4) also gained the capacity to promote T-cell lineage development from hematopoietic stem cells (HSCs), resulting in the generation of DN2 (CD4 and CD8 DN 2) and DN3 T-cell progenitors in vitro, which underwent a normal maturation program when adoptively transferred into Rag-2 deficient hosts. We also demonstrated a pivotal role of SDF-1 produced by primary liver fibroblasts (primary LF) in T-lineage differentiation from HSCs. These results suggest that Dll4 and SDF-1 in fibrotic liver microenvironment could promote extrathymic T-cell lineage development. These results expand our knowledge of T-cell development and reconstitution under pathological conditions.
Collapse
Affiliation(s)
- Zheng Gong
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
- Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bingxue Shang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
| | - Yunpeng Chu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
| | - Xiaodong Chen
- Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Keli Liu
- Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yongjing Chen
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
| | - Yin Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanyan Han
- Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qianwen Shang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
| | - Zhiyuan Zheng
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
| | - Lin Song
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
| | - Chenchang Xu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China
| | - Xiaoren Zhang
- Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Baochi Liu
- Department of Surgery, Shanghai Public Health Clinical Center Fudan University, Shanghai, China
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China.
| | - Ying Wang
- Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Medical College, Suzhou, China.
- Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Anderson EM, Maldarelli F. The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology 2018; 15:71. [PMID: 30352600 PMCID: PMC6199739 DOI: 10.1186/s12977-018-0448-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Integration of viral DNA into the host genome is a central event in the replication cycle and the pathogenesis of retroviruses, including HIV. Although most cells infected with HIV are rapidly eliminated in vivo, HIV also infects long-lived cells that persist during combination antiretroviral therapy (cART). Cells with replication competent HIV proviruses form a reservoir that persists despite cART and such reservoirs are at the center of efforts to eradicate or control infection without cART. The mechanisms of persistence of these chronically infected long-lived cells is uncertain, but recent research has demonstrated that the presence of the HIV provirus has enduring effects on infected cells. Cells with integrated proviruses may persist for many years, undergo clonal expansion, and produce replication competent HIV. Even proviruses with defective genomes can produce HIV RNA and may contribute to ongoing HIV pathogenesis. New analyses of HIV infected cells suggest that over time on cART, there is a shift in the composition of the population of HIV infected cells, with the infected cells that persist over prolonged periods having proviruses integrated in genes associated with regulation of cell growth. In several cases, strong evidence indicates the presence of the provirus in specific genes may determine persistence, proliferation, or both. These data have raised the intriguing possibility that after cART is introduced, a selection process enriches for cells with proviruses integrated in genes associated with cell growth regulation. The dynamic nature of populations of cells infected with HIV during cART is not well understood, but is likely to have a profound influence on the composition of the HIV reservoir with critical consequences for HIV eradication and control strategies. As such, integration studies will shed light on understanding viral persistence and inform eradication and control strategies. Here we review the process of HIV integration, the role that integration plays in persistence, clonal expansion of the HIV reservoir, and highlight current challenges and outstanding questions for future research.
Collapse
Affiliation(s)
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, 21702, USA.
| |
Collapse
|
12
|
Appay V, Sauce D. Assessing immune aging in HIV-infected patients. Virulence 2017; 8:529-538. [PMID: 27310730 PMCID: PMC5538339 DOI: 10.1080/21505594.2016.1195536] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/20/2016] [Indexed: 01/10/2023] Open
Abstract
Many of the alterations that affect innate and adaptive immune cell compartments in HIV-infected patients are reminiscent of the process of immune aging, characteristic of old age. These alterations define the immunological age of individuals and are likely to participate to the decline of immune competence with HIV disease progression. It is therefore important to characterize these changes, which point toward the accumulation of highly differentiated immunocompetent cells, associated with overall telomere length shortening, as well as understanding their etiology, especially related to the impact of chronic immune activation. Particular attention should be given to the exhaustion of primary immune resources, including haematopoietic progenitors and naïve cells, which holds the key for effective hematopoiesis and immune response induction, respectively. The alteration of these compartments during HIV infection certainly represents the foundation of the immune parallel with aging.
Collapse
Affiliation(s)
- Victor Appay
- Sorbonne Universités, UPMC Univ Paris 06, Center d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM U1135, CIMI-Paris, Paris, France
| | - Delphine Sauce
- Sorbonne Universités, UPMC Univ Paris 06, Center d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM U1135, CIMI-Paris, Paris, France
| |
Collapse
|
13
|
Banerjee A, Li L, Pirrone V, Krebs FC, Wigdahl B, Nonnemacher MR. cAMP Signaling Enhances HIV-1 Long Terminal Repeat (LTR)-directed Transcription and Viral Replication in Bone Marrow Progenitor Cells. Clin Med Insights Pathol 2017; 10:1179555717694535. [PMID: 28469516 PMCID: PMC5398651 DOI: 10.1177/1179555717694535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/16/2016] [Indexed: 11/28/2022] Open
Abstract
CD34+ hematopoietic progenitor cells have been shown to be susceptible to HIV-1 infection, possibly due to a low-level expression of CXCR4, a coreceptor for HIV-1 entry. Given these observations, we have explored the impact of forskolin on cell surface expression of CXCR4 in a cell line model (TF-1). The elevation of intracellular cyclic adenosine monophosphate (cAMP) by forskolin through adenylyl cyclase (AC) resulted in transcriptional upregulation of CXCR4 with a concomitant increase in replication of the CXCR4-utilizing HIV-1 strain IIIB. Transient expression analyses also demonstrated an increase in CXCR4-, CCR5-, and CXCR4-/CCR5-utilizing HIV-1 (LAI, YU2, and 89.6, respectively) promoter activity. Studies also implicated the protein kinase A (PKA) pathway and the downstream transcription factor CREB-1 in interfacing with cAMP response elements located in the CXCR4 and viral promoter. These observations suggest that the cAMP signaling pathway may serve as a regulator of CXCR4 levels and concomitantly of HIV-1 replication in bone marrow (BM) progenitor cells.
Collapse
Affiliation(s)
- Anupam Banerjee
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Luna Li
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Fred C Krebs
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Roberts DJ, Weatherall DJ. Introduction: The Complexity and Challenge of Preventing, Treating, and Managing Blood Diseases in the Developing Countries. Hematol Oncol Clin North Am 2016; 30:233-46. [PMID: 27040954 DOI: 10.1016/j.hoc.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Managing hematologic disorders in developing countries poses problems not encountered in Western societies. The clinical features of hematologic conditions may be modified by malnutrition, chronic bacterial infection, or parasitic illness. Iron deficiency is the major factor in anemia worldwide. Anemia is more common in the wet season when malaria transmission peaks. After anemia, eosinophilia is the next most common hematologic abnormality in children in the tropics. Infection with the human immunodeficiency virus can cause hematologic abnormalities. The pattern of distribution of primary disorders of the blood varies among populations and some disorders are unique to certain parts of the world.
