1
|
Bosch-Guiteras N, van Leeuwen J. Exploring conditional gene essentiality through systems genetics approaches in yeast. Curr Opin Genet Dev 2022; 76:101963. [PMID: 35939967 DOI: 10.1016/j.gde.2022.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
An essential gene encodes for a cellular function that is required for viability. Although viability is a straightforward phenotype to analyze in yeast, defining a gene as essential is not always trivial. Gene essentiality has generally been studied in specific laboratory strains and under standard growth conditions, however, essentiality can vary across species, strains, and environments. Recent systematic studies of gene essentiality revealed that two sets of essential genes exist: core essential genes that are always required for viability and conditional essential genes that vary in essentiality in different genetic and environmental contexts. Here, we review recent advances made in the systematic analysis of gene essentiality in yeast and discuss the properties that distinguish core from context-dependent essential genes.
Collapse
Affiliation(s)
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Warrier T, Romano KP, Clatworthy AE, Hung DT. Integrated genomics and chemical biology herald an era of sophisticated antibacterial discovery, from defining essential genes to target elucidation. Cell Chem Biol 2022; 29:716-729. [PMID: 35523184 PMCID: PMC9893512 DOI: 10.1016/j.chembiol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
Abstract
The golden age of antibiotic discovery in the 1940s-1960s saw the development and deployment of many different classes of antibiotics, revolutionizing the field of medicine. Since that time, our ability to discover antibiotics of novel structural classes or mechanisms has not kept pace with the ever-growing threat of antibiotic resistance. Recently, advances at the intersection of genomics and chemical biology have enabled efforts to better define the vulnerabilities of essential gene targets, to develop sophisticated whole-cell chemical screening methods that reveal target biology early, and to elucidate small molecule targets and modes of action more effectively. These new technologies have the potential to expand the chemical diversity of antibiotic candidates, as well as the breadth of targets. We illustrate how the latest tools of genomics and chemical biology are being integrated to better understand pathogen vulnerabilities and antibiotic mechanisms in order to inform a new era of antibiotic discovery.
Collapse
Affiliation(s)
- Thulasi Warrier
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith P Romano
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anne E Clatworthy
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Lawson M, Elf J. Imaging-based screens of pool-synthesized cell libraries. Nat Methods 2021; 18:358-365. [PMID: 33589838 DOI: 10.1038/s41592-020-01053-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Mapping a genetic perturbation to a change in phenotype is at the core of biological research. Advances in microscopy have transformed these studies, but they have largely been confined to examining a few strains or cell lines at a time. In parallel, there has been a revolution in creating synthetic libraries of genetically altered cells with relative ease. Here we describe methods that combine these powerful tools to perform live-cell imaging of pool-generated strain libraries for improved biological discovery.
Collapse
Affiliation(s)
- Michael Lawson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Johan Elf
- Department of Cell and Molecular Biology Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Glass JI, Merryman C, Wise KS, Hutchison CA, Smith HO. Minimal Cells-Real and Imagined. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023861. [PMID: 28348033 DOI: 10.1101/cshperspect.a023861] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A minimal cell is one whose genome only encodes the minimal set of genes necessary for the cell to survive. Scientific reductionism postulates the best way to learn the first principles of cellular biology would be to use a minimal cell in which the functions of all genes and components are understood. The genes in a minimal cell are, by definition, essential. In 2016, synthesis of a genome comprised of only the set of essential and quasi-essential genes encoded by the bacterium Mycoplasma mycoides created a near-minimal bacterial cell. This organism performs the cellular functions common to all organisms. It replicates DNA, transcribes RNA, translates proteins, undergoes cell division, and little else. In this review, we examine this organism and contrast it with other bacteria that have been used as surrogates for a minimal cell.
Collapse
Affiliation(s)
- John I Glass
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, California 92037
| | - Chuck Merryman
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, California 92037
| | - Kim S Wise
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, California 92037
| | - Clyde A Hutchison
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, California 92037
| | - Hamilton O Smith
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, California 92037
| |
Collapse
|
5
|
Bravim F, Mota MM, Fernandes AAR, Fernandes PMB. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress. FEMS Yeast Res 2016; 16:fow052. [DOI: 10.1093/femsyr/fow052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
|
6
|
DeJesus MA, Ioerger TR. Normalization of transposon-mutant library sequencing datasets to improve identification of conditionally essential genes. J Bioinform Comput Biol 2016; 14:1642004. [PMID: 26932272 DOI: 10.1142/s021972001642004x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sequencing of transposon-mutant libraries using next-generation sequencing (TnSeq) has become a popular method for determining which genes and non-coding regions are essential for growth under various conditions in bacteria. For methods that rely on quantitative comparison of counts of reads at transposon insertion sites, proper normalization of TnSeq datasets is vitally important. Real TnSeq datasets are often noisy and exhibit a significant skew that can be dominated by high counts at a small number of sites (often for non-biological reasons). If two datasets that are not appropriately normalized are compared, it might cause the artifactual appearance of Differentially Essential (DE) genes in a statistical test, constituting type I errors (false positives). In this paper, we propose a novel method for normalization of TnSeq datasets that corrects for the skew of read-count distributions by fitting them to a Beta-Geometric distribution. We show that this read-count correction procedure reduces the number of false positives when comparing replicate datasets grown under the same conditions (for which no genuine differences in essentiality are expected). We compare these results to results obtained with other normalization procedures, and show that it results in greater reduction in the number of false positives. In addition we investigate the effects of normalization on the detection of DE genes.
