1
|
Meyer T, Knittelfelder O, Smolnig M, Rockenfeller P. Quantifying yeast lipidomics by high-performance thin-layer chromatography (HPTLC) and comparison to mass spectrometry-based shotgun lipidomics. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:57-68. [PMID: 38384676 PMCID: PMC10879857 DOI: 10.15698/mic2024.02.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Lipidomic analysis in diverse biological settings has become a frequent tool to increase our understanding of the processes of life. Cellular lipids play important roles not only as being the main components of cellular membranes, but also in the regulation of cell homeostasis as lipid signaling molecules. Yeast has been harnessed for biomedical research based on its good conservation of genetics and fundamental cell organisation principles and molecular pathways. Further application in so-called humanised yeast models have been developed which take advantage of yeast as providing the basics of a living cell with full control over heterologous expression. Here we present evidence that high-performance thin-layer chromatography (HPTLC) represents an effective alternative to replace cost intensive mass spectrometry-based lipidomic analyses. We provide statistical comparison of identical samples by both methods, which support the use of HPTLC for quantitative analysis of the main yeast lipid classes.
Collapse
Affiliation(s)
- Thorsten Meyer
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Martin Smolnig
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Patrick Rockenfeller
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| |
Collapse
|
2
|
Al Saedi A, Yacoub AS, Awad K, Karasik D, Brotto M, Duque G. The Interplay of Lipid Signaling in Musculoskeletal Cross Talk: Implications for Health and Disease. Methods Mol Biol 2024; 2816:1-11. [PMID: 38977583 DOI: 10.1007/978-1-0716-3902-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Ahmed S Yacoub
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Gustavo Duque
- Research Institute of McGill University Health Center, Department of Medicine, McGill University, Québec, Canada
| |
Collapse
|
3
|
Yeh YT, Sona C, Yan X, Li Y, Pathak A, McDermott MI, Xie Z, Liu L, Arunagiri A, Wang Y, Cazenave-Gassiot A, Ghosh A, von Meyenn F, Kumarasamy S, Najjar SM, Jia S, Wenk MR, Traynor-Kaplan A, Arvan P, Barg S, Bankaitis VA, Poy MN. Restoration of PITPNA in Type 2 diabetic human islets reverses pancreatic beta-cell dysfunction. Nat Commun 2023; 14:4250. [PMID: 37460527 PMCID: PMC10352338 DOI: 10.1038/s41467-023-39978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction. Conditional deletion of Pitpna in the beta-cells of Ins-Cre, Pitpnaflox/flox mice leads to hyperglycemia resulting from decreasing glucose-stimulated insulin secretion (GSIS) and reducing pancreatic beta-cell mass. Furthermore, PITPNA silencing in human islets confirms its role in PtdIns-4-P synthesis and leads to impaired insulin granule maturation and docking, GSIS, and proinsulin processing with evidence of ER stress. Restoration of PITPNA in islets of T2D human subjects reverses these beta-cell defects and identify PITPNA as a critical target linked to beta-cell failure in T2D.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Chandan Sona
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Xin Yan
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Yunxiao Li
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
| | - Adrija Pathak
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mark I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Zhigang Xie
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Liangwen Liu
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yuting Wang
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Shiqi Jia
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Alexis Traynor-Kaplan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
- ATK Analytics, Innovation and Discovery, LLC, North Bend, WA, 98045, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Sebastian Barg
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew N Poy
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA.
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA.
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany.
| |
Collapse
|
4
|
Chang B, Byun J, Kim KK, Lee SE, Lee B, Kim KS, Ryu H, Shin HS, Cheong E. Deletion of Phospholipase C β1 in the Thalamic Reticular Nucleus Induces Absence Seizures. Exp Neurobiol 2022; 31:116-130. [PMID: 35674000 PMCID: PMC9194639 DOI: 10.5607/en22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Absence seizures are caused by abnormal synchronized oscillations in the thalamocortical (TC) circuit, which result in widespread spike-and-wave discharges (SWDs) on electroencephalography (EEG) as well as impairment of consciousness. Thalamic reticular nucleus (TRN) and TC neurons are known to interact dynamically to generate TC circuitry oscillations during SWDs. Clinical studies have suggested the association of Plcβ1 with early-onset epilepsy, including absence seizures. However, the brain regions and circuit mechanisms related to the generation of absence seizures with Plcβ1 deficiency are unknown. In this study, we found that loss of Plcβ1 in mice caused spontaneous complex-type seizures, including convulsive and absence seizures. Importantly, TRN-specific deletion of Plcβ1 led to the development of only spontaneous SWDs, and no other types of seizures were observed. Ex vivo slice patch recording demonstrated that the number of spikes, an intrinsic TRN neuronal property, was significantly reduced in both tonic and burst firing modes in the absence of Plcβ1. We conclude that the loss of Plcβ1 in the TRN leads to decreased excitability and impairs normal inhibitory neuronal function, thereby disrupting feedforward inhibition of the TC circuitry, which is sufficient to cause hypersynchrony of the TC system and eventually leads to spontaneous absence seizures. Our study not only provides a novel mechanism for the induction of SWDs in Plcβ1-deficient patients but also offers guidance for the development of diagnostic and therapeutic tools for absence epilepsy.
Collapse
Affiliation(s)
- Bomi Chang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea.,Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Junweon Byun
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Ko Keun Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Seung Eun Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Key-Sun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Laidlaw KME, Paine KM, Bisinski DD, Calder G, Hogg K, Ahmed S, James S, O’Toole PJ, MacDonald C. Endosomal cargo recycling mediated by Gpa1 and phosphatidylinositol 3-kinase is inhibited by glucose starvation. Mol Biol Cell 2022; 33:ar31. [PMID: 35080991 PMCID: PMC9250360 DOI: 10.1091/mbc.e21-04-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/29/2023] Open
Abstract
Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation.
Collapse
Affiliation(s)
| | | | | | - Grant Calder
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Karen Hogg
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sophia Ahmed
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sally James
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Chris MacDonald
- York Biomedical Research Institute and Department of Biology and
| |
Collapse
|
6
|
Wang B, Zou L, Zhou L. Lipid bilayers regulate allosteric signal of NMDA receptor GluN1 C-terminal domain. Biochem Biophys Res Commun 2021; 585:15-21. [PMID: 34781056 DOI: 10.1016/j.bbrc.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
NMDAR (N-methyl-d-aspartate receptor) consisted of GluN1 and GluN2, and/or GluN3 subunits. As the obligatory subunit of NMDAR, GluN1 contains variant N-terminal domain (NTD) and C-terminal domain (CTD). The CTD contains allosteric signal and mediates the metabotropic function of NMDAR, which has been confirmed by previous studies. However, the allosteric signaling mechanism of GluN1 CTD has not been studied. In our study, we found that GluN1 CTD could bind to the lipid bilayers and affect the antigen epitope of GluN1 C-terminal antibody, suggesting that membrane binding may determine the allosteric signal of GluN1 CTD. In addition, we discovered that the membrane binding of GluN1 CTD could be regulated by the phosphorylation of GluN1 CTD C1 region.
Collapse
Affiliation(s)
- Busong Wang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Lu Zou
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Liang Zhou
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
7
|
De Camilli P. How a first research experience had an impact on my scientific journey. Mol Biol Cell 2021; 32:ae1. [PMID: 34735266 PMCID: PMC8694089 DOI: 10.1091/mbc.e21-08-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
As I look back to my scientific trajectory on the occasion of being the recipient of the E. B. Wilson Medal of the American Society for Cell Biology, I realize how much an early scientific experience had an impact on my research many years later. The major influence that the first scientific encounters can have in defining a scientist’s path makes the choice of the training environment so important for a future career.
Collapse
Affiliation(s)
- Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
8
|
Mishra M, Kapoor S. Modulation of a host's cell membrane nano-environment by mycobacterial glycolipids: involvement of PI(4,5)P 2 signaling lipid? Faraday Discuss 2021; 232:295-316. [PMID: 34542111 DOI: 10.1039/d0fd00051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Virulence-associated glycolipids from Mycobacterium tuberculosis (Mtb) act as effector molecules during infection-in addition to proteins. Upon insertion, they alter the host cell's membrane properties modifying the host's functions to aid Mtb survival and disease course. Here we combine tether force experiments and microscopy to reveal previously unknown insights on the potential involvement of the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) lipid in the Mtb lipid-host interaction landscape. Our data shows that Mtb lipids, having different structural and chemical make-up, distinctly alter a host's PI(4,5)P2 membrane abundance/organization and PI(4,5)P2-actin colocalization, thus impacting the plasma membrane-cytoskeletal adhesion forces. Combined with our previous findings that underscore the role of exogenous Mtb lipids in remodeling host plasma membrane organization and mechanics, this work builds upon a lipid-centric view of tubercular infections. Dynamically changing a host's plasma membrane lipid content - in response to virulent lipids - might represent a so far unexplored mechanism invoked by Mtb to modulate the host cell's adhesive properties to escape immune surveillance. These findings will deepen our collective understanding of the functional role of Mtb lipids in hijacking the host cell processes amenable to pharmacological inhibition.
