1
|
Ramanauskas K, Jiménez‐López FJ, Sánchez‐Cabrera M, Escudero M, Ortiz PL, Arista M, Igić B. Rapid detection of RNase-based self-incompatibility in Lysimachia monelli (Primulaceae). AMERICAN JOURNAL OF BOTANY 2025; 112:e16449. [PMID: 39806558 PMCID: PMC11744440 DOI: 10.1002/ajb2.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
PREMISE Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis. METHODS We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L. monelli. We term this approach "SI detection with RNA-seq" (SIDR). RESULTS The results of sequencing, crossing, population genetics, and molecular evolutionary features each support a causal association linking the recovered genotypes with SI phenotypes. The finding of RNase-based SI in Primulaceae (Ericales) all but cements the long-held view that this mechanism was present in the ancestral pentapetal eudicot, whose descendants now comprise two-thirds of angiosperms. It also significantly narrows the plausible maximum age for the heterostyly evolution within the family. CONCLUSIONS SIDR is powerful, flexible, inexpensive, and most critically enables work in often-neglected species. It may be used with or without candidate genes to close enormous gaps in understanding the genetic basis of SI and the history of breeding system evolution.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| | | | | | - Marcial Escudero
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Boris Igić
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| |
Collapse
|
2
|
Zhou C, Zhang Q, Chen Y, Huang J, Guo Q, Li Y, Wang W, Qiu Y, Guan W, Zhang J, Guo J, Shi S, Wu D, Zheng X, Nie L, Tan J, Huang C, Ma Y, Yang F, Fu X, Du B, Zhu L, Chen R, Li Z, Yuan L, He G. Balancing selection and wild gene pool contribute to resistance in global rice germplasm against planthopper. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1695-1711. [PMID: 34302720 DOI: 10.1111/jipb.13157] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Interactions and co-evolution between plants and herbivorous insects are critically important in agriculture. Brown planthopper (BPH) is the most severe insect of rice, and the biotypes adapt to feed on different rice genotypes. Here, we present genomics analyses on 1,520 global rice germplasms for resistance to three BPH biotypes. Genome-wide association studies identified 3,502 single nucleotide polymorphisms (SNPs) and 59 loci associated with BPH resistance in rice. We cloned a previously unidentified gene Bph37 that confers resistance to BPH. The associated loci showed high nucleotide diversity. Genome-wide scans for trans-species polymorphisms revealed ancient balancing selection at the loci. The secondarily evolved insect biotypes II and III exhibited significantly higher virulence and overcame more rice varieties than the primary biotype I. In response, more SNPs and loci evolved in rice for resistance to biotypes II and III. Notably, three exceptional large regions with high SNP density and resistance-associated loci on chromosomes 4 and 6 appear distinct between the resistant and susceptible rice varieties. Surprisingly, these regions in resistant rice might have been retained from wild species Oryza nivara. Our findings expand the understanding of long-term interactions between rice and BPH and provide resistance genes and germplasm resources for breeding durable BPH-resistant rice varieties.
Collapse
Affiliation(s)
- Cong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qian Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qin Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yongfu Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530004, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shaojie Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lingyun Nie
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaoyan Tan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chaomei Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yinhua Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiqin Fu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Longping Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Janssen K, Bustnes JO, Mundy NI. Variation in Genetic Mechanisms for Plumage Polymorphism in Skuas (Stercorarius). J Hered 2021; 112:430-435. [PMID: 34343335 PMCID: PMC8634071 DOI: 10.1093/jhered/esab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Coloration is evolutionarily labile and so provides an excellent trait for examining the repeatability of evolution. Here, we investigate the repeatability of the evolution of polymorphic variation in ventral plumage coloration in skuas (Stercorarius: Stercorariidae). In 2 species, arctic (S. parasiticus) and pomarine skuas (S. pomarinus), plumage polymorphism was previously shown to be associated with coding changes at the melanocortin-1 receptor (MC1R) locus. Here, we show that polymorphism in a third species, the south polar skua (S. maccormicki), is not associated with coding variation at MC1R or with variation at a Z-linked second candidate locus, tyrosinase-related protein 1 (TYRP1). Hence, convergent evolution of plumage polymorphisms in skuas is only partly repeatable at the level of the genetic locus involved. Interestingly, the pattern of repeatability in skuas is aligned not with phylogeny but with the nature of the phenotypic variation. In particular, south polar skuas show a strong sex bias to coloration that is absent in the other species, and it may be that this has a unique genetic architecture.
Collapse
Affiliation(s)
- Kirstin Janssen
- Department of Natural Sciences, Tromsø University Museum, NO-9037 Tromsø, Norway.,Centre of Forensic Genetics, Institute of Medical Biology, Faculty of Health Sciences, UIT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, The Fram Centre, NO-9296 Tromsø,Norway
| | | |
Collapse
|
4
|
A molecularphylogeny offorktail damselflies(genus Ischnura)revealsa dynamic macroevolutionary history of female colour polymorphisms. Mol Phylogenet Evol 2021; 160:107134. [PMID: 33677008 DOI: 10.1016/j.ympev.2021.107134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Colour polymorphisms are popular study systems among biologists interested in evolutionary dynamics, genomics, sexual selection and sexual conflict. In many damselfly groups, such as in the globally distributed genus Ischnura (forktails), sex-limited female colour polymorphisms occur in multiple species. Female-polymorphic species contain two or three female morphs, one of which phenotypically matches the male (androchrome or male mimic) and the other(s) which are phenotypically distinct from the male (heterochrome). These female colour polymorphisms are thought to be maintained by frequency-dependent sexual conflict, but their macroevolutionary histories are unknown, due to the lack of a robust molecular phylogeny. Here, we present the first time-calibrated phylogeny of Ischnura, using a multispecies coalescent approach (StarBEAST2) and incorporating both molecular and fossil data for 41 extant species (55% of the genus). We estimate the age of Ischnura to be between 13.8 and 23.4 millions of years, i.e. Miocene. We infer the ancestral state of this genus as female monomorphism with heterochrome females, with multiple gains and losses of female polymorphisms, evidence of trans-species female polymorphisms and a significant positive relationship between female polymorphism incidence and current geographic range size. Our study provides a robust phylogenetic framework for future research on the dynamic macroevolutionary history of this clade with its extraordinary diversity of sex-limited female polymorphisms.
Collapse
|
5
|
Florez-Rueda AM, Scharmann M, Roth M, Städler T. Population Genomics of the "Arcanum" Species Group in Wild Tomatoes: Evidence for Separate Origins of Two Self-Compatible Lineages. FRONTIERS IN PLANT SCIENCE 2021; 12:624442. [PMID: 33815438 PMCID: PMC8018279 DOI: 10.3389/fpls.2021.624442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/24/2021] [Indexed: 05/07/2023]
Abstract
Given their diverse mating systems and recent divergence, wild tomatoes (Solanum section Lycopersicon) have become an attractive model system to study ecological divergence, the build-up of reproductive barriers, and the causes and consequences of the breakdown of self-incompatibility. Here we report on a lesser-studied group of species known as the "Arcanum" group, comprising the nominal species Solanum arcanum, Solanum chmielewskii, and Solanum neorickii. The latter two taxa are self-compatible but are thought to self-fertilize at different rates, given their distinct manifestations of the morphological "selfing syndrome." Based on experimental crossings and transcriptome sequencing of a total of 39 different genotypes from as many accessions representing each species' geographic range, we provide compelling evidence for deep genealogical divisions within S. arcanum; only the self-incompatible lineage known as "var. marañón" has close genealogical ties to the two self-compatible species. Moreover, there is evidence under multiple inference schemes for different geographic subsets of S. arcanum var. marañón being closest to S. chmielewskii and S. neorickii, respectively. To broadly characterize the population-genomic consequences of these recent mating-system transitions and their associated speciation events, we fit demographic models indicating strong reductions in effective population size, congruent with reduced nucleotide and S-locus diversity in the two independently derived self-compatible species.