Collapse
Affiliation(s)
- Michael A DeJesus
- 1 Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - Thomas R Ioerger
- 1 Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
7
|
Nam K, Cui Q, Gao J, York DM. Specific Reaction Parametrization of the AM1/d Hamiltonian for Phosphoryl Transfer Reactions: H, O, and P Atoms. J Chem Theory Comput 2015; 3:486-504. [PMID: 26637030 DOI: 10.1021/ct6002466] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A semiempirical AM1/d Hamiltonian is developed to model phosphoryl transfer reactions catalyzed by enzymes and ribozymes for use in linear-scaling calculations and combined quantum mechanical/molecular mechanical simulations. The model, designated AM1/d-PhoT, is parametrized for H, O, and P atoms to reproduce high-level density-functional results from a recently constructed database of quantum calculations for RNA catalysis ( http://theory.chem.umn.edu/Database/QCRNA ), including geometries and relative energies of minima, transition states and reactive intermediates, dipole moments, proton affinities, and other relevant properties. The model is tested in the gas phase and in solution using a QM/MM potential. The results indicate that the method provides significantly higher accuracy than MNDO/d, AM1, and PM3 methods and, for the transphosphorylation reactions, is in close agreement with the density-functional calculations at the B3LYP/6-311++G(3df,2p) level with a reduction in computational cost of 3-4 orders of magnitude. The model is expected to have considerable impact on the application of semiempirical QM/MM methods to transphosphorylation reactions in solution, enzymes, and ribozymes and to ultimately facilitate the design of improved next-generation multiscale quantum models.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Supercomputing Institute and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706
| | - Qiang Cui
- Department of Chemistry and Supercomputing Institute and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706
| | - Darrin M York
- Department of Chemistry and Supercomputing Institute and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706
| |
Collapse
|
8
|
Shen H, McHale CM, Smith MT, Zhang L. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:31-42. [PMID: 26041264 DOI: 10.1016/j.mrrev.2015.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/25/2023]
Abstract
Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology.
Collapse
Affiliation(s)
- Hua Shen
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Cliona M McHale
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Martyn T Smith
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Luoping Zhang
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Abstract
The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general.
Collapse
|
10
|
Su M, Ling Y, Yu J, Wu J, Xiao J. Small proteins: untapped area of potential biological importance. Front Genet 2013; 4:286. [PMID: 24379829 PMCID: PMC3864261 DOI: 10.3389/fgene.2013.00286] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/27/2013] [Indexed: 01/13/2023] Open
Abstract
Polypeptides containing ≤100 amino acid residues (AAs) are generally considered to be small proteins (SPs). Many studies have shown that some SPs are involved in important biological processes, including cell signaling, metabolism, and growth. SP generally has a simple domain and has an advantage to be used as model system to overcome folding speed limits in protein folding simulation and drug design. But SPs were once thought to be trivial molecules in biological processes compared to large proteins. Because of the constraints of experimental methods and bioinformatics analysis, many genome projects have used a length threshold of 100 amino acid residues to minimize erroneous predictions and SPs are relatively under-represented in earlier studies. The general protein discovery methods have potential problems to predict and validate SPs, and very few effective tools and algorithms were developed specially for SPs identification. In this review, we mainly consider the diverse strategies applied to SPs prediction and discuss the challenge for differentiate SP coding genes from artifacts. We also summarize current large-scale discovery of SPs in species at the genome level. In addition, we present an overview of SPs with regard to biological significance, structural application, and evolution characterization in an effort to gain insight into the significance of SPs.
Collapse
Affiliation(s)
- Mingming Su
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China ; Graduate University of Chinese Academy of Sciences Beijing, China
| | - Yunchao Ling
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China ; Graduate University of Chinese Academy of Sciences Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
11
|
Wiles TJ, Norton JP, Russell CW, Dalley BK, Fischer KF, Mulvey MA. Combining quantitative genetic footprinting and trait enrichment analysis to identify fitness determinants of a bacterial pathogen. PLoS Genet 2013; 9:e1003716. [PMID: 23990803 PMCID: PMC3749937 DOI: 10.1371/journal.pgen.1003716] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 06/26/2013] [Indexed: 01/03/2023] Open
Abstract
Strains of Extraintestinal Pathogenic Escherichia c oli (ExPEC) exhibit an array of virulence strategies and are a major cause of urinary tract infections, sepsis and meningitis. Efforts to understand ExPEC pathogenesis are challenged by the high degree of genetic and phenotypic variation that exists among isolates. Determining which virulence traits are widespread and which are strain-specific will greatly benefit the design of more effective therapies. Towards this goal, we utilized a quantitative genetic footprinting technique known as transposon insertion sequencing (Tn-seq) in conjunction with comparative pathogenomics to functionally dissect the genetic repertoire of a reference ExPEC isolate. Using Tn-seq and high-throughput zebrafish infection models, we tracked changes in the abundance of ExPEC variants within saturated transposon mutant libraries following selection within distinct host niches. Nine hundred and seventy bacterial genes (18% of the genome) were found to promote pathogen fitness in either a niche-dependent or independent manner. To identify genes with the highest therapeutic and diagnostic potential, a novel Trait Enrichment Analysis (TEA) algorithm was developed to ascertain the phylogenetic distribution of candidate genes. TEA revealed that a significant portion of the 970 genes identified by Tn-seq have homologues more often contained within the genomes of ExPEC and other known pathogens, which, as suggested by the first axiom of molecular Koch's postulates, is considered to be a key feature of true virulence determinants. Three of these Tn-seq-derived pathogen-associated genes--a transcriptional repressor, a putative metalloendopeptidase toxin and a hypothetical DNA binding protein--were deleted and shown to independently affect ExPEC fitness in zebrafish and mouse models of infection. Together, the approaches and observations reported herein provide a resource for future pathogenomics-based research and highlight the diversity of factors required by a single ExPEC isolate to survive within varying host environments.