Collapse
Affiliation(s)
- Manjari Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
9
|
Song X, Wang X, Liao G, Pan Y, Qian Y, Qiu J. Toxic effects of fipronil and its metabolites on PC12 cell metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112677. [PMID: 34450423 DOI: 10.1016/j.ecoenv.2021.112677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Fipronil and its metabolites (fipronil sulfone, fipronil sulfide and fipronil desulfinyl) adversely affect the environment and human health. Targeted metabolomics and lipidomics based on ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to analyse the alterations of glycerophospholipids and amino acids after exposure to fipronil and its metabolites at dosages of 0.5, 12.5 and 50 μM for 72 h and to evaluate their different toxic effects. Results showed that fipronil sulfone and fipronil desulfinyl are more toxic than their parent compound, with fipronil desulfinyl as the most toxic and fipronil sulfide as the least toxic. Fipronil and its metabolites affected the metabolism of PC18:1/16:0, PI18:0/20:4, arginine, leucine and tyrosine and the "phenylalanine, tyrosine and tryptophan biosynthesis" pathway, indicating their possible inducing role in cellular macromolecule damage, nerve signal transmission disturbance and energy metabolism disruption caused by oxidative stress. Importantly, fipronil sulfone and fipronil desulfinyl more strongly influenced lipid and amino acid metabolism, mainly reflected in the number of changed glycerophospholipids and differential metabolites associated with oxidative stress, including PS18:0/20:4, glutamate, phenylalanine and histidine for fipronil sulfone and PS18:0/20:4, glutamate, phenylalanine, serine and aspartic acid for fipronil desulfinyl. Therefore, the higher toxicity of fipronil desulfinyl and fipronil sulfone may be also related to oxidative stress. This study provides implications for risk assessment and toxic mechanism research on fipronil and its metabolites.
Collapse
Affiliation(s)
- Xiao Song
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Guangqin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yecan Pan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
10
|
Rathod J, Yen HC, Liang B, Tseng YY, Chen CS, Wu WS. YPIBP: A repository for phosphoinositide-binding proteins in yeast. Comput Struct Biotechnol J 2021; 19:3692-3707. [PMID: 34285772 PMCID: PMC8261538 DOI: 10.1016/j.csbj.2021.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Phosphoinositides (PIs) are a family of eight lipids consisting of phosphatidylinositol (PtdIns) and its seven phosphorylated forms. PIs have important regulatory functions in the cell including lipid signaling, protein transport, and membrane trafficking. Yeast has been recognized as a eukaryotic model system to study lipid-protein interactions. Hundreds of yeast PI-binding proteins have been identified, but this research knowledge remains scattered. Besides, the complete PI-binding spectrum and potential PI-binding domains have not been interlinked. No comprehensive databases are available to support the lipid-protein interaction research on phosphoinositides. Here we constructed the first knowledgebase of Yeast Phosphoinositide-Binding Proteins (YPIBP), a repository consisting of 679 PI-binding proteins collected from high-throughput proteome-array and lipid-array studies, QuickGO, and a rigorous literature mining. The YPIBP also contains protein domain information in categories of lipid-binding domains, lipid-related domains and other domains. The YPIBP provides search and browse modes along with two enrichment analyses (PI-binding enrichment analysis and domain enrichment analysis). An interactive visualization is given to summarize the PI-domain-protein interactome. Finally, three case studies were given to demonstrate the utility of YPIBP. The YPIBP knowledgebase consolidates the present knowledge and provides new insights of the PI-binding proteins by bringing comprehensive and in-depth interaction network of the PI-binding proteins. YPIBP is available at http://cosbi7.ee.ncku.edu.tw/YPIBP/.
Collapse
Key Words
- ANTH, AP180 N-terminal Homology
- BAR, Bin-Amphiphysin-Rvs
- CAFA, Critical Assessment of Functional Annotation
- CRAL-TRIO, cellular retinaldehyde-binding protein (CRALBP) and TRIO guanine exchange factor
- Cvt, Cytoplasm-to-vacuole targeting
- ENTH, Epsin N-terminal Homology
- FDR, False Discovery Rate
- FYVE, Fab 1 (yeast orthologue of PIKfyve), YOTB, Vac 1 (vesicle transport protein), and EEA1
- GO, Gene Ontology
- ITC, Isothermal Titration Calorimetry
- LBD, Lipid-Binding Domain
- LMPD, LIPID MAPS Proteome Database
- LMSD, LIPID MAPS Structure Database
- LRD, Lipid-Related Domain
- Lipid-binding domain
- OMIM, Online Mendelian Inheritance in Man
- OSBP, Oxysterol-Binding Protein
- PH, Pleckstrin Homology
- PI(3,4)P2, phosphatidylinositol-3,4-bisphosphate
- PI(3,4,5)P3, phosphatidylinositol-3,4,5-trisphosphate
- PI(3,5)P2, phosphatidylinositol-3,5-bisphosphate
- PI(4,5)P2, phosphatidylinositol-4,5-bisphosphate
- PI-binding protein
- PI3P, phosphatidylinositol-3-phosphate
- PI4P, phosphatidylinositol-4-phosphate
- PI5P, phosphatidylinositol-5-phosphate
- PIs, Phosphoinositides
- PMID, PubMed ID
- PX, Phox Homology
- Phosphatidylinositol (PtdIns)
- Phosphoinositides (PIs)
- PtdIns, Phosphatidylinositol
- QCM, Quartz Crystal Microbalance
- S. cerevisiae
- SNX, Sorting Nexin
- SPR, Surface Plasmon Resonance
- YPIBP, Yeast Phosphoinositide-Binding Proteins
- Yeast
Collapse
Affiliation(s)
- Jagat Rathod
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Chen Yen
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Biqing Liang
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
11
|
Malek M, Wawrzyniak AM, Koch P, Lüchtenborg C, Hessenberger M, Sachsenheimer T, Jang W, Brügger B, Haucke V. Inositol triphosphate-triggered calcium release blocks lipid exchange at endoplasmic reticulum-Golgi contact sites. Nat Commun 2021; 12:2673. [PMID: 33976123 PMCID: PMC8113574 DOI: 10.1038/s41467-021-22882-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023] Open
Abstract
Vesicular traffic and membrane contact sites between organelles enable the exchange of proteins, lipids, and metabolites. Recruitment of tethers to contact sites between the endoplasmic reticulum (ER) and the plasma membrane is often triggered by calcium. Here we reveal a function for calcium in the repression of cholesterol export at membrane contact sites between the ER and the Golgi complex. We show that calcium efflux from ER stores induced by inositol-triphosphate [IP3] accumulation upon loss of the inositol 5-phosphatase INPP5A or receptor signaling triggers depletion of cholesterol and associated Gb3 from the cell surface, resulting in a blockade of clathrin-independent endocytosis (CIE) of Shiga toxin. This phenotype is caused by the calcium-induced dissociation of oxysterol binding protein (OSBP) from the Golgi complex and from VAP-containing membrane contact sites. Our findings reveal a crucial function for INPP5A-mediated IP3 hydrolysis in the control of lipid exchange at membrane contact sites.
Collapse
Affiliation(s)
- Mouhannad Malek
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Anna M. Wawrzyniak
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Peter Koch
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian Lüchtenborg
- grid.7700.00000 0001 2190 4373Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Manuel Hessenberger
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Timo Sachsenheimer
- grid.7700.00000 0001 2190 4373Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Wonyul Jang
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Britta Brügger
- grid.7700.00000 0001 2190 4373Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Volker Haucke
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany ,grid.14095.390000 0000 9116 4836Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Pizzamiglio L, Focchi E, Antonucci F. ATM Protein Kinase: Old and New Implications in Neuronal Pathways and Brain Circuitry. Cells 2020; 9:E1969. [PMID: 32858941 PMCID: PMC7564642 DOI: 10.3390/cells9091969] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Despite that the human autosomal recessive disease ataxia telangiectasia (A-T) is a rare pathology, interest in the function of ataxia-telangiectasia mutated protein (ATM) is extensive. From a clinical point of view, the role of ATM in the central nervous system (CNS) is the most impacting, as motor disability is the predominant symptom affecting A-T patients. Coherently, spino-cerebellar neurodegeneration is the principal hallmark of A-T and other CNS regions such as dentate and olivary nuclei and brain stem are implicated in A-T pathophysiology. Recently, several preclinical studies also highlighted the involvement of ATM in the cerebral cortex and hippocampus, thus extending A-T symptomatology to new brain areas and pathways. Here, we review old and recent evidence that largely demonstrates not only the historical ATM account in DNA damage response and cell cycle regulation, but the multiple pathways through which ATM controls oxidative stress homeostasis, insulin signalling pathways, epigenetic regulation, synaptic transmission, and excitatory-inhibitory balance. We also summarise recent evidence on ATM implication in neurological and cognitive diseases beyond A-T, bringing out ATM as new pathological substrate and potential therapeutic target.
