1
|
Sprenger A, Carr HS, Ulu A, Frost JA. Src stimulates Abl-dependent phosphorylation of the guanine exchange factor Net1A to promote its cytosolic localization and cell motility. J Biol Chem 2023; 299:104887. [PMID: 37271338 PMCID: PMC10404680 DOI: 10.1016/j.jbc.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
The neuroepithelial cell transforming gene 1 (Net1) is a guanine nucleotide exchange factor for the small GTPase RhoA that promotes cancer cell motility and metastasis. Two isoforms of Net1 exist, Net1 and Net1A, both of which are sequestered in the nucleus in quiescent cells to prevent aberrant RhoA activation. Many cell motility stimuli drive cytosolic relocalization of Net1A, but mechanisms controlling this event are not fully understood. Here, we demonstrate that epithelial growth factor stimulates protein kinase Src- and Abl1-dependent phosphorylation of Net1A to promote its cytosolic localization. We show that Abl1 efficiently phosphorylates Net1A on Y373, and that phenylalanine substitution of Y373 prevents Net1A cytosolic localization. Furthermore, we found that Abl1-driven cytosolic localization of Net1A does not require S52, which is a phosphorylation site of a different kinase, c-Jun N-terminal kinase, that inhibits nuclear import of Net1A. However, we did find that MKK7-stimulated cytosolic localization of Net1A does require Y373. We also demonstrate that aspartate substitution at Y373 is sufficient to promote Net1A cytosolic accumulation, and expression of Net1A Y373D potentiates epithelial growth factor-stimulated RhoA activation, downstream myosin light chain 2 phosphorylation, and F-actin accumulation. Moreover, we show that expression of Net1A Y373D in breast cancer cells also significantly increases cell motility and Matrigel invasion. Finally, we show that Net1A is required for Abl1-stimulated cell motility, which is rescued by expression of Net1A Y373D, but not Net1A Y373F. Taken together, this work demonstrates a novel mechanism controlling Net1A subcellular localization to regulate RhoA-dependent cell motility and invasion.
Collapse
Affiliation(s)
- Ashabari Sprenger
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Heather S Carr
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Arzu Ulu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
2
|
Shalom B, Salaymeh Y, Risling M, Katzav S. Unraveling the Oncogenic Potential of VAV1 in Human Cancer: Lessons from Mouse Models. Cells 2023; 12:cells12091276. [PMID: 37174676 PMCID: PMC10177506 DOI: 10.3390/cells12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
VAV1 is a hematopoietic signal transducer that possesses a GDP/GTP nucleotide exchange factor (GEF) that is tightly regulated by tyrosine phosphorylation, along with adapter protein domains, such as SH2 and SH3. Research on VAV1 has advanced over the years since its discovery as an in vitro activated oncogene in an NIH3T3 screen for oncogenes. Although the oncogenic form of VAV1 first identified in the screen has not been detected in human clinical tumors, its wild-type and mutant forms have been implicated in mammalian malignancies of various tissue origins, as well as those of the hematopoietic system. This review article addresses the activity of human VAV1 as an overexpressed or mutated gene and also describes the differences in the distribution of VAV1 mutations in the hematopoietic system and in other tissues. The knowledge accumulated thus far from GEMMs expressing VAV1 is described, with the conclusion that GEMMs of both wild-type VAV1 and mutant VAV1 do not form tumors, yet these will be generated when additional molecular insults, such as loss of p53 or KRAS mutation, occur.
Collapse
Affiliation(s)
- Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Matan Risling
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Medical Corps, Israel Defense Forces, Tel-Hashomer 02149, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
3
|
Nuclear Vav3 is required for polycomb repression complex-1 activity in B-cell lymphoblastic leukemogenesis. Nat Commun 2022; 13:3056. [PMID: 35650206 PMCID: PMC9160250 DOI: 10.1038/s41467-022-30651-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Acute B-cell lymphoblastic leukemia (B-ALL) results from oligo-clonal evolution of B-cell progenitors endowed with initiating and propagating leukemia properties. The activation of both the Rac guanine nucleotide exchange factor (Rac GEF) Vav3 and Rac GTPases is required for leukemogenesis mediated by the oncogenic fusion protein BCR-ABL. Vav3 expression becomes predominantly nuclear upon expression of BCR-ABL signature. In the nucleus, Vav3 interacts with BCR-ABL, Rac, and the polycomb repression complex (PRC) proteins Bmi1, Ring1b and Ezh2. The GEF activity of Vav3 is required for the proliferation, Bmi1-dependent B-cell progenitor self-renewal, nuclear Rac activation, protein interaction with Bmi1, mono-ubiquitination of H2A(K119) (H2AK119Ub) and repression of PRC-1 (PRC1) downstream target loci, of leukemic B-cell progenitors. Vav3 deficiency results in de-repression of negative regulators of cell proliferation and repression of oncogenic transcriptional factors. Mechanistically, we show that Vav3 prevents the Phlpp2-sensitive and Akt (S473)-dependent phosphorylation of Bmi1 on the regulatory residue S314 that, in turn, promotes the transcriptional factor reprogramming of leukemic B-cell progenitors. These results highlight the importance of non-canonical nuclear Rho GTPase signaling in leukemogenesis. Ph+ and Ph-like B-ALL remain poor prognosis leukemias. VAV3, a guanine nucleotide exchange factor, is activated and overexpressed in these leukemias. Here the authors reveal that leukemic VAV3 is predominantly nuclear. Nuclear VAV3, through its guanine nucleotide exchange factor and its effector nuclear RAC2, controls the repressive transcriptional activity of the polycomb repression complex-1 via nuclear AKT/PHLPP2 regulated BMI1.
Collapse
|
4
|
Rodriguez Y Baena A, Rajendiran S, Manso BA, Krietsch J, Boyer SW, Kirschmann J, Forsberg EC. New transgenic mouse models enabling pan-hematopoietic or selective hematopoietic stem cell depletion in vivo. Sci Rep 2022; 12:3156. [PMID: 35210475 PMCID: PMC8873235 DOI: 10.1038/s41598-022-07041-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell (HSC) multipotency and self-renewal are typically defined through serial transplantation experiments. Host conditioning is necessary for robust HSC engraftment, likely by reducing immune-mediated rejection and by clearing limited HSC niche space. Because irradiation of the recipient mouse is non-specific and broadly damaging, there is a need to develop alternative models to study HSC performance at steady-state and in the absence of radiation-induced stress. We have generated and characterized two new mouse models where either all hematopoietic cells or only HSCs can be specifically induced to die in vivo or in vitro. Hematopoietic-specific Vav1-mediated expression of a loxP-flanked diphtheria-toxin receptor (DTR) renders all hematopoietic cells sensitive to diphtheria toxin (DT) in “Vav-DTR” mice. Crossing these mice to Flk2-Cre mice results in “HSC-DTR” mice which exhibit HSC-selective DT sensitivity. We demonstrate robust, rapid, and highly selective cell ablation in these models. These new mouse models provide a platform to test whether HSCs are required for long-term hematopoiesis in vivo, for understanding the mechanisms regulating HSC engraftment, and interrogating in vivo hematopoietic differentiation pathways and mechanisms regulating hematopoietic homeostasis.