Collapse
Affiliation(s)
- Travis J. Wiles
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - J. Paul Norton
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Colin W. Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Brian K. Dalley
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kael F. Fischer
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- ARUP Laboratories, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
12
|
van Opijnen T, Camilli A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 2013; 11:435-42. [PMID: 23712350 PMCID: PMC3842022 DOI: 10.1038/nrmicro3033] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Our knowledge of gene function has increasingly lagged behind gene discovery, hindering our understanding of the genetic basis of microbial phenotypes. Recently, however, massively parallel sequencing has been combined with traditional transposon mutagenesis in techniques referred to as transposon sequencing (Tn-seq), high-throughput insertion tracking by deep sequencing (HITS), insertion sequencing (INSeq) and transposon-directed insertion site sequencing (TraDIS), making it possible to identify putative gene functions in a high-throughput manner. Here, we describe the similarities and differences of these related techniques and discuss their application to the probing of gene function and higher-order genome organization.
Collapse
Affiliation(s)
- Tim van Opijnen
- Biology Department, Boston College, 140 Commonwealth Avenue, 420 Higgins Hall, Chestnut Hill, Massachusetts 02467, USA.
| | - Andrew Camilli
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA.
| |
Collapse
|
13
|
DeJesus MA, Zhang YJ, Sassetti CM, Rubin EJ, Sacchettini JC, Ioerger TR. Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. ACTA ACUST UNITED AC 2013; 29:695-703. [PMID: 23361328 DOI: 10.1093/bioinformatics/btt043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Next-generation sequencing affords an efficient analysis of transposon insertion libraries, which can be used to identify essential genes in bacteria. To analyse this high-resolution data, we present a formal Bayesian framework for estimating the posterior probability of essentiality for each gene, using the extreme-value distribution to characterize the statistical significance of the longest region lacking insertions within a gene. We describe a sampling procedure based on the Metropolis-Hastings algorithm to calculate posterior probabilities of essentiality while simultaneously integrating over unknown internal parameters. RESULTS Using a sequence dataset from a transposon library for Mycobacterium tuberculosis, we show that this Bayesian approach predicts essential genes that correspond well with genes shown to be essential in previous studies. Furthermore, we show that by using the extreme-value distribution to characterize genomic regions lacking transposon insertions, this method is capable of identifying essential domains within genes. This approach can be used for analysing transposon libraries in other organisms and augmenting essentiality predictions with statistical confidence scores.
Collapse
Affiliation(s)
- Michael A DeJesus
- Department of Computer Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Rahier A. Dissecting the sterol C-4 demethylation process in higher plants. From structures and genes to catalytic mechanism. Steroids 2011; 76:340-52. [PMID: 21147141 DOI: 10.1016/j.steroids.2010.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 02/01/2023]
Abstract
Sterols become functional only after removal of the two methyl groups at C-4. This review focuses on the sterol C-4 demethylation process in higher plants. An intriguing aspect in the removal of the two C-4 methyl groups of sterol precursors in plants is that it does not occur consecutively as it does in yeast and animals, but is interrupted by several enzymatic steps. Each C-4 demethylation step involves the sequential participation of three individual enzymatic reactions including a sterol methyl oxidase (SMO), a 3β-hydroxysteroid-dehydrogenase/C4-decarboxylase (3βHSD/D) and a 3-ketosteroid reductase (SR). The distant location of the two C-4 demethylations in the sterol pathway requires distinct SMOs with respective substrate specificity. Combination of genetic and molecular enzymological approaches allowed a thorough identification and functional characterization of two distinct families of SMOs genes and two 3βHSD/D genes. For the latter, these studies provided the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants, and the first data on 3-D molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthetic pathway with its substrate in animals, yeast and higher plants. Characterization of these three new components involved in C-4 demethylation participates to the completion of the molecular inventory of sterol synthesis in higher plants.