Collapse
|
6
|
Gupta MK, Vadde R. Genetic Basis of Adaptation and Maladaptation via Balancing Selection. ZOOLOGY 2019; 136:125693. [PMID: 31513936 DOI: 10.1016/j.zool.2019.125693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
7
|
Pratas MI, Aguiar B, Vieira J, Nunes V, Teixeira V, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP. Inferences on specificity recognition at the Malus×domestica gametophytic self-incompatibility system. Sci Rep 2018; 8:1717. [PMID: 29379047 PMCID: PMC5788982 DOI: 10.1038/s41598-018-19820-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
In Malus × domestica (Rosaceae) the product of each SFBB gene (the pollen component of the gametophytic self-incompatibility (GSI) system) of a S-haplotype (the combination of pistil and pollen genes that are linked) interacts with a sub-set of non-self S-RNases (the pistil component), but not with the self S-RNase. To understand how the Malus GSI system works, we identified 24 SFBB genes expressed in anthers, and determined their gene sequence in nine M. domestica cultivars. Expression of these SFBBs was not detected in the petal, sepal, filament, receptacle, style, stigma, ovary or young leaf. For all SFBBs (except SFBB15), identical sequences were obtained only in cultivars having the same S-RNase. Linkage with a particular S-RNase was further established using the progeny of three crosses. Such data is needed to understand how other genes not involved in GSI are affected by the S-locus region. To classify SFBBs specificity, the amino acids under positive selection obtained when performing intra-haplotypic analyses were used. Using this information and the previously identified S-RNase positively selected amino acid sites, inferences are made on the S-RNase amino acid properties (hydrophobicity, aromatic, aliphatic, polarity, and size), at these positions, that are critical features for GSI specificity determination.
Collapse
Affiliation(s)
- Maria I Pratas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Nunes
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Teixeira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Nuno A Fonseca
- European Bioinformatics Institute (EMBL-EBI,) Welcome Trust Genome Campus, CB10 1SD, Cambridge, United Kingdom
| | - Amy Iezzoni
- Michigan State University, East Lansing, MI, 48824-1325, USA
| | | | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
8
|
Dzidzienyo DK, Bryan GJ, Wilde G, Robbins TP. Allelic diversity of S-RNase alleles in diploid potato species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1985-2001. [PMID: 27497984 PMCID: PMC5025496 DOI: 10.1007/s00122-016-2754-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/15/2016] [Indexed: 05/27/2023]
Abstract
The S-ribonuclease sequences of 16 S-alleles derived from diploid types of Solanum are presented. A phylogenetic analysis and partial phenotypic analysis support the conclusion that these are functional S-alleles. S-Ribonucleases (S-RNases) control the pistil specificity of the self-incompatibility (SI) response in the genus Solanum and several other members of the Solanaceae. The nucleotide sequences of S-RNases corresponding to a large number of S-alleles or S-haplotypes have been characterised. However, surprisingly, few S-RNase sequences are available for potato species. The identification of new S-alleles in diploid potato species is desirable as these stocks are important sources of traits such as biotic and abiotic resistance. S-RNase sequences are reported here from three distinct diploid types of potato: cultivated Solanum tuberosum Group Phureja, S. tuberosum Group Stenotomum, and the wild species Solanum okadae. Partial S-RNase sequences were obtained from pistil RNA by RT-PCR or 3'RACE (Rapid Amplification of cDNA Ends) using a degenerate primer. Full-length sequences were obtained for two alleles by 5'RACE. Database searches with these sequences identified 16 S-RNases in total, all of which are novel. The sequence analysis revealed all the expected features of functional S-RNases. Phylogenetic analysis with selected published S-RNase and S-like-RNase sequences from the Solanaceae revealed extensive trans-generic evolution of the S-RNases and a clear distinction from S-like-RNases. Pollination tests were used to confirm the self-incompatibility status and cross-compatibility relationships of the S. okadae accessions. All the S. okadae accessions were found to be self-incompatible as expected with crosses amongst them exhibiting both cross-compatibility and semi-compatibility consistent with the S-genotypes determined from the S-RNase sequence data. The progeny analysis of four semi-compatible crosses examined by allele-specific PCR provided further confirmation that these are functional S-RNases.
Collapse
Affiliation(s)
- Daniel K Dzidzienyo
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Biotechnology Centre, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 68, Legon-Accra, Ghana
| | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Gail Wilde
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Timothy P Robbins
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
9
|
Agrawal AF, Hartfield M. Coalescence with Background and Balancing Selection in Systems with Bi- and Uniparental Reproduction: Contrasting Partial Asexuality and Selfing. Genetics 2016; 202:313-26. [PMID: 26584901 PMCID: PMC4701095 DOI: 10.1534/genetics.115.181024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/13/2015] [Indexed: 11/18/2022] Open
Abstract
Uniparental reproduction in diploids, via asexual reproduction or selfing, reduces the independence with which separate loci are transmitted across generations. This is expected to increase the extent to which a neutral marker is affected by selection elsewhere in the genome. Such effects have previously been quantified in coalescent models involving selfing. Here we examine the effects of background selection and balancing selection in diploids capable of both sexual and asexual reproduction (i.e., partial asexuality). We find that the effect of background selection on reducing coalescent time (and effective population size) can be orders of magnitude greater when rates of sex are low than when sex is common. This is because asexuality enhances the effects of background selection through both a recombination effect and a segregation effect. We show that there are several reasons that the strength of background selection differs between systems with partial asexuality and those with comparable levels of uniparental reproduction via selfing. Expectations for reductions in Ne via background selection have been verified using stochastic simulations. In contrast to background selection, balancing selection increases the coalescence time for a linked neutral site. With partial asexuality, the effect of balancing selection is somewhat dependent upon the mode of selection (e.g., heterozygote advantage vs. negative frequency-dependent selection) in a manner that does not apply to selfing. This is because the frequency of heterozygotes, which are required for recombination onto alternative genetic backgrounds, is more dependent on the pattern of selection with partial asexuality than with selfing.
Collapse
Affiliation(s)
- Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Matthew Hartfield
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada Bioinformatics Research Centre, University of Aarhus, 8000C Aarhus, Denmark
| |
Collapse
|
10
|
Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J Immunol Res 2015; 2015:838035. [PMID: 26090501 PMCID: PMC4458282 DOI: 10.1155/2015/838035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.
Collapse
|
11
|
Lombardo P, Gambassi A, Dall'Asta L. Fixation properties of subdivided populations with balancing selection. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032130. [PMID: 25871077 DOI: 10.1103/physreve.91.032130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Indexed: 06/04/2023]
Abstract
In subdivided populations, migration acts together with selection and genetic drift and determines their evolution. Building upon a recently proposed method, which hinges on the emergence of a time scale separation between local and global dynamics, we study the fixation properties of subdivided populations in the presence of balancing selection. The approximation implied by the method is accurate when the effective selection strength is small and the number of subpopulations is large. In particular, it predicts a phase transition between species coexistence and biodiversity loss in the infinite-size limit and, in finite populations, a nonmonotonic dependence of the mean fixation time on the migration rate. In order to investigate the fixation properties of the subdivided population for stronger selection, we introduce an effective coarser description of the dynamics in terms of a voter model with intermediate states, which highlights the basic mechanisms driving the evolutionary process.
Collapse
Affiliation(s)
- Pierangelo Lombardo
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Andrea Gambassi
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Luca Dall'Asta
- Department of Applied Science and Technology-DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy
| |
Collapse
|
12
|
Nowak MD, Haller BC, Yoder AD. The founding of Mauritian endemic coffee trees by a synchronous long-distance dispersal event. J Evol Biol 2014; 27:1229-39. [PMID: 24797428 DOI: 10.1111/jeb.12396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 12/27/2022]
Abstract
The stochastic process of long-distance dispersal is the exclusive means by which plants colonize oceanic islands. Baker's rule posits that self-incompatible plant lineages are unlikely to successfully colonize oceanic islands because they must achieve a coordinated long-distance dispersal of sufficiently numerous individuals to establish an outcrossing founder population. Here, we show for the first time that Mauritian Coffea species are self-incompatible and thus represent an exception to Baker's rule. The genus Coffea (Rubiaceae) is composed of approximately 124 species with a paleotropical distribution. Phylogenetic evidence strongly supports a single colonization of the oceanic island of Mauritius from either Madagascar or Africa. We employ Bayesian divergence time analyses to show that the colonization of Mauritius was not a recent event. We genotype S-RNase alleles from Mauritian endemic Coffea, and using S-allele gene genealogies, we show that the Mauritian allelic diversity is confined to just seven deeply divergent Coffea S-RNase allelic lineages. Based on these data, we developed an individual-based model and performed a simulation study to estimate the most likely number of founding individuals involved in the colonization of Mauritius. Our simulations show that to explain the observed S-RNase allelic diversity, the founding population was likely composed of fewer than 31 seeds that were likely synchronously dispersed from an ancestral mainland species.