Collapse
Affiliation(s)
- Alessandra Rodriguez Y Baena
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Smrithi Rajendiran
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Bryce A Manso
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jana Krietsch
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Scott W Boyer
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jessica Kirschmann
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA. .,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
5
|
Robles-Valero J, Fernández-Nevado L, Lorenzo-Martín LF, Cuadrado M, Fernández-Pisonero I, Rodríguez-Fdez S, Astorga-Simón EN, Abad A, Caloto R, Bustelo XR. Cancer-associated mutations in VAV1 trigger variegated signaling outputs and T-cell lymphomagenesis. EMBO J 2021; 40:e108125. [PMID: 34617326 PMCID: PMC8591544 DOI: 10.15252/embj.2021108125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Mutations in VAV1, a gene that encodes a multifunctional protein important for lymphocytes, are found at different frequencies in peripheral T‐cell lymphoma (PTCL), non‐small cell lung cancer, and other tumors. However, their pathobiological significance remains unsettled. After cataloguing 51 cancer‐associated VAV1 mutations, we show here that they can be classified in five subtypes according to functional impact on the three main VAV1 signaling branches, GEF‐dependent activation of RAC1, GEF‐independent adaptor‐like, and tumor suppressor functions. These mutations target new and previously established regulatory layers of the protein, leading to quantitative and qualitative changes in VAV1 signaling output. We also demonstrate that the most frequent VAV1 mutant subtype drives PTCL formation in mice. This process requires the concurrent engagement of two downstream signaling branches that promote the chronic activation and transformation of follicular helper T cells. Collectively, these data reveal the genetic constraints associated with the lymphomagenic potential of VAV1 mutant subsets, similarities with other PTCL driver genes, and potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Javier Robles-Valero
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Lucía Fernández-Nevado
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - L Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Myriam Cuadrado
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Isabel Fernández-Pisonero
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Elsa N Astorga-Simón
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain
| | - Antonio Abad
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Rubén Caloto
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Xosé R Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Veluthakal R, Thurmond DC. Emerging Roles of Small GTPases in Islet β-Cell Function. Cells 2021; 10:1503. [PMID: 34203728 PMCID: PMC8232272 DOI: 10.3390/cells10061503] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Several small guanosine triphosphatases (GTPases) from the Ras protein superfamily regulate glucose-stimulated insulin secretion in the pancreatic islet β-cell. The Rho family GTPases Cdc42 and Rac1 are primarily involved in relaying key signals in several cellular functions, including vesicle trafficking, plasma membrane homeostasis, and cytoskeletal dynamics. They orchestrate specific changes at each spatiotemporal region within the β-cell by coordinating with signal transducers, guanine nucleotide exchange factors (GEFs), GTPase-activating factors (GAPs), and their effectors. The Arf family of small GTPases is involved in vesicular trafficking (exocytosis and endocytosis) and actin cytoskeletal dynamics. Rab-GTPases regulate pre-exocytotic and late endocytic membrane trafficking events in β-cells. Several additional functions for small GTPases include regulating transcription factor activity and mitochondrial dynamics. Importantly, defects in several of these GTPases have been found associated with type 2 diabetes (T2D) etiology. The purpose of this review is to systematically denote the identities and molecular mechanistic steps in the glucose-stimulated insulin secretion pathway that leads to the normal release of insulin. We will also note newly identified defects in these GTPases and their corresponding regulatory factors (e.g., GDP dissociation inhibitors (GDIs), GEFs, and GAPs) in the pancreatic β-cells, which contribute to the dysregulation of metabolism and the development of T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Vav1: A Dr. Jekyll and Mr. Hyde protein--good for the hematopoietic system, bad for cancer. Oncotarget 2016; 6:28731-42. [PMID: 26353933 PMCID: PMC4745688 DOI: 10.18632/oncotarget.5086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/07/2015] [Indexed: 01/10/2023] Open
Abstract
Many deregulated signal transducer proteins are involved in various cancers at numerous stages of tumor development. One of these, Vav1, is normally expressed exclusively in the hematopoietic system, where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. Vav was first identified in an NIH3T3 screen for oncogenes. Although the oncogenic form of Vav1 identified in the screen has not been detected in clinical human tumors, its wild-type form has recently been implicated in mammalian malignancies, including neuroblastoma, melanoma, pancreatic, lung and breast cancers, and B-cell chronic lymphocytic leukemia. In addition, it was recently identified as a mutated gene in human cancers of various origins. However, the activity and contribution to cancer of these Vav1 mutants is still unclear. This review addresses the physiological function of wild-type Vav1 and its activity as an oncogene in human cancer. It also discusses the novel mutations identified in Vav1 in various cancers and their potential contribution to cancer development as oncogenes or tumor suppressor genes.
Collapse
|
8
|
Barreira M, Fabbiano S, Couceiro JR, Torreira E, Martínez-Torrecuadrada JL, Montoya G, Llorca O, Bustelo XR. The C-terminal SH3 domain contributes to the intramolecular inhibition of Vav family proteins. Sci Signal 2014; 7:ra35. [PMID: 24736456 DOI: 10.1126/scisignal.2004993] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vav proteins are phosphorylation-dependent guanine nucleotide exchange factors (GEFs) that catalyze the activation of members of the Rho family of guanosine triphosphatases (GTPases). The current regulatory model holds that the nonphosphorylated, catalytically inactive state of these GEFs is maintained by intramolecular interactions among the amino-terminal domains and the central catalytic core, which block the binding of Vav proteins to GTPases. We showed that this autoinhibition is mechanistically more complex, also involving the bivalent association of the carboxyl-terminal Src homology 3 (SH3) region of Vav with its catalytic and pleckstrin homology (PH) domains. Such interactions occurred through proline-rich region-independent mechanisms. Full release from this double-locked state required synergistic weakening effects from multiple phosphorylated tyrosine residues, thus providing an optimized system to generate gradients of Vav GEF activity depending on upstream signaling inputs. This mechanism is shared by mammalian and Drosophila melanogaster Vav proteins, suggesting that it may be a common regulatory feature for this protein family.
Collapse
Affiliation(s)
- María Barreira
- 1Centro de Investigación del Cáncer, Campus Unamuno, E37007 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chihara K, Kimura Y, Honjoh C, Yamauchi S, Takeuchi K, Sada K. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells. Exp Cell Res 2014; 322:99-107. [PMID: 24406398 DOI: 10.1016/j.yexcr.2013.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/25/2013] [Accepted: 12/28/2013] [Indexed: 11/25/2022]
Abstract
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr(174), Tyr(183) and Tyr(446) in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr(183) and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr(174), Tyr(183) and Tyr(426) of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr(426) is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr(426) was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr(426) following BCR stimulation.
Collapse
Affiliation(s)
- Kazuyasu Chihara
- Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan
| | - Yukihiro Kimura
- Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193, Japan; Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Chisato Honjoh
- Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193, Japan; Third Department of Internal Medicine, Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Shota Yamauchi
- Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan
| | - Kenji Takeuchi
- Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan
| | - Kiyonao Sada
- Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan.
| |
Collapse
|
10
|
Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal 2010; 23:969-79. [PMID: 21044680 DOI: 10.1016/j.cellsig.2010.10.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/23/2010] [Indexed: 12/12/2022]
Abstract
Rho guanosine triphosphatases (GTPases) are a family of small proteins which function as molecular switches in a variety of signaling pathways following stimulation of cell surface receptors. RhoGTPases regulate numerous cellular processes including cytoskeleton organization, gene transcription, cell proliferation, migration, growth and cell survival. Because of their central role in regulating processes that are dysregulated in cancer, it seems reasonable that defects in the RhoGTPase pathway may be involved in the development of cancer. RhoGTPase activity is regulated by a number of protein families: guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide-dissociation inhibitors (GDIs). This review discusses the participation of RhoGTPases and their regulators, especially GEFs in human cancers. In particular, we focus on the involvement of the RhoGTPase GEF, Vav1, a hematopoietic specific signal transducer which is involved in human neuroblastoma, pancreatic ductal carcinoma and lung cancer. Finally, we summarize recent advances in the design and application of a number of molecules that specifically target individual RhoGTPases or their regulators or effectors, and discuss their potential for cancer therapy.
Collapse
|
11
|
Kim DM, Ko BS, Ju JW, Cho SH, Yang SJ, Yeom YI, Kim TS, Won Y, Kim IC. Gene expression profiling in mouse liver infected with Clonorchis sinensis metacercariae. Parasitol Res 2009; 106:269-78. [PMID: 19902254 DOI: 10.1007/s00436-009-1662-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/19/2009] [Indexed: 01/25/2023]
Abstract
Clonorchis sinensis, the parasite that causes clonorchiasis, is endemic in many Asian countries, and infection with the organism drives changes in the liver tissues of the host. However, information regarding the molecular events in clonorchiasis remains limited, and little is currently known about host-pathogen interactions in clonorchiasis. In this study, we assessed the gene expression profiles in mice livers via DNA microarray analysis 1, 2, 4, and 6 weeks after induced metacercariae infection. Functional clustering of the gene expression profile showed that the immunity-involved genes were induced in the livers of the mice at the early stage of metacercariae infection, whereas immune responses were reduced in the 6-week liver tissues after infection in which the metacercariae became adult flukes. Many genes involved in fatty acid metabolism, including Peci, Cyp4a10, Acat1, Ehhadh, Gcdh, and Cyp2 family were downregulated in the infected livers. On the other hand, the liver tissues infected with the parasite expressed Wnt signaling molecules such as Wnt7b, Fzd6, and Pdgfrb and cell cycle-regulating genes including cyclin-D1, Cdca3, and Bcl3. These investigations constitute an excellent starting point for increased understanding of the molecular mechanisms underlying host-pathogen interaction during the development of C. sinensis in the host liver.