Collapse
Affiliation(s)
- Lara Pizzamiglio
- Institute of Molecular and Cellular Pharmacology (IPMC), Université Côte d’Azur (UCA), CNRS UMR7275, 06560 Valbonne-Sophia Antipolis, France;
| | - Elisa Focchi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20100 Milan, Italy;
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20100 Milan, Italy;
| |
Collapse
|
13
|
Smith L, Fabian L, Al-Maawali A, Noche RR, Dowling JJ. De novo phosphoinositide synthesis in zebrafish is required for triad formation but not essential for myogenesis. PLoS One 2020; 15:e0231364. [PMID: 32804943 PMCID: PMC7430711 DOI: 10.1371/journal.pone.0231364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/01/2020] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositides (PIPs) and their regulatory enzymes are key players in many cellular processes and are required for aspects of vertebrate development. Dysregulated PIP metabolism has been implicated in several human diseases, including a subset of skeletal myopathies that feature structural defects in the triad. The role of PIPs in skeletal muscle formation, and particularly triad biogenesis, has yet to be determined. CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) catalyzes the formation of phosphatidylinositol, which is the base of all PIP species. Loss of CDIPT should, in theory, result in the failure to produce PIPs, and thus provide a strategy for establishing the requirement for PIPs during embryogenesis. In this study, we generated cdipt mutant zebrafish and determined the impact on skeletal myogenesis. Analysis of cdipt mutant muscle revealed no apparent global effect on early muscle development. However, small but significant defects were observed in triad size, with T-tubule area, inter terminal cisternae distance and gap width being smaller in cdipt mutants. This was associated with a decrease in motor performance. Overall, these data suggest that myogenesis in zebrafish does not require de novo PIP synthesis but does implicate a role for CDIPT in triad formation.
Collapse
Affiliation(s)
- Lindsay Smith
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Lacramioara Fabian
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Almundher Al-Maawali
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University & Sultan Qaboos University Hospital, Muscat, Oman
| | - Ramil R. Noche
- Zebrafish Genetics and Disease Models Core Facility, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James J. Dowling
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Molecular Basis for PI(3,5)P2 Recognition by SNX11, a Protein Involved in Lysosomal Degradation and Endosome Homeostasis Regulation. J Mol Biol 2020; 432:4750-4761. [DOI: 10.1016/j.jmb.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
|
15
|
Kudo F, Tsunoda T, Yamaguchi K, Miyanaga A, Eguchi T. Stereochemistry in the Reaction of the myo-Inositol Phosphate Synthase Ortholog Ari2 during Aristeromycin Biosynthesis. Biochemistry 2019; 58:5112-5116. [PMID: 31825604 DOI: 10.1021/acs.biochem.9b00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The myo-inositol-1-phosphate synthase (MIPS) ortholog Ari2, which is encoded in the aristeromycin biosynthetic gene cluster, catalyzes the formation of five-membered cyclitol phosphate using d-fructose 6-phosphate (F6P) as a substrate. To understand the stereochemistry during the Ari2 reaction in vivo, we carried out feeding experiments with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]glucose in the aristeromycin-producing strain Streptomyces citricolor. We observed retention of the 2H atom of (6S)-d-[6-2H1]glucose and no incorporation of the 2H atom from (6R)-d-[6-2H1]glucose in aristeromycin. This indicates that Ari2 abstracts the pro-R proton at C6 of F6P after oxidation of C5-OH by nicotinamide adenine dinucleotide (NAD+) to generate the enolate intermediate, which then attacks the C2 ketone to form the C-C bond via aldol-type condensation. The reaction of Ari2 with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]F6P in vitro exhibited identical stereochemistry compared with that observed during the feeding experiments. Furthermore, analysis of the crystal structure of Ari2, including NAD+ as a ligand, revealed the active site of Ari2 to be similar to that of MIPS of Mycobacterium tuberculosis, supporting the similarity of the reaction mechanisms of Ari2 and MIPS.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Takeshi Tsunoda
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Kaito Yamaguchi
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Akimasa Miyanaga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Tadashi Eguchi
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1, O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| |
Collapse
|
16
|
von Blume J, Hausser A. Lipid-dependent coupling of secretory cargo sorting and trafficking at the trans-Golgi network. FEBS Lett 2019; 593:2412-2427. [PMID: 31344259 PMCID: PMC8048779 DOI: 10.1002/1873-3468.13552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
In eukaryotic cells, the trans-Golgi network (TGN) serves as a platform for secretory cargo sorting and trafficking. In recent years, it has become evident that a complex network of lipid–lipid and lipid–protein interactions contributes to these key functions. This review addresses the role of lipids at the TGN with a particular emphasis on sphingolipids and diacylglycerol. We further highlight how these lipids couple secretory cargo sorting and trafficking for spatiotemporal coordination of protein transport to the plasma membrane.
Collapse
Affiliation(s)
- Julia von Blume
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Germany
| |
Collapse
|
17
|
Fabri JHTM, Rocha MC, Malavazi I. Overview of the Interplay Between Cell Wall Integrity Signaling Pathways and Membrane Lipid Biosynthesis in Fungi: Perspectives for Aspergillus fumigatus. Curr Protein Pept Sci 2019; 21:265-283. [PMID: 31284857 DOI: 10.2174/1389203720666190705164203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 11/22/2022]
Abstract
The cell wall (CW) and plasma membrane are fundamental structures that define cell shape and support different cellular functions. In pathogenic fungi, such as Aspegillus fumigatus, they not only play structural roles but are also important for virulence and immune recognition. Both the CW and the plasma membrane remain as attractive drug targets to treat fungal infections, such as the Invasive Pulmonary Aspergillosis (IPA), a disease associated with high morbimortality in immunocompromised individuals. The low efficiency of echinocandins that target the fungal CW biosynthesis, the occurrence of environmental isolates resistant to azoles such as voriconazole and the known drawbacks associated with amphotericin toxicity foster the urgent need for fungal-specific drugable targets and/or more efficient combinatorial therapeutic strategies. Reverse genetic approaches in fungi unveil that perturbations of the CW also render cells with increased susceptibility to membrane disrupting agents and vice-versa. However, how the fungal cells simultaneously cope with perturbation in CW polysaccharides and cell membrane proteins to allow morphogenesis is scarcely known. Here, we focus on current information on how the main signaling pathways that maintain fungal cell wall integrity, such as the Cell Wall Integrity and the High Osmolarity Glycerol pathways, in different species often cross-talk to regulate the synthesis of molecules that comprise the plasma membrane, especially sphingolipids, ergosterol and phospholipids to promote functioning of both structures concomitantly and thus, cell viability. We propose that the conclusions drawn from other organisms are the foundations to point out experimental lines that can be endeavored in A. fumigatus.
Collapse
Affiliation(s)
| | - Marina C Rocha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
18
|
Omotade TO, Roy CR. Manipulation of Host Cell Organelles by Intracellular Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0022-2019. [PMID: 31025623 PMCID: PMC11590418 DOI: 10.1128/microbiolspec.bai-0022-2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 12/24/2022] Open
Abstract
In this article, we explore the unique adaptations of intracellular bacterial pathogens that manipulate conserved cellular pathways, organelles, and cargo to convert the phagosome into a pathogen-containing vacuole (PCV). The phagosome is a degradative organelle that rapidly acidifies as it delivers cargo to the lysosome to destroy microbes and cellular debris. However, to avoid this fate, intracellular bacterial pathogens hijack the key molecular modulators of intracellular traffic: small GTPases, phospholipids, SNAREs, and their associated effectors. Following uptake, pathogens that reside in the phagosome either remain associated with the endocytic pathway or rapidly diverge from the preprogrammed route to the lysosome. Both groups rely on effector-mediated mechanisms to meet the common challenges of intracellular life, such as nutrient acquisition, vacuole expansion, and evasion of the host immune response. Mycobacteria, Salmonella, and Coxiella serve as a lens through which we explore regulators of the canonical endocytic route and pathogens that seek to subvert it. On the other hand, pathogens such as Chlamydia, Legionella, and Brucella disconnect from the canonical endocytic route. This bifurcation is linked to extensive hijacking of the secretory pathway and repurposing of the PCV into specialized compartments that resemble organelles in the secretory network. Finally, each pathogen devises specific strategies to counteract host immune responses, such as autophagy, which aim to destroy these aberrant organelles. Collectively, each unique intracellular niche and the pathogens that construct them reflect the outcome of an aggressive and ongoing molecular arms race at the host-pathogen interface. Improving our understanding of these well-adapted pathogens can help us refine our knowledge of conserved cell biological processes.
