1
|
Dolai G, Shill S, Roy S, Mandal B. Atomic Insight on Inhibition of Fibrillization of Dipeptides by Replacement of Phenylalanine with Tryptophan. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37339161 DOI: 10.1021/acs.langmuir.3c00823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Tryptophan (Trp) conjugates destabilize amyloid fibrils responsible for amyloidoses. However, the mechanism of such destabilization is obscure. Herein the self-assembly of four synthesized Trp-containing dipeptides Boc-xxx-Trp-OMe (xxx: Val, Leu, Ile, and Phe) has been investigated and compared with the existing report on their Phe congeners. Two among them are the C-terminal tryptophan analogs of Boc-Val-Phe-OMe (VF, Aβ18-19) and Boc-Phe-Phe-OMe (FF, Aβ19-20), part of the central hydrophobic region of amyloid-β (Aβ1-42). While Boc-Val-Trp-OMe (VW), Boc-Leu-Trp-OMe (LW), Boc-Ile-Trp-OMe (IW), and Boc-Phe-Trp-OMe (FW) displayed a spherical morphology in FESEM and AFM images, the corresponding phenylalanine-containing dipeptides displayed various fibrous structures. Single-crystal X-ray diffraction (SC-XRD) indicated that peptides VW and IW exhibited structures containing parallel β-sheet, cross-β-structure, sheet-like layer structure, and helical arrangement in the solid state. Interestingly, peptide FW displayed inverse γ-turn conformation (similar to open-turn structure), antiparallel β-sheet structure, columnar structure, supramolecular nanozipper structure, sheet-like layer arrangement, and helical architecture in the solid state. The open-turn conformation and nanozipper structure formation by FW may be the first example of a dipeptide that forms such structures. The minute but consistent differences in molecular packing at the atomic level between Trp and Phe congeners may be responsible for their remarkably different supramolecular structure generation. This molecular-level structural analysis may be helpful for the de novo design of peptide nanostructures and therapeutics. Similar studies by the Debasish Haldar group are reported, but they investigated the inhibition of fibrillization of dipeptides by tyrosine and interactions are expectedly different.
Collapse
Affiliation(s)
- Gobinda Dolai
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sukesh Shill
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sayanta Roy
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Murakoshi M, Koike Y, Koyama S, Usami S, Kamiya K, Ikeda K, Haga Y, Tsumoto K, Nakamura H, Hirasawa N, Ishihara K, Wada H. Effects of salicylate derivatives on localization of p.H723R allele product of SLC26A4. Auris Nasus Larynx 2022; 49:928-937. [PMID: 35305848 DOI: 10.1016/j.anl.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 01/24/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Pendrin is a transmembrane protein encoded by the SLC26A4 gene that functions in maintaining ion concentrations in the endolymph of the inner ear, most likely by acting as a chloride/bicarbonate transporter. Variants in the SLC26A4 gene are responsible for sensorineural hearing loss. Although pendrin localizes to the plasma membrane, we previously identified that 8 missense allele products of SLC26A4 were retained in the intracellular region and lost their anion exchange function. We also found that 10 mM salicylate induced the translocation of 4 out of 8 allele products from the intracellular region to the plasma membrane and restored their anion exchanger activity. However, since 10 mM salicylate exhibits cytotoxicity, the use of chemical compounds with less cell toxicity is needed. In the present study, therefore, salicylate derivatives were used as the chemical compounds and their effects on the p.H723R allele products of SLC26A4 were investigated. METHODS HEK293 cells were transfected with the cDNA of p.H723R. Cell proliferation, viability and toxicity assays were performed to investigate the response and health of cells in culture after treatment with four types of salicylate derivatives, i.e., 2-hydroxybenzyl alcohol, 2,3-dihydroxybenzoic acid, 2'-hydroxyacetophenone and methyl salicylate. The effects of these salicylate derivatives on the localization of the p.H723R were investigated by immunofluorescence microscopy. RESULTS The application of 10 mM salicylate showed an increase in cell toxicity and decrease in cell viability, leading to a significant decrease in cell proliferation. In contrast, the application of 1 mM salicylate derivatives did not show any significant increase in cell toxicity and decrease in cell viability, corresponding to a logarithmic increase in cell concentration with an increase in culture time. Immunofluorescence experiments showed that the p.H723R retained in the endoplasmic reticulum (ER). Among the salicylate derivatives applied, 2-hydroxybenzyl alcohol induced the translocation of p.H723R from the ER to the plasma membrane 3 h after its application. CONCLUSION The results obtained showed that 2-hydroxybenzyl alcohol restored the localization of the p.H723R allele products of SLC26A4 from the ER to the plasma membrane at a concentration of 1 mM by 3 h after its administration with less cytotoxicity than 10 mM salicylate.
Collapse
Affiliation(s)
- Michio Murakoshi
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Division of Mechanical Science and Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan.
| | - Yuhi Koike
- Division of Mechanical Science and Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shin Koyama
- Kansokan-kyoto.com, Kyoto, Japan; Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Shinichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Tokyo, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoichi Haga
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Kohei Tsumoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kenji Ishihara
- Laboratory of Medical Science, Course for School Nurse Teacher, Faculty of Education, Ibaraki University, Mito, Japan
| | - Hiroshi Wada
- Department of Intelligent Information System, Tohoku Bunka Gakuen University, Sendai, Japan
| |
Collapse
|
3
|
Kumar AP, Lee S, Lukman S. Computational and Experimental Approaches to Design Inhibitors of Amylin Aggregation. Curr Drug Targets 2019; 20:1680-1694. [DOI: 10.2174/1389450120666190719164316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023]
Abstract
Amylin is a neuroendocrine peptide hormone secreted by pancreatic ß-cells; however,
amylin is toxic to ß-cells when it is aggregated in type 2 diabetes mellitus (T2DM). It is important to
understand amylin’s structures and aggregation mechanism for the discovery and design of effective
drugs to inhibit amylin aggregation. In this review, we investigated experimental and computational
studies on amylin structures and inhibitors. Our review provides some novel insights into amylin, particularly
for the design of its aggregation inhibitors to treat T2DM. We detailed the potential inhibitors
that have been studied hitherto and highlighted the neglected need to consider different amylin attributes
that depend on the presence/absence of physiologically relevant conditions, such as membranes.