Collapse
Affiliation(s)
- Dong Min Kim
- BK21 Ubiquitous Information Appliances, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sharma S, Orlowski G, Song W. Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:329-39. [PMID: 19109164 PMCID: PMC2855895 DOI: 10.4049/jimmunol.182.1.329] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The high efficiency of Ag processing and presentation by B cells requires Ag-induced BCR signaling and actin cytoskeleton reorganization, although the underlying mechanism for such requirements remains elusive. In this study, we identify Bruton's tyrosine kinase (Btk) as a linker connecting BCR signaling to actin dynamics and the Ag transport pathway. Using xid mice and a Btk inhibitor, we show that BCR engagement increases actin polymerization and Wiskott-Aldrich syndrome protein activation in a Btk-dependent manner. Concurrently, we observe Btk-dependent increases in the levels of phosphatidylinositide-4,5-bisphosphate and phosphorylated Vav upon BCR engagement. The rate of BCR internalization, its movement to late endosomes, and efficiency of BCR-mediated Ag processing and presentation are significantly reduced in both xid and Btk inhibitor-treated B cells. Thus, Btk regulates actin dynamics and Ag transport by activating Wiskott-Aldrich syndrome protein via Vav and phosphatidylinositides. This represents a novel mechanism by which BCR-mediated signaling regulates BCR-mediated Ag processing and presentation.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Gregory Orlowski
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
13
|
Konno R, Fujiwara H, Netsu S, Odagiri K, Shimane M, Nomura H, Suzuki M. Gene expression profiling of the rat endometriosis model. Am J Reprod Immunol 2007; 58:330-43. [PMID: 17845203 DOI: 10.1111/j.1600-0897.2007.00507.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM To investigate the molecular mechanism of endometriosis, gene expression profiling was analyzed in a rat endometriosis model. METHOD OF STUDY An endometriosis model was induced by uterine autotransplantation in the peritoneal cavity on a female-SD rat (8 weeks old). As control samples, the normal uterine tissues were used. The gene expression was compared between endometriotic lesions and normal uterine tissues by cDNA microarray analysis, quantitative real time RT-PCR and immunohistochemistry. RESULTS The expression of 71 genes was upregulated and that of 45 genes was downregulated in the endometriotic lesions compared to normal uterine tissues. The upregulated genes included genes encoding cytokines, chemokines, growth factors and cell adhesion molecules. The levels of transcripts of osteopontin, Lyn, Vav1, Runx1, and l-selectin in the endometriotic lesions were 130, 10, 10, 12 and 46-fold higher than the respective levels in the eutopic endometrial samples. CONCLUSION The results suggest that osteopontin, Lyn, Vav1, Runx1, and l-selectin play important roles in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Ryo Konno
- Department of Gynecology, Omiya Medical Center Jichi Medical University, Amanuma-cho, Omiya, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Katzav S. Flesh and blood: The story of Vav1, a gene that signals in hematopoietic cells but can be transforming in human malignancies. Cancer Lett 2007; 255:241-54. [PMID: 17590270 DOI: 10.1016/j.canlet.2007.04.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 04/30/2007] [Accepted: 04/30/2007] [Indexed: 01/08/2023]
Abstract
Cancer results from the interaction of multiple aberrations including activation of dominant oncogenes and upregulation of signal transduction pathways. Identification of the genes involved in malignant transformation is a pre-requisite for understanding cancer and improving its diagnosis and treatment. Quite a few of the genes that have been implicated in cancer are mutant or aberrantly expressed versions of genes that are important mediators of the normal growth that occurs during development. An important example of this is Vav1, a cytoplasmic signal transducer protein initially identified as an oncogene. Physiological expression of Vav1 is restricted to the hematopoietic system, where its best-known function is as a GDP/GTP nucleotide exchange factor for Rho/Rac GTPases, an activity strictly controlled by tyrosine phosphorylation. Vav1 was shown to regulate cytoskeletal rearrangement during activation of hematopoietic cells. Vav1 can also mediate other cellular functions including activation of the JNK, ERK, Ras, NF-kB, and NFAT pathways, in addition to association with numerous adapter proteins such as Shc, NCK, SLP-76, GRB2, and Crk. Although the oncogenic form of Vav1 has not been detected in clinical human tumors, its wild-type form has recently been implicated in mammalian malignancies such as neuroblastoma, melanoma, pancreatic tumors and B-cell chronic lymphocytic leukemia. This review addresses the physiological function of wild-type Vav1, its mode of activation as an oncogene, and its emerging role as a transforming protein in human cancer.
Collapse
Affiliation(s)
- Shulamit Katzav
- The Hubert H. Humphrey center for Experimental Medicine & Cancer Research, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
15
|
Norman KR, Fazzio RT, Mellem JE, Espelt MV, Strange K, Beckerle MC, Maricq AV. The Rho/Rac-family guanine nucleotide exchange factor VAV-1 regulates rhythmic behaviors in C. elegans. Cell 2005; 123:119-32. [PMID: 16213217 DOI: 10.1016/j.cell.2005.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 06/04/2005] [Accepted: 08/05/2005] [Indexed: 11/27/2022]
Abstract
Rhythmic behaviors are a fundamental feature of all organisms. Pharyngeal pumping, the defecation cycle, and gonadal-sheath-cell contractions are three well-characterized rhythmic behaviors in the nematode C. elegans. The periodicities of the rhythms range from subsecond (pharynx) to seconds (gonadal sheath) to minutes (defecation). However, the molecular mechanisms underlying these rhythmic behaviors are not well understood. Here, we show that the C. elegans Rho/Rac-family guanine nucleotide exchange factor, VAV-1, which is homologous to the mammalian Vav proto-oncogene, has a crucial role in all three behaviors. vav-1 mutants die as larvae because VAV-1 function is required in the pharynx for synchronous contraction of the musculature. In addition, ovulation and the defecation cycle are abnormal and arrhythmic. We show that Rho/Rac-family GTPases and the signaling molecule inositol triphosphate (IP(3)) act downstream of VAV-1 signaling and that the VAV-1 pathway modulates rhythmic behaviors by dynamically regulating the concentration of intracellular Ca(2+).
Collapse
Affiliation(s)
- Kenneth R Norman
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Godambe SA, Knapp KM, Meals EA, English BK. Role of vav1 in the lipopolysaccharide-mediated upregulation of inducible nitric oxide synthase production and nuclear factor for interleukin-6 expression activity in murine macrophages. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:525-31. [PMID: 15138177 PMCID: PMC404562 DOI: 10.1128/cdli.11.3.525-531.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
vav1 has been shown to play a key role in lymphocyte development and activation, but its potential importance in macrophage activation has received little attention. We have previously reported that exposure of macrophages to bacterial lipopolysaccharide (LPS) leads to increased activity of hck and other src-related tyrosine kinases and to the prompt phosphorylation of vav1 on tyrosine. In this study, we tested the role of vav1 in macrophage responses to LPS, focusing on the upregulation of nuclear factor for interleukin-6 expression (NF-IL-6) activity and inducible nitric oxide synthase (iNOS) protein accumulation in RAW-TT10 murine macrophages. We established a series of stable cell lines expressing three mutant forms of vav1 in a tetracycline-regulatable fashion: (i) a form producing a truncated protein, vavC; (ii) a form containing a point mutation in the regulatory tyrosine residue, vavYF174; and (iii) a form with an in-frame deletion of 6 amino acids required for the guanidine nucleotide exchange factor (GEF) activity of vav1 for rac family GTPases, vavGEFmt. Expression of the truncated mutant (but not the other two mutants) has been reported to interfere with T-cell activation. In contrast, we now demonstrate that expression of any of the three mutant forms of vav1 in RAW-TT10 cells consistently inhibited LPS-mediated increases in iNOS protein accumulation and NF-IL-6 activity. These data provide direct evidence for a role for vav1 in LPS-mediated macrophage activation and iNOS production and suggest that vav1 functions in part via activation of NF-IL-6. Furthermore, these findings indicate that the GEF activity of vav1 is required for its ability to mediate macrophage activation by LPS.
Collapse
Affiliation(s)
- Sandip A Godambe
- Department of Pediatrics, Children's Foundation Research Center, Le Bonheur Children's Medical Center, 50 N. Dunlap, Memphis, TN 38103, USA
| | | | | | | |
Collapse
|
17
|
Tedder TF, Poe JC, Haas KM. CD22: A Multifunctional Receptor That Regulates B Lymphocyte Survival and Signal Transduction. Adv Immunol 2005; 88:1-50. [PMID: 16227086 DOI: 10.1016/s0065-2776(05)88001-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in the study of CD22 indicate a complex role for this transmembrane glycoprotein member of the immunoglobulin superfamily in the regulation of B lymphocyte survival and proliferation. CD22 has been previously recognized as a potential lectin-like adhesion molecule that binds alpha2,6-linked sialic acid-bearing ligands and as an important regulator of B-cell antigen receptor (BCR) signaling. However, genetic studies in mice reveal that some CD22 functions are regulated by ligand binding, whereas other functions are ligand-independent and may only require expression of an intact CD22 cytoplasmic domain at the B-cell surface. Until recently, most of the functional activity of CD22 has been widely attributed to CD22's ability to recruit potent intracellular phosphatases and limit the intensity of BCR-generated signals. However, a more complex role for CD22 has recently emerged, including a central role in a novel regulatory loop controlling the CD19/CD21-Src-family protein tyrosine kinase (PTK) amplification pathway that regulates basal signaling thresholds and intensifies Src-family kinase activation after BCR ligation. CD22 is also central to the regulation of peripheral B-cell homeostasis and survival, the promotion of BCR-induced cell cycle progression, and is a potent regulator of CD40 signaling. Herein we discuss our current understanding of how CD22 governs these complex and overlapping processes, how alterations in these tightly controlled regulatory activities may influence autoimmune disease, and the current and future applications of CD22-directed therapies in oncology and autoimmunity.
Collapse
Affiliation(s)
- Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
18
|
Li Q, Ren J, Kufe D. Interaction of human MUC1 and beta-catenin is regulated by Lck and ZAP-70 in activated Jurkat T cells. Biochem Biophys Res Commun 2004; 315:471-6. [PMID: 14766232 DOI: 10.1016/j.bbrc.2004.01.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Indexed: 11/27/2022]
Abstract
The MUC1 transmembrane glycoprotein is aberrantly expressed by diverse hematologic malignancies, including those of the T cell lineage. The MUC1 cytoplasmic domain (CD) interacts with beta-catenin; however, the role of MUC1 in T cells is not known. In the present work, MUC1 was studied as a potential downstream effector of the Lck and ZAP-70 tyrosine kinases that are essential for T cell activation. The results demonstrate that anti-CD3-induced or PMA+ionomycin-induced activation of Jurkat T cells is associated with increased binding of MUC1 and Lck. Lck phosphorylates MUC1-CD on Y-46 and, in turn, stimulates the binding of MUC1 to beta-catenin. The results further demonstrate that MUC1 interacts with ZAP-70. In contrast to Lck, ZAP-70 phosphorylates MUC1-CD predominantly on Y-20. However, like Lck, ZAP-70-mediated phosphorylation of MUC1 Y-20 stimulates binding of MUC1 and beta-catenin. These findings indicate that MUC1 functions as a substrate for Lck and ZAP-70 in activated Jurkat T cells and that MUC1 integrates T cell receptor signaling with the beta-catenin pathway.