Collapse
Affiliation(s)
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University, New Haven, CT
| |
Collapse
|
19
|
Tran T, Bonham AJ, Chan ED, Honda JR. A paucity of knowledge regarding nontuberculous mycobacterial lipids compared to the tubercle bacillus. Tuberculosis (Edinb) 2019; 115:96-107. [PMID: 30948183 DOI: 10.1016/j.tube.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
All mycobacteria, including nontuberculous mycobacteria (NTM), synthesize an array of lipids including phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM). While absent from Mycobacterium tuberculosis (M. tb), glycopeptidolipids (GPL) are critical to the biology of NTM. M. tb and some NTM also synthesize trehalose-containing glycolipids and phenolic glycolipids (PGL), key membrane constituents with essential roles in metabolism. While lipids facilitate immune evasion, they also induce host immunity against tuberculosis. However, much less is known about the significance of NTM-derived PIM, LM, LAM, GPL, trehalose-containing glycolipids, and PGL as virulence factors, warranting further investigation. While culling the scientific literature on NTM lipids, it's evident that such studies were relatively few in number with the overwhelming majority of prior work dedicated to understanding lipids from the saprophyte Mycobacterium smegmatis. The identification and functional analysis of immune reactive NTM-derived lipids remain challenging, but such work is likely to yield a greater understanding of the pathogenesis of NTM lung disease. In this review, we juxtapose the vast literature of what is currently known regarding M. tb lipids to the lesser number of studies for comparable NTM lipids. But because GPL is the most widely recognized NTM lipid, we highlight its role in disease pathogenesis.
Collapse
Affiliation(s)
- Tru Tran
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO, 80217-3364, USA.
| | - Andrew J Bonham
- Department of Chemistry, Metropolitan State University of Denver, Campus Box 52, P.O. Box 173362, Denver, CO, 80217-3362, USA.
| | - Edward D Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA; Academic Affairs, National Jewish Health, 1400 Jackson St. Neustadt D509, Denver, CO, 80206, USA.
| | - Jennifer R Honda
- Department of Biomedical Research and the Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
20
|
Vesicle Docking Is a Key Target of Local PI(4,5)P 2 Metabolism in the Secretory Pathway of INS-1 Cells. Cell Rep 2018; 20:1409-1421. [PMID: 28793264 PMCID: PMC5613661 DOI: 10.1016/j.celrep.2017.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/31/2017] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence microscopy, we examined individual vesicle-trafficking steps. Unlike long-term PI(4,5)P2 perturbations, rapid and cell-wide PI(4,5)P2 reduction in the plasma membrane (PM) strongly inhibits secretion and intracellular Ca2+ concentration ([Ca2+]i) responses, but not sytaxin1a clustering. Interestingly, local PI(4,5)P2 reduction selectively at vesicle docking sites causes remarkable vesicle undocking from the PM without affecting [Ca2+]i. These results highlight a key role of local PI(4,5)P2 in vesicle tethering and docking, coordinated with its role in priming and fusion. Thus, different spatiotemporal PI(4,5)P2 signaling regulates distinct steps of vesicle trafficking, and vesicle docking may be a key target of local PI(4,5)P2 signaling in vivo.
Collapse
|
21
|
Woodman S, Trousdale C, Conover J, Kim K. Yeast membrane lipid imbalance leads to trafficking defects toward the Golgi. Cell Biol Int 2018; 42:890-902. [PMID: 29500884 DOI: 10.1002/cbin.10956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Protein recycling is an essential cellular process involving endocytosis, intracellular trafficking, and exocytosis. In mammalian systems membrane lipids, including cholesterol, sphingolipids, and phospholipids, play a pivotal role in protein recycling. To address this role in budding yeast, Saccharomyces cerevisiae, we utilized GFP-Snc1, a v-SNARE protein serving as a fluorescent marker for faithfully reporting the recycling pathway. Here we demonstrate results that display moderate to significant GFP-Snc1 recycling defects upon overexpression or inactivation of phospholipid, ergosterol, and sphingolipid biosynthesis enzymes, indicating that the homeostasis of membrane lipid levels is prerequisite for proper protein recycling. By using a truncated version of GFP-Snc1 that cannot be recycled from the plasma membrane, we determined that abnormalities in Snc1 localization in membrane lipid overexpression or underexpression mutants are not due to defects in the synthetic/secretory pathway, but rather in the intracellular trafficking pathway. We found that membrane lipid imbalance resulted in an accumulation of the late endosome marker Vps10-GFP, indicating trafficking from the endosomes to the Golgi may be being hindered, preventing recycling to the plasma membrane. To elucidate the possible mechanism for this trafficking hindrance, we stained the actin cytoskeleton, then quantified the percentage of cells with visible actin cables. Compared to wild-type cells, membrane lipid mutant cells exhibited lower levels of actin cables, indicating the actin cytoskeleton is disrupted upon membrane lipid imbalance. Taken together, our results show that impairment of proper recycling may be due to disruption of the actin cytoskeleton, which causes trafficking hindrance between the endosomes and Golgi.
Collapse
Affiliation(s)
- Sara Woodman
- Missouri State University, 901 S National Ave., Springfield, Missouri
| | - Christopher Trousdale
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Washington University in St. Louis, 1 Brookings Dr., St. Louis, Missouri
| | - Justin Conover
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| | - Kyoungtae Kim
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| |
Collapse
|
22
|
Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. MICROBIOME 2018; 6:53. [PMID: 29562928 PMCID: PMC5863371 DOI: 10.1186/s40168-018-0432-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.
Collapse
Affiliation(s)
- E Gonzalez
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center, Montréal, H3A 1A4, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - F E Pitre
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - A P Pagé
- Aquatic and Crop Resource Development (ACRD), National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - J Marleau
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| | - W Guidi Nissim
- Department of Agri-food and Environmental Science, University of Florence, Viale delle Idee, Sesto Fiorentino, FI, Italy
| | - M St-Arnaud
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - M Labrecque
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - S Joly
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - E Yergeau
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - N J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
23
|
Abstract
The tragedy of epilepsy emerges from the combination of its high prevalence, impact upon sufferers and their families, and unpredictability. Childhood epilepsies are frequently severe, presenting in infancy with pharmaco-resistant seizures; are often accompanied by debilitating neuropsychiatric and systemic comorbidities; and carry a grave risk of mortality. Here, we review the most current basic science and translational research findings on several of the most catastrophic forms of pediatric epilepsy. We focus largely on genetic epilepsies and the research that is discovering the mechanisms linking disease genes to epilepsy syndromes. We also describe the strides made toward developing novel pharmacological and interventional treatment strategies to treat these disorders. The research reviewed provides hope for a complete understanding of, and eventual cure for, these childhood epilepsy syndromes.
Collapse
Affiliation(s)
- MacKenzie A Howard
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Texas, 78712;
| | - Scott C Baraban
- Epilepsy Research Laboratory in the Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, California 94143;
| |
Collapse
|
24
|
MacFarlane PM, Di Fiore JM. Myo-inositol Effects on the Developing Respiratory Neural Control System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:159-166. [PMID: 30357747 DOI: 10.1007/978-3-319-91137-3_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myo-inositol is a highly abundant stereoisomer of the inositol family of sugar alcohols and forms the structural basis for a variety of polyphosphate derivatives including second messengers and membrane phospholipids. These derivatives regulate numerous cell processes including gene transcription, membrane excitability, vesicular trafficking, intracellular calcium signaling, and neuronal growth and development. Myo-inositol can be formed endogenously from the breakdown of glucose, is found in a variety of foods including breastmilk and is commercially available as a nutritional supplement. Abnormal myo-inositol metabolism has been shown to underlie the pathophysiology of a variety of clinical conditions including Down Syndrome, traumatic brain injury, bronchopulmonary dysplasia (BPD), and respiratory distress syndrome (RDS). Several animal studies have shown that myo-inositol may play a critical role in development of both the central and peripheral respiratory neural control system; a notable example is the neonatal apnea and respiratory insufficiency that manifests in a mouse model of myo-inositol depletion, an effect that is also postnatally lethal. This review focuses on myo-inositol (and some of its derivatives) and how it may play a role in respiratory neural control; we also discuss clinical evidence demonstrating a link between serum myo-inositol levels and the incidence of intermittent hypoxemia (IH) events (a surrogate measure of apnea of prematurity (AOP)) in preterm infants. Further, there are both animal and human infant studies that have demonstrated respiratory benefits following supplementation with myo-inositol, which highlights the prospects that nutritional requirements are important for appropriate development and maturation of the respiratory system.