Collapse
Affiliation(s)
- Alain Rahier
- Institut de Biologie Moléculaire des Plantes, UPR-CNRS 2357, 28 rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
15
|
Grady BJ, Ritchie MD. Statistical Optimization of Pharmacogenomics Association Studies: Key Considerations from Study Design to Analysis. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2011; 9:41-66. [PMID: 21887206 PMCID: PMC3163263 DOI: 10.2174/187569211794728805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Research in human genetics and genetic epidemiology has grown significantly over the previous decade, particularly in the field of pharmacogenomics. Pharmacogenomics presents an opportunity for rapid translation of associated genetic polymorphisms into diagnostic measures or tests to guide therapy as part of a move towards personalized medicine. Expansion in genotyping technology has cleared the way for widespread use of whole-genome genotyping in the effort to identify novel biology and new genetic markers associated with pharmacokinetic and pharmacodynamic endpoints. With new technology and methodology regularly becoming available for use in genetic studies, a discussion on the application of such tools becomes necessary. In particular, quality control criteria have evolved with the use of GWAS as we have come to understand potential systematic errors which can be introduced into the data during genotyping. There have been several replicated pharmacogenomic associations, some of which have moved to the clinic to enact change in treatment decisions. These examples of translation illustrate the strength of evidence necessary to successfully and effectively translate a genetic discovery. In this review, the design of pharmacogenomic association studies is examined with the goal of optimizing the impact and utility of this research. Issues of ascertainment, genotyping, quality control, analysis and interpretation are considered.
Collapse
Affiliation(s)
- Benjamin J. Grady
- Department of Molecular Physiology & Biophysics, Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| | - Marylyn D. Ritchie
- Department of Molecular Physiology & Biophysics, Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
16
|
Jarosz DF, Taipale M, Lindquist S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu Rev Genet 2011; 44:189-216. [PMID: 21047258 DOI: 10.1146/annurev.genet.40.110405.090412] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changing a single nucleotide in a genome can have profound consequences under some conditions, but the same change can have no consequences under others. Indeed, organisms can be surprisingly robust to environmental and genetic perturbations. Yet, the mechanisms underlying such robustness are controversial. Moreover, how they might affect evolutionary change remains enigmatic. Here, we review the recently appreciated central role of protein homeostasis in buffering and potentiating genetic variation and discuss how these processes mediate the critical influence of the environment on the relationship between genotype and phenotype. Deciphering how robustness emerges from biological organization and the mechanisms by which it is overcome in changing environments will lead to a more complete understanding of both fundamental evolutionary processes and diverse human diseases.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA.
| | | | | |
Collapse
|
17
|
Xu T, Bharucha N, Kumar A. Genome-wide transposon mutagenesis in Saccharomyces cerevisiae and Candida albicans. Methods Mol Biol 2011; 765:207-24. [PMID: 21815095 DOI: 10.1007/978-1-61779-197-0_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transposon mutagenesis is an effective method for generating large sets of random mutations in target DNA, with applicability toward numerous types of genetic screens in prokaryotes, single-celled eukaryotes, and metazoans alike. Relative to methods of random mutagenesis by chemical/UV treatment, transposon insertions can be easily identified in mutants with phenotypes of interest. The construction of transposon insertion mutants is also less labor-intensive on a genome-wide scale than methods for targeted gene replacement, although transposon insertions are not precisely targeted to a specific residue, and thus coverage of the target DNA can be problematic. The collective advantages of transposon mutagenesis have been well demonstrated in studies of the budding yeast Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans, as transposon mutagenesis has been used extensively for phenotypic screens in both yeasts. Consequently, we present here protocols for the generation and utilization of transposon-insertion DNA libraries in S. cerevisiae and C. albicans. Specifically, we present methods for the large-scale introduction of transposon insertion alleles in a desired strain of S. cerevisiae. Methods are also presented for transposon mutagenesis of C. albicans, encompassing both the construction of the plasmid-based transposon-mutagenized DNA library and its introduction into a desired strain of Candida. In total, these methods provide the necessary information to implement transposon mutagenesis in yeast, enabling the construction of large sets of identifiable gene disruption mutations, with particular utility for phenotypic screening in nonstandard genetic backgrounds.
Collapse
Affiliation(s)
- Tao Xu
- Department of Molecular, Cellular, and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
18
|
Standard YPD, even supplemented with extra nutrients, does not always compensate growth defects of Saccharomyces cerevisiae auxotrophic strains. Antonie Van Leeuwenhoek 2010; 99:591-600. [DOI: 10.1007/s10482-010-9530-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/12/2010] [Indexed: 11/26/2022]
|
19
|
Li J, Yuan Z, Zhang Z. The cellular robustness by genetic redundancy in budding yeast. PLoS Genet 2010; 6:e1001187. [PMID: 21079672 PMCID: PMC2973813 DOI: 10.1371/journal.pgen.1001187] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/29/2010] [Indexed: 01/10/2023] Open
Abstract