Collapse
Affiliation(s)
- Quan Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02482, USA
| | | | | |
Collapse
|
19
|
Miura-Shimura Y, Duan L, Rao NL, Reddi AL, Shimura H, Rottapel R, Druker BJ, Tsygankov A, Band V, Band H. Cbl-mediated ubiquitinylation and negative regulation of Vav. J Biol Chem 2003; 278:38495-504. [PMID: 12881521 DOI: 10.1074/jbc.m305656200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Cbl ubiquitin ligase has emerged as a negative regulator of receptor and non-receptor tyrosine kinases. Cbl is known to associate with the proto-oncogene product Vav, a hematopoietic-restricted Rac guanine nucleotide exchange factor, but the consequences of this interaction remain to be elucidated. Using immortalized T cell lines from Cbl(+/+) and Cbl(-/-) mice, and transfection analyses in 293T cells, we demonstrate that Vav undergoes Cbl-dependent ubiquitinylation under conditions that promote Cbl and Vav phosphorylation. Interaction with Cbl also induced the loss of phosphorylated Vav. In addition, we show that an activated Vav mutant (Vav-Y174F) is more sensitive to Cbl-dependent ubiquitinylation. We demonstrate that the Cbl-dependent ubiquitinylation of Vav requires Cbl/Vav association through phosphorylated Tyr-700 on Cbl, and also requires an intact Cbl RING finger domain. Finally, using transfection analyses in the Jurkat T cell line, we show that Cbl, but not its ubiquitin ligase mutant, can inhibit Vav-dependent signaling. Thus, our findings strongly support the role of Cbl, via its ubiquitin ligase activity, as a negative regulator of activated Vav.
Collapse
Affiliation(s)
- Yuko Miura-Shimura
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tu S, Wu WJ, Wang J, Cerione RA. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J Biol Chem 2003; 278:49293-300. [PMID: 14506284 DOI: 10.1074/jbc.m307021200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treatment of cells with epidermal growth factor (EGF) promotes the activation of the small GTP-binding protein Cdc42, as well as its phosphorylation in cells. The EGF-dependent phosphorylation of Cdc42 occurs at tyrosine 64 in the Switch II domain and appears to be mediated through the Src tyrosine kinase, because both the expression of a dominant-negative Src mutant (mouse Src(K297R)) and treatment of cells with the Src kinase inhibitor PP2 blocks the EGF-stimulated phosphorylation of Cdc42, whereas expression of an activated Src mutant (Src(Y529F)) promotes phosphorylation in the absence of EGF treatment. The EGF-stimulated phosphorylation of Cdc42 is not required for its activation, nor does it directly affect the interactions of activated Cdc42 with target/effector proteins including PAK, ACK, WASP, or IQGAP. However, the EGF-stimulated phosphorylation of Cdc42 is accompanied by an enhancement in the interaction of Cdc42 with the Rho-GDP dissociation inhibitor (RhoGDI). The EGF-stimulated activation of Cdc42 does require activated Src, as well as the Vav2 protein, a member of the Dbl family of guanine nucleotide exchange factors. Src catalyzes the tyrosine phosphorylation of Vav2, and overexpression of Vav2 together with activated Src (Src(Y529F)) can completely bypass the need for EGF to promote the activation of Cdc42. Thus, EGF signaling through Src appears to have dual regulatory effects on Cdc42: 1). it leads to the activation of Cdc42 as mediated by the Vav2 guanine nucleotide exchange factor, and 2). it results in the phosphorylation of Cdc42, which stimulates the binding of RhoGDI, perhaps to direct the movement of Cdc42 to a specific cellular site to trigger a signaling response, because Cdc42-RhoGDI interactions are essential for Cdc42-induced cellular transformation.
Collapse
Affiliation(s)
- Shine Tu
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Vav1 is a 95-kDa protein expressed in all hemopoietic cells that becomes rapidly tyrosine phosphorylated following T cell antigen receptor (TCR) stimulation. Vav1 contains multiple domains characteristic of signal transducing proteins, including a Dbl homology domain, a hallmark of a guanine nucleotide exchange factor (GEF) for Rho-family GTPases. Indeed Vav1 is a GEF for Rac1, Rac2 and RhoG, and it is activated following tyrosine phosphorylation. Generation of mice deficient in Vav1 has shown that it plays an important role in selection events within the thymus, including both positive and negative selection, consistent with Vav1 transducing TCR signals required to drive these processes. Furthermore, Vav1-deficient T cells are defective in TCR-induced proliferation and cytokine synthesis. Analysis of TCR signaling pathways in Vav1-deficient T cells and thymocytes has shown that Vav1 is required to transduce signals to the activation of a calcium flux, extracellular signal-regulated kinase (ERK) and the nuclear factor kappaB (NF-kappaB) transcription factor. Vav1 has also been shown to control the activation of phospholipase Cgamma1 (PLCgamma1) via both phosphoinositide-3-kinase (PI3K)-dependent and -independent pathways. Finally, Vav1 has been shown to transduce TCR signals to some but not all cytoskeleton-dependent pathways. In particular, Vav1 is required for efficient TCR-induced conjugate formation with antigen presenting cells (APCs), activation of the integrin leukocyte function-associated antigen-1 (LFA-1) and cell polarization.
Collapse
Affiliation(s)
- Victor L J Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, London, UK.
| | | | | | | |
Collapse
|
22
|
Reynolds LF, Smyth LA, Norton T, Freshney N, Downward J, Kioussis D, Tybulewicz VLJ. Vav1 transduces T cell receptor signals to the activation of phospholipase C-gamma1 via phosphoinositide 3-kinase-dependent and -independent pathways. J Exp Med 2002; 195:1103-14. [PMID: 11994416 PMCID: PMC2193701 DOI: 10.1084/jem.20011663] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Vav1 is a signal transducing protein required for T cell receptor (TCR) signals that drive positive and negative selection in the thymus. Furthermore, Vav1-deficient thymocytes show greatly reduced TCR-induced intracellular calcium flux. Using a novel genetic system which allows the study of signaling in highly enriched populations of CD4(+)CD8(+) double positive thymocytes, we have studied the mechanism by which Vav1 regulates TCR-induced calcium flux. We show that in Vav1-deficient double positive thymocytes, phosphorylation, and activation of phospholipase C-gamma1 (PLCgamma1) is defective. Furthermore, we demonstrate that Vav1 regulates PLCgamma1 phosphorylation by at least two distinct pathways. First, in the absence of Vav1 the Tec-family kinases Itk and Tec are no longer activated, most likely as a result of a defect in phosphoinositide 3-kinase (PI3K) activation. Second, Vav1-deficient thymocytes show defective assembly of a signaling complex containing PLCgamma1 and the adaptor molecule Src homology 2 domain-containing leukocyte phosphoprotein 76. We show that this latter function is independent of PI3K.
Collapse
|
23
|
Bassermann F, Jahn T, Miething C, Seipel P, Bai RY, Coutinho S, Tybulewicz VL, Peschel C, Duyster J. Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway. J Biol Chem 2002; 277:12437-45. [PMID: 11790798 DOI: 10.1074/jbc.m112397200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vav is a guanine nucleotide exchange factor for the Rho/Rac family predominantly expressed in hematopoietic cells and implicated in cell proliferation and cytoskeletal organization. The oncogenic tyrosine kinase Bcr-Abl has been shown to activate Rac-1, which is important for Bcr-Abl induced leukemogenesis. Previous studies by Matsuguchi et al. (Matsuguchi, T., Inhorn, R. C., Carlesso, N., Xu, G., Druker, B., and Griffin, J. D. (1995) EMBO J. 14, 257-265) describe enhanced phosphorylation of Vav in Bcr-Abl-expressing Mo7e cells yet fail to demonstrate association of the two proteins. Here, we report the identification of a direct complex between Vav and Bcr-Abl in yeast, in vitro and in vivo. Furthermore, we show tyrosine phosphorylation of Vav by Bcr-Abl. Mutational analysis revealed that the SH2 domain and the C-terminal SH3 domain as well as a tetraproline motif directly adjacent to the N-terminal SH3 domain of Vav are important for establishing this phosphotyrosine dependent interaction. Activation of Rac-1 by Bcr-Abl was abrogated by co-expression of the Vav C terminus encoding the SH3-SH2-SH3 domains as a dominant negative construct. Bcr-Abl transduced primary bone marrow from Vav knock-out mice showed reduced proliferation in a culture cell transformation assay compared with wild-type bone marrow. These results suggest, that Bcr-Abl utilizes Vav as a guanine nucleotide exchange factor to activate Rac-1 in a process that involves a folding mechanism of the Vav C terminus. Given the importance of Rac-1 activation for Bcr-Abl-mediated leukemogenesis, this mechanism may be crucial for the molecular pathogenesis of chronic myeloid leukemia and of importance for other signal transduction pathways leading to the activation of Rac-1.