Collapse
Affiliation(s)
- Peter M MacFarlane
- Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH, USA.
| | | |
Collapse
|
25
|
Abstract
Polarized exocytosis is generally considered as the multistep vesicular trafficking process in which membrane-bounded carriers are transported from the Golgi or endosomal compartments to specific sites of the plasma membrane. Polarized exocytosis in cells is achieved through the coordinated actions of membrane trafficking machinery and cytoskeleton orchestrated by signaling molecules such as the Rho family of small GTPases. Elucidating the molecular mechanisms of polarized exocytosis is essential to our understanding of a wide range of pathophysiological processes from neuronal development to tumor invasion.
Collapse
Affiliation(s)
- Jingwen Zeng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Shanshan Feng
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, P.R. China
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
26
|
Extended Synaptotagmin Localizes to Presynaptic ER and Promotes Neurotransmission and Synaptic Growth in Drosophila. Genetics 2017; 207:993-1006. [PMID: 28882990 DOI: 10.1534/genetics.117.300261] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
The endoplasmic reticulum (ER) is an extensive organelle in neurons with important roles at synapses including the regulation of cytosolic Ca2+, neurotransmission, lipid metabolism, and membrane trafficking. Despite intriguing evidence for these crucial functions, how the presynaptic ER influences synaptic physiology remains enigmatic. To gain insight into this question, we have generated and characterized mutations in the single extended synaptotagmin (Esyt) ortholog in Drosophila melanogaster Esyts are evolutionarily conserved ER proteins with Ca2+-sensing domains that have recently been shown to orchestrate membrane tethering and lipid exchange between the ER and plasma membrane. We first demonstrate that Esyt localizes to presynaptic ER structures at the neuromuscular junction. Next, we show that synaptic growth, structure, and homeostatic plasticity are surprisingly unperturbed at synapses lacking Esyt expression. However, neurotransmission is reduced in Esyt mutants, consistent with a presynaptic role in promoting neurotransmitter release. Finally, neuronal overexpression of Esyt enhances synaptic growth and the sustainment of the vesicle pool during intense activity, suggesting that increased Esyt levels may modulate the membrane trafficking and/or resting Ca2+ pathways that control synapse extension. Thus, we identify Esyt as a presynaptic ER protein that can promote neurotransmission and synaptic growth, revealing the first in vivo neuronal functions of this conserved gene family.
Collapse
|
27
|
Gopi M, Arambakkam Janardhanam V. Asiaticoside: Attenuation of rotenone induced oxidative burden in a rat model of hemiparkinsonism by maintaining the phosphoinositide-mediated synaptic integrity. Pharmacol Biochem Behav 2017; 155:1-15. [PMID: 28238857 DOI: 10.1016/j.pbb.2017.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
Asiaticoside (AS), a triterpenoid saponin isolated from the Indian medicinal herb Centella asiatica is known to exert a neuroprotective effect by attenuating the neurobehavioral, neurochemical and pathological changes in animal models. However, its potential neuroprotection in rotenone-induced hemiparkinsonism which implicates phospholipid-mediated neurotransmission remains unclear. Therefore, we have investigated the neuroprotective effects of AS in rat model of ROT-infused hemiparkinsonism with respect to phosphoinositides-assisted cytodynamics and synaptic function. Adult male Sprague-Dawley rats (250-300g) were distributed randomly into 6 groups, with 6 rats in each group: Sham control, Vehicle control (DMSO-0.1%), ROT-infused group (6μg/μl/kg), AS-treated group (50mg/kg/day), Drug (AS) control and Levodopa (l-DOPA)-treated group (6mg/kg/day). At the end of the experimental period, the rats were sacrificed after performing behavioral analyses and the striatum regions were dissected out. Phosphoinositides (PI) are involved in intrinsic membrane signals that regulate intracellular membrane trafficking vesicle and endocytosis. We have assessed mRNA and protein expressions of genes involved in PI-mediated signaling and also in synaptic function (PI3K, PDK 1, PEBP, Stx 1A and TH) in addition to the levels of neurotransmitters and the enzymatic antioxidant profile. AS caused an improved working memory and motor co-ordination in the ROT group. It alters the levels of neurotransmitters (p<0.01), the expression of mRNA and protein assessed which were significantly affected (P<0.001) by rotenone, thus exhibiting its intervention in the progression of neurodegeneration. We demonstrate that AS can mediate distinct function in PI-assisted vesicle endocytosis, cytoprotective signaling and in the synaptic function thereby mitigating the ROT-infused hemiparkinsonism, however, its specific regulatory role remains to be unraveled.
Collapse
Affiliation(s)
- Margabandhu Gopi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India.
| | | |
Collapse
|
28
|
Purushothaman G, Juvale K, Kirubakaran S, Vemula PK, Thiruvenkatam V. Water-mediated intermolecular interactions in 1,2-O-cyclohexylidene-myo-inositol: a quantitative analysis. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2017; 73:20-27. [PMID: 28035098 DOI: 10.1107/s2053229616018581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/21/2016] [Indexed: 11/10/2022]
Abstract
The syntheses of new myo-inositol derivatives have received much attention due to their important biological activities. 1,2-O-Cyclohexylidene-myo-inositol is an important intermediate formed during the syntheses of certain myo-inositol derivatives. We report herein the crystal structure of 1,2-O-cyclohexylidene-myo-inositol dihydrate, C12H20O6·2H2O, which is an intermediate formed during the syntheses of myo-inositol phosphate derivatives, to demonstrate the participation of water molecules and hydroxy groups in the formation of several intermolecular O-H...O interactions, and to determine a low-energy conformation. The title myo-inositol derivative crystallizes with two water molecules in the asymmetric unit in the space group C2/c, with Z = 8. The water molecules facilitate the formation of an extensive O-H...O hydrogen-bonding network that assists in the formation of a dense crystal packing. Furthermore, geometrical optimization and frequency analysis was carried out using density functional theory (DFT) calculations with B3LYP hybrid functionals and 6-31G(d), 6-31G(d,p) and 6-311G(d,p) basis sets. The theoretical and experimental structures were found to be very similar, with only slight deviations. The intermolecular interactions were quantitatively analysed using Hirshfeld surface analysis and 2D (two-dimensional) fingerplot plots, and the total lattice energy was calculated.
Collapse
Affiliation(s)
- Gayathri Purushothaman
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar 382 355, Gujarat, India
| | - Kapil Juvale
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar 382 355, Gujarat, India
| | - Sivapriya Kirubakaran
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar 382 355, Gujarat, India
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar 382 355, Gujarat, India
| |
Collapse
|
29
|
Ejzykowicz DE, Locken KM, Ruiz FJ, Manandhar SP, Olson DK, Gharakhanian E. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function. Curr Genet 2016; 63:531-551. [PMID: 27812735 DOI: 10.1007/s00294-016-0660-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.
Collapse
Affiliation(s)
- Daniele E Ejzykowicz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Kristopher M Locken
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Fiona J Ruiz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Surya P Manandhar
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Daniel K Olson
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Inouye Center for Microbial Oceanography, Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.
| |
Collapse
|
30
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
31
|
Nikitovic D, Kavasi RM, Berdiaki A, Papachristou DJ, Tsiaoussis J, Spandidos DA, Tsatsakis AM, Tzanakakis GN. Parathyroid hormone/parathyroid hormone-related peptide regulate osteosarcoma cell functions: Focus on the extracellular matrix (Review). Oncol Rep 2016; 36:1787-92. [PMID: 27499459 PMCID: PMC5022866 DOI: 10.3892/or.2016.4986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone tumor of mesenchymal origin mostly affecting children and adolescents. The OS extracellular matrix (ECM) is extensively altered as compared to physiological bone tissue. Indeed, the main characteristic of the most common osteoblastic subtype of OS is non-mineralized osteoid production. Parathyroid hormone (PTH) is a polypeptide hormone secreted by the chief cells of the parathyroid glands. The PTH-related peptide (PTHrP) may be comprised of 139, 141 or 173 amino acids and exhibits considerate N-terminal amino acid sequence homology with PTH. The function of PTH/PTHrP is executed through the activation of the PTH receptor 1 (PTHR1) and respective downstream intracellular pathways which regulate skeletal development, bone turnover and mineral ion homeostasis. Both PTHR1 and its PTH/PTHrP ligands have been shown to be expressed in OS and to affect the functions of these tumor cells. This review aims to highlight the less well known aspects of PTH/PTHrP functions in the progression of OS by focusing on ECM-dependent signaling.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Rafaela-Maria Kavasi
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aikaterini Berdiaki
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Dionysios J Papachristou
- Department of Anatomy‑Histology‑Embryology, Unit of Bone and Soft Tissue Studies, School of Medicine, University of Patras, Patras 26504, Greece
| | - John Tsiaoussis
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George N Tzanakakis
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
32
|
Frej AD, Clark J, Le Roy CI, Lilla S, Thomason PA, Otto GP, Churchill G, Insall RH, Claus SP, Hawkins P, Stephens L, Williams RSB. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Mol Cell Biol 2016; 36:1464-79. [PMID: 26951199 PMCID: PMC4859692 DOI: 10.1128/mcb.00039-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022] Open
Abstract
Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.