Collapse
Affiliation(s)
- David J Roberts
- Radcliffe Department of Medicine, University of Oxford and National Health Service Blood and Transplant, John Radcliffe Hospital, Level 2, Oxford OX3 9DS, UK.
| | - David J Weatherall
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
15
|
Galvão-Lima LJ, Espíndola MS, Soares LS, Zambuzi FA, Cacemiro M, Fontanari C, Bollela VR, Frantz FG. Classical and alternative macrophages have impaired function during acute and chronic HIV-1 infection. Braz J Infect Dis 2016; 21:42-50. [PMID: 27912071 PMCID: PMC9425483 DOI: 10.1016/j.bjid.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/18/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022] Open
Abstract
Objectives Three decades after HIV recognition and its association with AIDS development, many advances have emerged – especially related to prevention and treatment. Undoubtedly, the development of Highly Active Antiretroviral Therapy (HAART) dramatically changed the future of the syndrome that we know today. In the present study, we evaluate the impact of Highly Active Antiretroviral Therapy on macrophage function and its relevance to HIV pathogenesis. Methods PBMCs were isolated from blood samples and monocytes (CD14+ cells) were purified. Monocyte-Derived Macrophages (MDMs) were activated on classical (MGM-CSF+IFN-γ) or alternative (MIL-4+IL13) patterns using human recombinant cytokines for six days. After this period, Monocyte-Derived Macrophages were stimulated with TLR2/Dectin-1 or TLR4 agonists and we evaluated the influence of HIV-1 infection and Highly Active Antiretroviral Therapy on the release of cytokines/chemokines by macrophages. Results The data were obtained using Monocyte-Derived Macrophages derived from HIV naïve or from patients on regular Highly Active Antiretroviral Therapy. Classically Monocyte-Derived Macrophages obtained from HIV-1 infected patients on Highly Active Antiretroviral Therapy released higher levels of IL-6 and IL-12 even without PAMPs stimuli when compared to control group. On the other hand, alternative Monocyte-Derived Macrophages derived from HIV-1 infected patients on Highly Active Antiretroviral Therapy released lower levels of IL-6, IL-10, TNF-α, IP-10 and RANTES after LPS stimuli when compared to control group. Furthermore, healthy individuals have a complex network of cytokines/chemokines released by Monocyte-Derived Macrophages after PAMP stimuli, which was deeply affected in MDMs obtained from naïve HIV-1 infected patients and only partially restored in MDMs derived from HIV-1 infected patients even on regular Highly Active Antiretroviral Therapy. Conclusion Our therapy protocols were not effective in restoring the functional alterations induced by HIV, especially those found on macrophages. These findings indicate that we still need to develop new approaches and improve the current therapy protocols, focusing on the reestablishment of cellular functions and prevention/treatment of opportunistic infections.
Collapse
Affiliation(s)
- Leonardo J Galvão-Lima
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Milena S Espíndola
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Luana S Soares
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Fabiana A Zambuzi
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Maira Cacemiro
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Caroline Fontanari
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil
| | - Valdes R Bollela
- Universidade de São Paulo, Hospital das Clínicas de Ribeirão Preto, Divisão de Doenças Infecciosas, São Paulo, SP, Brazil
| | - Fabiani G Frantz
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Laboratório de Imunologia e Epigenética, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Osime EO, Oresanja OO, Okwara BU. Packed cell volume Platelet count, PT, PTTK and Fibrinogen concentration of HIV positive patients on antiretroviral drugs. Pak J Med Sci 2016; 31:1533-6. [PMID: 26870130 PMCID: PMC4744315 DOI: 10.12669/pjms.316.7943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: This is aimed at investigating some coagulation and haematologic profile of HIV positive patients on highly active antiretroviral therapy in patients attending clinic at the University of Benin Teaching Hospital. Methods: This is a correlation study comprising fifty (50) HIV positive patients on HAART between 6 – 12 months as test subjects and fifty (50) HIV positive patients who have not began HAART as control subjects. Five millilitres of blood was withdrawn from each group by venepuncture into ethylene diaminetetracetic and sodium citrate anticoagulant containers. Platelet counts were estimated manually using ammonium oxalate solution, packed cell volume by the microhaematocrit method while Prothrombin Time (PT), Activated partial thrombroplastin time and fibrinogen concentration were done by methods described by Monica Chessbrough. Results: This is presented as mean ± standard error of mean. There were reduction in PCV and platelet count between test and control subjects although not statistically significant (P> 0.05) while there was a significant increase in PT and PTTK between test and control groups (P<0.05). No significant change was observed in fibrinogen concentration in HIV patients on HAART and those not on HAART. Conclusion: HAART increases PT and PTTK in HIV infection.
Collapse
Affiliation(s)
- Evarista Odaburhine Osime
- Dr. Evarista Odaburhine Osime, PhD. Department of Medical Laboratory Science, University of Benin, Edo state, Nigeria
| | - Omobolaji Oluwole Oresanja
- Mr. Omobolaji Oluwole Oresanja, BMLS. Department of Medical Laboratory Science, University of Benin, Edo state, Nigeria
| | - Benson Uchechukwu Okwara
- Dr. Benson Uchechukwu Okwara, FWACP. Department of Medicine, University of Benin Teaching Hospital, Benin City, Nigeria
| |
Collapse
|
17
|
Cenderello G, De Maria A. Discordant responses to cART in HIV-1 patients in the era of high potency antiretroviral drugs: clinical evaluation, classification, management prospects. Expert Rev Anti Infect Ther 2015; 14:29-40. [PMID: 26513236 DOI: 10.1586/14787210.2016.1106937] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The goal of antiretroviral treatment (ART) in HIV-1 patients is immune reconstitution following control of viral replication. CD4+ cell number/proportions are a crude but essential correlate of immune reconstitution. Despite suppression of HIV replication, a fraction of ART-treated patients still fails to fully reconstitute CD4+ T cell numbers (immunological nonresponders, INRs). New drugs, regimens and treatment strategies led to increased efficacy, lower side effects and higher virological success rates in clinical practice. The multitude of described immune defects and clinical events accompanying INR opposed to the marginal effect of antiretroviral intensification or immunotherapy trials underline the need for continuing efforts at understanding the mechanisms that underlie INR. Here, we reassess INR definition, frequency, and the achievements of active clinical and translational research suggesting a shared definition for insufficient, partial and complete CD4+ cell number recovery thus improving homogeneity in patient selection and mechanism identification.
Collapse
Affiliation(s)
| | - Andrea De Maria
- b Department of Health Sciences , University of Genova , Genoa 16132 , Italy.,c Clinica Malattie Infettive, IRCCS A.O.U. S. Martino - IST Genova , Istituto Nazionale per la Ricerca sul Cancro , Genoa , Italy
| |
Collapse
|
18
|
Strazza M, Banerjee A, Alexaki A, Passic SR, Meucci O, Pirrone V, Wigdahl B, Nonnemacher MR. Effect of μ-opioid agonist DAMGO on surface CXCR4 and HIV-1 replication in TF-1 human bone marrow progenitor cells. BMC Res Notes 2014; 7:752. [PMID: 25338959 PMCID: PMC4216373 DOI: 10.1186/1756-0500-7-752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/14/2014] [Indexed: 12/22/2022] Open
Abstract
Background Approximately one-third of the AIDS cases in the United States have been attributed to the use of injected drugs, frequently involving the abuse of opioids. Consequently, it is critical to address whether opioid use directly contributes to altered susceptibility to HIV-1 beyond the increased risk of exposure. Previous in vitro and in vivo studies addressing the role of μ-opioid agonists in altering levels of the co-receptor CXCR4 and subsequent HIV-1 replication have yielded contrasting results. The bone marrow is believed to be a potential anatomical sanctuary for HIV-1. Methods The well-characterized CD34+CD38+ human bone marrow–derived hematopoietic progenitor cell line TF-1 was used as a model to investigate the effects of the μ-opioid receptor–specific peptide DAMGO (D-Ala2,N-Me-Phe4, Gly5-ol-enkephalin) on CXCR4 expression as well as infection of undifferentiated human hematopoietic progenitor cells. Results The results revealed the presence of the μ-opioid receptor-1 isoform (MOR-1) on the surface of TF-1 cells. Furthermore, immunostaining revealed that the majority of TF-1 cells co-express MOR-1 and CXCR4, and a subpopulation of these double-positive cells express the two receptors in overlapping membrane domains. Three subpopulations of TF-1 cells were categorized based on their levels of surface CXCR4 expression, defined as non-, low-, and high-expressing. Flow cytometry indicated that treatment with DAMGO resulted in a shift in the relative proportion of CXCR4+ cells to the low-expressing phenotype. This result correlated with a >3-fold reduction in replication of the X4 HIV-1 strain IIIB, indicating a role for the CXCR4 high-expression subpopulation in sustaining infection within this progenitor cell line. Conclusions These experiments provide insight into the impact of μ-opioid exposure with respect to inhibition of viral replication in this human TF-1 bone marrow progenitor cell line model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N, 15th Street, MS# 1013A, Philadelphia, PA 19102, USA.
| |
Collapse
|
19
|
Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain. Virology 2014; 454-455:60-6. [PMID: 24725932 DOI: 10.1016/j.virol.2014.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/06/2013] [Accepted: 02/06/2014] [Indexed: 12/25/2022]
Abstract
Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4(+) T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry.