Collapse
Affiliation(s)
- M D Nowak
- National Centre for Biosystematics, Natural History Museum, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
13
|
Lombardo P, Gambassi A, Dall'Asta L. Nonmonotonic effects of migration in subdivided populations. PHYSICAL REVIEW LETTERS 2014; 112:148101. [PMID: 24766019 DOI: 10.1103/physrevlett.112.148101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Indexed: 06/03/2023]
Abstract
The influence of migration on the stochastic dynamics of subdivided populations is still an open issue in various evolutionary models. Here, we develop a self-consistent mean-field-like method in order to determine the effects of migration on relevant nonequilibrium properties, such as the mean fixation time. If evolution strongly favors coexistence of species (e.g., balancing selection), the mean fixation time develops an unexpected minimum as a function of the migration rate. Our analysis hinges only on the presence of a separation of time scales between local and global dynamics, and therefore, it carries over to other nonequilibrium processes in physics, biology, ecology, and social sciences.
Collapse
Affiliation(s)
- Pierangelo Lombardo
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Andrea Gambassi
- SISSA-International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Luca Dall'Asta
- Department of Applied Science and Technology-DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy and Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy
| |
Collapse
|
14
|
van Diepen LTA, Olson A, Ihrmark K, Stenlid J, James TY. Extensive trans-specific polymorphism at the mating type locus of the root decay fungus Heterobasidion. Mol Biol Evol 2013; 30:2286-301. [PMID: 23864721 DOI: 10.1093/molbev/mst126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Incompatibility systems in which individuals bearing identical alleles reject each other favor the maintenance of a diversity of alleles. Mushroom mating type loci (MAT) encode for dozens or hundreds of incompatibility alleles whose loss from the population is greatly restricted through negative frequency selection, leading to a system of alleles with highly divergent sequences. Here, we use DNA sequences of homeodomain (HD) encoding genes at the MAT locus of five closely related species of the root rot basidiomycete Heterobasidion annosum sensu lato to show that the extended coalescence time of MAT alleles greatly predates speciation in the group, contrasting loci outside of MAT that show allele divergences largely consistent with the species phylogeny with those of MAT, which show rampant trans-species polymorphism. We observe a roughly 6-fold greater genealogical depth and polymorphism of MAT compared with non-MAT that argues for the maintenance of balanced polymorphism for a minimum duration of 24 My based on a molecular-clock calibrated species phylogeny. As with other basidiomycete HD genes, balancing selection appears to be concentrated at the specificity-determining region in the N-terminus of the protein based on identification of codons under selection and the absence of recombination within the region. However, the elevated polymorphism extends into the nonspecificity determining regions as well as a neighboring non-MAT gene, the mitochondrial intermediate peptidase (MIP). In doing so, increased divergence should decrease recombination among alleles and as a by-product create incompatibilities in the functional domains not involved in allele recognition but in regulating sexual development.
Collapse
|
15
|
Abstract
The self-incompatibility (S-) locus of flowering plants is among the most polymorphic known. PCR methods can now be used to estimate both the number of alleles in natural populations and their sequence diversity. The number of alleles provides an estimate of recent effective population size, thus the S-locus provides a tool for examining how species characteristics affect population size. Sequence relationships among alleles provide another estimate of population size extending millions of years into the past. Relationships between S-alleles and related genes provide a means of dating the age of origin of incompatibility systems and determining which, if any, angiosperm families share incompatibility by homology.
Collapse
|
16
|
Städler T, Florez-Rueda AM, Paris M. Testing for "snowballing" hybrid incompatibilities in Solanum: impact of ancestral polymorphism and divergence estimates. Mol Biol Evol 2011; 29:31-4. [PMID: 21890474 DOI: 10.1093/molbev/msr218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two recent high-profile studies offered empirical evidence for a "snowballing" accumulation of postzygotic incompatibilities in Drosophila and Solanum (tomatoes). Here we present a reanalysis of the Solanum data that is motivated by population genetic principles. Specifically, the high levels of intraspecific nucleotide polymorphism in wild tomato species and presumably large effective population size throughout the divergence history of this clade imply that ancestral polymorphism should be taken into account when evaluating sequence divergence between species. Based on our reanalyses of synonymous-site divergence between the four focal Solanum species and a wide range of ancestral polymorphism, we assessed under which conditions the reported accumulation of seed sterility factors supports the snowball effect. Our results highlight the pivotal impact of levels of ancestral polymorphism and alternate divergence values, and they illustrate that robust tests of the snowball effect in Solanum require genome-wide estimates of divergence.
Collapse
|
17
|
Paape T, Miyake T, Takebayashi N, Wolf D, Kohn JR. Evolutionary genetics of an S-like polymorphism in Papaveraceae with putative function in self-incompatibility. PLoS One 2011; 6:e23635. [PMID: 21912602 PMCID: PMC3166141 DOI: 10.1371/journal.pone.0023635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/21/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Papaver rhoeas possesses a gametophytic self-incompatibility (SI) system not homologous to any other SI mechanism characterized at the molecular level. Four previously published full length stigmatic S-alleles from the genus Papaver exhibited remarkable sequence divergence, but these studies failed to amplify additional S-alleles despite crossing evidence for more than 60 S-alleles in Papaver rhoeas alone. METHODOLOGY/PRINCIPAL FINDINGS Using RT-PCR we identified 87 unique putative stigmatic S-allele sequences from the Papaveraceae Argemone munita, Papaver mcconnellii, P. nudicuale, Platystemon californicus and Romneya coulteri. Hand pollinations among two full-sib families of both A. munita and P. californicus indicate a strong correlation between the putative S-genotype and observed incompatibility phenotype. However, we also found more than two S-like sequences in some individuals of A. munita and P. californicus, with two products co-segregating in both full-sib families of P. californicus. Pairwise sequence divergence estimates within and among taxa show Papaver stigmatic S-alleles to be the most variable with lower divergence among putative S-alleles from other Papaveraceae. Genealogical analysis indicates little shared ancestral polymorphism among S-like sequences from different genera. Lack of shared ancestral polymorphism could be due to long divergence times among genera studied, reduced levels of balancing selection if some or all S-like sequences do not function in incompatibility, population bottlenecks, or different levels of recombination among taxa. Preliminary estimates of positive selection find many sites under selective constraint with a few undergoing positive selection, suggesting that self-recognition may depend on amino acid substitutions at only a few sites. CONCLUSIONS/SIGNIFICANCE Because of the strong correlation between genotype and SI phenotype, sequences reported here represent either functional stylar S-alleles, tightly linked paralogs of the S-locus or a combination of both. The considerable complexity revealed in this study shows we have much to learn about the evolutionary dynamics of self-incompatibility systems.