Collapse
Affiliation(s)
- Anna D Frej
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Jonathan Clark
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Caroline I Le Roy
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Peter A Thomason
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Grant P Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Grant Churchill
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Phillip Hawkins
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Len Stephens
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
33
|
Helliwell EE, Vega-Arreguín J, Shi Z, Bailey B, Xiao S, Maximova SN, Tyler BM, Guiltinan MJ. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:875-86. [PMID: 26214158 PMCID: PMC11389135 DOI: 10.1111/pbi.12436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/08/2023]
Abstract
The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens.
Collapse
Affiliation(s)
- Emily E Helliwell
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Julio Vega-Arreguín
- Virginia Bioinformatics Institute and Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Zi Shi
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bryan Bailey
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Siela N Maximova
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Virginia Bioinformatics Institute and Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark J Guiltinan
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
34
|
Shi X, Kohram M, Zhuang X, Smith AW. Interactions and Translational Dynamics of Phosphatidylinositol Bisphosphate (PIP2) Lipids in Asymmetric Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1732-1741. [PMID: 26829708 DOI: 10.1021/acs.langmuir.5b02814] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphatidylinositol phosphate (PIP) lipids are critical to many cell signaling pathways, in part by acting as molecular beacons that recruit peripheral membrane proteins to specific locations within the plasma membrane. Understanding the biophysics of PIP-protein interactions is critical to developing a chemically detailed model of cell communication. Resolving such interactions is challenging, even in model membrane systems, because of the difficulty in preparing PIP-containing membranes with high fluidity and integrity. Here we report on a simple, vesicle-based protocol for preparing asymmetric supported lipid bilayers in which fluorescent PIP lipid analogues are found only on the top leaflet of the supported membrane facing the bulk solution. With this asymmetric distribution of lipids between the leaflets, the fluorescent signal from the PIP lipid analogue reports directly on interactions between the peripheral molecules and the top leaflet of the membrane. Asymmetric PIP-containing bilayers are an ideal platform to investigate the interaction of PIP with peripheral membrane proteins using fluorescence-based imaging approaches. We demonstrate their usefulness here with a combined fluorescence correlation spectroscopy and single particle tracking study of the interaction between PIP2 lipids and a polycationic polymer, quaternized polyvinylpyridine (QPVP). With this approach we are able to quantify the microscopic features of the mobility coupling between PIP2 lipids and polybasic QPVP. With single particle tracking we observe individual PIP2 lipids switch from Brownian to intermittent motion as they become transiently trapped by QPVP.
Collapse
Affiliation(s)
| | | | - Xiaodong Zhuang
- Institute of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University , 315 Jiangong Building, 800 Dongchuan Road, Shanghai 200240, China
| | | |
Collapse
|
35
|
Nishiyama Y, Ohmichi T, Kazami S, Iwasaki H, Mano K, Nagumo Y, Kudo F, Ichikawa S, Iwabuchi Y, Kanoh N, Eguchi T, Osada H, Usui T. Vicenistatin induces early endosome-derived vacuole formation in mammalian cells. Biosci Biotechnol Biochem 2016; 80:902-10. [PMID: 27104762 DOI: 10.1080/09168451.2015.1132152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Homotypic fusion of early endosomes is important for efficient protein trafficking and sorting. The key controller of this process is Rab5 which regulates several effectors and PtdInsPs levels, but whose mechanisms are largely unknown. Here, we report that vicenistatin, a natural product, enhanced homotypic fusion of early endosomes and induced the formation of large vacuole-like structures in mammalian cells. Unlike YM201636, another early endosome vacuolating compound, vicenistatin did not inhibit PIKfyve activity in vitro but activated Rab5-PAS pathway in cells. Furthermore, vicenistatin increased the membrane surface fluidity of cholesterol-containing liposomes in vitro, and cholesterol deprivation from the plasma membrane stimulated vicenistatin-induced vacuolation in cells. These results suggest that vicenistatin is a novel compound that induces the formation of vacuole-like structures by activating Rab5-PAS pathway and increasing membrane fluidity.
Collapse
Affiliation(s)
- Yuko Nishiyama
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Tomohiro Ohmichi
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Sayaka Kazami
- b Chemical Biology Research Group, RIKEN CSRS , Wako, Japan
| | - Hiroki Iwasaki
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Kousuke Mano
- c Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai , Japan
| | - Yoko Nagumo
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Fumitaka Kudo
- d Graduate School of Science and Engineering , Tokyo Institute of Technology , Tokyo , Japan
| | - Sosaku Ichikawa
- e Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Yoshiharu Iwabuchi
- c Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai , Japan
| | - Naoki Kanoh
- c Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai , Japan
| | - Tadashi Eguchi
- d Graduate School of Science and Engineering , Tokyo Institute of Technology , Tokyo , Japan
| | - Hiroyuki Osada
- b Chemical Biology Research Group, RIKEN CSRS , Wako, Japan
| | - Takeo Usui
- e Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
36
|
Pastor-Flores D, Ferrer-Dalmau J, Bahí A, Boleda M, Biondi RM, Casamayor A. Depletion of yeast PDK1 orthologs triggers a stress-like transcriptional response. BMC Genomics 2015; 16:719. [PMID: 26391581 PMCID: PMC4578605 DOI: 10.1186/s12864-015-1903-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pkh proteins are the PDK1 orthologs in S. cerevisiae. They have redundant and essential activity and are responsible for the phosphorylation of several members of the AGC family of protein kinases. Pkh proteins have been involved in several cellular functions, including cell wall integrity and endocytosis. However the global expression changes caused by their depletion are still unknown. RESULTS A doxycycline-repressible tetO7 promoter driving the expression of PKH2 in cells carrying deletions of the PKH1 and PKH3 genes allowed us to progressively deplete cells from Pkh proteins when treated with doxycycline. Global gene expression analysis indicate that depletion of Pkh results in the up-regulation of genes involved in the accumulation of glycogen and also of those related to stress responses. Moreover, genes involved in the ion transport were quickly down-regulated when the levels of Pkh decreased. The reduction in the mRNA levels required for protein translation, however, was only observed after longer doxycycline treatment (24 h). We uncovered that Pkh is important for the proper transcriptional response to heat shock, and is mostly required for the effects driven by the transcription factors Hsf1 and Msn2/Msn4, but is not required for down-regulation of the mRNA coding for ribosomal proteins. CONCLUSIONS By using the tetO7 promoter we elucidated for the first time the transcriptomic changes directly or indirectly caused by progressive depletion of Pkh. Furthermore, this system enabled the characterization of the transcriptional response triggered by heat shock in wild-type and Pkh-depleted cells, showing that about 40 % of the observed expression changes were, to some degree, dependent on Pkh.
Collapse
Affiliation(s)
- Daniel Pastor-Flores
- Research Group PhosphoSites, Medizinische Klinik I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,Present address: Division of Redox Regulation, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Jofre Ferrer-Dalmau
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain.
| | - Anna Bahí
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain.
| | - Martí Boleda
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Laboratoire d'Ecologie Alpine (LECA), UMR 5553, CNRS-Université Joseph Fourie, BP 53, 38041, Grenoble, France.
| | - Ricardo M Biondi
- Research Group PhosphoSites, Medizinische Klinik I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain.