These conditions and the experimental methods can greatly influence the results of studies on amylininhibitor
complexes. Text-mining over 3,000 amylin-related PubMed abstracts suggests the combined
therapeutic potential of amylin with leptin and glucagon-like peptide-1, which are two key hormones
in obesity. The results also suggest that targeting amylin aggregation can contribute to therapeutic efforts
for Alzheimer’s disease (AD). Therefore, we have also reviewed the role of amylin in other conditions
including obesity and AD. Finally, we provided insights for designing inhibitors of different
types (small molecules, proteins, peptides/mimetics, metal ions) to inhibit amylin aggregation.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Dułak D, Banach M, Wiśniowski Z, Konieczny L, Roterman I. Comparison of the structure of Aβ(1-40) amyloid with the one in complex with polyphenol ε-viniferin glucoside (EVG). BIO-ALGORITHMS AND MED-SYSTEMS 2018. [DOI: 10.1515/bams-2018-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The analysis of amyloid structures is much easier recently due to the availability of the solid-state nuclear magnetic resonance technique, which allows the determination of the 3D structure of amyloid forms. The amyloidogenic polypeptide Aβ(1-40) (PDB ID 2M9R, 2M9S) in its soluble form is the object of analysis in this paper. The solubility of this polypeptide is reached due to the presence of a complexed ligand: polyphenol ε-viniferin glucoside. Two forms of complexes available in the PDB were taken for analysis with respect to the presence of a hydrophobic core in the 3D structure of these complexes. The idealized hydrophobic core structure assumed to be accordant with the 3D Gauss function distribution was taken as the pattern. The aim of this analysis is the possible further comparison to the structures of the hydrophobic core present in amyloids. It is shown that the discordant (versus the 3D Gauss function) fragments present in amyloids appear accordant in the discussed complexes.
Collapse
|
5
|
Roterman I, Banach M, Konieczny L. Propagation of Fibrillar Structural Forms in Proteins Stopped by Naturally Occurring Short Polypeptide Chain Fragments. Pharmaceuticals (Basel) 2017; 10:E89. [PMID: 29144442 PMCID: PMC5748646 DOI: 10.3390/ph10040089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
Amyloids characterized by unbounded growth of fibrillar structures cause many pathological processes. Such unbounded propagation is due to the presence of a propagating hydrophobicity field around the fibril's main axis, preventing its closure (unlike in globular proteins). Interestingly, similar fragments, commonly referred to as solenoids, are present in many naturally occurring proteins, where their propagation is arrested by suitably located "stopper" fragments. In this work, we analyze the distribution of hydrophobicity in solenoids and in their corresponding "stoppers" from the point of view of the fuzzy oil drop model (called FOD in this paper). This model characterizes the unique linear propagation of local hydrophobicity in the solenoid fragment and allows us to pinpoint "stopper" sequences, where local hydrophobicity quite closely resembles conditions encountered in globular proteins. Consequently, such fragments perform their function by mediating entropically advantageous contact with the water environment. We discuss examples of amyloid-like structures in solenoids, with particular attention to "stop" segments present in properly folded proteins found in living organisms.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 31-530 Krakow, Poland.
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 31-530 Krakow, Poland.
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, 31-034 Krakow, Poland.
| |
Collapse
|
6
|
Abstract
The human chaperonin TRiC consists of eight non-identical subunits, and its protein-folding activity is critical for cellular health. Misfolded proteins are associated with many human diseases, such as amyloid diseases, cancer, and neuropathies, making TRiC a potential therapeutic target. A detailed structural understanding of its ATP-dependent folding mechanism and substrate recognition is therefore of great importance. Of particular health-related interest is the mutation Histidine 147 to Arginine (H147R) in human TRiC subunit 5 (CCT5), which has been associated with hereditary sensory neuropathy. In this paper, we describe the crystal structures of CCT5 and the CCT5-H147R mutant, which provide important structural information for this vital protein-folding machine in humans. This first X-ray crystallographic study of a single human CCT subunit in the context of a hexadecameric complex can be expanded in the future to the other 7 subunits that form the TRiC complex.
Collapse
|
7
|
Application of the Fuzzy Oil Drop Model Describes Amyloid as a Ribbonlike Micelle. ENTROPY 2017. [DOI: 10.3390/e19040167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Paikar A, Debnath M, Podder D, Sasmal S, Haldar D. Synthesis and structural investigation of 2-aminomethyl-3-(4-methoxy-phenyl)-propionic acid containing a peptide analogue of the amyloidogenic AS(6–7) sequence: inhibition of fibril formation. Org Biomol Chem 2017; 15:4218-4225. [DOI: 10.1039/c7ob00797c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incorporation of a β-amino acid, namely 2-aminomethyl-3-(4-methoxy-phenyl)-propionic acid, inhibits amyloid-like fibril formation.