The frequent dispensability of duplicated genes in budding yeast is heralded as a hallmark of genetic robustness contributed by genetic redundancy. However, theoretical predictions suggest such backup by redundancy is evolutionarily unstable, and the extent of genetic robustness contributed from redundancy remains controversial. It is anticipated that, to achieve mutual buffering, the duplicated paralogs must at least share some functional overlap. However, counter-intuitively, several recent studies reported little functional redundancy between these buffering duplicates. The large yeast genetic interactions released recently allowed us to address these issues on a genome-wide scale. We herein characterized the synthetic genetic interactions for ∼500 pairs of yeast duplicated genes originated from either whole-genome duplication (WGD) or small-scale duplication (SSD) events. We established that functional redundancy between duplicates is a pre-requisite and thus is highly predictive of their backup capacity. This observation was particularly pronounced with the use of a newly introduced metric in scoring functional overlap between paralogs on the basis of gene ontology annotations. Even though mutual buffering was observed to be prevalent among duplicated genes, we showed that the observed backup capacity is largely an evolutionarily transient state. The loss of backup capacity generally follows a neutral mode, with the buffering strength decreasing in proportion to divergence time, and the vast majority of the paralogs have already lost their backup capacity. These observations validated previous theoretic predictions about instability of genetic redundancy. However, departing from the general neutral mode, intriguingly, our analysis revealed the presence of natural selection in stabilizing functional overlap between SSD pairs. These selected pairs, both WGD and SSD, tend to have decelerated functional evolution, have higher propensities of co-clustering into the same protein complexes, and share common interacting partners. Our study revealed the general principles for the long-term retention of genetic redundancy.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
- * E-mail: (JL); (ZZ)
| | - Zineng Yuan
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
- * E-mail: (JL); (ZZ)
| |
Collapse
|
20
|
Stillman DJ. Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:175-80. [PMID: 20123079 DOI: 10.1016/j.bbagrm.2009.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/28/2009] [Accepted: 11/03/2009] [Indexed: 10/19/2022]
Abstract
The small Nhp6 protein from budding yeast is an abundant protein that binds DNA non-specifically and bends DNA sharply. It contains only a single HMGB domain that binds DNA in the minor groove and a basic N-terminal extension that wraps around DNA to contact the major groove. This review describes the genetic and biochemical experiments that indicate Nhp6 functions in promoting RNA pol III transcription, in formation of preinitiation complexes at promoters transcribed by RNA pol II, and in facilitating the activity of chromatin modifying complexes. The FACT complex may provide a paradigm for how Nhp6 functions with chromatin factors, as Nhp6 allows Spt16-Pob3 to bind to and reorganize nucleosomes in vitro.
Collapse
Affiliation(s)
- David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Sørensen DM, Buch-Pedersen MJ, Palmgren MG. Structural divergence between the two subgroups of P5 ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:846-55. [PMID: 20416272 DOI: 10.1016/j.bbabio.2010.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/09/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Evolution of P5 type ATPases marks the origin of eukaryotes but still they remain the least characterized pumps in the superfamily of P-type ATPases. Phylogenetic analysis of available sequences suggests that P5 ATPases should be divided into at least two subgroups, P5A and P5B. P5A ATPases have been identified in the endoplasmic reticulum and seem to have basic functions in protein maturation and secretion. P5B ATPases localize to vacuolar/lysosomal or apical membranes and in animals play a role in hereditary neuronal diseases. Here we have used a bioinformatical approach to identify differences in the primary sequences between the two subgroups. P5A and P5B ATPases appear have a very different membrane topology from other P-type ATPases with two and one, respectively, additional transmembrane segments inserted in the N-terminal end. Based on conservation of residues in the transmembrane region, the two P5 subgroups most likely have different substrate specificities although these cannot be predicted from their sequences. Furthermore, sequence differences between P5A and P5B ATPases are identified in the catalytic domains that could influence key kinetic properties differentially. Together these findings indicate that P5A and P5B ATPases are structurally and functionally different.
Collapse
Affiliation(s)
- Danny Mollerup Sørensen
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | |
Collapse
|
22
|
Bleys A, Karimi M, Hilson P. Clone-based functional genomics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009; 553:141-77. [PMID: 19588105 DOI: 10.1007/978-1-60327-563-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Annotated genomes have provided a wealth of information about gene structure and gene catalogs in a wide range of species. Taking advantage of these developments, novel techniques have been implemented to investigate systematically diverse aspects of gene and protein functions underpinning biology processes. Here, we review functional genomics applications that require the mass production of cloned sequence repertoires, including ORFeomes and silencing tag collections. We discuss the techniques employed in large-scale cloning projects and we provide an up-to-date overview of the clone resources available for model plant species and of the current applications that may be scaled up for systematic plant gene studies.
Collapse
Affiliation(s)
- Annick Bleys
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Gent, Belgium
| | | | | |
Collapse
|
23
|
Abstract
The rapid accumulation of complete genomic sequences offers the opportunity to carry out an analysis of inter- and intra-individual genome variation within a species on a routine basis. Sequencing whole genomes requires resources that are currently beyond those of a single laboratory and therefore it is not a practical approach for resequencing hundreds of individual genomes. DNA microarrays present an alternative way to study differences between closely related genomes. Advances in microarray-based approaches have enabled the main forms of genomic variation (amplifications, deletions, insertions, rearrangements and base-pair changes) to be detected using techniques that are readily performed in individual laboratories using simple experimental approaches.