Collapse
Affiliation(s)
- Florian Bassermann
- Department of Internal Medicine III, Laboratory of Leukemogenesis, Technical University of Munich, 81675, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kabak S, Skaggs BJ, Gold MR, Affolter M, West KL, Foster MS, Siemasko K, Chan AC, Aebersold R, Clark MR. The direct recruitment of BLNK to immunoglobulin alpha couples the B-cell antigen receptor to distal signaling pathways. Mol Cell Biol 2002; 22:2524-35. [PMID: 11909947 PMCID: PMC133735 DOI: 10.1128/mcb.22.8.2524-2535.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Revised: 12/18/2001] [Accepted: 12/24/2001] [Indexed: 01/30/2023] Open
Abstract
Following B-cell antigen receptor (BCR) ligation, the cytoplasmic domains of immunoglobulin alpha (Ig alpha) and Ig beta recruit Syk to initiate signaling cascades. The coupling of Syk to several distal substrates requires linker protein BLNK. However, the mechanism by which BLNK is recruited to the BCR is unknown. Using chimeric receptors with wild-type and mutant Ig alpha cytoplasmic tails we show that the non-immunoreceptor tyrosine-based activation motif (ITAM) tyrosines, Y176 and Y204, are required to activate BLNK-dependent pathways. Subsequent analysis demonstrated that BLNK bound directly to phospho-Y204 and that fusing BLNK to mutated Ig alpha reconstituted downstream signaling events. Moreover, ligation of the endogenous BCR induced Y204 phosphorylation and BLNK recruitment. These data demonstrate that the non-ITAM tyrosines of Ig alpha couple Syk activation to BLNK-dependent pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- CD79 Antigens
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Clone Cells
- Enzyme Precursors/metabolism
- Intracellular Signaling Peptides and Proteins
- Isoenzymes/metabolism
- Mice
- Models, Molecular
- Mutation
- Phospholipase C gamma
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein-Tyrosine Kinases/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Syk Kinase
- Type C Phospholipases/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- Shara Kabak
- Committee on Immunology, Section of Rheumatology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bourguignon LY, Zhu H, Zhou B, Diedrich F, Singleton PA, Hung MC. Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J Biol Chem 2001; 276:48679-92. [PMID: 11606575 DOI: 10.1074/jbc.m106759200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we initially examined the interaction between CD44v3 (a hyaluronan (HA) receptor) and Vav2 (a guanine nucleotide exchange factor) in human ovarian tumor cells (SK-OV-3.ipl cell line). Immunological data indicate that both CD44v3 and Vav2 are expressed in SK-OV-3.ipl cells and that these two proteins are physically linked as a complex in vivo. By using recombinant fragments of Vav2 and in vitro binding assays, we have detected a specific binding interaction between the SH3-SH2-SH3 domain of Vav2 and the cytoplasmic domain of CD44. In addition, we have observed that the binding of HA to CD44v3 activates Vav2-mediated Rac1 signaling leading to ovarian tumor cell migration. Further analyses indicate that the adaptor molecule, growth factor receptor-bound protein 2 (Grb2) that is bound to p185(HER2) (an oncogene product), is also associated with the CD44v3-Vav2 complex. HA binding to SK-OV-3.ipl cells promotes recruitment of both Grb2 and p185(HER2) to the CD44v3-Vav2 complex leading to Ras activation and ovarian tumor cell growth. In order to determine the role of Grb2 in CD44v3 signaling, we have transfected SK-OV-3.ipl cells with Grb2 mutant cDNAs (e.g. Delta N-Grb2 that has a deletion in the amino-terminal SH3 domain or Delta C-Grb2 that has a deletion in the carboxyl-terminal SH3 domain). Our results clearly indicate that the SH3 domain deletion mutants of Grb2 (i.e. the Delta N-Grb2 (and to a lesser extent the Delta C-Grb2) mutant) not only block their association with p185(HER2) but also significantly impair their binding to the CD44v3-Vav2 complex and inhibit HA/CD44v3-induced ovarian tumor cell behaviors. Taken together, these findings strongly suggest that the interaction of CD44v3-Vav2 with Grb2-p185(HER2) plays an important role in the co-activation of both Rac1 and Ras signaling that is required for HA-mediated human ovarian tumor progression.
Collapse
Affiliation(s)
- L Y Bourguignon
- Enocrine Unit, Department of Medicine, University of California and Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cellular organization of the cytoskeleton, assembly of intracellular signaling complexes and movement of membrane receptors into supramolecular activation complexes (SMACs) are crucial prerequisites for lymphocyte activation and function. Full T-cell activation requires costimulatory signals in addition to antigen-mediated signals. Costimulatory signals facilitate T-cell activation by inducing SMAC formation, resulting in sustained signal transduction, cell-cycle progression and cytokine production. The guanine nucleotide exchange factor Vav1 and the Wiscott-Aldrich syndrome protein (WASP) regulate the actin cytoskeleton in T cells and also regulate SMAC formation. In mice lacking the E3 ubiquitin ligase Cbl-b, the Vav-WASP signaling pathway is active in the absence of costimulation resulting in deregulated cytoskeletal reorganization, enhanced priming and expansion of autoreactive T cells, and the development of autoimmunity. This review discusses the role of Cbl-b, Vav and WASP in the regulation of SMAC formation and the implications for the maintenance of tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- C Krawczyk
- Dept of Medical Biophysics, Amgen Institute/Ontario Cancer Institute, University of Toronto, 620 University Avenue, M5G 2C1, Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Fukuhara S, Chikumi H, Gutkind JS. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 2001; 20:1661-8. [PMID: 11313914 DOI: 10.1038/sj.onc.1204182] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- S Fukuhara
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | | | | |
Collapse
|
28
|
Krawczyk C, Penninger JM. Molecular motors involved in T cell receptor clusterings. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Connie Krawczyk
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| | - Josef M. Penninger
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| |
Collapse
|
29
|
Doody GM, Billadeau DD, Clayton E, Hutchings A, Berland R, McAdam S, Leibson PJ, Turner M. Vav-2 controls NFAT-dependent transcription in B- but not T-lymphocytes. EMBO J 2000; 19:6173-84. [PMID: 11080163 PMCID: PMC305817 DOI: 10.1093/emboj/19.22.6173] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We show here that Vav-2 is tyrosine phosphorylated following antigen receptor engagement in both B- and T-cells, but potentiates nuclear factor of activated T cells (NFAT)-dependent transcription only in B cells. Vav-2 function requires the N-terminus, as well as functional Dbl homology and SH2 domains. More over, the enhancement of NFAT-dependent transcription by Vav-2 can be inhibited by a number of dominant-negative GTPases. The ability of Vav-2 to potentiate NFAT-dependent transcription correlates with its ability to promote a sustained calcium flux. Thus, Vav-2 augments the calcium signal in B cells but not T cells, and a truncated form of Vav-2 can neither activate NFAT nor augment calcium signaling. The CD19 co-receptor physically interacts with Vav-2 and synergistically enhances Vav-2 phosphorylation induced by the B-cell receptor (BCR). In addition, we found that Vav-2 augments CD19-stimulated NFAT- dependent transcription, as well as transcription from the CD5 enhancer. These data suggest a role for Vav-2 in transducing BCR signals to the transcription factor NFAT and implicate Vav-2 in the integration of BCR and CD19 signaling.
Collapse
Affiliation(s)
- G M Doody
- Lymphocyte Signaling and Development Laboratory, Molecular Immunology Programme, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Moores SL, Selfors LM, Fredericks J, Breit T, Fujikawa K, Alt FW, Brugge JS, Swat W. Vav family proteins couple to diverse cell surface receptors. Mol Cell Biol 2000; 20:6364-73. [PMID: 10938113 PMCID: PMC86111 DOI: 10.1128/mcb.20.17.6364-6373.2000] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vav proteins are guanine nucleotide exchange factors for Rho family GTPases which activate pathways leading to actin cytoskeletal rearrangements and transcriptional alterations. Vav proteins contain several protein binding domains which can link cell surface receptors to downstream signaling proteins. Vav1 is expressed exclusively in hematopoietic cells and tyrosine phosphorylated in response to activation of multiple cell surface receptors. However, it is not known whether the recently identified isoforms Vav2 and Vav3, which are broadly expressed, can couple with similar classes of receptors, nor is it known whether all Vav isoforms possess identical functional activities. We expressed Vav1, Vav2, and Vav3 at equivalent levels to directly compare the responses of the Vav proteins to receptor activation. Although each Vav isoform was tyrosine phosphorylated upon activation of representative receptor tyrosine kinases, integrin, and lymphocyte antigen receptors, we found unique aspects of Vav protein coupling in each receptor pathway. Each Vav protein coprecipitated with activated epidermal growth factor and platelet-derived growth factor (PDGF) receptors, and multiple phosphorylated tyrosine residues on the PDGF receptor were able to mediate Vav2 tyrosine phosphorylation. Integrin-induced tyrosine phosphorylation of Vav proteins was not detected in nonhematopoietic cells unless the protein tyrosine kinase Syk was also expressed, suggesting that integrin activation of Vav proteins may be restricted to cell types that express particular tyrosine kinases. In addition, we found that Vav1, but not Vav2 or Vav3, can efficiently cooperate with T-cell receptor signaling to enhance NFAT-dependent transcription, while Vav1 and Vav3, but not Vav2, can enhance NFkappaB-dependent transcription. Thus, although each Vav isoform can respond to similar cell surface receptors, there are isoform-specific differences in their activation of downstream signaling pathways.