Collapse
Affiliation(s)
- Timothy Paape
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, United States of America.
| | | | | | | | | |
Collapse
|
18
|
Paape T, Kohn JR. Differential strengths of selection on S-RNases from Physalis and Solanum (Solanaceae). BMC Evol Biol 2011; 11:243. [PMID: 21854581 PMCID: PMC3175474 DOI: 10.1186/1471-2148-11-243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 08/19/2011] [Indexed: 12/04/2022] Open
Abstract
Background The S-RNases of the Solanaceae are highly polymorphic self-incompatibility (S-) alleles subject to strong balancing selection. Relatively recent diversification of S-alleles has occurred in the genus Physalis following a historical restriction of S-allele diversity. In contrast, the genus Solanum did not undergo a restriction of S-locus diversity and its S-alleles are generally much older. Because recovery from reduced S-locus diversity should involve increased selection, we employ a statistical framework to ask whether S-locus selection intensities are higher in Physalis than Solanum. Because different S-RNase lineages diversify in Physalis and Solanum, we also ask whether different sites are under selection in different lineages. Results Maximum-likelihood and Bayesian coalescent methods found higher intensities of selection and more sites under significant positive selection in the 48 Physalis S-RNase alleles than the 49 from Solanum. Highest posterior densities of dN/dS (ω) estimates show that the strength of selection is greater for Physalis at 36 codons. A nested maximum likelihood method was more conservative, but still found 16 sites with greater selection in Physalis. Neither method found any codons under significantly greater selection in Solanum. A random effects likelihood method that examines data from both taxa jointly confirmed higher selection intensities in Physalis, but did not find different proportions of sites under selection in the two datasets. The greatest differences in strengths of selection were found in the most variable regions of the S-RNases, as expected if these regions encode self-recognition specificities. Clade-specific likelihood models indicated some codons were under greater selection in background Solanum lineages than in specific lineages of Physalis implying that selection on sites may differ among lineages. Conclusions Likelihood and Bayesian methods provide a statistical approach to testing differential selection across populations or species. These tests appear robust to the levels of polymorphism found in diverse S-allele collections subject to strong balancing selection. As predicted, the intensity of selection at the S-locus was higher in the taxon with more recent S-locus diversification. This is the first confirmation by statistical test of differing selection intensities among self-incompatibility alleles from different populations or species.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Plant Biology, University of Minnesota, 250 Biological Science Center, 1445 Gortner Ave, St, Paul, MN 55108, USA.
| | | |
Collapse
|
19
|
Abstract
Darwin's theory of natural selection lacked an adequate account of inheritance, making it logically incomplete. We review the interaction between evolution and genetics, showing how, unlike Mendel, Darwin's lack of a model of the mechanism of inheritance left him unable to interpret his own data that showed Mendelian ratios, even though he shared with Mendel a more mathematical and probabilistic outlook than most biologists of his time. Darwin's own "pangenesis" model provided a mechanism for generating ample variability on which selection could act. It involved, however, the inheritance of characters acquired during an organism's life, which Darwin himself knew could not explain some evolutionary situations. Once the particulate basis of genetics was understood, it was seen to allow variation to be passed intact to new generations, and evolution could then be understood as a process of changes in the frequencies of stable variants. Evolutionary genetics subsequently developed as a central part of biology. Darwinian principles now play a greater role in biology than ever before, which we illustrate with some examples of studies of natural selection that use DNA sequence data and with some recent advances in answering questions first asked by Darwin.
Collapse
|
20
|
Busch JW, Joly S, Schoen DJ. DOES MATE LIMITATION IN SELF-INCOMPATIBLE SPECIES PROMOTE THE EVOLUTION OF SELFING? THE CASE OF LEAVENWORTHIA ALABAMICA. Evolution 2009; 64:1657-70. [DOI: 10.1111/j.1558-5646.2009.00925.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Wakeley J, Sargsyan O. The conditional ancestral selection graph with strong balancing selection. Theor Popul Biol 2009; 75:355-64. [PMID: 19371754 DOI: 10.1016/j.tpb.2009.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/21/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
|
22
|
Pannell JR. Mating-system evolution: genies from a bottleneck. Curr Biol 2009; 19:R369-70. [PMID: 19439259 DOI: 10.1016/j.cub.2009.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Evolutionary shifts from outcrossing to selfing have been frequent in plants, but little is known about how this occurs. Two new studies of the same species point to a recent bottleneck that coincided with one such shift.
Collapse
Affiliation(s)
- John R Pannell
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
23
|
Charlesworth B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 2009; 10:195-205. [PMID: 19204717 DOI: 10.1038/nrg2526] [Citation(s) in RCA: 1046] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effective size of a population, N(e), determines the rate of change in the composition of a population caused by genetic drift, which is the random sampling of genetic variants in a finite population. N(e) is crucial in determining the level of variability in a population, and the effectiveness of selection relative to drift. This article reviews the properties of N(e) in a variety of different situations of biological interest, and the factors that influence it. In particular, the action of selection means that N(e) varies across the genome, and advances in genomic techniques are giving new insights into how selection shapes N(e).
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|
24
|
Palumbi SR. Speciation and the evolution of gamete recognition genes: pattern and process. Heredity (Edinb) 2008; 102:66-76. [PMID: 19018273 DOI: 10.1038/hdy.2008.104] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Proteins on gamete surfaces are major determinants of fertilization success, particularly in free-spawning animals. Molecular analyses of these simple genetic systems show rapid evolution, positive selection, accelerated coalescence and, sometimes, extensive polymorphism. Careful analysis of the behavior of sperm produced by males with different gamete alleles shows that these alleles can deliver significant functional differences. Three forms of allele-specific fertilization advantage have been shown: assortative mating based on gamete type, rare allele advantage and heterozygote superiority. Models suggest that sperm and egg proteins may be coevolutionary partners that can alternate between directional selection for high fertilization ability and cyclic adaptation of eggs and sperm driven by sexual conflict. These processes act within allopatric populations and may accelerate their divergence if gamete adaptations in separate demes reduce cross-fertilization. Reproductive character displacement by reinforcement may play a diversifying role when previously allopatric populations rejoin. In circumstance that might prove to be common, divergence in sympatry can be driven by sexual conflict or by association of mating types with ecological differences. The ecology of fertilization, especially the degree of sperm competition and egg death via polyspermy, are important determinants of the strength and direction of selection on gametes. Free-spawning animals allow careful analysis of gamete recognition -from the behavior of adults and interactions of gametes, to molecular patterns of allele divergence. Future research efforts on the evolutionary consequences of fertilization ecology, and the interaction between extensive variation in egg surface proteins and sperm fertilization ability, are particularly needed.
Collapse
Affiliation(s)
- S R Palumbi
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| |
Collapse
|
25
|
Abstract
In several insects and fish, and probably some mammals, the gene controlling the male-female switch has changed during evolution. It now seems that this has also happened in honeybees, where the sex-determining gene has now been shown to be a duplicate of another Hymenopteran sex-determining gene.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab. King's Buildings, W. Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
26
|
Moyle LC. Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 2008; 62:2995-3013. [PMID: 18752600 DOI: 10.1111/j.1558-5646.2008.00487.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The plant group Solanum section Lycopersicon (the clade containing the domesticated tomato and its wild relatives) is ideal for integrating genomic tools and approaches into ecological and evolutionary research. Wild species within Lycopersicon span broad morphological, physiological, life history, mating system, and biochemical variation, and are separated by substantial, but incomplete postmating reproductive barriers, making this an ideal system for genetic analyses of these traits. This ecological and evolutionary diversity is matched by many logistical advantages, including extensive historical occurrence records for all species in the group, publicly available germplasm for hundreds of known wild accessions, demonstrated experimental tractability, and extensive genetic, genomic, and functional tools and information from the tomato research community. Here I introduce the numerous advantages of this system for Ecological and Evolutionary Functional Genomics (EEFG), and outline several ecological and evolutionary phenotypes and questions that can be fruitfully tackled in this system. These include biotic and abiotic adaptation, reproductive trait evolution, and the genetic basis of speciation. With the modest enhancement of some research strengths, this system is poised to join the best of our currently available model EEFG systems.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 474051, USA.
| |
Collapse
|
27
|
Molecular characterization of Lal2, an SRK-like gene linked to the S-locus in the wild mustard Leavenworthia alabamica. Genetics 2008; 178:2055-67. [PMID: 18430933 DOI: 10.1534/genetics.107.083204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-locus sporophytic self-incompatibility inhibits inbreeding in many members of the mustard family (Brassicaceae). To investigate the genetics of self-incompatibility in the wild mustard Leavenworthia alabamica, diallel crosses were conducted between full siblings. Patterns of incompatibility were consistent with the action of single-locus sporophytic self-incompatibility. DNA sequences related to S-locus receptor kinase (SRK), the gene involved in self-pollen recognition in mustards, were cloned and sequenced. A single sequence with high identity to SRK and several other groups of sequences (Lal1, Lal2, Lal3, Lal8, and Lal14) were isolated from L. alabamica. We propose that either Lal2 sequences are divergent alleles of SRK or Lal2 is in tight linkage with SRK because (1) Lal2 alleles cosegregate with S-alleles inferred from dialleles in all 97 cases tested in five families; (2) Lal2 sequences are highly diverse at both synonymous and nonsynonymous sites and exhibit patterns of selective constraint similar to those observed at SRK in Brassica and Arabidopsis; and (3) transcripts of one Lal2 allele were detected in leaves and the styles of open flowers, but were most abundant in the stigmas of maturing buds. We discuss the utility of the S-linked polymorphism at Lal2 for studying the evolutionary forces acting on self-incompatibility in Leavenworthia.