Collapse
Affiliation(s)
- Arpita Paikar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Mintu Debnath
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Debasish Podder
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Supriya Sasmal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| |
Collapse
|
9
|
Romero E, Moussodia RO, Kriznik A, Wenger E, Acherar S, Jamart-Grégoire B. Spontaneous Self-Assembly of Fully Protected Ester 1:1 [α/α-N α-Bn-hydrazino] Pseudodipeptides into a Twisted Parallel β-Sheet in the Crystal State. J Org Chem 2016; 81:9037-9045. [PMID: 27627436 DOI: 10.1021/acs.joc.6b01680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have demonstrated that amidic α/β-pseudodipeptides, 1:1 [α/α-Nα-Bn-hydrazino], have the ability to fold via a succession of γ-turn (C7 pseudocycle) and hydrazinoturn in CDCl3 solution, their amide terminals enabling the formation of an intramolecular H-bond network. Despite their lack of a primary amide terminals allowing the formation of the hydrazinoturn, their ester counterparts 1-4 were proven to self-assemble into C6 and C7 pseudocycles by intramolecular H-bonds in solution state and into an uncommon twisted parallel β-sheet through intermolecular H-bonding in the crystal state to form a supramolecular helix, with eight molecules needed to complete a full 360° rotation. Such self-organization (with eight molecules) has only been observed in a specific α/α-pseudodipeptide, depsipeptide (Boc-Leu-Lac-OEt). Relying on IR absorption, NMR, X-ray diffraction, and CD analyses, the aim of this study was to demonstrate that stereoisomers of ester 1:1 [α/α-Nα-Bn-hydrazino] pseudodipeptides 1-4 are able to self-assemble into this β-helical structure. The absolute configuration of the asymmetric Cα-atom of the α-amino acid residue influences the left- or right-handed twist without changing the pitch of the formed helix.
Collapse
Affiliation(s)
- Eugénie Romero
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), Université de Lorraine-CNRS, UMR 7375 , 1 rue Grandville, BP 20451, 54001 Nancy cedex, France
| | - Ralph-Olivier Moussodia
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), Université de Lorraine-CNRS, UMR 7375 , 1 rue Grandville, BP 20451, 54001 Nancy cedex, France
| | - Alexandre Kriznik
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine-CNRS, UMR 7365 and Service Commun de Biophysique Interactions Moléculaires (SCBIM), Université de Lorraine, FR3209, Biopôle de l'Université de Lorraine, Campus Biologie Santé - Faculté de Médecine , 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Emmanuel Wenger
- Laboratoire de Crystallographie, Résonance Magnétique et Modélisations (CRM2), Université de Lorraine-CNRS, UMR 7036, Faculté des Sciences et Technologies , BP 70239, Boulevard des Aiguillettes, 54506 Vandœuvre-lès-Nancy cedex, France
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), Université de Lorraine-CNRS, UMR 7375 , 1 rue Grandville, BP 20451, 54001 Nancy cedex, France
| | - Brigitte Jamart-Grégoire
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), Université de Lorraine-CNRS, UMR 7375 , 1 rue Grandville, BP 20451, 54001 Nancy cedex, France
| |
Collapse
|
10
|
Livi L, Rizzi A, Sadeghian A. Classifying sequences by the optimized dissimilarity space embedding approach: A case study on the solubility analysis of the E. coli proteome. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2015. [DOI: 10.3233/ifs-151550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lorenzo Livi
- Department of Computer Science, Ryerson University, Toronto, ON, Canada
| | - Antonello Rizzi
- Department of Information Engineering, Electronics, and Telecommunications, SAPIENZA University of Rome, via Eudossiana, Rome, Italy
| | - Alireza Sadeghian
- Department of Information Engineering, Electronics, and Telecommunications, SAPIENZA University of Rome, via Eudossiana, Rome, Italy
| |
Collapse
|
11
|
Sarkar R, Debnath M, Maji K, Haldar D. Solvent assisted structural diversity: supramolecular sheet and double helix of a short aromatic γ-peptide. RSC Adv 2015. [DOI: 10.1039/c5ra12831e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Solvent interaction has a significant effect on the molecular motions, folding and self-assembly of short aromatic γ-peptides that leads to a change in initial helical conformation.
Collapse
Affiliation(s)
- Rajib Sarkar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Mintu Debnath
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Krishnendu Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
12
|
Cuesta IG, Sánchez de Merás AMJ. Energy interactions in amyloid-like fibrils from NNQQNY. Phys Chem Chem Phys 2014; 16:4369-77. [PMID: 24458317 DOI: 10.1039/c3cp53551g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We use large-scale MP2 calculations to analyze the interactions appearing in amyloid fibers, which are difficult to determine experimentally. To this end, dimers and trimers of the hexapeptide NNQQNY from the yeast prion-like protein Sup35 were considered as model systems. We studied the energy interactions present in the three levels of organization in which the formation of amyloid fibrils is structured. The structural changes in the hydrogen bonds were studied too. It was found that the most energetic process is the formation of the β-sheet, which is equally due to both hydrogen bonds and van der Waals interactions. The aromatic rings help stabilize these aggregates through stacking of the aromatic rings of tyrosine, the stability produced by the aromatics residues increasing with their aromaticity. The formation of the basic unit of the assembled proto-fiber, the steric zipper, is less energetic and is associated to both dispersion forces and hydrogen bonds. The interactions between pair of β-sheets across the peptide-to-peptide contact through the tyrosine rings are cooperative and due to dispersion effects. Moreover, the strength of this interaction can rationalize the variation of mobility of the aromatic ring in the tyrosine units found in solid NMR experiments.