Collapse
Affiliation(s)
- S L Moores
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Aghazadeh B, Lowry WE, Huang XY, Rosen MK. Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 2000; 102:625-33. [PMID: 11007481 DOI: 10.1016/s0092-8674(00)00085-4] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rho-family GTPases transduce signals from receptors leading to changes in cell shape and motility, mitogenesis, and development. Proteins containing the Dbl homology (DH) domain are responsible for activating Rho GTPases by catalyzing the exchange of GDP for GTP. Receptor-initiated stimulation of Dbl protein Vav exchange activity involves tyrosine phosphorylation. We show through structure determination that the mVav1 DH domain is autoinhibited by an N-terminal extension, which lies in the GTPase interaction site. This extension contains the Tyr174 Src-family kinase recognition site, and phosphorylation or truncation of this peptide results in stimulation of GEF activity. NMR spectroscopy data show that the N-terminal peptide is released from the DH domain and becomes unstructured upon phosphorylation. Thus, tyrosine phosphorylation relieves autoinhibition by exposing the GTPase interaction surface of the DH domain, which is obligatory for Vav activation.
Collapse
Affiliation(s)
- B Aghazadeh
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
32
|
Billadeau DD, Mackie SM, Schoon RA, Leibson PJ. The Rho family guanine nucleotide exchange factor Vav-2 regulates the development of cell-mediated cytotoxicity. J Exp Med 2000; 192:381-92. [PMID: 10934226 PMCID: PMC2193212 DOI: 10.1084/jem.192.3.381] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 05/23/2000] [Indexed: 11/04/2022] Open
Abstract
Previous pharmacologic and genetic studies have demonstrated a critical role for the low molecular weight GTP-binding protein RhoA in the regulation of cell-mediated killing by cytotoxic lymphocytes. However, a specific Rho family guanine nucleotide exchange factor (GEF) that activates this critical regulator of cellular cytotoxicity has not been identified. In this study, we provide evidence that the Rho family GEF, Vav-2, is present in cytotoxic lymphocytes, and becomes tyrosine phosphorylated after the cross-linking of activating receptors on cytotoxic lymphocytes and during the generation of cell-mediated killing. In addition, we show that overexpression of Vav-2 in cytotoxic lymphocytes enhances cellular cytotoxicity, and this enhancement requires a functional Dbl homology and Src homology 2 domain. Interestingly, the pleckstrin homology domain of Vav-2 was found to be required for enhancement of killing through some, but not all activating receptors on cytotoxic lymphocytes. Lastly, although Vav and Vav-2 share significant structural homology, only Vav is able to enhance nuclear factor of activated T cells-activator protein 1-mediated gene transcription downstream of the T cell receptor. These data demonstrate that Vav-2, a Rho family GEF, differs from Vav in the control of certain lymphocyte functions and participates in the control of cell-mediated killing by cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Daniel D. Billadeau
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Stacy M. Mackie
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Renee A. Schoon
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Paul J. Leibson
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
33
|
Fukuyama T, Otsuka T, Shigematsu H, Uchida N, Arima F, Ohno Y, Iwasaki H, Fukuda T, Niho Y. Proliferative involvement of ENX-1, a putative human polycomb group gene, in haematopoietic cells. Br J Haematol 2000; 108:842-7. [PMID: 10792293 DOI: 10.1046/j.1365-2141.2000.01914.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeobox genes have important roles in haematopoiesis and are regulated in an activated state by the trithorax group (trxG) of genes. In a repressed state, they are regulated by the Polycomb group (PcG) of genes. ENX-1, a putative human PcG gene product, interacts with the proto-oncogene product Vav. We report an investigation of the role of ENX-1 in human haematopoiesis. CD34+ cells mobilized to peripheral blood strongly expressed ENX-1. When stimulated to proliferate, both T and B lymphocytes rapidly up-regulated ENX-1. ENX-1 was expressed in all cell lines of the various lineages examined. When HL-60 cells were differentiated to mature granulocytes with all-trans retinoic acid, ENX-1 was down-regulated. Moreover, ENX-1 antisense oligodeoxynucleotide suppressed DNA synthesis in HL-60 cells. Our data indicate that ENX-1 is involved in the proliferation of both normal and malignant haematopoietic cells.
Collapse
Affiliation(s)
- T Fukuyama
- Cancer Centre, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- X R Bustelo
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|
35
|
Adam L, Bandyopadhyay D, Kumar R. Interferon-alpha signaling promotes nucleus-to-cytoplasmic redistribution of p95Vav, and formation of a multisubunit complex involving Vav, Ku80, and Tyk2. Biochem Biophys Res Commun 2000; 267:692-6. [PMID: 10673353 DOI: 10.1006/bbrc.1999.1978] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interferons (IFNs) are a family of hormone-like secretory proteins with multiple phenotypical changes, including gene expression and morphological alterations. Earlier studies have shown that IFN-activated Tyk2 kinase physical associates with p95Vav (Vav), a proto-oncogene gene product expressed in hematopoietic cells. Since Tyk2 is a cytoplasmic kinase and Vav is believed to be localized in the nuclear compartment, here we explored the possibility of Vav redistribution in IFN-alpha-activated cells, using the U266 human myeloma cell line as a model system. Using biochemical assays and in situ confocal microscopy, we demonstrate that IFN-alpha treatment triggers a rapid (10 min) translocation of Vav from the nuclear compartment to the cytoplasm. In addition, we also show the existence of IFN-alpha-induced physical interaction between Vav and Ku80, Ku80, and Tyk2, and among Vav, Ku80, and Tyk2 in the cytoplasmic compartment of IFN-stimulated cells. The observed IFN-alpha-induced association among Vav, Ku80, and Tyk2 was dependent on cellular tyrosine kinase activity. Since recently Vav has been shown to promote the GDP/GTP exchange activity of the cytoskeleton signaling molecule small GTPase Rac1 and activates its downstream signaling, our present findings raise the possibility of involvement of the small GTPase in IFN signaling leading to its biological effects, including cytoskeleton reorganization.
Collapse
Affiliation(s)
- L Adam
- University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | | | | |
Collapse
|
36
|
Micouin A, Wietzerbin J, Steunou V, Martyré MC. p95(vav) associates with the type I interferon (IFN) receptor and contributes to the antiproliferative effect of IFN-alpha in megakaryocytic cell lines. Oncogene 2000; 19:387-94. [PMID: 10656686 DOI: 10.1038/sj.onc.1203314] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The vav proto-oncogene product is a 95 kDa protein predominantly expressed in hematopoietic cells. Vav presents a wide range of functional domains, including structural domains known to be involved in signal transduction. Triggering of various cytokine receptors among which type I interferon receptor induces a rapid and transient tyrosine phosphorylation of p95(vav). Nevertheless, the biological functions of p95(vav) are still unclear. This report is the first documentation on the physical association of p95(vav) with both alpha and beta type I interferon receptor chains, as demonstrated by co-immunoprecipitation and Western blot analysis in megakaryocytic cells (Dami and UT7). This interaction is increased by interferon-alpha/beta stimulation. Moreover, p95(vav) phosphorylated subsequently to type I interferon treatment, is translocated in the nucleus; a concomitant increase of its association with the regulatory subunit of the nuclear DNA-dependent protein kinase, KU-70 is observed in the nucleus. To determine whether p95(vav) participates in the biological response to type I interferons, we studied the effects of non modified Vav oligodeoxynucleotides on the antiproliferative effect of interferon-alpha on megakaryocytic cells. By this oligodeoxynucleotide strategy, we show that p95(vav) contributes greatly to the cell proliferation inhibition induced by type I IFN.
Collapse
Affiliation(s)
- A Micouin
- Unité 365 INSERM, Institut Curie, Section Recherche, Paris, France
| | | | | | | |
Collapse
|
37
|
Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci U S A 2000; 97:179-84. [PMID: 10618391 PMCID: PMC26636 DOI: 10.1073/pnas.97.1.179] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2) or phosphotyrosine interaction domains (PID). Additionally, several cytoplasmic proteins that may or may not associate with the receptor undergo tyrosine phosphorylation. To identify several components of the EGFR signaling pathway in a single step, we have immunoprecipitated molecules that are tyrosine phosphorylated in response to EGF and analyzed them by one-dimensional gel electrophoresis followed by mass spectrometry. Combining matrix-assisted laser desorption/ionization (MALDI) and nanoelectrospray tandem mass spectrometry (MS/MS) led to the identification of nine signaling molecules, seven of which had previously been implicated in EGFR signaling. Several of these molecules were identified from low femtomole levels of protein loaded onto the gel. We identified Vav-2, a recently discovered guanosine nucleotide exchange factor that is expressed ubiquitously, as a substrate of the EGFR. We demonstrate that Vav-2 is phosphorylated on tyrosine residues in response to EGF and associates with the EGFR in vivo. Binding of Vav-2 to the EGFR is mediated by the SH2 domain of Vav-2. In keeping with its ubiquitous expression, Vav-2 seems to be a general signaling molecule, since it also associates with the platelet-derived growth factor (PDGF) receptor and undergoes tyrosine phosphorylation in fibroblasts upon PDGF stimulation. The strategy suggested here can be used for routine identification of downstream components of cell surface receptors in mammalian cells.