Collapse
|
20
|
Li G, Endsley MA, Somasunderam A, Gbota SL, Mbaka MI, Murray JL, Ferguson MR. The dual role of tetraspanin CD63 in HIV-1 replication. Virol J 2014; 11:23. [PMID: 24507450 PMCID: PMC3944621 DOI: 10.1186/1743-422x-11-23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/05/2014] [Indexed: 01/24/2023] Open
Abstract
Background Previously, we showed that the tetraspanin membrane protein CD63 mediates both early and post-integration stages of the HIV-1 replication cycle. The temporal roles of CD63 were discerned using monoclonal antibodies and small interfering RNAs (siRNAs) to block CD63 function, and determining which of the sequential steps in HIV-1 replication were disrupted. Inhibition was shown to occur during early infection, suggestive of involvement in virus entry or reverse transcription. In addition, we have shown that treatment with CD63 siRNA post-infection, significantly inhibited virus production in supernatant, suggesting an important role for CD63 in macrophages during HIV-1 replication events occurring after proviral integration, and possibly during egress. Results In this study we used CD63 siRNA to investigate the infectivity of pseudotyped viruses (carrying an NL4-3 Env-negative luciferase backbone) in primary human macrophages. We demonstrated that lab adapted R5- and R5X4-tropic HIV-1 strains are significantly inhibited by CD63 silencing. However, the infectivity of MLV or VSV-pseudotyped strains, which enter though receptor-mediated endocytosis, is unaffected by silencing CD63. These results indicate that CD63 may support Env-mediated entry or fusion events facilitated though CD4 and CCR5. Also, antibody and siRNA-based CD63 inhibition studies indicate a potential role for CD63 following proviral integration. Further, we show that CD63 expression is key for efficient replication in primary CD4+ T cells, complementing our prior studies with primary human macrophages and immortalized cell lines. Conclusions Collectively, these findings indicate that CD63 may support Env-mediated fusion as well as a late (post-integration) step in the HIV-1 replication cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Monique R Ferguson
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0435, USA.
| |
Collapse
|
21
|
Liu R, Huang L, Li J, Zhou X, Zhang H, Zhang T, Lei Y, Wang K, Xie N, Zheng Y, Wang F, Nice EC, Rong L, Huang C, Wei Y. HIV Infection in gastric epithelial cells. J Infect Dis 2013; 208:1221-30. [PMID: 23852124 DOI: 10.1093/infdis/jit314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many chronic human immunodeficiency virus (HIV) patients suffer from gastric complaints, including gastric tuberculosis and coinfection of other pathogens. Recent work has demonstrated that a variety of nonimmune cells can act as viral reservoirs, even at the early stage of HIV infection. In this study, we detect HIV viral particles, proteins, and nucleic acids in gastric epithelial cells using clinical samples. These observations are further supported by a simian immunodeficiency virus-infected macaque model. Further, the number of HIV-infected gastric epithelial cells is positively associated with blood viral load, and is negatively correlated with CD4 lymphocyte cell counts. We also demonstrate that HIV infection is accompanied by severe inflammatory response in gastric mucosa. Additionally, HIV infection activates signal transducer and activator of transcription 3 and RelA, and enhances the production of interleukin 6 and tumor necrosis factor α in gastric epithelial cells. The present data suggest that the gastric epithelial cells are natural targets of HIV infection, and HIV infection in epithelial cells contributes to HIV-induced gastric mucosal inflammation.
Collapse
Affiliation(s)
- Rui Liu
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Parikh N, Nonnemacher MR, Pirrone V, Block T, Mehta A, Wigdahl B. Substance abuse, HIV-1 and hepatitis. Curr HIV Res 2013; 10:557-71. [PMID: 22973853 DOI: 10.2174/157016212803306023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/16/2012] [Accepted: 09/05/2012] [Indexed: 02/06/2023]
Abstract
During the course of human immunodeficiency virus type 1 (HIV-1) disease, the virus has been shown to effectively escape the immune response with the subsequent establishment of latent viral reservoirs in specific cell populations within the peripheral blood (PB) and associated lymphoid tissues, bone marrow (BM), brain, and potentially other end organs. HIV-1, along with hepatitis B and C viruses (HBV and HCV), are known to share similar routes of transmission, including intravenous drug use, blood transfusions, sexual intercourse, and perinatal exposure. Substance abuse, including the use of opioids and cocaine, is a significant risk factor for exposure to HIV-1 and the development of acquired immune deficiency syndrome, as well as HBV and HCV exposure, infection, and disease. Thus, coinfection with HIV-1 and HBV or HCV is common and may be impacted by chronic substance abuse during the course of disease. HIV- 1 impacts the natural course of HBV and HCV infection by accelerating the progression of HBV/HCV-associated liver disease toward end-stage cirrhosis and quantitative depletion of the CD4+ T-cell compartment. HBV or HCV coinfection with HIV-1 is also associated with increased mortality when compared to either infection alone. This review focuses on the impact of substance abuse and coinfection with HBV and HCV in the PB, BM, and brain on the HIV-1 pathogenic process as it relates to viral pathogenesis, disease progression, and the associated immune response during the course of this complex interplay. The impact of HIV-1 and substance abuse on hepatitis virus-induced disease is also a focal point.
Collapse
Affiliation(s)
- Nirzari Parikh
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chan CN, Dietrich I, Hosie MJ, Willett BJ. Recent developments in human immunodeficiency virus-1 latency research. J Gen Virol 2013; 94:917-932. [PMID: 23364195 PMCID: PMC3709588 DOI: 10.1099/vir.0.049296-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Almost 30 years after its initial discovery, infection with the human immunodeficiency virus-1 (HIV-1) remains incurable and the virus persists due to reservoirs of latently infected CD4(+) memory T-cells and sanctuary sites within the infected individual where drug penetration is poor. Reactivating latent viruses has been a key strategy to completely eliminate the virus from the host, but many difficulties and unanswered questions remain. In this review, the latest developments in HIV-persistence and latency research are presented.
Collapse
Affiliation(s)
- Chi Ngai Chan
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Isabelle Dietrich
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
24
|
Abdollahi A, Shoar S. Comparison of Adenosine Deaminase, Zinc, Magnesium, Lipid Profile, and some Micronutrient Elements and their Relation with CD4 Counts in Human Immunodeficiency Virus Positive and Negative Patients. J Glob Infect Dis 2013; 4:199-206. [PMID: 23326077 PMCID: PMC3543539 DOI: 10.4103/0974-777x.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND There is strong evidence regarding the patterns of alteration in the blood parameters in human immunodeficiency virus (HIV)-positive patients. However, no consensus has been reached in this regard and the results vary from different regions and studies. Our study aims to report these patterns in a population of HIV-infected patients in Iran. MATERIALS AND METHODS We studied two groups of HIV-infected and HIV-negative patients. One hundred and fourteen subjects were enrolled in each group; blood parameters were compared in these two. RESULTS Variables of HIV-negative patients changed as follows compared to HIV-positive patients: with regard to the hematological variables, CD4+↓; CD8+↓; WBC↓; RBC↓; HCT↓; MCV↑; MCH↑; MCHC↑; PLT↓; EOS↑; and BASO↑; and among the metabloic parameters, TG↓; CH↑; HDL↓; LDL↓, MG↑; ZN↑; P↑; and ADA↓, which showed significnat differences between groups (P < 0.05). CONCLUSION We conclude that HIV infection affects hematopoiesis by diminishing the hematological productivity parameters and increasing red blood cell related morphology, along with a different pattern of lipid profile (decreased TG, LDL, HDL, and increased CH) and serum micronutrients (elevated concentration of serum trace elements) in our population of study.