Collapse
Affiliation(s)
- Inmaculada García Cuesta
- Instituto de Ciencia Molecular, Universidad de Valencia, P.O. Box 22085, E-46071 Valencia, Spain.
| | | |
Collapse
|
13
|
Pattanasiri B, Li YW, Landau DP, Wüst T, Triampo W. Thermodynamics and structural properties of a confined HP protein determined by Wang-Landau simulation. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/454/1/012071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Dutt Konar A. Conformational studies of γ-turn in pseudopeptides containing α-amino acid and conformationally constrained meta amino benzoic acid/meta nitro aniline. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Pattanasiri B, Li YW, Landau DP, Wüst T, Triampo W. Conformational transitions of a confined lattice protein: A Wang-Landau study. ACTA ACUST UNITED AC 2012. [DOI: 10.1088/1742-6596/402/1/012048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
|
17
|
Samanta A, Paul BK, Guchhait N. Spectroscopic probe analysis for exploring probe–protein interaction: A mapping of native, unfolding and refolding of protein bovine serum albumin by extrinsic fluorescence probe. Biophys Chem 2011; 156:128-39. [DOI: 10.1016/j.bpc.2011.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/07/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
18
|
Mishra H, Lahiri T. Neurocognitive derivation of protein surface property from protein aggregate parameters. Bioinformation 2011; 6:158-61. [PMID: 21572883 PMCID: PMC3092950 DOI: 10.6026/97320630006158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 02/17/2011] [Indexed: 11/23/2022] Open
Abstract
Current work targeted to predicate parametric relationship between aggregate and individual property of a protein. In this approach, we considered individual property of a protein as its Surface Roughness Index (SRI) which was shown to have potential to classify SCOP protein families. The bulk property was however considered as Intensity Level based Multi-fractal Dimension (ILMFD) of ordinary microscopic images of heat denatured protein aggregates which was known to have potential to serve as protein marker. The protocol used multiple ILMFD inputs obtained for a protein to produce a set of mapped outputs as possible SRI candidates. The outputs were further clustered and largest cluster centre after normalization was found to be a close approximation of expected SRI that was calculated from known PDB structure. The outcome showed that faster derivation of individual protein's surface property might be possible using its bulk form, heat denatured aggregates.
Collapse
Affiliation(s)
- Hrishikesh Mishra
- Division of Applied Science and Indo-Russian Center for Biotechnology, Indian Institute of Information Technology, Allahabad, India
| | - Tapobrata Lahiri
- Division of Applied Science and Indo-Russian Center for Biotechnology, Indian Institute of Information Technology, Allahabad, India
| |
Collapse
|
19
|
GUO JX, RAO NN, LIU GX, LI J, WANG YH. Predicting Protein Folding Rate From Amino Acid Sequence. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Maity S, Kumar P, Haldar D. An amyloid-like fibril-forming supramolecular cross-β-structure of a model peptide: a crystallographic insight. Org Biomol Chem 2011; 9:3787-91. [DOI: 10.1039/c0ob01033b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Ewing GW, Parvez SH. The multi-systemic nature of diabetes mellitus: Genotype or phenotype? NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2010; 2:444-56. [PMID: 22558546 PMCID: PMC3339106 DOI: 10.4297/najms.2010.2444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND This article discusses factors which materially influence the diagnosis, prevention and treatment of diabetes mellitus but which may be overlooked by the prevailing biomedical paradigm. That cognition can be mathematically linked to the function of the autonomic nervous system and physiological systems casts new light upon the mechanisms responsible for homeostasis and origins of disease. In particular, it highlights the limitations of the reductionist biomedical approach which considers mainly the biochemistry of single pathologies rather than considering the neural mechanisms which regulate the function of physiological systems, and inherent visceral organs; and which are subsequently manifest as biochemistries of varying degrees of complexity and severity. As a consequence, histopathological tests are fraught with inherent limitations and many categories of drugs are significantly ineffective. AIMS Such limitations may be explained if disease (in particular diabetes mellitus) has multiple origins, is multi-systemic in nature and, depending upon the characteristics of each pathology, is influenced by genotype and/or phenotype. RESULTS This article highlights the influence of factors which are not yet considered re. the aetiology of diabetes mellitus e.g. the influence of light and sensory input upon the stability of the autonomic nervous system; the influence of raised plasma viscosity upon rates of reaction; the influence of viruses and/or of modified live viruses given in vaccinations; systemic instability, in particular the adverse influence of drinks and lack of exercise upon the body's prevailing pH and its subsequent influence upon levels of magnesium and other essential trace elements. CONCLUSIONS This application of the top-down systems biology approach may provide a plausible and inclusive explanation for the nature and occurrence of diabetes mellitus.
Collapse
Affiliation(s)
- Graham Wilfred Ewing
- Montague Healthcare, Mulberry House, 6 Vine Farm Close, Cotgrave, Nottingham NG12 3TU, United Kingdom
| | - Syed Hasan Parvez
- CNRS Neuroendocrine Unit, Institute Alfred Fessard of Neurosciences, Bât 5, Parc Chateau CNRS, 91190 Gif Sur Yvette, France
| |
Collapse
|
22
|
Salicylate restores transport function and anion exchanger activity of missense pendrin mutations. Hear Res 2010; 270:110-8. [PMID: 20826203 DOI: 10.1016/j.heares.2010.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 11/24/2022]
Abstract
The SLC26A4 gene encodes the transmembrane protein pendrin, which is involved in the homeostasis of the ion concentration of the endolymph of the inner ear, most likely by acting as a chloride/bicarbonate transporter. Mutations in the SLC26A4 gene cause sensorineuronal hearing loss. However, the mechanisms responsible for such loss have remained unknown. Therefore, in this study, we focused on the function of ten missense pendrin mutations (p.P123S (Pendred syndrome), p.M147V (NSEVA), p.K369E (NSEVA), p.A372V (Pendred syndrome/NSEVA), p.N392Y (Pendred syndrome), p.C565Y (NSEVA), p.S657N (NSEVA), p.S666F (NSEVA), p.T721M (NSEVA) and p.H723R (Pendred syndrome/NSEVA)) reported in Japanese patients, and analyzed their cellular localization and anion exchanger activity using HEK293 cells transfected with each mutant gene. Immunofluorescent staining of the cellular localization of the pendrin mutants revealed that p.K369E and p.C565Y, as well as wild-type pendrin, were transported to the plasma membrane, while 8 other mutants were retained in the cytoplasm. Furthermore, we analyzed whether salicylate, as a pharmacological chaperone, restores normal plasma membrane localization of 8 pendrin mutants retained in the cytoplasm to the plasma membrane. Incubation with 10 mM of salicylate of the cells transfected with the mutants induced the transport of 4 pendrin mutants (p.P123S, p.M147V, p.S657Y and p.H723R) from the cytoplasm to the plasma membrane and restored the anion exchanger activity. These findings suggest that salicylate might contribute to development of a new method of medical treatment for sensorineuronal hearing loss caused by the mutation of the deafness-related proteins, including pendrin.