Collapse
|
24
|
Nam K, Gao J, York DM. Quantum mechanical/molecular mechanical simulation study of the mechanism of hairpin ribozyme catalysis. J Am Chem Soc 2008; 130:4680-91. [PMID: 18345664 DOI: 10.1021/ja0759141] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular mechanism of hairpin ribozyme catalysis is studied with molecular dynamics simulations using a combined quantum mechanical and molecular mechanical (QM/MM) potential with a recently developed semiempirical AM1/d-PhoT model for phosphoryl transfer reactions. Simulations are used to derive one- and two-dimensional potentials of mean force to examine specific reaction paths and assess the feasibility of proposed general acid and base mechanisms. Density-functional calculations of truncated active site models provide complementary insight to the simulation results. Key factors utilized by the hairpin ribozyme to enhance the rate of transphosphorylation are presented, and the roles of A38 and G8 as general acid and base catalysts are discussed. The computational results are consistent with available experimental data, provide support for a general acid/base mechanism played by functional groups on the nucleobases, and offer important insight into the ability of RNA to act as a catalyst without explicit participation by divalent metal ions.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | | | | |
Collapse
|
25
|
Chaotic gene regulatory networks can be robust against mutations and noise. J Theor Biol 2008; 253:323-32. [PMID: 18417154 DOI: 10.1016/j.jtbi.2008.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/26/2008] [Accepted: 03/03/2008] [Indexed: 11/23/2022]
Abstract
Robustness to mutations and noise has been shown to evolve through stabilizing selection for optimal phenotypes in model gene regulatory networks. The ability to evolve robust mutants is known to depend on the network architecture. How do the dynamical properties and state-space structures of networks with high and low robustness differ? Does selection operate on the global dynamical behavior of the networks? What kind of state-space structures are favored by selection? We provide damage propagation analysis and an extensive statistical analysis of state spaces of these model networks to show that the change in their dynamical properties due to stabilizing selection for optimal phenotypes is minor. Most notably, the networks that are most robust to both mutations and noise are highly chaotic. Certain properties of chaotic networks, such as being able to produce large attractor basins, can be useful for maintaining a stable gene-expression pattern. Our findings indicate that conventional measures of stability, such as damage propagation, do not provide much information about robustness to mutations or noise in model gene regulatory networks.
Collapse
|
26
|
Lee TS, Silva López C, Giambasu GM, Martick M, Scott WG, York DM. Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation. J Am Chem Soc 2008; 130:3053-64. [PMID: 18271579 DOI: 10.1021/ja076529e] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular dynamics simulations have been performed to investigate the role of Mg2+ in the full-length hammerhead ribozyme cleavage reaction. In particular, the aim of this work is to characterize the binding mode and conformational events that give rise to catalytically active conformations and stabilization of the transition state. Toward this end, a series of eight 12 ns molecular dynamics simulations have been performed with different divalent metal binding occupations for the reactant, early and late transition state using recently developed force field parameters for metal ions and reactive intermediates in RNA catalysis. In addition, hybrid QM/MM calculations of the early and late transition state were performed to study the proton-transfer step in general acid catalysis that is facilitated by the catalytic Mg2+ ion. The simulations suggest that Mg2+ is profoundly involved in the hammerhead ribozyme mechanism both at structural and catalytic levels. Binding of Mg2+ in the active site plays a key structural role in the stabilization of stem I and II and to facilitate formation of near attack conformations and interactions between the nucleophile and G12, the implicated general base catalyst. In the transition state, Mg2+ binds in a bridging position where it stabilizes the accumulated charge of the leaving group while interacting with the 2'OH of G8, the implicated general acid catalyst. The QM/MM simulations provide support that, in the late transition state, the 2'OH of G8 can transfer a proton to the leaving group while directly coordinating the bridging Mg2+ ion. The present study provides evidence for the role of Mg2+ in hammerhead ribozyme catalysis. The proposed simulation model reconciles the interpretation of available experimental structural and biochemical data, and provides a starting point for more detailed investigation of the chemical reaction path with combined QM/MM methods.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Consortium for Bioinformatics and Computational Biology, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
27
|
Whole-genome detection of conditionally essential and dispensable genes in Escherichia coli via genetic footprinting. Methods Mol Biol 2008; 416:83-102. [PMID: 18392962 DOI: 10.1007/978-1-59745-321-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present a whole-genome approach to genetic footprinting in Escherichia coli using Tn5-based transposons to determine gene essentiality. A population of cells is mutagenized and subjected to outgrowth under selective conditions. Transposon insertions in the surviving mutants are detected using nested polymerase chain reaction (PCR), agarose gel electrophoresis, and software-assisted PCR product size determination. Genomic addresses of these inserts are then mapped onto the E. coli genome sequence based on the PCR product lengths and the addresses of the corresponding genome-specific primers. Gene essentiality conclusions were drawn based on a semiautomatic analysis of the number and relative positions of inserts retained within each gene after selective outgrowth.
Collapse
|
28
|
|
29
|
Wong SMS, Akerley BJ. Identification and analysis of essential genes in Haemophilus influenzae. Methods Mol Biol 2008; 416:27-44. [PMID: 18392959 DOI: 10.1007/978-1-59745-321-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human respiratory pathogen Haemophilus influenzae, a Gram-negative bacterium, is the first free-living organism to have its complete genome sequenced, providing the opportunity to apply genomic-scale approaches to study gene function. This chapter provides an overview of a highly efficient, in vitro mariner transposon-based method that exploits the natural transformation feature of this organism for the identification of essential genes. In addition, we describe strategies for conditional expression systems that would facilitate further analysis of this class of genes. Finally, we outline a method based on the approach used in H. influenzae for identifying essential genes that can be applied to other bacteria that are not naturally transformable.
Collapse
Affiliation(s)
- Sandy M S Wong
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
30
|
The hermes transposon of Musca domestica is an efficient tool for the mutagenesis of Schizosaccharomyces pombe. Genetics 2007; 177:2519-23. [PMID: 17947404 DOI: 10.1534/genetics.107.081075] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, no transposon-based method for the mutagenesis of Schizosaccharomyces pombe exists. We have developed such a system based on the introduction of the hermes transposon from the housefly into S. pombe. This system efficiently disrupts open reading frames and allows the insertion sites to be readily identified.