Collapse
|
25
|
Abstract
Transmission of HIV-1 results in the establishment of a new infection, typically starting from a single virus particle. That virion replicates to generate viremia and persistent infection in all of the lymphoid tissue in the body. HIV-1 preferentially infects T cells with high levels of CD4 and those subsets of T cells that express CCR5, particularly memory T cells. Most of the replicating virus is in the lymphoid tissue, yet most of samples studied are from blood. For the most part the tissue and blood viruses represent a well-mixed population. With the onset of immunodeficiency, the virus evolves to infect new cell types. The tropism switch involves switching from using CCR5 to CXCR4 and corresponds to an expansion of infected cells to include naïve CD4(+) T cells. Similarly, the virus evolves the ability to enter cells with low levels of CD4 on the surface and this potentiates the ability to infect macrophages, although the scope of sites where infection of macrophages occurs and the link to pathogenesis is only partly known and is clear only for infection of the central nervous system. A model linking viral evolution to these two pathways has been proposed. Finally, other disease states related to immunodeficiency may be the result of viral infection of additional tissues, although the evidence for a direct role for the virus is less strong. Advancing immunodeficiency creates an environment in which viral evolution results in viral variants that can target new cell types to generate yet another class of opportunistic infections (i.e., HIV-1 with altered tropism).
Collapse
Affiliation(s)
- Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
26
|
Mullis CE, Oliver AE, Eller LA, Guwatudde D, Mueller AC, Eller MA, Kibuuka H, Robb M, Quinn TC, Redd AD. Short communication: Colony-forming hematopoietic progenitor cells are not preferentially infected by HIV type 1 subtypes A and D in vivo. AIDS Res Hum Retroviruses 2012; 28:1119-23. [PMID: 22149236 DOI: 10.1089/aid.2011.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV subtype C has previously been shown to infect hematopoietic progenitor cells (HPCs) at a significantly higher rate than subtype B. To better understand the subtype-specific nature of HPC infection, we examined the prevalence of HPC infection in vivo by HIV-1 subtypes A and D. HIV-1 infection of HPC was examined in 40 individuals, 19 infected with subtype A and 21 with subtype D, using a single colony assay format. DNA from 1177 extracted colonies was tested for integrated viral DNA of the p24 gene. Four colonies were found to be stably infected, three of 462 colonies (0.65%) from HIV-1A-infected individuals (1/19 individuals) and one of 715 colonies (0.14%) from HIV-1D-infected individuals (1/22 individuals). These rates of colony infection were comparable to the rates observed in PBMCs from the same subjects. Additionally, no correlation was observed between cell colony density and circulating viral load or proviral load. Our findings suggest that HIV-1 subtypes A and D do not preferentially infect colony-forming HPCs over mature HIV target cells in vivo.
Collapse
Affiliation(s)
- Caroline E. Mullis
- Johns Hopkins Medical Institute, Johns Hopkins University, Baltimore, Maryland
| | - Amy E. Oliver
- Johns Hopkins Medical Institute, Johns Hopkins University, Baltimore, Maryland
| | | | | | - Amy C. Mueller
- Johns Hopkins Medical Institute, Johns Hopkins University, Baltimore, Maryland
| | | | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Merlin Robb
- U.S. Military HIV Research Program (MHRP), Rockville, Maryland
| | - Thomas C. Quinn
- Johns Hopkins Medical Institute, Johns Hopkins University, Baltimore, Maryland
- Division of Intramural Research, NIAID, NIH, Baltimore, Maryland
| | - Andrew D. Redd
- Division of Intramural Research, NIAID, NIH, Baltimore, Maryland
| |
Collapse
|
27
|
Hilldorfer BB, Cillo AR, Besson GJ, Bedison MA, Mellors JW. New tools for quantifying HIV-1 reservoirs: plasma RNA single copy assays and beyond. Curr HIV/AIDS Rep 2012; 9:91-100. [PMID: 22215419 PMCID: PMC3693463 DOI: 10.1007/s11904-011-0104-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Quantification of plasma HIV-1 RNA below the limit of FDA-approved assays by a single copy quantitative PCR assays (SCA) has provided significant insights into HIV-1 persistence despite potent antiretroviral therapy as well as a means to assess the impact of therapeutic strategies, such as treatment intensification, on residual viremia. In this review, we discuss insights gained from plasma HIV-1 RNA SCA and highlight the need for additional assays to characterize better the cellular and tissue reservoirs of HIV-1. Accurate, reproducible, and sensitive assays to quantify HIV-1 reservoirs, before and after therapeutic interventions, are essential tools in the quest for a cure of HIV-1 infection.
Collapse
Affiliation(s)
- Benedict B Hilldorfer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
28
|
Cross SA, Cook DR, Chi AWS, Vance PJ, Kolson LL, Wong BJ, Jordan-Sciutto KL, Kolson DL. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. THE JOURNAL OF IMMUNOLOGY 2011; 187:5015-25. [PMID: 21976775 DOI: 10.4049/jimmunol.1101868] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and neurodegeneration through persistent inflammation and neurotoxin release from infected and/or activated macrophages/microglia. Furthermore, inflammation and immune activation within both the CNS and periphery correlate with disease progression and morbidity in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV-infected monocyte-derived macrophages release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration of HO-1 expression in HIV-infected monocyte-derived macrophages reduces neurotoxin release without altering HIV replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct mechanisms are proposed: inhibition of NF-κB nuclear translocation and signaling, which could contribute to the suppression of HIV replication, and induction of HO-1, which is associated with decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS in response to inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals.
Collapse
Affiliation(s)
- Stephanie A Cross
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR. Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 2011; 1399:96-115. [PMID: 21641584 PMCID: PMC3139430 DOI: 10.1016/j.brainres.2011.05.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4(+) T cells and cells of the monocyte-macrophage lineage, resulting in immunodeficiency in an infected patient. Along with this immune deficiency, HIV-1 has been linked to a number of neurological symptoms in the absence of opportunistic infections or other co-morbidities, suggesting that HIV-1 is able to cross the blood-brain barrier (BBB), enter the central nervous system (CNS), and cause neurocognitive impairment. HIV-1-infected monocyte-macrophages traverse the BBB and enter the CNS throughout the course of HIV-1 disease. Once in the brain, both free virus and virus-infected cells are able to infect neighboring resident microglia and astrocytes and possibly other cell types. HIV-1-infected cells in both the periphery and the CNS give rise to elevated levels of viral proteins, including gp120, Tat, and Nef, and of host inflammatory mediators such as cytokines and chemokines. It has been shown that the viral proteins may act alone or in concert with host cytokines and chemokines, affecting the integrity of the BBB. The pathological end point of these interactions may facilitate a positive feedback loop resulting in increased penetration of HIV into the CNS. It is proposed in this review that the dysregulation of the BBB during and after neuroinvasion is a critical component of the neuropathogenic process and that dysregulation of this protective barrier is caused by a combination of viral and host factors including secreted viral proteins, components of the inflammatory process, the aging process, therapeutics, and drug or alcohol abuse.
Collapse
Affiliation(s)
- Marianne Strazza
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
30
|
Banerjee A, Pirrone V, Wigdahl B, Nonnemacher MR. Transcriptional regulation of the chemokine co-receptor CCR5 by the cAMP/PKA/CREB pathway. Biomed Pharmacother 2011; 65:293-7. [PMID: 21719243 PMCID: PMC3150495 DOI: 10.1016/j.biopha.2011.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 03/01/2011] [Indexed: 12/24/2022] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-dependent signaling pathway directs the expression of several genes involved in diverse neuroendocrine, immune, metabolic, and developmental pathways. The primary effectors of this pathway are members of the cAMP response element binding (CREB) family of transcription factors, in particular the CREB-1 and cAMP response element modulator (CREM). Both these genes encode alternative splice variants that serve as activators or repressors in a context- and position-specific manner. Although the β-chemokine receptor CC chemokine receptor 5 (CCR5) has been identified on progenitor cells in the bone marrow, the regulatory mechanisms orchestrating its expression are not fully understood. Previous reports have identified putative cAMP response elements in the CCR5 promoter and have described a suppressive role of cAMP in CCR5 expression. In this study, the CD34+CD4+CCR5+ human bone marrow progenitor cell line TF-1 was used to investigate the detailed kinetics of CCR5 transcription in response to the elevation of intracellular cAMP levels and the underlying molecular events. We hypothesize that CCR5 transcription follows an asymmetrical sinusoidal pattern in TF-1 cells that parallels a protein kinase A-dependent alternating change in the ratio of activator pCREB-1-α,Δ to repressor pCREM-α,β isoforms. However, elevated CCR5 mRNA levels do not correlate with enhancement in infectivity with respect to the R5 human immunodeficiency virus type 1 (HIV-1) strain. Our results lend critical insight into the precise mechanism governing the cAMP-CCR5 axis in progenitor cells and pose interesting questions regarding its functional role in HIV-1 infection.