Collapse
|
23
|
Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, Goulet DR, King JA, Frydman J, Adams PD. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J Biol Chem 2010; 285:27958-66. [PMID: 20573955 PMCID: PMC2934662 DOI: 10.1074/jbc.m110.125344] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/02/2010] [Indexed: 11/06/2022] Open
Abstract
Chaperonins are large protein complexes consisting of two stacked multisubunit rings, which open and close in an ATP-dependent manner to create a protected environment for protein folding. Here, we describe the first crystal structure of a group II chaperonin in an open conformation. We have obtained structures of the archaeal chaperonin from Methanococcus maripaludis in both a peptide acceptor (open) state and a protein folding (closed) state. In contrast with group I chaperonins, in which the equatorial domains share a similar conformation between the open and closed states and the largest motions occurs at the intermediate and apical domains, the three domains of the archaeal chaperonin subunit reorient as a single rigid body. The large rotation observed from the open state to the closed state results in a 65% decrease of the folding chamber volume and creates a highly hydrophilic surface inside the cage. These results suggest a completely distinct closing mechanism in the group II chaperonins as compared with the group I chaperonins.
Collapse
Affiliation(s)
- Jose H. Pereira
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Corie Y. Ralston
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Nicholai R. Douglas
- the Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Daniel Meyer
- the Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Kelly M. Knee
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Daniel R. Goulet
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Jonathan A. King
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Judith Frydman
- the Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Paul D. Adams
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- the Department of Bioengineering, University of California, Berkeley, California 94720
| |
Collapse
|
24
|
Dutt A, Spencer E, Howard J, Pramanik A. Studies of Amyloid-Like Fibrillogenesis throughβ-Sheet-Mediated Self-Assembly of Short Synthetic Peptides. Chem Biodivers 2010; 7:363-75. [DOI: 10.1002/cbdv.200900050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Song J, Takemoto K, Shen H, Tan H, Gromiha MM, Akutsu T. Prediction of Protein Folding Rates from Structural Topology and Complex Network Properties. ACTA ACUST UNITED AC 2010. [DOI: 10.2197/ipsjtbio.3.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Togashi DM, Ryder AG, O’Shaughnessy D. Monitoring Local Unfolding of Bovine Serum Albumin During Denaturation Using Steady-State and Time-Resolved Fluorescence Spectroscopy. J Fluoresc 2009; 20:441-52. [DOI: 10.1007/s10895-009-0566-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 11/03/2009] [Indexed: 11/28/2022]
|
27
|
Angelici G, Falini G, Hofmann HJ, Huster D, Monari M, Tomasini C. Nanofibers from oxazolidi-2-one containing hybrid foldamers: what is the right molecular size? Chemistry 2009; 15:8037-8048. [PMID: 19360839 DOI: 10.1002/chem.200900185] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A series of oligomers of the type Boc-(L-Phe-D-Oxd)(n)-OBn (Boc = tert-butoxycarbonyl; Oxd = 4-methyl-5-carboxy oxazolidin-2-one; Bn = benzyl) were prepared for n = 2-5. The shortest oligomer, Boc-(L-Phe-D-Oxd)(2)-OBn, aggregates and forms a fiber-like material with an anti-parallel beta-sheet structure in which the oligopeptide units are connected to each other by only one intermolecular hydrogen bond. The longer oligomers exhibit structural heterogeneity. They start to organize into secondary structures by the formation of intramolecular hydrogen bonds at the pentamer level. Microscopy and diffraction of the oligomers indicated a crystalline character for only the shorter ones.
Collapse
Affiliation(s)
- Gaetano Angelici
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum Università di Bologna, Via Selmi 21, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
|
30
|
Kim J, Motomiya Y, Ueda M, Nakamura M, Misumi Y, Saito S, Ikemizu S, Misumi S, Ota K, Shinriki S, Kai H, Ando Y. Role of conformational change in the C-terminus of beta2-microglobulin in dialysis-related amyloidosis. Ann Clin Biochem 2008; 45:489-95. [PMID: 18753422 DOI: 10.1258/acb.2008.008046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Beta(2)-microglobulin (beta(2)m) has been identified as the precursor protein of dialysis-related amyloidosis (DRA), which is a serious complication for haemodialysis (HD) patients. However, mechanisms underlying beta(2)m amyloid fibril formation remains to be elucidated. We previously demonstrated, in amyloid deposits from HD patients, a conformational isoform of beta(2)m with an unfolded C-terminus. However, no direct experiments have previously been performed to address whether unfolded beta(2)m in the C-terminus may be prone to form amyloid fibrils. METHODS To evaluate roles of C-terminal amino acids in beta(2)m-induced amyloid formation, we generated six types of recombinant beta(2)m with amino acid substitutions in the C-terminal region. To investigate their conformational change and amyloidogenicity, we measured circular dichroism spectra, the fluorescence intensity of tryptophan and thioflavin-T (ThT) of the recombinant beta(2)m. To analyse morphological change of beta(2)m, we performed electron microscopy (EM) on the samples with elevated ThT fluorescence intensity. We used ultrasonication to enhance beta(2)m destabilization of the protein. RESULTS Beta(2)M Trp95Leu and Arg97Ala showed conformational changes and increased their amyloidgenicity compared with beta(2)m wild-type (WT). With ultrasonication, beta(2)m Trp95Leu and Arg97Ala generated more amyloid fibrils than did beta(2)m WT even in physiological solution. EM showed that beta(2)m formed amorphous debris containing typical amyloid fibrils at 24 hours, when ThT fluorescence intensity was three-fold lower than that at six hours. CONCLUSIONS Conformational changes in the C-terminus of beta(2)m may play an important role in DRA and that ultrasonication is useful for analysis of beta(2)m amyloidogenesis.