Collapse
|
31
|
Dmytruk KV, Sibirny AA. Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407080017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Liu Y, Gregersen BA, Lopez X, York DM. Density functional study of the in-line mechanism of methanolysis of cyclic phosphate and thiophosphate esters in solution: insight into thio effects in RNA transesterification. J Phys Chem B 2007; 109:19987-20003. [PMID: 16853584 DOI: 10.1021/jp053146z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional calculations of thio effects on the in-line mechanism of methanolysis of ethylene phosphate (a reverse reaction model for RNA phosphate transesterification) are presented. A total of 12 reaction mechanisms are examined using the B3LYP functional with large basis sets, and the effects of solvation were treated using the PCM, CPCM, and SM5 solvation models. Single thio substitutions at all of the distinct phosphoryl oxygen positions (2', 3', 5', pro-R) and a double thio substitution at the nonbridging (pro-R/pro-S) positions were considered. Profiles for each reaction were calculated in the dianionic and monoanionic/monoprotic states, corresponding to reaction models under alkaline and nonalkaline conditions, respectively. These models provide insight into the mechanisms of RNA transesterification thio effects and serve as a set of high-level quantum data that can be used in the design of new semiempirical quantum models for hybrid quantum mechanical/molecular mechanical simulations and linear-scaling electronic structure calculations.
Collapse
Affiliation(s)
- Yun Liu
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| | | | | | | |
Collapse
|
33
|
Sponer JE, Spacková N, Kulhanek P, Leszczynski J, Sponer J. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family. J Phys Chem A 2007; 109:2292-301. [PMID: 16838999 DOI: 10.1021/jp050132k] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Large RNA molecules exhibit an astonishing variability of base-pairing patterns, while many of the RNA base-pairing families have no counterparts in DNA. The cis Watson-Crick/sugar edge (cis WC/SE) RNA base pairing is investigated by ab initio quantum chemical calculations. A detailed structural and energetic characterization of all 13 crystallographically detected members of this family is provided by means of B3LYP/6-31G and RIMP2/aug-cc-pVDZ calculations. Further, a prediction is made for the remaining 3 cis WC/SE base pairs which are yet to be seen in the experiments. The interaction energy calculations point at the key role of the 2'-OH group in stabilizing the sugar-base contact and predict all 16 cis WC/SE base-pairing patterns to be nearly isoenergetic. The perfect correlation of the main geometrical parameters in the gas-phase optimized and X-ray structures shows that the principle of isosteric substitutions in RNA is rooted from the intrinsic structural similarity of the isolated base pairs. The present quantum chemical calculations for the first time analyze base pairs involving the ribose 2'-OH group and unambiguously correlate the structural information known from experiments with the energetics of interactions. The calculations further show that the relative importance and absolute value of the dispersion energy in the cis WC/SE base pairs are enhanced compared to the standard base pairs. This may by an important factor contributing to the strength of such interactions when RNA folds in its polar environment. The calculations further demonstrate that the Cornell et al. force field commonly used in molecular modeling and simulations provides satisfactory performance for this type of RNA interactions.
Collapse
Affiliation(s)
- Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The hammerhead ribozyme is one of the best studied ribozymes, but it still presents challenges for our understanding of RNA catalysis. It catalyzes a transesterification reaction that converts a 5',3' diester to a 2',3' cyclic phosphate diester via an S(N)2 mechanism. Thus, the overall reaction corresponds to that catalyzed by bovine pancreatic ribonuclease. However, an essential distinguishing aspect is that metal ions are not involved in RNase catalysis but appear to be important in ribozymes. Although various techniques have been used to assign specific functions to metals in the hammerhead ribozyme, their number and roles in catalysis is not clear. Two recent theoretical studies on RNA catalysis examined the reaction mechanism of a single-metal-ion model. A two-metal-ion model, which is supported by experiment and based on ab initio and density functional theory calculations, is described here. The proposed mechanism of the reaction has four chemical steps with three intermediates and four transition states along the reaction pathway. Reaction profiles are calculated in the gas phase and in solution. The early steps of the reaction are found to be fast (with low activation barriers), and the last step, corresponding to the departure of the leaving group, is rate limiting. This two-metal-ion model differs from the models proposed previously in that the two metal ions function not only as Lewis acids but also as general acids/bases. Comparison with experiment shows good agreement with thermodynamic and kinetic data. A detailed analysis based on natural bond orbitals (NBOs) and natural energy decomposition (NEDA) provides insights into the role of metal ions and other factors important for catalysis.