Collapse
Affiliation(s)
- Anupam Banerjee
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, Pennsylvania 19129, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, Pennsylvania 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, Pennsylvania 19129, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
31
|
|
32
|
Carter CC, McNamara LA, Onafuwa-Nuga A, Shackleton M, Riddell J, Bixby D, Savona MR, Morrison SJ, Collins KL. HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent hematopoietic stem and progenitor cells. Cell Host Microbe 2011; 9:223-234. [PMID: 21402361 PMCID: PMC3102232 DOI: 10.1016/j.chom.2011.02.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/04/2011] [Accepted: 01/28/2011] [Indexed: 02/04/2023]
Abstract
HIV infection is characterized by gradual immune system collapse and hematopoietic dysfunction. We recently showed that HIV enters multipotent hematopoietic progenitor cells and establishes both active cytotoxic and latent infections that can be reactivated by myeloid differentiation. However, whether these multipotent progenitors include long-lived hematopoietic stem cells (HSCs) that could establish viral reservoirs for the life of the infected person remains unknown. Here we provide direct evidence that HIV targets long-lived HSCs and show that infected HSCs yield stable, multilineage engraftment in a xenograft model. Furthermore, we establish that the capacity to use the chemokine receptor CXCR4 for entry determines whether a virus will enter multipotent versus differentiated progenitor cells. Because HSCs live for the life span of the infected person and are crucial for hematopoietic health, these data may explain the poor prognosis associated with CXCR4-tropic HIV infection and suggest HSCs as long-lived cellular reservoirs of latent HIV.
Collapse
Affiliation(s)
- Christoph C Carter
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucy A McNamara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mark Shackleton
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Riddell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dale Bixby
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael R Savona
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean J Morrison
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen L Collins
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Although latent HIV-1 infection in CD4+ T cells contributes to HIV persistence, there is mounting evidence that other viral reservoirs exist. Here, we review recent data suggesting that the infection of hematopoietic progenitor cells creates additional reservoirs for HIV in vivo. RECENT FINDINGS New studies suggest that some types of hematopoietic progenitor cells have the potential to generate reservoirs for HIV. This review focuses on two types that can be infected by HIV in vitro and in vivo: multipotent hematopoietic progenitor cells in the bone marrow and circulating mast cell progenitors. Of these two types, only CD34+ bone marrow cells have been shown to harbor latent provirus in HIV-positive individuals with undetectable viral loads on highly active antiretroviral therapy (HAART). Latent infection of these long-lived cell types may create a significant barrier to HIV eradication; the infection of hematopoietic stem cells in particular could lead to an HIV reservoir that does not appreciably decay over the lifespan of the host. SUMMARY To eradicate HIV infection, it will be necessary to purge all viral reservoirs in the host. The findings highlighted here suggest that multipotent hematopoietic progenitor cells and possibly tissue mast cells may constitute significant reservoirs for HIV that must be addressed in order to eliminate HIV infection. Future studies are needed to determine which types of CD34+ cells are infected in vivo and whether infected CD34+ cells contribute to residual viremia in people with undetectable viral loads on HAART.
Collapse
Affiliation(s)
- Lucy A. McNamara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kathleen L. Collins
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
34
|
Obienu O, Nwokediuko S. Selected biochemical and hematological abnormalities in Nigerians with human immunodeficiency virus and hepatitis C virus coinfection. Hepat Med 2011; 3:63-8. [PMID: 24367222 PMCID: PMC3846592 DOI: 10.2147/hmer.s21735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Liver disease has emerged as a major cause of morbidity and mortality in patients with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) coinfection, now that antiretroviral therapy has become more effective and has prolonged life expectancy in HIV-infected patients. The main objectives of this study were to determine the prevalence of HIV/HCV coinfection and the pattern of hematological and biochemical abnormalities associated with such dual infection. Methods In this study, patients with HIV infection (cases) were tested for anti-HCV antibodies. There was a control group made up of apparently healthy individuals who came to hospital for medical examination for various reasons. They also had an anti-HCV antibody test. Those who tested positive for anti-HCV antibodies among the cases and control subjects were further evaluated for hemoglobin concentration, total white cell count, platelet count, and liver function. Results One hundred and eighty HIV-infected patients and 180 control subjects participated in the study. The seroprevalence of anti-HCV antibodies in the HIV-infected patients and control subjects were 6.7% and 4.4%, respectively (P = 0.57). Serum total bilirubin, conjugated bilirubin, and alkaline phosphatase were significantly higher in the HIV/HCV coinfected patients compared with their HCV monoinfected counterparts (P = 0.0396, 0.0001, and 0.0016, respectively). The mean hemoglobin, white cell count, platelet count, and CD4+ T lymphocyte count were significantly lower in the HIV/HCV coinfected patients than the HCV monoinfected control group (P = 0.0082, 0.0133, 0.0031, and 0.0001, respectively). Conclusion The seroprevalence of anti-HCV antibodies in HIV-infected Nigerian patients is 6.7%. Patients with HIV/HCV coinfection have lower blood counts, higher serum bilirubin, and higher serum alkaline phosphatase compared with patients having HCV monoinfection.
Collapse
Affiliation(s)
- Olive Obienu
- Gastroenterology Unit, Department of Medicine, University of Nigeria Teaching Hospital Ituku/Ozalla, Enugu, Nigeria
| | - Sylvester Nwokediuko
- Gastroenterology Unit, Department of Medicine, University of Nigeria Teaching Hospital Ituku/Ozalla, Enugu, Nigeria
| |
Collapse
|
35
|
Towards a cure for HIV: the identification and characterization of HIV reservoirs in optimally treated people. Cell Res 2010; 20:1185-7. [PMID: 20877313 DOI: 10.1038/cr.2010.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Currently available anti-HIV-1 drugs suppress viral replication and maintain viral levels below the detection threshold of most assays but do not eliminate cellular reservoirs. As a result, very low levels of circulating virus can be detected in most people despite long-term treatment with potent anti-HIV drug combinations. Not surprisingly, viral levels rebound with discontinuation of treatment. New evidence indicates that there is a viral reservoir in bone marrow progenitor cells.
Collapse
|
36
|
Shah S, Nonnemacher MR, Pirrone V, Wigdahl B. Innate and adaptive factors regulating human immunodeficiency virus type 1 genomic activation. J Neuroimmune Pharmacol 2010; 5:278-93. [PMID: 20387125 PMCID: PMC3057210 DOI: 10.1007/s11481-010-9207-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/08/2010] [Indexed: 01/13/2023]
Abstract
Over the past decade, antiretroviral therapy targeting the viral entry process, reverse transcriptase, integrase, and protease, has prolonged the lives of people infected with human immunodeficiency virus type 1 (HIV-1). However, despite the development of more effective therapeutic strategies, reservoirs of viral infection remain. This review discusses molecular mechanisms surrounding the development of latency from the site of integration to pre- and post-integration maintenance of latency, including epigenetic factors. In addition, an overview of innate and adaptive cells important to HIV-1 infection are examined from the viewpoint of cytokines released and cytokines that act on these cells to explore an overall understanding of HIV-1 proviral genome activation. Finally, this review is discussed from the viewpoint of how an understanding of the interplay of all of these factors will help guide the next generation of therapies.