Collapse
Affiliation(s)
- Jaemi Kim
- Department of Molecular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Angelici G, Falini G, Hofmann HJ, Huster D, Monari M, Tomasini C. A Fiberlike Peptide Material Stabilized by Single Intermolecular Hydrogen Bonds. Angew Chem Int Ed Engl 2008; 47:8075-8. [DOI: 10.1002/anie.200802587] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Angelici G, Falini G, Hofmann HJ, Huster D, Monari M, Tomasini C. A Fiberlike Peptide Material Stabilized by Single Intermolecular Hydrogen Bonds. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802587] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Devineni D, Ezekwudo D, Palaniappan R. Formulation of maltodextrin entrapped in polycaprolactone microparticles for protein and vaccine delivery: effect of size determining formulation process variables of microparticles on the hydrodynamic diameter of BSA. J Microencapsul 2007; 24:358-70. [PMID: 17497389 DOI: 10.1080/02652040701279104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Size of the microparticle and integrity of the released protein are two crucial factors which dictate the success of any protein or vaccine delivery system. The primary objective was to optimize bovine serum albumin (BSA) loaded polycaprolactone/maltodextrin (PCL/MD) microparticles in terms of its size and the hydrodynamic diameter of the released protein. The effect of size determining formulation process variables (SDFPV) of microparticles on the hydrodynamic diameter of protein antigen was determined. The SDFPV were optimized by a compromise between the microparticle size and the relative hydrodynamic stability of protein released from it. Percentage of secondary structure of the protein released from the optimized formulation as determined by circular dichroism spectra along with SELCON software was also similar to that of native BSA suggesting the potential of PCL /MD microparticles for protein or vaccine delivery.
Collapse
Affiliation(s)
- Dilip Devineni
- College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA
| | | | | |
Collapse
|
34
|
Dutt A, Dutta A, Mondal R, Spencer EC, Howard JA, Pramanik A. Studies of β-turn opening with model peptides containing non-coded α-amino isobutyric acid. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Nie CL, Wei Y, Chen X, Liu YY, Dui W, Liu Y, Davies MC, Tendler SJ, He RG. Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo. PLoS One 2007; 2:e629. [PMID: 17637844 PMCID: PMC1913207 DOI: 10.1371/journal.pone.0000629] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 06/13/2007] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that neurodegeneration is closely related to misfolding and aggregation of neuronal tau. Our previous results show that neuronal tau aggregates in formaldehyde solution and that aggregated tau induces apoptosis of SH-SY5Y and hippocampal cells. In the present study, based on atomic force microscopy (AFM) observation, we have found that formaldehyde at low concentrations induces tau polymerization whilst acetaldehyde does not. Neuronal tau misfolds and aggregates into globular-like polymers in 0.01–0.1% formaldehyde solutions. Apart from globular-like aggregation, no fibril-like polymerization was observed when the protein was incubated with formaldehyde for 15 days. SDS-PAGE results also exhibit tau polymerizing in the presence of formaldehyde. Under the same experimental conditions, polymerization of bovine serum albumin (BSA) or α-synuclein was not markedly detected. Kinetic study shows that tau significantly misfolds and polymerizes in 60 minutes in 0.1% formaldehyde solution. However, presence of 10% methanol prevents protein tau from polymerization. This suggests that formaldehyde polymerization is involved in tau aggregation. Such aggregation process is probably linked to the tau's special “worm-like” structure, which leaves the ε-amino groups of Lys and thiol groups of Cys exposed to the exterior. Such a structure can easily bond to formaldehyde molecules in vitro and in vivo. Polymerizing of formaldehyde itself results in aggregation of protein tau. Immunocytochemistry and thioflavin S staining of both endogenous and exogenous tau in the presence of formaldehyde at low concentrations in the cell culture have shown that formaldehyde can induce tau into amyloid-like aggregates in vivo during apoptosis. The significant protein tau aggregation induced by formaldehyde and the severe toxicity of the aggregated tau to neural cells may suggest that toxicity of methanol and formaldehyde ingestion is related to tau misfolding and aggregation.