Collapse
Affiliation(s)
- A Pandey
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
38
|
Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci U S A 2000; 97:185-9. [PMID: 10618392 PMCID: PMC26637 DOI: 10.1073/pnas.97.1.185] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 11/12/1999] [Indexed: 11/18/2022] Open
Abstract
Uncontrolled cell proliferation is a major feature of cancer. Experimental cellular models have implicated some members of the Rho GTPase family in this process. However, direct evidence for active Rho GTPases in tumors or cancer cell lines has never been provided. In this paper, we show that endogenous, hyperactive Rac3 is present in highly proliferative human breast cancer-derived cell lines and tumor tissues. Rac3 activity results from both its distinct subcellular localization at the membrane and altered regulatory factors affecting the guanine nucleotide state of Rac3. Associated with active Rac3 was deregulated, persistent kinase activity of two isoforms of the Rac effector p21-activated kinase (Pak) and of c-Jun N-terminal kinase (JNK). Introducing dominant-negative Rac3 and Pak1 fragments into a breast cancer cell line revealed that active Rac3 drives Pak and JNK kinase activities by two separate pathways. Only the Rac3-Pak pathway was critical for DNA synthesis, independently of JNK. These findings identify Rac3 as a consistently active Rho GTPase in human cancer cells and suggest an important role for Rac3 and Pak in tumor growth.
Collapse
Affiliation(s)
- J P Mira
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
39
|
Justement LB. Signal transduction via the B-cell antigen receptor: the role of protein tyrosine kinases and protein tyrosine phosphatases. Curr Top Microbiol Immunol 1999; 245:1-51. [PMID: 10533309 DOI: 10.1007/978-3-642-57066-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
MESH Headings
- Adaptor Proteins, Signal Transducing
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antigens/metabolism
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/metabolism
- CD79 Antigens
- Calcium/metabolism
- Carrier Proteins/metabolism
- Cell Adhesion Molecules
- Enzyme Activation
- Enzyme Precursors/metabolism
- Gene Expression Regulation
- Humans
- Immunoglobulin M/metabolism
- Intracellular Signaling Peptides and Proteins
- Lectins
- Oncogene Proteins/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proteins/metabolism
- Proto-Oncogene Proteins c-vav
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgG/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/immunology
- Signal Transduction/physiology
- Syk Kinase
- Type C Phospholipases/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- L B Justement
- Department of Microbiology, University of Alabama at Birmingham 35294-3300, USA
| |
Collapse
|
40
|
Gold MR. Intermediary signaling effectors coupling the B-cell receptor to the nucleus. Curr Top Microbiol Immunol 1999; 245:77-134. [PMID: 10533311 DOI: 10.1007/978-3-642-57066-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
Schullery DS, Ostrowski J, Denisenko ON, Stempka L, Shnyreva M, Suzuki H, Gschwendt M, Bomsztyk K. Regulated interaction of protein kinase Cdelta with the heterogeneous nuclear ribonucleoprotein K protein. J Biol Chem 1999; 274:15101-9. [PMID: 10329716 DOI: 10.1074/jbc.274.21.15101] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) K protein recruits a diversity of molecular partners that are involved in signal transduction, transcription, RNA processing, and translation. K protein is phosphorylated in vivo and in vitro by inducible kinase(s) and contains several potential sites for protein kinase C (PKC) phosphorylation. In this study we show that K protein is phosphorylated in vitro by PKCdelta and by other PKCs. Deletion analysis and site-directed mutagenesis revealed that Ser302 is a major K protein site phosphorylated by PKCdelta in vitro. This residue is located in the middle of a short amino acid fragment that divides the two clusters of SH3-binding domains. Mutation of Ser302 decreased the level of phosphorylation of exogenously expressed K protein in phorbol 12-myristate 13-acetate-treated COS cells, suggesting that Ser302 is also a site for PKC-mediated phosphorylation in vivo. In vitro, PKCdelta binds K protein via the highly interactive KI domain, an interaction that is blocked by poly(C) RNA. Mutation of Ser302 did not alter the K protein-PKCdelta interaction in vitro, suggesting that phosphorylation of this residue alone is not sufficient to alter this interaction. Instead, binding of PKCdelta to K protein in vitro and in vivo was greatly increased by K protein phosphorylation on tyrosine residues. The ability of PKCdelta to bind and phosphorylate K protein may serve not only to alter the activity of K protein itself, but K protein may also bridge PKCdelta to other K protein molecular partners and thus facilitate molecular cross-talk. The regulated nature of the PKCdelta-K protein interaction may serve to meet cellular needs at sites of active transcription, RNA processing and translation in response to changing extracellular environment.
Collapse
Affiliation(s)
- D S Schullery
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wollscheid B, Reth M, Wienands J. Characterization of the B cell-specific adaptor SLP-65 and other protein tyrosine kinase substrates by two-dimensional gel electrophoresis. Immunol Lett 1999; 68:95-9. [PMID: 10397162 DOI: 10.1016/s0165-2478(99)00036-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The identification of substrates for protein tyrosine kinases in B cells is a critical step to a better understanding of the molecular mechanism(s) of lymphocyte activation through the antigen receptor. The substrate proteins were immunopurified from stimulated B cells and separated by two-dimensional gel electrophoresis techniques using either the isoelectric focussing (IEF)/SDS-PAGE or the non-equilibrium PH gradient electrophoresis (NEPHGE)/SDS-PAGE method. The biochemical characteristics of the proteins (isoelectric point and relative molecular mass) obtained and the subsequent use of antibodies that are specific for different cellular proteins confirmed the participation of HS1, Vav, Ig-alpha, Lyn and Btk in antigen receptor-mediated signal transduction. The heat shock cognate protein HSC70 was identified as a novel substrate protein in activated B cells. An important signaling function has previously been suggested for a 65-kDa protein (p65), whose phosphorylation can be detected before that of other substrate proteins. The analysis identified p65 as a so far unknown protein. Based on p65 peptide sequences, the full length cDNA was isolated and found to encode a B cell-specific adaptor protein, called SLP-65.
Collapse
Affiliation(s)
- B Wollscheid
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology, Germany
| | | | | |
Collapse
|
43
|
Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind JS. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 1999; 274:5868-79. [PMID: 10026210 DOI: 10.1074/jbc.274.9.5868] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small GTP-binding proteins of the Rho family play a critical role in signal transduction. However, there is still very limited information on how they are activated by cell surface receptors. Here, we used a consensus sequence for Dbl domains of Rho guanine nucleotide exchange factors (GEFs) to search DNA data bases, and identified a novel human GEF for Rho-related GTPases harboring structural features indicative of its possible regulatory mechanism(s). This protein contained a tandem DH/PH domain closely related to those of Rho-specific GEFs, a PDZ domain, a proline-rich domain, and an area of homology to Lsc, p115-RhoGEF, and a Drosophila RhoGEF that was termed Lsc-homology (LH) domain. This novel molecule, designated PDZ-RhoGEF, activated biological and biochemical pathways specific for Rho, and activation of these pathways required an intact DH and PH domain. However, the PDZ domain was dispensable for these functions, and mutants lacking the LH domain were more active, suggesting a negative regulatory role for the LH domain. A search for additional molecules exhibiting an LH domain revealed a limited homology with the catalytic region of a newly identified GTPase-activating protein for heterotrimeric G proteins, RGS14. This prompted us to investigate whether PDZ-RhoGEF could interact with representative members of each G protein family. We found that PDZ-RhoGEF was able to form, in vivo, stable complexes with two members of the Galpha12 family, Galpha12 and Galpha13, and that this interaction was mediated by the LH domain. Furthermore, we obtained evidence to suggest that PDZ-RhoGEF mediates the activation of Rho by Galpha12 and Galpha13. Together, these findings suggest the existence of a novel mechanism whereby the large family of cell surface receptors that transmit signals through heterotrimeric G proteins activate Rho-dependent pathways: by stimulating the activity of members of the Galpha12 family which, in turn, activate an exchange factor acting on Rho.
Collapse
Affiliation(s)
- S Fukuhara
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4330, USA
| | | | | | | | | |
Collapse
|
44
|
De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R. Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation. EMBO J 1999; 18:904-15. [PMID: 10022833 PMCID: PMC1171183 DOI: 10.1093/emboj/18.4.904] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have identified Socs1 as a downstream component of the Kit receptor tyrosine kinase signalling pathway. We show that the expression of Socs1 mRNA is rapidly increased in primary bone marrow-derived mast cells following exposure to Steel factor, and Socs1 inducibly binds to the Kit receptor tyrosine kinase via its Src homology 2 (SH2) domain. Previous studies have shown that Socs1 suppresses cytokine-mediated differentiation in M1 cells inhibiting Janus family kinases. In contrast, constitutive expression of Socs1 suppresses the mitogenic potential of Kit while maintaining Steel factor-dependent cell survival signals. Unlike Janus kinases, Socs1 does not inhibit the catalytic activity of the Kit tyrosine kinase. In order to define the mechanism by which Socs1-mediated suppression of Kit-dependent mitogenesis occurs, we demonstrate that Socs1 binds to the signalling proteins Grb-2 and the Rho-family guanine nucleotide exchange factors Vav. We show that Grb2 binds Socs1 via its SH3 domains to putative diproline determinants located in the N-terminus of Socs1, and Socs1 binds to the N-terminal regulatory region of Vav. These data suggest that Socs1 is an inducible switch which modulates proliferative signals in favour of cell survival signals and functions as an adaptor protein in receptor tyrosine kinase signalling pathways.