Collapse
Affiliation(s)
- Sonia Shah
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
37
|
Hematopoietic stem and progenitor cells in HIV/AIDS and immune reconstitution. Cell Res 2010; 20:745-7. [PMID: 20567263 DOI: 10.1038/cr.2010.85] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
38
|
Mobilization of CD34+ progenitor cells in association with decreased proliferation in the bone marrow of macaques after administration of the Fms-like tyrosine kinase 3 ligand. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1269-73. [PMID: 20554805 DOI: 10.1128/cvi.00166-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fms-like tyrosine kinase 3 ligand (FLT3-L) is critical for the differentiation and self-renewal of CD34+ progenitor cells in primates and has been used therapeutically to mobilize progenitor and dendritic cells in vivo. However, little is known regarding the expansion of progenitor cells outside of peripheral blood, particularly in bone marrow (BM), where progenitor cells primarily reside. Evaluation of FLT3-L-mediated cell mobilization during lentivirus infections, where the numbers of CD34+ progenitor cells are reduced, is limited. We enumerated frequencies and absolute numbers of CD34+ progenitor cells in blood and BM of naive and SIV- or SHIV-infected macaques during and after the administration of FLT3-L. Flow cytometric analyses revealed that, while CD34+ cells increased in the circulation, no expansion was observed in BM. Furthermore, in the BM intracellular Ki67, a marker of cell proliferation, was downregulated in CD34+ progenitor cells but was upregulated significantly in the bulk cell population. Although the exact mechanism(s) remains unclear, these data suggest that CD34+ cell mobilization in blood was the result of cellular emigration from BM and not the proliferation of CD34+ cells already in the periphery. It is possible that the decreased progenitor cell proliferation observed in BM is evidence of a negative regulatory mechanism preventing hyperproliferation and development of neoplastic cells.
Collapse
|
39
|
Le Douce V, Herbein G, Rohr O, Schwartz C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology 2010; 7:32. [PMID: 20380694 PMCID: PMC2873506 DOI: 10.1186/1742-4690-7-32] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/09/2010] [Indexed: 01/09/2023] Open
Abstract
The introduction of the highly active antiretroviral therapy (HAART) has greatly improved survival. However, these treatments fail to definitively cure the patients and unveil the presence of quiescent HIV-1 reservoirs like cells from monocyte-macrophage lineage. A purge, or at least a significant reduction of these long lived HIV-1 reservoirs will be needed to raise the hope of the viral eradication. This review focuses on the molecular mechanisms responsible for viral persistence in cells of the monocyte-macrophage lineage. Controversy on latency and/or cryptic chronic replication will be specifically evoked. In addition, since HIV-1 infected monocyte-macrophage cells appear to be more resistant to apoptosis, this obstacle to the viral eradication will be discussed. Understanding the intimate mechanisms of HIV-1 persistence is a prerequisite to devise new and original therapies aiming to achieve viral eradication.
Collapse
Affiliation(s)
- Valentin Le Douce
- INSERM unit 575, Pathophysiology of Central Nervous System, Institute of Virology, rue Koeberlé, Strasbourg, France
| | | | | | | |
Collapse
|
40
|
Banerjee P, Crawford L, Samuelson E, Feuer G. Hematopoietic stem cells and retroviral infection. Retrovirology 2010; 7:8. [PMID: 20132553 PMCID: PMC2826343 DOI: 10.1186/1742-4690-7-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
Retroviral induced malignancies serve as ideal models to help us better understand the molecular mechanisms associated with the initiation and progression of leukemogenesis. Numerous retroviruses including AEV, FLV, M-MuLV and HTLV-1 have the ability to infect hematopoietic stem and progenitor cells, resulting in the deregulation of normal hematopoiesis and the development of leukemia/lymphoma. Research over the last few decades has elucidated similarities between retroviral-induced leukemogenesis, initiated by deregulation of innate hematopoietic stem cell traits, and the cancer stem cell hypothesis. Ongoing research in some of these models may provide a better understanding of the processes of normal hematopoiesis and cancer stem cells. Research on retroviral induced leukemias and lymphomas may identify the molecular events which trigger the initial cellular transformation and subsequent maintenance of hematologic malignancies, including the generation of cancer stem cells. This review focuses on the role of retroviral infection in hematopoietic stem cells and the initiation, maintenance and progression of hematological malignancies.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lindsey Crawford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Elizabeth Samuelson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
41
|
Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 2009; 6:118. [PMID: 20030845 PMCID: PMC2805609 DOI: 10.1186/1742-4690-6-118] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/23/2009] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has been shown to replicate productively in cells of the monocyte-macrophage lineage, although replication occurs to a lesser extent than in infected T cells. As cells of the monocyte-macrophage lineage become differentiated and activated and subsequently travel to a variety of end organs, they become a source of infectious virus and secreted viral proteins and cellular products that likely initiate pathological consequences in a number of organ systems. During this process, alterations in a number of signaling pathways, including the level and functional properties of many cellular transcription factors, alter the course of HIV-1 long terminal repeat (LTR)-directed gene expression. This process ultimately results in events that contribute to the pathogenesis of HIV-1 infection. First, increased transcription leads to the upregulation of infectious virus production, and the increased production of viral proteins (gp120, Tat, Nef, and Vpr), which have additional activities as extracellular proteins. Increased viral production and the presence of toxic proteins lead to enhanced deregulation of cellular functions increasing the production of toxic cellular proteins and metabolites and the resulting organ-specific pathologic consequences such as neuroAIDS. This article reviews the structural and functional features of the cis-acting elements upstream and downstream of the transcriptional start site in the retroviral LTR. It also includes a discussion of the regulation of the retroviral LTR in the monocyte-macrophage lineage during virus infection of the bone marrow, the peripheral blood, the lymphoid tissues, and end organs such as the brain. The impact of genetic variation on LTR-directed transcription during the course of retrovirus disease is also reviewed.
Collapse
Affiliation(s)
- Evelyn M Kilareski
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Sonia Shah
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Michael R Nonnemacher
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
42
|
Reeves RK, Wei Q, Stallworth J, Fultz PN. Systemic dendritic cell mobilization associated with administration of FLT3 ligand to SIV- and SHIV-infected macaques. AIDS Res Hum Retroviruses 2009; 25:1313-28. [PMID: 20001520 DOI: 10.1089/aid.2009.0053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reports indicate that myeloid and plasmacytoid dendritic cells (mDCs and pDCs), which are key effector cells in host innate immune responses, can be infected with HIV-1 and are reduced in number and function during the chronic phase of HIV disease. Furthermore, it was recently demonstrated that a sustained loss of mDCs and pDCs occurs in SIV-infected macaques. Since loss of functional DC populations might impair innate immune responses to opportunistic microorganisms and neoplastic cells, we explored whether inoculation of naive and SIV- or SHIV-infected pigtailed macaques with the hematopoietic cytokine FLT3-ligand (FLT3-L) would expand the number of mDCs and pDCs in vivo. After the macaques received supraphysiologic doses of FLT3-L, mDCs, pDCs, and monocytes increased up to 45-fold in blood, lymph nodes, and bone marrow (BM), with DC expansion in the BM preceding mobilization in blood and lymphoid tissues. FLT3-L also increased serum levels of IL-12, at least transiently, and elicited higher surface expression of HLA-DR and the activation markers CD25 and CD69 on NK and T cells. During and after treatment of infected animals, APCs increased in number and were activated; however, CD4(+) T cell numbers, virion RNA, and anti-SIV/SHIV antibody titers remained relatively stable, suggesting that FLT3-L might be a safe modality to expand DC populations and provide therapeutic benefit during chronic lentivirus infections.