Collapse
Affiliation(s)
- Chun Lai Nie
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Graduate School, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Graduate School, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Xinyong Chen
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, Nottingham, United Kingdom
| | - Yan Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Graduate School, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Wen Dui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Graduate School, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Graduate School, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Martyn C. Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, Nottingham, United Kingdom
| | - Saul J.B. Tendler
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, Nottingham, United Kingdom
| | - Rong Giao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Graduate School, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Bagler G, Sinha S. Assortative mixing in Protein Contact Networks and protein folding kinetics. Bioinformatics 2007; 23:1760-7. [PMID: 17519248 DOI: 10.1093/bioinformatics/btm257] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Starting from linear chains of amino acids, the spontaneous folding of proteins into their elaborate 3D structures is one of the remarkable examples of biological self-organization. We investigated native state structures of 30 single-domain, two-state proteins, from complex networks perspective, to understand the role of topological parameters in proteins' folding kinetics, at two length scales--as 'Protein Contact Networks (PCNs)' and their corresponding 'Long-range Interaction Networks (LINs)' constructed by ignoring the short-range interactions. RESULTS Our results show that, both PCNs and LINs exhibit the exceptional topological property of 'assortative mixing' that is absent in all other biological and technological networks studied so far. We show that the degree distribution of these contact networks is partly responsible for the observed assortativity. The coefficient of assortativity also shows a positive correlation with the rate of protein folding at both short- and long-contact scale, whereas, the clustering coefficients of only the LINs exhibit a negative correlation. The results indicate that the general topological parameters of these naturally evolved protein networks can effectively represent the structural and functional properties required for fast information transfer among the residues facilitating biochemical/kinetic functions, such as, allostery, stability and the rate of folding. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ganesh Bagler
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
37
|
Abstract
The role of amino acid side chain oxidation in the formation of amyloid assemblies has been investigated. Chemical oxidation of amino acid side chains has been used as a facile method of introducing mutations on protein structures. Oxidation promotes changes within tertiary contacts that enable identification of residues and interactions critical in stabilizing protein structures. Transthyretin (TTR) is a soluble human plasma protein. The wild-type (WT) and several of its variants are prone to fibril formation, which leads to amyloidosis associated with many clinical syndromes. The effects of amino acid side chain oxidations were investigated by comparing the kinetics of fibril formation of oxidized and unoxidized proteins. The WT and V30M TTR mutant (valine 30 substituted with methionine) were allowed to react over a time range of 10 min to 12 h with hydroxy radical and other reactive oxygen species. In these timescales, up to five oxygen atoms were incorporated into WT and V30M TTR proteins. Oxidized proteins retained their tetrameric structures, as determined by cross-linking experiments. Side chain modification of methionine residues at position 13 and 30 (the latter for V30M TTR only) were dominant oxidative products. Mono-oxidized and dioxidized methionine residues were identified by radical probe mass spectometry employing a footprinting type approach. Oxidation inhibited the initial rates and extent of fibril formation for both the WT and V30M TTR proteins. In the case of WT TTR, oxidation inhibited fibril growth by approximately 76%, and for the V30M TTR by nearly 90%. These inhibiting effects of oxidation on fibril growth suggest that domains neighboring the methionine residues are critical in stabilizing the tetrameric and folded monomer structures.
Collapse
Affiliation(s)
- Simin D Maleknia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
38
|
Intrinsic Amyloidogenic Behavior of Terminally Protected Alzheimer’s Aβ17–21 Peptide: Self-Aggregation and Amyloid-Like Fibril Formation. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-006-9072-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells. BMC Neurosci 2007; 8:9. [PMID: 17241479 PMCID: PMC1790706 DOI: 10.1186/1471-2202-8-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 01/23/2007] [Indexed: 12/23/2022] Open
Abstract
Background The microtubule associated protein tau is the principle component of neurofibrillar tangles, which are a characteristic marker in the pathology of Alzheimer's disease; similar lesions are also observed after chronic alcohol abuse. Formaldehyde is a common environmental contaminant and also a metabolite of methanol. Although many studies have been done on methanol and formaldehyde intoxication, none of these address the contribution of protein misfolding to the pathological mechanism, in particular the effect of formaldehyde on protein conformation and polymerization. Results We found that unlike the typical globular protein BSA, the natively-unfolded structure of human neuronal tau was induced to misfold and aggregate in the presence of ~0.01% formaldehyde, leading to formation of amyloid-like deposits that appeared as densely staining granules by electron microscopy and atomic force microscopy, and bound the amyloid-specific dyes thioflavin T and Congo Red. The amyloid-like aggregates of tau were found to induce apoptosis in the neurotypic cell line SH-SY5Y and in rat hippocampal cells, as observed by Hoechst 33258 staining, assay of caspase-3 activity, and flow cytometry using Annexin V and Propidium Iodide staining. Further experiments showed that Congo Red specifically attenuated the caspase-3 activity induced by amyloid-like deposits of tau. Conclusion The results suggest that low concentrations of formaldehyde can induce human tau protein to form neurotoxic aggregates, which could play a role in the induction of tauopathies.
Collapse
|
40
|
l-Ala Modified Analogues of Amyloid β-Peptide Residue 17-20: Self-Association and Amyloid-like Fibril Formation. Int J Pept Res Ther 2006. [DOI: 10.1007/s10989-006-9037-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
α-Aminoisobutyric acid modified protected analogues of β-amyloid residue 17–20: a change from sheet to helix. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Dicko C, Kenney JM, Vollrath F. β‐Silks: Enhancing and Controlling Aggregation. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:17-53. [PMID: 17190610 DOI: 10.1016/s0065-3233(06)73002-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It appears that fiber-forming proteins are not an exclusive group but that, with appropriate conditions, many proteins can potentially aggregate and form fibrils; though only certain proteins, for example, amyloids and silks, do so under normal physiological conditions. Even so, this suggests a ubiquitous aggregation mechanism in which the protein environment is at least as important as the sequence. An ideal model system in which forced and natural aggregation has been observed is silk. Silks have evolved specifically to readily form insoluble ordered structures with a wide range of structural functionality. The animal, be it silkworm or spider, will produce, store, and transport high molecular weight proteins in a complex environment to eventually allow formation of silk fibers with a variety of mechanical properties. Here we review fiber formation and its prerequisites, and discuss the mechanism by which the animal facilitates and modulates silk assembly to achieve controlled protein aggregation.