Collapse
|
28
|
Abstract
In gametophytic self-incompatibility systems, many specificities (different 'lock-and-key' combinations) are maintained by frequency-dependent selection for very long evolutionary times. In Solanaceae, trans-specific evolution (the observation that an allele from one species may be more closely related to an allele from another species than to others from the same species) has been taken as an argument for the very old age of specificities. In this work, by determining, for the first time, the age of extant Prunus species, we show that this reasoning cannot be applied to Prunoideae. Furthermore, since our sample size is large (all S-RNase encoding the female component and SFB encoding the male component GenBank sequences), we were able to estimate the age of the oldest Prunus specificities. By doing so, we show that the lower variability levels at the Prunus S-locus, in comparison with Solanaceae, is due to the younger age of Prunus alleles, and not to a difference in silent mutation rates. We show that the ancestor to extant Prunus species harboured at least 102 specificities, in contrast to the maximum of 33 observed in extant Prunus species. Since the number of specificities that can be maintained in a population depends on the effective population size, this observation suggests a bottleneck in Prunus evolutionary history. Loss of specificities may have occurred during this event. Using only information on amino acid sites that determine specificity differences, and a simulation approach, we show that a model that assumes closely related specificities are not preferentially lost during evolution, fails to predict the observed degree of specificity relatedness.
Collapse
|
29
|
Busch JW, Schoen DJ. The evolution of self-incompatibility when mates are limiting. TRENDS IN PLANT SCIENCE 2008; 13:128-36. [PMID: 18296103 DOI: 10.1016/j.tplants.2008.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 05/23/2023]
Abstract
Self-incompatibility (SI) is a genetic barrier to inbreeding that is broadly distributed in angiosperms. In finite populations of SI plants, the loss of S-allele diversity can limit plant reproduction by reducing the availability of compatible mates. Many studies have shown that small or fragmented plant populations suffer from mate limitation. The advent of molecular typing of S-alleles in many species has paved the way to address quantitatively the importance of mate limitation, and to provide greater insight into why and how SI systems breakdown frequently in nature. In this review, we highlight the ecological factors that contribute to mate limitation in SI taxa, discuss their consequences for the evolution and functioning of SI, and propose new empirical research directions.
Collapse
Affiliation(s)
- Jeremiah W Busch
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC H3A 1B1, Canada.
| | | |
Collapse
|
30
|
Miller JS, Levin RA, Feliciano NM. A tale of two continents: Baker's rule and the maintenance of self-incompatibility in Lycium (Solanaceae). Evolution 2008; 62:1052-65. [PMID: 18315577 DOI: 10.1111/j.1558-5646.2008.00358.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Over 50 years ago, Baker (1955, 1967) suggested that self-compatible species were more likely than self-incompatible species to establish new populations on oceanic islands. His logic was straightforward and rested on the assumption that colonization was infrequent; thus, mate limitation favored the establishment of self-fertilizing individuals. In support of Baker's rule, many authors have documented high frequencies of self-compatibility on islands, and recent work has solidified the generality of Baker's ideas. The genus Lycium (Solanaceae) has ca. 80 species distributed worldwide, and phylogenetic studies suggest that Lycium originated in South America and dispersed to the Old World a single time. Previous analyses of the S-RNase gene, which controls the stylar component of self-incompatibility, have shown that gametophytically controlled self-incompatibility is ancestral within the genus, making Lycium a good model for investigating Baker's assertions concerning reproductive assurance following oceanic dispersal. Lycium is also useful for investigations of reproductive evolution, given that species vary both in sexual expression and the presence of self-incompatibility. A model for the evolution of gender dimorphism suggests that polyploidy breaks down self-incompatibility, leading to the evolution of gender dimorphism, which arises as an alternative outcrossing mechanism. There is a perfect association of dimorphic gender expression, polyploidy, and self-compatibility (vs. cosexuality, diploidy, and self-incompatibility) among North American Lycium. Although the association between ploidy level and gender expression also holds for African Lycium, to date no studies of mating systems have been initiated in Old World species. Here, using controlled pollinations, we document strong self-incompatibility in two cosexual, diploid species of African Lycium. Further, we sequence the S-RNase gene in 15 individuals from five cosexual, diploid species of African Lycium and recover 24 putative alleles. Genealogical analyses indicate reduced trans-generic diversity of S-RNases in the Old World compared to the New World. We suggest that genetic diversity at this locus was reduced as a result of a founder event, but, despite the bottleneck, self-incompatibility was maintained in the Old World. Maximum-likelihood analyses of codon substitution patterns indicate that positive Darwinian selection has been relatively strong in the Old World, suggesting the rediversification of S-RNases following a bottleneck. The present data thus provide a dramatic exception to Baker's rule, in addition to supporting a key assumption of the Miller and Venable (2000) model, namely that self-incompatibility is associated with diploidy and cosexuality.
Collapse
Affiliation(s)
- Jill S Miller
- Department of Biology, Amherst College, Amherst, MA 01002, USA.
| | | | | |
Collapse
|
31
|
Tsukamoto T, Potter D, Tao R, Vieira CP, Vieira J, Iezzoni AF. Genetic and molecular characterization of three novel S-haplotypes in sour cherry (Prunus cerasus L.). JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3169-85. [PMID: 18617504 PMCID: PMC2504349 DOI: 10.1093/jxb/ern172] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tetraploid sour cherry (Prunus cerasus L.) exhibits gametophytic self-incompatibility (GSI) whereby the specificity of self-pollen rejection is controlled by alleles of the stylar and pollen specificity genes, S-RNase and SFB (S haplotype-specific F-box protein gene), respectively. As sour cherry selections can be either self-compatible (SC) or self-incompatible (SI), polyploidy per se does not result in SC. Instead the genotype-dependent loss of SI in sour cherry is due to the accumulation of non-functional S-haplotypes. The presence of two or more non-functional S-haplotypes within sour cherry 2x pollen renders that pollen SC. Two new S-haplotypes from sour cherry, S(33) and S(34), that are presumed to be contributed by the P. fruticosa species parent, the complete S-RNase and SFB sequences of a third S-haplotype, S(35), plus the presence of two previously identified sweet cherry S-haplotypes, S(14) and S(16) are described here. Genetic segregation data demonstrated that the S(16)-, S(33)-, S(34)-, and S(35)-haplotypes present in sour cherry are fully functional. This result is consistent with our previous finding that 'hetero-allelic' pollen is incompatible in sour cherry. Phylogenetic analyses of the SFB and S-RNase sequences from available Prunus species reveal that the relationships among S-haplotypes show no correspondence to known organismal relationships at any taxonomic level within Prunus, indicating that polymorphisms at the S-locus have been maintained throughout the evolution of the genus. Furthermore, the phylogenetic relationships among SFB sequences are generally incongruent with those among S-RNase sequences for the same S-haplotypes. Hypotheses compatible with these results are discussed.