Collapse
Affiliation(s)
- R. Keith Reeves
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294
| | - Qing Wei
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294
| | - Jackie Stallworth
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294
| | - Patricia N. Fultz
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294
| |
Collapse
|
43
|
Abstract
A complex relationship exists between HIV and its cellular targets. The lethal effect of HIV on circulating CD4(+) helper T lymphocytes parallels the degree of the infected individual's immunodeficiency and ultimately the transition to AIDS and death. However, as with other members of the Lentivirus family of retroviruses, the ubiquitous, mobile macrophage is also a prime target for HIV infection, and apparently, in most instances, is the initial infected cell, since most people are infected with a CCR5 chemokine-tropic virus. Unlike the lymphocyte, the macrophage is apparently a more stable viral host, capable of a long infected life as an HIV reservoir and a chronic source of infectious virus. Published in vitro studies have indicated that whereas lymphocytes replicate HIV solely on their plasma membrane, macrophages have been envisaged to predominantly replicate HIV within cytoplasmic vacuoles, and thus have been likened to a "Trojan horse," when it comes to the immune system. Recent studies have revealed an ingenious way by which the cultured monocyte-derived macrophage (MDM) replicates HIV and releases it into the medium. The key macrophage organelle appears to be what is alternatively referred to as the "late endosome" (LE) or the "multivesicular body" (MVB), which have a short and a long history, respectively. Proof of the association is that chemically, LE/MVB and their vesicles possess several pathopneumonic membrane markers (e.g., CD63) that are found on released HIV particles. The hypothesis is that HIV usurps this vesicle-forming mechanism and employs it for its own replication. Release of the intravacuolar virus from the cell is hypothesized to occur by a process referred to as exocytosis, resulting from the fusion of virus-laden LE/MVB with the plasma membrane of the macrophage. Interestingly, LE/MVB are also involved in the infection stage of MDM by HIV. Close review of the literature reveals that along with the Golgi, which contributes to the formation of LE/MVB, the MVB was first identified as a site of HIV replication by macrophages many years ago, but the full implication of this observation was not appreciated at the time. As in many other areas of HIV research, what has been totally lacking is an in vivo confirmation of the in vitro phenomenon. Herein, the ultrastructure of HIV interaction with cells in vitro and in vivo is explored. It is shown that while HIV is regularly found in LE/MVB in vitro, it is infrequently the case in vivo. Therefore, the results challenge the "Trojan horse" concept.
Collapse
Affiliation(s)
- Jan Marc Orenstein
- Department of Pathology, George Washington University Medical Center, Washington, DC 20037-2336, USA.
| |
Collapse
|
44
|
Sloand EM, Klein HG, Banks SM, Vareldzis B, Merritt S, Pierce P. Epidemiology of thrombocytopenia in HIV inlection. Eur J Haematol 2009; 48:168-72. [PMID: 1348479 DOI: 10.1111/j.1600-0609.1992.tb00591.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Thrombocytopenia is a known complication of human immunodeficiency virus Type-1 (HIV-1) infection, and more data need to be collected on its frequency, severity, and clinical sequelae. We determined the frequency of thrombocytopenia and its relationship to other HIV infection characteristics from a review of records of 1004 HIV-infected patients attending two outpatient clinics in Washington, D.C. The self-reported sources of HIV-1 exposure were male homosexual activity (68%), bisexual activity (10%), heterosexual activity (6%), and intravenous drug use (15%). Fifty-nine percent of the individuals were white, 37% were black and 94% were male. Fifteen percent had AIDS. Thrombocytopenia occurred more frequently in subjects with AIDS (21.2%) than in HIV-infected individuals who did not fit clinical criteria for AIDS (9.2%) (p less than 0.001). Patients with few CD4-positive cells and an advanced stage of disease were more likely to have low platelet counts: 30% with an absolute CD4 cell count lower than 200/mm3 vs 8% with CD4 counts between 200 and 500 (p less than 0.00001), and 18.5% with Stage IV disease compared to 7.6% in Stage II (p less than 0.001) had platelet counts less than 150,000/mm3. Thrombocytopenia was more frequent in white males and older subjects. Although subjects infected by heterosexual exposure had a lower frequency of thrombocytopenia, intravenous drug users and homosexual men exhibited similar frequencies of thrombocytopenia. Of all subjects with platelet counts less than 50,000/mm3, 40% reported bleeding and 1 died of an intracranial hemorrhage. Thrombocytopenia occurs frequently in HIV-infected people, primarily in those with AIDS, low CD4 cell numbers, and advanced stages of diseases.
Collapse
Affiliation(s)
- E M Sloand
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
45
|
HIV-1 infection of bone marrow hematopoietic progenitor cells and their role in trafficking and viral dissemination. PLoS Pathog 2008; 4:e1000215. [PMID: 19112504 PMCID: PMC2603331 DOI: 10.1371/journal.ppat.1000215] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Patients with HIV-1 often present with a wide range of hematopoietic abnormalities, some of which may be due to the presence of opportunistic infections and to therapeutic drug treatments. However, many of these abnormalities are directly related to HIV-1 replication in the bone marrow (BM). Although the most primitive hematopoietic progenitor cells (HPCs) are resistant to HIV-1 infection, once these cells begin to differentiate and become committed HPCs they become increasingly susceptible to HIV-1 infection and permissive to viral gene expression and infectious virus production. Trafficking of BM-derived HIV-1-infected monocytes has been shown to be involved in the dissemination of HIV-1 into the central nervous system (CNS), and it is possible that HIV-1 replication in the BM and infection of BM HPCs may be involved in the early steps leading to the development of HIV-1-associated dementia (HAD) as an end result of this cellular trafficking process. In addition, the growth and development of HPCs in the BM of patients with HIV-1 has also been shown to be impaired due to the presence of HIV-1 proteins and changes in the cytokine milieu, potentially leading to an altered maturation process and to increased cell death within one or more BM cell lineages. Changes in the growth and differentiation process of HPCs may be involved in the generation of monocyte populations that are more susceptible and/or permissive to HIV-1, and have potentially altered trafficking profiles to several organs, including the CNS. A monocyte subpopulation with these features has been shown to expand during the course of HIV-1 disease, particularly in HAD patients, and is characterized by low CD14 expression and the presence of cell surface CD16.
Collapse
|
46
|
Abstract
A major obstacle in human immunodeficiency virus type 1 (HIV-1) eradication is the ability of the virus to remain latent in a subpopulation of the cells it infects. Latently infected cells can escape the viral immune response and persist for long periods of time, despite the presence of successful highly active antiretroviral therapy (HAART). Given the appropriate stimulus, latently infected cells can reactivate and start producing infectious virions. The susceptibility of these cell populations to HIV-1, their life span, their proliferative capacity, and their ability to periodically produce infectious virus subsequent to alterations in cellular physiology and/or immunologic controls are critical issues which determine the contribution of these cells to viral persistence. Memory CD4+ T cells due to the long life span, which may be several years, and their ability to reactivate upon encounter with their cognate antigen or other stimulation, are considered a critical reservoir for maintenance of latent HIV-1 proviral DNA. Cells of the monocyte-macrophage lineage, which originate in the bone marrow (BM), are of particular importance in HIV-1 persistence due to their ability to cross the blood-brain barrier (BBB) and spread HIV-1 infection in the immunoprivileged central nervous system (CNS). Hematopoietic progenitor cells (HPCs) are also a potential HIV-1 reservoir, as several studies have shown that CD34+ HPCs carrying proviral DNA can be found in vivo in a subpopulation of HIV-1-infected patients. The ability of HPCs to proliferate and potentially generate clonal populations of infected cells of the monocyte-macrophage lineage may be crucial in HIV-1 dissemination. The contribution of these and other cell populations in HIV-1 persistence, as well as the possible strategies to eliminate latently infected cells are critically examined in this review.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yujie Liu
- Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Wickramasinghe SN, Beatty C, Shiels S, Tomlinson DR, Harris JR. Ultrastructure of the bone marrow in HIV infection: evidence of dyshaemopoiesis and stromal cell damage. CLINICAL AND LABORATORY HAEMATOLOGY 2008; 14:213-29. [PMID: 1451401 DOI: 10.1111/j.1365-2257.1992.tb00368.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ultrastructure of bone marrow cells was studied in nine patients infected with the human immunodeficiency virus (HIV). Two of these (cases 1 and 3) were thrombocytopenic, had never suffered from opportunistic infections and had not received any drugs prior to the time of study. A number of ultrastructural abnormalities were found in a variable proportion of the affected cell types in all nine patients. These were: (a) an increased prevalence of multivesicular bodies within several cell types and of abnormalities of the nuclear membrane in neutrophil granulocytes, (b) an increase in the size of the Golgi apparatus and in the quantity of endoplasmic reticulum in neutrophil granulocytes, (c) dysplastic features, including multiple long intranuclear clefts and large cytoplasmic vacuoles in some erythroblasts and (d) vacuolation of the plasma cells. Other abnormalities seen in a proportion of the patients were: (a) cylindrical confronting cisternae (CCC) in some of the lymphocytes, macrophages (phagocytic reticular cells), non-phagocytic reticular cells (including adventitial cells) and endothelial cells of marrow sinusoids, (b) tubuloreticular structures (TRS) in some lymphocytes, plasma cells, monocytes and endothelial cells and (c) precipitates of protein within occasional erythroblasts and marrow reticulocytes. There was also a striking and hitherto undescribed abnormality of the structure of the nucleus in intersinusoidal and perisinusoidal non-phagocytic reticular cells. This was seen in six patients, including case 3, and was characterized by the extensive detachment of masses of abnormally electron-dense heterochromatin from the nuclear membrane, the presence of a uniformly thin layer of electron-dense material at the inner surface of the areas of nuclear membrane denuded of heterochromatin masses and an abnormal electron lucency of areas containing euchromatin. The CCC and TRS were found in the six patients with the lowest number of circulating CD4-positive T cells. The precipitation of protein within erythroid cells may have been caused by the oxidant effect of dapsone or high doses of co-trimoxazole. The abnormalities in the stromal cells and in particular the nuclear changes seen in the non-phagocytic reticular cells support the possibility that one of the mechanisms underlying the cytopenia in patients infected with HIV may be a disturbance of the microenvironmental regulation of haemopoiesis.