Collapse
Affiliation(s)
- Cedric Dicko
- Zoology Department, Oxford University, OX1 3PS, United Kingdom
| | | | | |
Collapse
|
43
|
Togashi DM, Ryder AG. Time-resolved fluorescence studies on bovine serum albumin denaturation process. J Fluoresc 2005; 16:153-60. [PMID: 16382334 DOI: 10.1007/s10895-005-0029-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
The denaturation of Bovine Serum Albumin (BSA) by a chaotropic agent, guanidinium hydrochloride (GuH+Cl-) was studied by fluorescence lifetime analysis. The BSA was labelled with 1-anilino-8-naphthalene sulfonate (ANS) at two different molar ratios (1:1) and (1:10). The non-exponential fluorescence kinetics of the BSA-ANS complex at different stages of denaturation is analysed using three different models: a discrete tri-exponential sum, stretched exponential, and Gaussian lifetime distribution. In all cases, the fluorescence decay times decreased with protein denaturation. The results from the models show that there are at least two different binding sites located in the BSA protein with different water accessibility.
Collapse
Affiliation(s)
- Denisio M Togashi
- Department of Chemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|
44
|
Castiglione F, Liso A. The role of computational models of the immune system in designing vaccination strategies. Immunopharmacol Immunotoxicol 2005; 27:417-32. [PMID: 16237953 DOI: 10.1080/08923970500241030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mathematical and computational models are designed to improve our understanding of biological phenomena, to confirm/reject hypotheses, and to find points of intervention by altering the behavior of the studied systems. Here we describe the role of mathematical/computational models of the immune system. In particular, we analyze some examples of how mathematical modeling can contribute to finding optimal vaccination strategies. Indeed, computational modeling offers an intriguing opportunity from the theoretical point of view, and it will be of interest for clinically oriented investigators who wish to find optimal therapeutic strategies and for pharmaceutical industries that want to produce effective and successful drugs.
Collapse
Affiliation(s)
- Filippo Castiglione
- Institute for Computing Applications, National Reseach Council, Roma, Italy.
| | | |
Collapse
|
45
|
Dutt A, Drew MG, Pramanik A. m-Aminobenzoic acid inserted β-turn in acyclic tripeptides: a peptidomimetic design. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Janovjak H, Kedrov A, Cisneros DA, Sapra KT, Struckmeier J, Muller DJ. Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiol Aging 2005; 27:546-61. [PMID: 16253393 DOI: 10.1016/j.neurobiolaging.2005.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Revised: 03/15/2005] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
Single-molecule atomic force microscopy (AFM) provides novel ways to characterize structure-function relationships of native membrane proteins. High-resolution AFM-topographs allow observing substructures of single membrane proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. Complementary to AFM imaging, single-molecule force spectroscopy experiments allow detecting molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to detect the interactions that stabilize secondary structures such as transmembrane alpha-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the position of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes. We review current and future potential of these approaches to reveal insights into membrane protein structure, function, and unfolding as we recognize that they could help answering key questions in the molecular basis of certain neuro-pathological dysfunctions.
Collapse
Affiliation(s)
- Harald Janovjak
- Center of Biotechnology, University of Technology and Max-Planck-Institute of Molecular Cell Biology and Genetics, Tatzberg 49, D-01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Supramolecular parallel β-sheet and amyloid-like fibril forming peptides using δ-aminovaleric acid residue. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.03.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Das AK, Drew MGB, Haldar D, Banerjee A. The role of the disulfide bond in amyloid-like fibrillogenesis in a model peptide system. Org Biomol Chem 2005; 3:3502-7. [PMID: 16172687 DOI: 10.1039/b509083k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three terminally protected short peptides Bis[Boc-D-Leu1-Cys2-OMe] 1, Bis[Boc-Leu1-Cys2-OMe] and Bis[Boc-Val1-Cys2-OMe] 3 exhibit amyloid-like fibrillar morphology. Single crystal X-ray diffraction analysis of peptide 1 clearly demonstrates that it adopts an overall extended backbone molecular conformation that self-assembles to form an intermolecular hydrogen-bonded antiparallel supramolecular beta-sheet structure in crystals. Scanning electron microscopic (SEM) images, transmission electron microscopic (TEM) images and Congo red binding studies vividly demonstrate the amyloid-like fibril formation of peptides 1, 2 and 3. However, after reduction of the disulfide bridge of peptides 1, 2 and 3, three newly generated peptides Boc-D-Leu1-Cys2-OMe 4, Boc-Leu1-Cys2-OMe 5 and Boc-Val1-Cys2-OMe 6 are formed and all of them failed to form any kind of fibril under the same conditions, indicating the important role of the disulfide bond in amyloid-like fibrillogenesis in a peptide model system.
Collapse
Affiliation(s)
- Apurba Kumar Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | | | | | | |
Collapse
|
49
|
Dutt A, Fröhlich R, Pramanik A. β-Turn mimic in tripeptide with Phe(1)-Aib(2) as corner residues and β-strand structure in an isomeric tripeptide: an X-ray diffraction study. Org Biomol Chem 2005; 3:661-5. [PMID: 15703804 DOI: 10.1039/b415455j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single crystal X-ray diffraction study of the tripeptide Boc-Phe-Aib-Leu-OMe (Aib = alpha-aminoisobutyric acid) reveals that it forms structurally one of the best type II beta-turns so far reported in tripeptides, stabilized by 10 atom intramolecular hydrogen bonding. In contrast, the isomeric tripeptide Boc-Phe-Leu-Aib-OMe adopts a beta-strand like conformation. Interestingly, a previously reported structure of another isomeric tripeptide, Boc-Leu-Aib-Phe-OMe, shows a double bend conformation without any intramolecular hydrogen bonding. These results demonstrate an example of the creation of structural diversities in the backbone of small peptides depending upon the co-operative steric interactions amongst the amino acid residues.
Collapse
Affiliation(s)
- Anita Dutt
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India
| | | | | |
Collapse
|
50
|
Banerjee A, Maji SK, Drew MG, Haldar D, Das AK, Banerjee A. Hydrogen-bonded dimer can mediate supramolecular β-sheet formation and subsequent amyloid-like fibril formation: a model study. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.05.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|