Collapse
Affiliation(s)
- Tatsuya Tsukamoto
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Potter
- Department of Plant Sciences, University of California, Davis, CA 95616–8780, USA
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular, University of Porto, 4150–180 Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular, University of Porto, 4150–180 Porto, Portugal
| | - Amy F. Iezzoni
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Wheeler D, Newbigin E. Expression of 10 S-class SLF-like genes in Nicotiana alata pollen and its implications for understanding the pollen factor of the S locus. Genetics 2007; 177:2171-80. [PMID: 17947432 PMCID: PMC2219507 DOI: 10.1534/genetics.107.076885] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 10/03/2007] [Indexed: 11/18/2022] Open
Abstract
The S locus of Nicotiana alata encodes a polymorphic series of ribonucleases (S-RNases) that determine the self-incompatibility (SI) phenotype of the style. The pollen product of the S locus (pollen S) in N. alata is unknown, but in species from the related genus Petunia and in self-incompatible members of the Plantaginaceae and Rosaceae, this function has been assigned to an F-box protein known as SLF or SFB. Here we describe the identification of 10 genes (designated DD1-10) encoding SLF-related proteins that are expressed in N. alata pollen. Because our approach to cloning the DD genes was based on sequences of SLFs from other species, we presume that one of the DD genes encodes the N. alata SLF ortholog. Seven of the DD genes were exclusively expressed in pollen and a low level of sequence variation was found in alleles of each DD gene. Mapping studies confirmed that all 10 DD genes were linked to the S locus and that at least three were located in the same chromosomal segment as pollen S. Finally, the different topologies of the phylogenetic trees produced using available SLF-related sequences and those produced using S-RNase sequences suggests that pollen S and the S-RNase have different evolutionary histories.
Collapse
Affiliation(s)
- David Wheeler
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
33
|
Igic B, Smith WA, Robertson KA, Schaal BA, Kohn JR. Studies of self-incompatibility in wild tomatoes: I. S-allele diversity in Solanum chilense (Dun.) Reiche [corrected] (Solanaceae). Heredity (Edinb) 2007; 99:553-61. [PMID: 17700636 DOI: 10.1038/sj.hdy.6801035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We characterized the molecular allelic variation of RNases at the self-incompatibility (SI) locus of Solanum chilense Dun. We recovered 30 S-RNase allele sequences from 34 plants representing a broad geographic sample. This yielded a species-wide estimate of 35 (95% likelihood interval 31-40) S-alleles. We performed crosses to confirm the association with SI function of 10 of the putative S-RNase allele sequences. Results in all cases were consistent with the expectation that these sequences represent functional alleles under single-locus gametophytic SI. We used the allele sequences to conduct an analysis of selection, as measured by the excess of nonsynonymous changes per site, and found evidence for adaptive changes both within the traditionally defined hypervariable regions and downstream, near the 3'-end of the molecule.
Collapse
Affiliation(s)
- B Igic
- Department of Biological Sciences, University of Illinois-Chicago, Chicago, IL 60607, USA.
| | | | | | | | | |
Collapse
|
34
|
Cho S, Huang ZY, Green DR, Smith DR, Zhang J. Evolution of the complementary sex-determination gene of honey bees: balancing selection and trans-species polymorphisms. Genome Res 2006; 16:1366-75. [PMID: 17065615 PMCID: PMC1626638 DOI: 10.1101/gr.4695306] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mechanism of sex determination varies substantively among evolutionary lineages. One important mode of genetic sex determination is haplodiploidy, which is used by approximately 20% of all animal species, including >200,000 species of the entire insect order Hymenoptera. In the honey bee Apis mellifera, a hymenopteran model organism, females are heterozygous at the csd (complementary sex determination) locus, whereas males are hemizygous (from unfertilized eggs). Fertilized homozygotes develop into sterile males that are eaten before maturity. Because homozygotes have zero fitness and because common alleles are more likely than rare ones to form homozygotes, csd should be subject to strong overdominant selection and negative frequency-dependent selection. Under these selective forces, together known as balancing selection, csd is expected to exhibit a high degree of intraspecific polymorphism, with long-lived alleles that may be even older than the species. Here we sequence the csd genes as well as randomly selected neutral genomic regions from individuals of three closely related species, A. mellifera, Apis cerana, and Apis dorsata. The polymorphic level is approximately seven times higher in csd than in the neutral regions. Gene genealogies reveal trans-species polymorphisms at csd but not at any neutral regions. Consistent with the prediction of rare-allele advantage, nonsynonymous mutations are found to be positively selected in csd only in early stages after their appearances. Surprisingly, three different hypervariable repetitive regions in csd are present in the three species, suggesting variable mechanisms underlying allelic specificities. Our results provide a definitive demonstration of balancing selection acting at the honey bee csd gene, offer insights into the molecular determinants of csd allelic specificities, and help avoid homozygosity in bee breeding.
Collapse
Affiliation(s)
- Soochin Cho
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zachary Y. Huang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel R. Green
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Deborah R. Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA
- Corresponding author.
E-mail ; fax (734) 763-0544
| |
Collapse
|
35
|
Abstract
Fine scale spatial structure (FSSS) of cytoplasmic genes in plants is thought to be generated via founder events and can be amplified when seeds germinate close to their mother. In gynodioecious species these processes are expected to generate FSSS in sex ratio because maternally inherited cytoplasmic male sterility genes partially influence sex expression. Here we document a striking example of FSSS in both mitochondrial genetic markers and sex in roadside populations of Silene vulgaris. We show that in one population FSSS of sexes influences relative fruit production of females compared to hermaphrodites. Furthermore, FSSS in sex ratio is expected to persist into future generations because offspring sex ratios from females are female-biased whereas offspring sex ratios from hermaphrodites are hermaphrodite-biased. Earlier studies indicated that pollen limitation is the most likely mechanism underlying negative frequency dependent fitness of females. Our results support the theoretical predictions that FSSS in sex ratio can reduce female fitness by decreasing the frequency at which females experience hermaphrodites. We argue that the influence of FSSS on female fitness is complementary to the influence of larger scale population structure on female fitness, and that population structure at both scales will act to decrease female frequencies in gynodioecious species. Better comprehension of the spatial structure of genders and genes controlling sex expression at a local scale is required for future progress toward understanding sex ratio evolution in gynodioecious plants.
Collapse
Affiliation(s)
- M S Olson
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska at Fairbanks, Fairbanks AK 99775-7000, USA.
| | | | | |
Collapse
|
36
|
Schueler S, Tusch A, Scholz F. Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites. Mol Ecol 2006; 15:3231-43. [PMID: 16968267 DOI: 10.1111/j.1365-294x.2006.03029.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gametophytic self-incompatibility (SI) systems in plants exhibit high polymorphism at the SI controlling S-locus because individuals with rare alleles have a higher probability to successfully pollinate other plants than individuals with more frequent alleles. This process, referred to as frequency-dependent selection, is expected to shape number, frequency distribution, and spatial distribution of self-incompatibility alleles in natural populations. We investigated the genetic diversity and the spatial genetic structure within a Prunus avium population at two contrasting gene loci: nuclear microsatellites and the S-locus. The S-locus revealed a higher diversity (15 alleles) than the eight microsatellites (4-12 alleles). Although the frequency distribution of S-alleles differed significantly from the expected equal distribution, the S-locus showed a higher evenness than the microsatellites (Shannon's evenness index for the S-locus: E = 0.91; for the microsatellites: E = 0.48-0.83). Also, highly significant deviations from neutrality were found for the S-locus whereas only minor deviations were found for two of eight microsatellites. A comparison of the frequency distribution of S-alleles in three age-cohorts revealed no significant differences, suggesting that different levels of selection acting on the S-locus or on S-linked sites might also affect the distribution and dynamics of S-alleles. Autocorrelation analysis revealed a weak but significant spatial genetic structure for the multilocus average of the microsatellites and for the S-locus, but could not ascertain differences in the extent of spatial genetic structure between these locus types. An indirect estimate of gene dispersal, which was obtained to explain this spatial genetic pattern, indicated high levels of gene dispersal within our population (sigma(g) = 106 m). This high gene dispersal, which may be partly due to the self-incompatibility system itself, aids the effective gene flow of the microsatellites, thereby decreasing the contrast between the neutral microsatellites and the S-locus.