| |
Collapse
|
37
|
Naijil G, Anju T, Jayanarayanan S, Paulose C. Curcumin pretreatment mediates antidiabetogenesis via functional regulation of adrenergic receptor subtypes in the pancreas of multiple low-dose streptozotocin-induced diabetic rats. Nutr Res 2015; 35:823-33. [DOI: 10.1016/j.nutres.2015.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/15/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
|
38
|
Ye C, Greenberg ML. Inositol synthesis regulates the activation of GSK-3α in neuronal cells. J Neurochem 2014; 133:273-83. [PMID: 25345501 DOI: 10.1111/jnc.12978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022]
Abstract
The synthesis of inositol provides precursors of inositol lipids and inositol phosphates that are pivotal for cell signaling. Mood stabilizers lithium and valproic acid, used for treating bipolar disorder, cause cellular inositol depletion, which has been proposed as a therapeutic mechanism of action of both drugs. Despite the importance of inositol, the requirement for inositol synthesis in neuronal cells is not well understood. Here, we examined inositol effects on proliferation of SK-N-SH neuroblastoma cells. The essential role of inositol synthesis in proliferation is underscored by the findings that exogenous inositol was dispensable for proliferation, and inhibition of inositol synthesis decreased proliferation. Interestingly, the inhibition of inositol synthesis by knocking down INO1, which encodes inositol-3-phosphate synthase, the rate-limiting enzyme of inositol synthesis, led to the inactivation of GSK-3α by increasing the inhibitory phosphorylation of this kinase. Similarly, the mood stabilizer valproic acid effected transient decreases in intracellular inositol, leading to inactivation of GSK-3α. As GSK-3 inhibition has been proposed as a likely therapeutic mechanism of action, the finding that inhibition of inositol synthesis results in the inactivation of GSK-3α suggests a unifying hypothesis for mechanism of mood-stabilizing drugs. Inositol is an essential metabolite that serves as a precursor for inositol lipids and inositol phosphates. We report that inhibition of the rate-limiting enzyme of inositol synthesis leads to the inactivation of glycogen synthase kinase (GSK) 3α by increasing inhibitory phosphorylation of this kinase. These findings have implications for the therapeutic mechanisms of mood stabilizers and suggest that inositol synthesis and GSK 3α activity are intrinsically related.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
39
|
Xiao D, Chen S, Shao Q, Chen J, Bijian K, Laird DW, Alaoui-Jamali MA. Dynamin 2 interacts with connexin 26 to regulate its degradation and function in gap junction formation. Int J Biochem Cell Biol 2014; 55:288-97. [DOI: 10.1016/j.biocel.2014.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 09/09/2014] [Accepted: 09/19/2014] [Indexed: 11/16/2022]
|
40
|
Hsu F, Mao Y. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:698-710. [PMID: 25264170 DOI: 10.1016/j.bbalip.2014.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
Abstract
Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- FoSheng Hsu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
41
|
Dutta D, Pulsipher A, Luo W, Yousaf MN. PI3 kinase enzymology on fluid lipid bilayers. Analyst 2014; 139:5127-33. [PMID: 25133271 DOI: 10.1039/c4an00998c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the use of fluid lipid bilayer membrane as a model platform to study the influence of the bilayer microenvironment and composition on the enzymology in membrane. As a model system we determined the enzyme kinetics on membranes for the transformation of bilayers containing phosphoinositol(4,5)-bisphosphate (PI(4,5)P2) to phosphoinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) by the enzyme phosphoinositol-3-kinase (PI3K) using radiolabeled ATP. The activity of the enzyme was monitored as a function of the radioactivity incorporated within the bilayer. The transformation of PI(4,5)P2 to PI(3,4,5)P3 was determined using a mass strip assay. The fluidity of the bilayer was confirmed by Fluorescence Recovery After Photobleaching (FRAP) experiments. Kinetic simulations were performed based on Langmuir adsorption and Michaelis-Menton kinetics equations to generate the rate constants for the enzymatic reaction. The effect of cholesterol on the enzyme kinetics was studied by doping the bilayer with 1% cholesterol. This leads to significant reduction in reaction rate due to change in membrane microenvironment. This strategy provides a method to study the enzymology of various kinases and phosphatases occurring at the membrane and also how these reactions are affected by the membrane composition and surface microenvironment.
Collapse
Affiliation(s)
- Debjit Dutta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
42
|
Abstract
The phosphoinositide 3-kinase (PI 3-K) signal relay pathway represents arguably one of the most intensely studied mechanisms by which extracellular signals elicit cellular responses through the generation of second messengers that are associated with cell growth and transformation. This chapter reviews the many landmark discoveries in the PI 3-K signaling pathway in biology and disease, from the identification of a novel phosphoinositide kinase activity associated with transforming oncogenes in the 1980s, to the identification of oncogenic mutations in the catalytic subunit of PI 3-K in the mid 2000s. Two and a half decades of intense research have provided clear evidence that the PI 3-K pathway controls virtually all aspects of normal cellular physiology, and that deregulation of one or more proteins that regulate or transduce the PI 3-K signal ultimately leads to human pathology. The most recent efforts have focused on the development of specific PI 3-K inhibitors that are currently being evaluated in clinical trials for a range of disease states.This chapter is devoted to a historical review of the landmark findings in the PI 3-K from its relatively humble beginnings in the early to mid 1980s up until the present day. When considering the key findings in the history of PI 3-K, it is essential to recognize the landmark studies by Lowell and Mabel Hokin in the 1950s who were the first to describe that extracellular agonists such as acetylcholine could stimulate the incorporation of radiolabeled phosphate into phospholipids (Hokin and Hokin 1953). Their work initiated an entirely new field of lipid signaling, and subsequent studies in the 1970s by Michell and Lapetina who linked phosphoinositide turnover to membrane-associated receptors that initiate intracellular calcium mobilization (Lapetina and Michell 1973). Later studies revealed that the phospholipase-mediated breakdown of the same minor membrane phospholipids such as PtdIns-4,5-P(2) (phosphatidylinositol-4,5-bisphosphate) is responsible for the release of two additional key second messengers, diacylglycerol (DG) and IP(3) (inositol-1,4,5-trisphosphate) (Kirk et al. 1981; Berridge 1983; Berridge et al. 1983). Berridge, Irvine and Schulz then revealed that one of the byproducts of this lipid signal relay pathway is the release of calcium from intracellular stores such as the endoplasmic reticulum (Streb et al. 1983). Finally, pioneering studies by Nishizuka in the late 1970s identified PKC (protein kinase C) as a phospholipid and diacylglycerol-activated serine/threonine protein kinase (Inoue et al. 1977; Takai et al. 1977). At this point, it probably seemed to most at the time that the story was complete, such that hydrolysis of phosphoinositides such as PtdIns-4,5-P(2) and PtdIns-4-P would account for the major mechanisms of agonist-stimulated lipid signaling leading to physiological responses. On the contrary, the story was far from complete and was about to become a lot more complex.
Collapse
Affiliation(s)
- Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, EC/CLS-633A, 02130, Boston, MA, USA,
| |
Collapse
|
43
|
Furse S. The physical influence of inositides-a disproportionate effect? J Chem Biol 2014; 8:1-3. [PMID: 25584076 DOI: 10.1007/s12154-014-0117-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/07/2014] [Indexed: 12/16/2022] Open
Abstract
After the initial observation that lipids form a considerable part of biological membranes, the details of the physical role of lipids in biological systems have emerged gradually. There have been few 'Eureka' moments in which a class or individual lipid has appeared as a game-changing physical player. However, evidence collected in the last five years suggests that that notion may be about to change. In chemical biology studies, inositides are increasingly showing themselves to be lipids that have a physical influence on membrane systems that is as strong as their biological (signalling) one. Additionally, recent evidence has shown that the concentration of at least one inositide changes during important stages of the cell cycle, and not in a manner consistent with its traditional signalling roles. The balance between these data is explored and a forward-looking view is proposed.
Collapse
Affiliation(s)
- Samuel Furse
- Membrane Biochemistry and Biophysics, Universiteit Utrecht, Kruytgebouw, Padualaan 8, Utrecht, 3584 CH The Netherlands
| |
Collapse
|
44
|
Zhang Q, Zhang F, Sjöholm A. BLX-1002 restores glucose sensitivity and enhances insulin secretion stimulated by GLP-1 and sulfonylurea in type 2 diabetic pancreatic islets. Physiol Rep 2014; 2:2/5/e12014. [PMID: 24872354 PMCID: PMC4098742 DOI: 10.14814/phy2.12014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BLX-1002 is a novel thiazolidinedione with no peroxisome proliferator-activated receptor (PPAR) activity that has been shown to improve glycemia in type 2 diabetes without weight gain. We previously found that BLX-1002 selectively augments glucose-sensitive (but not basal) insulin secretion in normal mouse β-cells. We have now extended these observations to other insulin secretagogues and to diabetic rat islets. To this end, dynamics of insulin secretion stimulated by glucose, GLP-1, and the sulfonylurea tolbutamide were examined in pancreatic islets from nondiabetic Wistar and type 2 diabetic Goto-Kakizaki rats ex vivo. BLX-1002 restored normal glucose-sensitive insulin secretion in otherwise "glucose-blind" islets from GK rats, but did not affect basal or glucose-stimulated secretion in normal Wistar rat islets. The stimulatory effect of BLX-1002 on insulin secretion at high glucose required Ca(2+) and involved phosphatidylinositol 3-kinase (PI3K) activity. Consistent with its effects on insulin secretion, BLX-1002 also augmented insulin secretion and cytoplasmic-free Ca(2+) concentrations ([Ca(2+)]i) stimulated by high glucose, GLP-1, and tolbutamide in islets from GK, but not Wistar, rats. The inactive analog BLX-1237 had no effects. In conclusion, our findings suggest that BLX-1002 potentiates insulin secretion by different stimuli in diabetic β-cells only, in a Ca(2+)-dependent manner and involving PI3K.