Collapse
Affiliation(s)
- P De Sepulveda
- Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto M5G 2M9
| | | | | | | | | | | |
Collapse
|
45
|
Melamed I, Patel H, Brodie C, Gelfand EW. Activation of Vav and Ras through the nerve growth factor and B cell receptors by different kinases. Cell Immunol 1999; 191:83-9. [PMID: 9973529 DOI: 10.1006/cimm.1998.1402] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Engagement of the B-cell antigen receptor (BCR) or the nerve growth factor receptor (NGFR/TrkA) induces activation of multiple tyrosine kinases, resulting in phosphorylation of numerous intracellular substrates. We show that addition of NGF or anti-IgM antibody leads to the early tyrosine phosphorylation of p95(vav), which is expressed exclusively in hematopoietic cells; NGF, similar to crosslinking the BCR, also results in the rapid activation of Ras. The phosphorylation of Vav and activation of Ras triggered by NGF is mediated through Trk tyrosine kinase, whereas signaling through the BCR uses a different tyrosine kinase. We also show that NGF induces tyrosine phosphorylation of Shc and its association with Grb2. Vav and Ras with the adaptor proteins Shc and Grb2 appear to serve as a link between different receptor-mediated signaling pathways and, in human B cells, may play an important regulatory role in neuroimmune interactions.
Collapse
Affiliation(s)
- I Melamed
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado, 80206, USA
| | | | | | | |
Collapse
|
46
|
Fernandez JA, Keshvara LM, Peters JD, Furlong MT, Harrison ML, Geahlen RL. Phosphorylation- and activation-independent association of the tyrosine kinase Syk and the tyrosine kinase substrates Cbl and Vav with tubulin in B-cells. J Biol Chem 1999; 274:1401-6. [PMID: 9880513 DOI: 10.1074/jbc.274.3.1401] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggregation of the B-cell antigen receptor leads to the activation of the 72-kDa Syk protein-tyrosine kinase and the phosphorylation of tubulin on tyrosine. To explore the requirement of Syk catalytic activity for tubulin phosphorylation, tubulin was isolated from cytosolic fractions from anti-IgM-activated B-cells (DT40) that lacked endogenous Syk and immunoblotted with anti-phosphotyrosine antibodies. Tubulin was not tyrosine-phosphorylated in Syk- B-cells. Phosphorylation could be restored by the expression of wild-type, but not catalytically inactive, Syk. However, both catalytically inactive and wild-type Syk were capable of constitutive association with tubulin, indicating that tubulin phosphorylation is not required for this interaction. Anti-phosphotyrosine antibody immunoblotting of proteins adsorbed to colchicine-agarose revealed the presence of three major tubulin-associated phosphoproteins of 110, 90, and 74 kDa, the phosphorylation of which was dependent on Syk expression. The proteins of 110 and 90 kDa were identified as Cbl and Vav, two proto-oncogene products known to become prominently phosphorylated following receptor engagement. Both proteins were shown to be constitutively associated with tubulin.
Collapse
Affiliation(s)
- J A Fernandez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
47
|
Schuebel KE, Movilla N, Rosa JL, Bustelo XR. Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J 1998; 17:6608-21. [PMID: 9822605 PMCID: PMC1171007 DOI: 10.1093/emboj/17.22.6608] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show here that Vav-2, a member of the Vav family of oncoproteins, acts as a guanosine nucleotide exchange factor (GEF) for RhoG and RhoA-like GTPases in a phosphotyrosine-dependent manner. Moreover, we show that Vav-2 oncogenic activation correlates with the acquisition of phosphorylation-independent exchange activity. In vivo, wild-type Vav-2 is activated oncogenically by tyrosine kinases, an effect enhanced further by co-expression of RhoA. Likewise, the Vav-2 oncoprotein synergizes with RhoA and RhoB proteins in cellular transformation. Transient transfection assays in NIH-3T3 cells show that phosphorylated wild-type Vav-2 and the Vav-2 oncoprotein induce cytoskeletal changes resembling those observed by the activation of the RhoG pathway. In contrast, the constitutive expression of the Vav-2 oncoprotein in rodent fibroblasts leads to major alterations in cell morphology and to highly enlarged cells in which karyokinesis and cytokinesis frequently are uncoupled. These results identify a regulated GEF for the RhoA subfamily, provide a biochemical explanation for vav family oncogenicity, and establish a new signaling model in which specific Vav-like proteins couple tyrosine kinase signals with the activation of distinct subsets of the Rho/Rac family of GTPases.
Collapse
Affiliation(s)
- K E Schuebel
- Department of Pathology, State University of New York at Stony Brook, University Hospital, Level 2, Room 718-B, Stony Brook, NY 11794-7025, USA
| | | | | | | |
Collapse
|
48
|
Billadeau DD, Brumbaugh KM, Dick CJ, Schoon RA, Bustelo XR, Leibson PJ. The Vav-Rac1 pathway in cytotoxic lymphocytes regulates the generation of cell-mediated killing. J Exp Med 1998; 188:549-59. [PMID: 9687532 PMCID: PMC2212464 DOI: 10.1084/jem.188.3.549] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1998] [Revised: 05/19/1998] [Indexed: 11/04/2022] Open
Abstract
The Rac1 guanine nucleotide exchange factor, Vav, is activated in hematopoietic cells in response to a large variety of stimuli. The downstream signaling events derived from Vav have been primarily characterized as leading to transcription or transformation. However, we report here that Vav and Rac1 in natural killer (NK) cells regulate the development of cell-mediated killing. There is a rapid increase in Vav tyrosine phosphorylation during the development of antibody-dependent cellular cytotoxicity and natural killing. In addition, overexpression of Vav, but not of a mutant lacking exchange factor activity, enhances both forms of killing by NK cells. Furthermore, dominant-negative Rac1 inhibits the development of NK cell-mediated cytotoxicity by two mechanisms: (a) conjugate formation between NK cells and target cells is decreased; and (b) those NK cells that do form conjugates have decreased ability to polarize their granules toward the target cell. Therefore, our results suggest that in addition to participating in the regulation of transcription, Vav and Rac1 are pivotal regulators of adhesion, granule exocytosis, and cellular cytotoxicity.
Collapse
Affiliation(s)
- D D Billadeau
- Department of Immunology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Linker or adapter proteins provide mechanisms by which receptors can amplify and regulate downstream effector proteins. We describe here the identification of a novel B cell linker protein, termed BLNK, that interfaces the B cell receptor-associated Syk tyrosine kinase with PLCgamma, the Vav guanine nucleotide exchange factor, and the Grb2 and Nck adapter proteins. Tyrosine phosphorylation of BLNK by Syk provides docking sites for these SH2-containing effector molecules that, in turn, permits the phosphorylation and/or activation of their respective signaling pathways. Hence, BLNK represents a central linker protein that bridges the B cell receptor-associated kinases with a multitude of signaling pathways and may regulate the biologic outcomes of B cell function and development.
Collapse
Affiliation(s)
- C Fu
- Center for Immunology, Program in Molecular Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
50
|
Kato J, Motoyama N, Taniuchi I, Takeshita H, Toyoda M, Masuda K, Watanabe T. Affinity Maturation in Lyn Kinase-Deficient Mice with Defective Germinal Center Formation. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.10.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Lyn kinase-deficient (lyn−/−) mice show several abnormalities such as reduced numbers of circulating B cells, hyper-IgM, and low proliferative responses induced by CD40 ligand. Lyn−/− mice also develop splenomegaly, produce autoreactive Abs with age, and finally develop glomerulonephritis. Another abnormality observed in lyn−/− mice is that their disability to form germinal centers (GCs). It has been considered that GCs play an important role in affinity maturation and differentiation to B cell memory upon immunization with thymus-dependent Ag. Since Lyn kinase has been thought to be downstream of the signals from the B cell Ag receptor as well as CD40, we studied whether or not lyn−/− mice could exhibit normal Ag-specific class switching and affinity maturation following somatic hypermutation. The mice were immunized with (4-hydroxy-3-nitrophenyl)acetyl-chicken γ-globulin (NP-CG). Production of NP-specific IgG1 Abs was slightly reduced but clearly detectable. The affinity of Abs produced was comparable to that in wild-type mice. Furthermore, somatic hypermutation occurred in the heavy-chain variable region at the same level as that in wild-type mice. Therefore, we conclude that isotype switching and affinity maturation occur normally in lyn−/− mice without the formation of GCs. The results lead to a speculation that Lyn may not play a role in induction of isotype switching or affinity maturation, despite being downstream of the signals from the B cell Ag receptor complex and CD40, and that GC architecture may not be absolutely essential for affinity maturation.
Collapse
Affiliation(s)
- Jun Kato
- Department of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Noboru Motoyama
- Department of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Ichiro Taniuchi
- Department of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Hiromichi Takeshita
- Department of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Masaki Toyoda
- Department of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Keiji Masuda
- Department of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Takeshi Watanabe
- Department of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, Japan
| |
Collapse
|