Collapse
Affiliation(s)
- Silvio Schueler
- Institute for Forest Genetics and Forest Tree Breeding, Federal Research Centre for Forestry and Forest Products, Sieker Landstrasse 2, D-22927 Grosshansdorf, Germany.
| | | | | |
Collapse
|
37
|
Abstract
Our understanding of balancing selection is currently becoming greatly clarified by new sequence data being gathered from genes in which polymorphisms are known to be maintained by selection. The data can be interpreted in conjunction with results from population genetics models that include recombination between selected sites and nearby neutral marker variants. This understanding is making possible tests for balancing selection using molecular evolutionary approaches. Such tests do not necessarily require knowledge of the functional types of the different alleles at a locus, but such information, as well as information about the geographic distribution of alleles and markers near the genes, can potentially help towards understanding what form of balancing selection is acting, and how long alleles have been maintained.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
38
|
Charlesworth D, Kamau E, Hagenblad J, Tang C. Trans-specificity at loci near the self-incompatibility loci in Arabidopsis. Genetics 2006; 172:2699-704. [PMID: 16489230 PMCID: PMC1456393 DOI: 10.1534/genetics.105.051938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We compared allele sequences of two loci near the Arabidopsis lyrata self-incompatibility (S) loci with sequences of A. thaliana orthologs and found high numbers of shared polymorphisms, even excluding singletons and sites likely to be highly mutable. This suggests maintenance of entire S-haplotypes for long evolutionary times and extreme recombination suppression in the region.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Brennan AC, Harris SA, Hiscock SJ. THE POPULATION GENETICS OF SPOROPHYTIC SELF-INCOMPABILITY IN SENECIO SQUALIDUS L. (ASTERACEAE): THE NUMBER, FREQUENCY, AND DOMINANCE INTERACTIONS OF S ALLELES ACROSS ITS BRITISH RANGE. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01100.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Igic B, Bohs L, Kohn JR. Ancient polymorphism reveals unidirectional breeding system shifts. Proc Natl Acad Sci U S A 2006; 103:1359-63. [PMID: 16428289 PMCID: PMC1360522 DOI: 10.1073/pnas.0506283103] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loss of complex characters is thought to be irreversible (Dollo's law). However, hypotheses of irreversible evolution are remarkably difficult to test, especially when character transitions are frequent. In such cases, inference of ancestral states, in the absence of fossil evidence, is uncertain and represents the single greatest constraint for reconstructing the evolutionary history of characters. Breeding system character transitions are of particular interest because they affect the amount and distribution of genetic variation within species. Transitions from obligate outcrossing to partial or predominant self-fertilization are thought to represent one of the most common trends in flowering plants. We use the unique molecular genetic properties (manifested as deep persistent polymorphisms) of the locus that enforces outcrossing to demonstrate that its loss is irreversible in the plant family Solanaceae. We argue that current phylogenetic methods of reconstruction are potentially inadequate in cases where ancestral state information is inferred by using only the phylogeny and the distribution of character states in extant taxa. This study shows in a statistical framework that a particular character transition is irreversible, consistent with Dollo's law.
Collapse
Affiliation(s)
- Boris Igic
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| | | | | |
Collapse
|
41
|
Brennan AC, Harris SA, Hiscock SJ. THE POPULATION GENETICS OF SPOROPHYTIC SELF-INCOMPATIBILITY IN SENECIO SQUALIDUS L. (ASTERACEAE): THE NUMBER, FREQUENCY, AND DOMINANCE INTERACTIONS OF S ALLELES ACROSS ITS BRITISH RANGE. Evolution 2006. [DOI: 10.1554/05-231.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Mauricio R. The 'bricolage' of the genome elucidated through evolutionary genomics. THE NEW PHYTOLOGIST 2005; 168:1-4. [PMID: 16159315 DOI: 10.1111/j.1469-8137.2005.01554.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
43
|
Charlesworth D, Vekemans X, Castric V, Glémin S. Plant self-incompatibility systems: a molecular evolutionary perspective. THE NEW PHYTOLOGIST 2005; 168:61-9. [PMID: 16159321 DOI: 10.1111/j.1469-8137.2005.01443.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Incompatibility recognition systems preventing self-fertilization have evolved several times in independent lineages of Angiosperm plants, and three main model systems are well characterized at the molecular level [the gametophytic self-incompatibility (SI) systems of Solanaceae, Rosaceae and Anthirrhinum, the very different system of poppy, and the system in Brassicaceae with sporophytic control of pollen SI reactions]. In two of these systems, the genes encoding both components of pollen-pistil recognition are now known, showing clearly that these two proteins are distinct, that is, SI is a lock-and-key mechanism. Here, we review recent findings in the three well-studied systems in the light of these results and analyse their implications for understanding polymorphism and coevolution of the two SI genes, in the context of a tightly linked genome region.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratory, King's Buildings, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
44
|
Lu Y. Historical events and allelic polymorphism at the gametophytic self-incompatibility locus in Solanaceae. Heredity (Edinb) 2005; 96:22-8. [PMID: 16189546 DOI: 10.1038/sj.hdy.6800740] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The historical migration rate of a species is often difficult to estimate with neutral markers, because the relationship between the turnover time of the markers and the age of the species commonly remains unknown. Compared with neutral markers, the plant self-incompatibility locus (S) provides a much better source of data for migration-rate estimation due to its high allelic polymorphism and antiquity. Here, the results from extensive surveys of S alleles in two wild solanaceous species, Solanum carolinense and Physalis longifolia, indicate that historical migration rates have differed significantly between the species; the higher migration rate found in S. carolinense appears to have interacted with the balancing selection at the S locus to result in fewer S alleles being maintained in the species. Historical population growth rates estimated via a modified coalescent approach also suggest a faster growing population for S. carolinense than for P. longifolia, which would have further widened their interspecific difference in S-allelle polymorphism. These historical factors may have reduced the probability of new S alleles to prevailing in S. carolinense, leaving old ones segregating at the S locus with little signature of positive selection being currently detectable.
Collapse
Affiliation(s)
- Y Lu
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
45
|
Moeller DA, Tiffin P. Genetic diversity and the evolutionary history of plant immunity genes in two species of Zea. Mol Biol Evol 2005; 22:2480-90. [PMID: 16120802 DOI: 10.1093/molbev/msi247] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plant pathogenesis-related genes (PR genes) code for enzymes, enzyme inhibitors, and other peptides that confer resistance to pathogens and herbivores. Although several PR genes have been the subject of molecular population genetic analyses, a general understanding of their long-term evolutionary dynamics remains incomplete. Here we analyze sequence data from 17 PR genes from two closely related teosinte species of central Mexico. In addition to testing whether patterns of diversity at individual loci depart from expectations under a neutral model, we compared patterns of diversity at defense genes, as a class, to nondefense genes. In Zea diploperennis, the majority of defense genes have patterns of diversity consistent with neutral expectations while at least two genes showed evidence of recent positive selection consistent with arms-race models of antagonistic coevolution. In Zea mays ssp. parviglumis, by contrast, analyses of both defense and nondefense genes revealed strong and consistent departures from the neutral model, suggestive of nonequilibrium population dynamics or population structure. Nevertheless, we found a significant excess of replacement polymorphism in defense genes compared to nondefense genes. Although we cannot exclude relaxed selective constraint as an explanation, our results are consistent with temporally variable (transient or episodic) selection or geographically variable selection acting on parviglumis defense genes. The different patterns of diversity found in the two Zea species may be explained by parviglumis' greater distribution and population structure together with geographic variation in selection.