Collapse
Affiliation(s)
- Qimin Zhang
- Department of Internal Medicine, Södertälje Hospital, Södertälje, Sweden
| | - Fan Zhang
- Department of Internal Medicine, Södertälje Hospital, Södertälje, Sweden
| | - Ake Sjöholm
- Department of Internal Medicine, Södertälje Hospital, Södertälje, Sweden Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
45
|
Reifler A, Li X, Archambeau AJ, McDade JR, Sabha N, Michele DE, Dowling JJ. Conditional knockout of pik3c3 causes a murine muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1819-30. [PMID: 24726497 DOI: 10.1016/j.ajpath.2014.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/07/2014] [Accepted: 02/18/2014] [Indexed: 12/28/2022]
Abstract
Abnormalities in phosphoinositide metabolism are an emerging theme in human neurodegenerative disease. Myotubular myopathy is a prototypical disorder of phosphoinositide dysregulation that is characterized by profound muscle pathology and weakness and that is caused by mutations in MTM1, which encodes a phosphatase that targets 3-position phosphoinositides, including phosphatidylinositol 3-phosphate. Although the association between MTM1 and muscle disease has become increasingly clarified, the normal role(s) of phosphatidylinositol 3-phosphate metabolism in muscle development and homeostasis remain poorly understood. To begin to address the function of phosphatidylinositol 3-phosphate in skeletal muscle, we focused on the primary kinase responsible for its production, and created a muscle-specific conditional knockout of the class III phosphatidylinositol 3-kinase, Pik3c3. Muscle-specific deletion of Pik3c3 did not disturb embryogenesis or early postnatal development, but resulted in progressive disease characterized by reduced activity and death by 2 months of age. Histopathological analysis demonstrated changes consistent with a murine muscular dystrophy. Examination for cellular mechanism(s) responsible for the dystrophic phenotype revealed significant alterations in the autophagolysosomal pathway with mislocation of known dystrophy proteins to the lysosomal compartment. In all, we present the first analysis of Pik3c3 in skeletal muscle, and report a novel association between deletion of Pik3c3 and muscular dystrophy.
Collapse
Affiliation(s)
- Aaron Reifler
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, Michigan; Neuroscience Graduate Program, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Xingli Li
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Ashley J Archambeau
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Joel R McDade
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Nesrin Sabha
- Department of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - James J Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, Michigan; Department of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
46
|
Li SC, Diakov TT, Xu T, Tarsio M, Zhu W, Couoh-Cardel S, Weisman LS, Kane PM. The signaling lipid PI(3,5)P₂ stabilizes V₁-V(o) sector interactions and activates the V-ATPase. Mol Biol Cell 2014; 25:1251-62. [PMID: 24523285 PMCID: PMC3982991 DOI: 10.1091/mbc.e13-10-0563] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V1 domain from the integral membrane V(o) domain. Multiple stresses induce changes in V1-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). V-ATPase activation through V1-V(o) assembly in response to salt stress is strongly dependent on PI(3,5)P2 synthesis. Purified V(o) complexes preferentially bind to PI(3,5)P2 on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P2 levels in vivo recruits the N-terminal domain of V(o)-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V1-V(o) interaction, suggesting that interaction of Vph1p with PI(3,5)P2-containing membranes stabilizes V1-V(o) assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1 and vac14 mutants and suggest that human disease phenotypes associated with PI(3,5)P2 loss may arise from compromised V-ATPase stability and regulation.
Collapse
Affiliation(s)
- Sheena Claire Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13219 Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI 48109
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Reifler A, Lenk GM, Li X, Groom L, Brooks SV, Wilson D, Bowerson M, Dirksen RT, Meisler MH, Dowling JJ. Murine Fig4 is dispensable for muscle development but required for muscle function. Skelet Muscle 2013; 3:21. [PMID: 24004519 PMCID: PMC3844516 DOI: 10.1186/2044-5040-3-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Phosphatidylinositol phosphates (PIPs) are low-abundance phospholipids that participate in a range of cellular processes, including cell migration and membrane traffic. PIP levels and subcellular distribution are regulated by a series of lipid kinases and phosphatases. In skeletal muscle, PIPs and their enzymatic regulators serve critically important functions exemplified by mutations of the PIP phosphatase MTM1 in myotubular myopathy (MTM), a severe muscle disease characterized by impaired muscle structure and abnormal excitation-contraction coupling. FIG4 functions as a PIP phosphatase that participates in both the synthesis and breakdown of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). Mutation of FIG4 results in a severe neurodegenerative disorder in mice and a progressive peripheral polyneuropathy in humans. The effect of FIG4 mutation on skeletal muscle has yet to be examined. METHODS Herein we characterize the impact of FIG4 on skeletal muscle development and function using the spontaneously occurring mouse mutant pale tremor (plt), a mouse line with a loss of function mutation in Fig4. RESULTS In plt mice, we characterized abnormalities in skeletal muscle, including reduced muscle size and specific force generation. We also uncovered ultrastructural abnormalities and increased programmed cell death. Conversely, we detected no structural or functional abnormalities to suggest impairment of excitation-contraction coupling, a process previously shown to be influenced by PI(3,5)P2 levels. Conditional rescue of Fig4 mutation in neurons prevented overt muscle weakness and the development of obvious muscle abnormalities, suggesting that the changes observed in the plt mice were primarily related to denervation of skeletal muscle. On the basis of the ability of reduced FIG4 levels to rescue aspects of Mtmr2-dependent neuropathy, we evaluated the effect of Fig4 haploinsufficiency on the myopathy of Mtm1-knockout mice. Male mice with a compound Fig4+/-/Mtm1-/Y genotype displayed no improvements in muscle histology, muscle size or overall survival, indicating that FIG4 reduction does not ameliorate the Mtm1-knockout phenotype. CONCLUSIONS Overall, these data indicate that loss of Fig4 impairs skeletal muscle function but does not significantly affect its structural development.
Collapse
Affiliation(s)
- Aaron Reifler
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Xingli Li
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Susan V Brooks
- Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Desmond Wilson
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Michyla Bowerson
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - James J Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
48
|
PKCλ is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP. EMBO J 2013; 32:1365-80. [PMID: 23511975 DOI: 10.1038/emboj.2013.60] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/13/2013] [Indexed: 01/26/2023] Open
Abstract
Direct phosphorylation of GluA1 by PKC controls α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor (AMPAR) incorporation into active synapses during long-term potentiation (LTP). Numerous signalling molecules that involved in AMPAR incorporation have been identified, but the specific PKC isoform(s) participating in GluA1 phosphorylation and the molecule triggering PKC activation remain largely unknown. Here, we report that the atypical isoform of PKC, PKCλ, is a critical molecule that acts downstream of phosphatidylinositol 3-kinase (PI3K) and is essential for LTP expression. PKCλ activation is required for both GluA1 phosphorylation and increased surface expression of AMPARs during LTP. Moreover, p62 interacts with both PKCλ and GluA1 during LTP and may serve as a scaffolding protein to place PKCλ in close proximity to facilitate GluA1 phosphorylation by PKCλ. Thus, we conclude that PKCλ is the critical signalling molecule responsible for GluA1-containing AMPAR phosphorylation and synaptic incorporation at activated synapses during LTP expression.
Collapse
|
49
|
Wu CW, Biggar KK, Storey KB. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance. ACTA ACUST UNITED AC 2013; 46:1-13. [PMID: 23314346 PMCID: PMC3854349 DOI: 10.1590/1414-431x20122388] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/17/2012] [Indexed: 01/20/2023]
Abstract
An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.
Collapse
Affiliation(s)
- C-W Wu
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | | | | |
Collapse
|
50
|
Rangel-Filho A, Lazar J, Moreno C, Geurts A, Jacob HJ. Rab38 modulates proteinuria in model of hypertension-associated renal disease. J Am Soc Nephrol 2013; 24:283-92. [PMID: 23291471 DOI: 10.1681/asn.2012090927] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We previously reported that the fawn-hooded hypertensive (FHH) rat is a natural Rab38 knockout, supported by a congenic animal (FHH.BN-Rab38) having less proteinuria than FHH animals. Because these congenic animals contain Brown Norway (BN) alleles for five other named genes; however, a causal role for Rab38 in the FHH phenotype remains uncertain. Here, we used transgenic and knockout models to validate Rab38 and to exclude other genes within the 1.5 Mb congenic region from involvement in causing the FHH phenotype. Transgenic rats homozygous for the wild-type Rab38 BN allele on the FHH background exhibited phenotypic rescue, having 43% lower proteinuria and 75% lower albuminuria than nontransgenic FHH littermates. Conversely, knockout of the Rab38 gene on the FHH.BN-Rab38 congenic line recapitulated a proteinuric phenotype indistinguishable from the FHH strain. In addition, in cultured proximal tubule LLC-PK1 cells, knockdown of Rab38 mRNA significantly decreased endocytosis of colloidal gold-coupled albumin, supporting the hypothesis that Rab38 modulates proteinuria through effects on tubular re-uptake and not by altering glomerular permeability. Taken together, these findings validate Rab38 as a gene having a causal role in determining the phenotype of the FHH rat, which models hypertension-associated renal disease. Furthermore, our data suggest that Rab38 affects urinary protein excretion via effects in the proximal tubule.
Collapse
Affiliation(s)
- Artur Rangel-Filho
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|