Collapse
Affiliation(s)
- S N Wickramasinghe
- Department of Haematology, St Mary's Hospital Medical School, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | |
Collapse
|
48
|
Xu Y, Zhu H, Wilcox CK, van't Wout A, Andrus T, Llewellyn N, Stamatatos L, Mullins JI, Corey L, Zhu T. Blood monocytes harbor HIV type 1 strains with diversified phenotypes including macrophage-specific CCR5 virus. J Infect Dis 2008; 197:309-18. [PMID: 18173363 DOI: 10.1086/524847] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Recent studies have shown that blood monocytes harbor human immunodeficiency virus type 1 (HIV-1) variants that are genotypically distinguishable from those in CD4(+) T cells. However, the biological function of monocyte-derived HIV-1 remains unclear. METHODS Using pseudovirus assay, we analyzed the phenotype conferred by monocyte-derived HIV-1 envelopes from 8 patients. RESULTS All pseudoviruses carrying monocyte-derived HIV-1 envelopes used CCR5; however, their use of additional coreceptors delineated 4 phenotypes in which viruses used (1) CCR5 only, (2) CCR5 and CXCR4, (3) CCR3 and CCR5, or (4) multiple coreceptors, including CCR1, CCR3, GPR15, CCR5, and CXCR4. More importantly, we observed 2 distinct cell tropism phenotypes for pseudoviruses carrying monocyte-derived envelopes: (1) monocyte-derived, macrophage-specific R5 (MDMS-R5) virus that, using CCR5 only, could infect monocyte-derived macrophages (MDMs) but not CD4(+) T cells and (2) dual tropic virus that infected both MDMs and primary CD4(+) T cells. We found blood monocytes harboring viruses with multiple phenotypes as early as 25 days before seroconversion and as late as 9 years after seroconversion. CONCLUSIONS These data suggest that HIV-1 circulating in blood monocytes represents diverse HIV-1 with multiple phenotypes and that MDMS-R5 viruses may play an important role in infection with and persistence of HIV-1 within the monocyte/macrophage lineage.
Collapse
Affiliation(s)
- Younong Xu
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98195-8070, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Alexaki A, Quiterio SJ, Liu Y, Irish B, Kilareski E, Nonnemacher MR, Wigdahl B. PMA-induced differentiation of a bone marrow progenitor cell line activates HIV-1 LTR-driven transcription. DNA Cell Biol 2007; 26:387-94. [PMID: 17570762 DOI: 10.1089/dna.2006.0542] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cells of the monocyte-macrophage lineage play an important role in human immunodeficiency virus type 1 (HIV-1)-associated disease. Infected myeloid precursor cells of the bone marrow are thought to be a viral reservoir that may repopulate the peripheral blood, central nervous system (CNS), and other organ systems throughout the course of disease. To model select aspects of HIV-1 infection of the bone marrow compartment in vitro, the erythro-myeloid precursor cell line, TF-1, was used. Phorbol 12-myristate 13-acetate (PMA) was found to induce the TF-1 cell line to differentiate through the myeloid lineage and become activated, as demonstrated by cellular morphologic changes and surface expression of differentiation and activation markers. Herein we demonstrate that HIV-1 long terminal repeats (LTRs) from T-, M-, and dual-tropic molecular clones have similar basal LTR activity in TF-1 cells and that differentiation of these cells by PMA resulted in increased LTR activity. Examination of specific cis-acting elements involved in basal and PMA-induced LTR activity demonstrated that the transcription factor families nuclear factor-kappa B (NF-kappaB) and specificity protein (Sp) contributed to the LTR activity of TF-1 cells, the Sp family being the most critical. These studies elucidate the impact of infected bone marrow monocytic cell differentiation on LTR activity and its potential impact on HIV-1-associated disease.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Costantini A, Giuliodoro S, Mancini S, Butini L, Regnery CM, Silvestri G, Greco F, Leoni P, Montroni M. Impaired in-vitro growth of megakaryocytic colonies derived from CD34 cells of HIV-1-infected patients with active viral replication. AIDS 2006; 20:1713-20. [PMID: 16931935 DOI: 10.1097/01.aids.0000242817.88086.8c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To address the mechanisms of the thrombocytopoietic dysfunction that may follow HIV infection and to compare peripheral blood and bone marrow as sources of CD34 progenitor cells in HIV-infected patients. METHODS The study used CD34 progenitor cells from 20 previously untreated HIV-infected individuals, 20 HIV-infected individuals treated with antiretroviral therapy and a control group of 20 HIV-uninfected healthy individuals to examine in-vitro megakaryocytopoiesis. There were no hematological abnormalities at baseline in the study groups. CD34 progenitor cells derived from peripheral blood and bone marrow were purified and cultured in medium containing thrombopoietin, interleukin-3, and interleukin-6. HIV-1 plasma viral load was determined by b-DNA technique. Expression of receptors for thrombopoietin, interleukin-3, and interleukin-6 was assessed on CD34 cells by flow cytometry, and numbers of receptors per single cell were calculated by Quanticalc software. RESULTS Growth of megakaryocytopoietic colony-forming units (CFU-MK) were impaired in untreated HIV-infected individuals despite normal platelet counts. Viral load levels inversely correlate with CFU-MK growth and platelet counts. Antiretroviral drug-treated individuals showed normal megakaryocyte development. Similar results were obtained whether the CD34 progenitor cells derived from peripheral blood or bone marrow. CONCLUSIONS These findings suggest that megakaryocyte differentiation is impaired before the onset of overt thrombocytopenia in HIV-infected patients and provide evidence for a direct link between viral replication and perturbed megakaryocytopoiesis, which appears to be prevented and/or restored by antiretroviral therapy. The results indicate that peripheral blood represents a suitable source of CD34 hematopoietic progenitors for studies of megakaryocytopoiesis in HIV disease.
Collapse
Affiliation(s)
- Andrea Costantini
- Department of Internal Medicine, Clinical Immunology, Allergy and Respiratory Diseases, University Hospital Group, via Conca n.71, 60020 Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|