Collapse
Affiliation(s)
- David A Moeller
- Department of Plant Biology, University of Minnesota, Saint Paul, USA
| | | |
Collapse
|
46
|
Qin X, Soulard J, Laublin G, Morse D, Cappadocia M. Molecular analysis of the conserved C4 region of the S11-RNase of Solanum chacoense. PLANTA 2005; 221:531-537. [PMID: 15650838 DOI: 10.1007/s00425-004-1470-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 12/01/2004] [Indexed: 05/24/2023]
Abstract
The stylar component to gametophytic self-incompatibility in Solanaceae is an S-RNase. Its primary structure has a characteristic pattern of two hypervariable regions, involved in pollen recognition, and five constant regions. Two of the latter (C2 and C3) constitute the active site, while the highly hydrophobic C1 and C5 are believed to be involved in protein stability. We analyzed the role of the C4 region by site-directed mutagenesis. A GGGG mutant, in which the four charged residues in the C4 region were replaced with glycine, did not accumulate the protein to detectable levels in styles, suggestive of a role in protein stability. A R115G mutant, in which a charged amino acid was eliminated to reduce the potential binding affinity, had no effect on the pollen rejection phenotype. This suggests the C4 does not interact with partners such as potential pollen tube receptors facilitating S-RNase uptake. Finally, a K113R mutant replaced a potential ubiquitination target with arginine. However, this RNase acted as the wild type in both incompatible and compatible crosses. The latter crosses rule out the role of the conserved C4 lysine in ubiquitination.
Collapse
Affiliation(s)
- Xike Qin
- IRBV, Biology Department, University of Montreal, 4101 rue Sherbrooke est, Montreal, Canada, H1X 2B2
| | | | | | | | | |
Collapse
|
47
|
Castric V, Vekemans X. Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Mol Ecol 2004; 13:2873-89. [PMID: 15367105 DOI: 10.1111/j.1365-294x.2004.02267.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Self-incompatibility systems in plants are genetic systems that prevent self-fertilization in hermaphrodites through recognition and rejection of pollen expressing the same allelic specificity as that expressed in the pistils. The evolutionary properties of these self-recognition systems have been revealed through a fascinating interplay between empirical advances and theoretical developments. In 1939, Wright suggested that the main evolutionary force driving the genetic and molecular properties of these systems was strong negative frequency-dependent selection acting on pollination success. The empirical observation of high allelic diversity at the self-incompatibility locus in several species, followed by the discovery of very high molecular divergence among alleles in all plant families where the locus has been identified, supported Wright's initial theoretical predictions as well as many of its later developments. In the last decade, however, advances in the molecular characterization of the incompatibility reaction and in the analysis of allelic frequencies and allelic divergence from natural populations have stimulated new theoretical investigations that challenged some important assumptions of Wright's model of gametophytic self-incompatibility. We here review some of these recent empirical and theoretical advances that investigated: (i) the hypothesis that S-alleles are selectively equivalent, and the evolutionary consequences of genetic interactions between alleles; (ii) the occurrence of frequency-dependent selection in female fertility; (iii) the evolutionary genetics of self-incompatibility systems in subdivided populations; (iv) the evolutionary implications of the self-incompatibility locus's genetic architecture; and (v) of its interactions with the genomic environment.
Collapse
Affiliation(s)
- Vincent Castric
- Laboratoire de génétique et évolution des populations végétales, UMR CNRS 8016, Cité Scientifique, Bâtiment SN2, 59655 Villeneuve d'Ascq Cedex, France.
| | | |
Collapse
|
48
|
Abstract
Bud pollinations allowed me to examine the effects of homozygosity at loci in the area of suppressed recombination around the S-locus in Solanum carolinense, whose S-alleles show surprisingly low diversification rates. The total number of seeds produced was lower for incompatible than compatible pollinations, revealing that self-incompatibility was only somewhat overcome by bud pollination. However, low seed set in incompatible crosses was not due solely to the incompatibility response; crosses between distinct plants sharing the same alleles at the S-locus led to dramatically high seed abortion, nearly equal to that found upon selfing. An excess of heterozygotes in the surviving progeny supports the supposition that these high abortion rates are due to sheltered load, that is, previously unexpressed load accumulated due to enforced heterozygosity and recombination suppression around the S-locus. Of the seven alleles examined in total, two showed evidence of severe load and five did not. The magnitude of load was consistent with terminal branch length in some, but not all, cases.
Collapse
Affiliation(s)
- J L Stone
- Department of Zoology, Duke University, Durham, NC 27708-0325, USA.
| |
Collapse
|
49
|
Kato S, Mukai Y. Allelic diversity of S-RNase at the self-incompatibility locus in natural flowering cherry populations (Prunus lannesiana var. speciosa). Heredity (Edinb) 2004; 92:249-56. [PMID: 14710172 DOI: 10.1038/sj.hdy.6800403] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the Rosaceae family, which includes Prunus, gametophytic self-incompatibility (GSI) is controlled by a single multiallelic locus (S-locus), and the S-locus product expressed in the pistils is a glycoprotein with ribonuclease activity (S-RNase). Two populations of flowering cherry (Prunus lannesiana var. speciosa), located on Hachijo Island in Japan's Izu Islands, were sampled, and S-allele diversity was surveyed based on the sequence polymorphism of S-RNase. A total of seven S-alleles were cloned and sequenced. The S-RNases of flowering cherry showed high homology to those of Prunus cultivars (P. avium and P. dulcis). In the phylogenetic tree, the S-RNases of flowering cherry and other Prunus cultivars formed a distinct group, but they did not form species-specific subgroups. The nucleotide substitution pattern in S-RNases of flowering cherry showed no excess of nonsynonymous substitutions relative to synonymous substitutions. However, the S-RNases of flowering cherry had a higher Ka/Ks ratio than those of other Prunus cultivars, and a subtle heterogeneity in the nucleotide substitution rates was observed among the Prunus species. The S-genotype of each individual was determined by Southern blotting of restriction enzyme-digested genomic DNA, using cDNA for S-RNase as a probe. A total of 22 S-alleles were identified. All individuals examined were heterozygous, as expected under GSI. The allele frequencies were, contrary to the expectation under GSI, significantly unequal. The two populations studied showed a high degree of overlap, with 18 shared alleles. However, the allele frequencies differed considerably between the two populations.
Collapse
Affiliation(s)
- S Kato
- Department of Forest Resources Science, Faculty of Agriculture, University of Shizuoka, Shizuoka 422-8529, Japan.
| | | |
Collapse
|
50
|
Brennan AC, Harris SA, Hiscock SJ. Population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) II: a spatial autocorrelation approach to determining mating behaviour in the presence of low S allele diversity. Heredity (Edinb) 2003; 91:502-9. [PMID: 14576744 DOI: 10.1038/sj.hdy.6800315] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We recently estimated that as few as six S alleles represent the extent of S locus diversity in a British population of the self-incompatible (SI) coloniser Senecio squalidus (Oxford Ragwort). Despite the predicted constraints to mating imposed by such a low number of S alleles, S. squalidus maintains a strong sporophytic self-incompatibility (SSI) system and there is no evidence for a breakdown of SSI or any obvious negative reproductive consequences for this highly successful coloniser. The present paper assesses mating behaviour in an Oxford S. squalidus population through observations of its effect on spatial patterns of genetic diversity and thus the extent to which it is responsible for ameliorating the potentially detrimental reproductive consequences of low S allele diversity in British S. squalidus. A spatial autocorrelation (SA) treatment of S locus and allozyme polymorphism data for four loci indicates that mating events regularly occur at all the distance classes examined from 60 to 480 m throughout the entire sample population. Less SA is observed for S locus data than for allozyme data in accordance with the hypothesis that SSI and low diversity at the S locus are driving these large-scale mating events. The limited population structure at small distances of 60 m and less observed for SA analysis of the Me-2 locus and by F-statistics for all the allozyme data, is evidence of some local relatedness due to limited seed and pollen dispersal in S. squalidus. However, the overall impression of mating dynamics in this S. squalidus population is that of ample potential mating opportunities with many individuals at large population scales, indicating that reproductive success is not seriously affected by few S alleles available for mating interactions.
Collapse
Affiliation(s)
- A C Brennan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | |
Collapse
|