Collapse
Affiliation(s)
- Fabrice Leclerc
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, Université Henri Poincaré, Faculté des Sciences, 54506 Vandoeuvre-lès-Nancy, France.
| | | |
Collapse
|
35
|
Sponer JE, Leszczynski J, Sychrovský V, Sponer J. Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations. J Phys Chem B 2007; 109:18680-9. [PMID: 16853403 DOI: 10.1021/jp053379q] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cis and trans sugar edge/sugar edge (SE/SE) binding patterns are essential building units of RNAs. For example, SE/SE interactions form the A-minor motifs, the most important tertiary interaction type in functional RNAs. This study provides an in-depth structure and stability analysis for these two base pair families. Gas-phase-optimized geometries are reported for 12 cis and 7 trans SE/SE base pairs and contrasted to their X-ray counterparts. Interaction energies are computed at the RIMP2 level of theory using the density-functional-theory-optimized geometries. There is a good overall agreement between the optimized and X-ray geometries of the cis SE/SE base pairs. In contrast, only three of the seven trans SE/SE binding patterns could be optimized without a significant distortion of the X-ray geometry. Note, however, that many SE/SE base pairs participate in broader networks of interactions; thus it is not surprising to see some of them to deviate from the X-ray geometry in a complete isolation. Computed interaction energies reveal that all 12 known cis SE/SE binding patterns are very stable. Among the trans SE/SE binding patterns, only the rG/rG, rG/rC, and rA/rG base pairs are sufficiently stable in the crystal geometry. Prediction has been made for some structures not yet detected by crystallography, namely, cis rC/rC, rG/rC, rG/rU, and rU/rU and trans rG/rA base pairs. Interestingly, the new cis SE/SE binding patterns are not necessarily isosteric with the remaining 12 members of this family. The trans rG/rA base pair represents a viable option for base pairing in RNA to be identified by future X-ray studies. In a complete lack of structural information, prediction of other unknown members of the trans SE/SE family was not attempted. Analysis of the interaction energies shows a very large electron correlation component of the interaction energy, pointing at the elevated role of dispersion energy as compared to other types of base pairs. This likely is profitable for stabilization of SE/SE binding patterns in polar environments and could be one of the reasons why the A-minor motif is the leading type of tertiary interactions in RNAs.
Collapse
Affiliation(s)
- Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | |
Collapse
|
36
|
Sponer JE, Spackova N, Leszczynski J, Sponer J. Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs. J Phys Chem B 2007; 109:11399-410. [PMID: 16852393 DOI: 10.1021/jp051126r] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the presence of the 2'-OH hydroxyl group of ribose, RNA molecules utilize an astonishing variability of base pairing patterns to build up their structures and perform the biological functions. Many of the key RNA base pairing families have no counterparts in DNA. In this study, the trans Watson-Crick/sugar edge (trans WC/SE) RNA base pair family has been characterized using quantum chemical and molecular mechanics calculations. Gas-phase optimized geometries from density functional theory (DFT) calculations and RIMP2 interaction energies are reported for the 10 crystallographically identified trans WC/SE base pairing patterns. Further, stable structures are predicted for all of the remaining six possible members of this family not seen in RNAs so far. Among these novel six base pairs, the computations substantially refine two structures suggested earlier based on simple isosteric considerations. For two additional trans WC/SE base pairs predicted in this study, no arrangement was suggested before. Thus, our study brings a complete set of trans WC/SE base pairing patterns. The present results are also contrasted with calculations reported recently for the cis WC/SE base pair family. The computed base pair sizes are in sound correlation with the X-ray data for all WC/SE pairing patterns including both their cis and trans isomers. This confirms that the isostericity of RNA base pairs, which is one of the key factors determining the RNA sequence conservation patterns, originates in the properties of the isolated base pairs. In contrast to the cis structures, however, the isosteric subgroups of the trans WC/SE family differ not only in their H-bonding patterns and steric dimensions but also in the intrinsic strength of the intermolecular interactions. The distribution of the total interaction energy over the sugar-base and base-base contributions is controlled by the cis-trans isomerism.
Collapse
Affiliation(s)
- Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | |
Collapse
|
37
|
Vogt M, Lahiri S, Hoogstraten CG, Britt RD, DeRose VJ. Coordination environment of a site-bound metal ion in the hammerhead ribozyme determined by 15N and 2H ESEEM spectroscopy. J Am Chem Soc 2007; 128:16764-70. [PMID: 17177426 PMCID: PMC3217337 DOI: 10.1021/ja057035p] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although site-bound Mg2+ ions have been proposed to influence RNA structure and function, establishing the molecular properties of such sites has been challenging due largely to the unique electrostatic properties of the RNA biopolymer. We have previously determined that, in solution, the hammerhead ribozyme (a self-cleaving RNA) has a high-affinity metal ion binding site characterized by a K(d,app) < 10 microM for Mn2+ in 1 M NaCl and speculated that this site has functional importance in the ribozyme cleavage reaction. Here we determine both the precise location and the hydration level of Mn2+ in this site using ESEEM (electron spin-echo envelope modulation) spectroscopy. Definitive assignment of the high-affinity site to the activity-sensitive A9/G10.1 region is achieved by site-specific labeling of G10.1 with 15N guanine. The coordinated metal ion retains four water ligands as measured by 2H ESEEM spectroscopy. The results presented here show that a functionally important, specific metal binding site is uniquely populated in the hammerhead ribozyme even in a background of high ionic strength. Although it has a relatively high thermodynamic affinity, this ion remains partially hydrated and is chelated to the RNA by just two ligands.
Collapse
Affiliation(s)
- Matthew Vogt
- Contribution from the Department of Chemistry, Texas A&M University, College Station, Texas 77842
| | - Simanti Lahiri
- Department of Chemistry, University of California, Davis, California 95616
| | | | - R. David Britt
- Department of Chemistry, University of California, Davis, California 95616
- ;
| | - Victoria J. DeRose
- Contribution from the Department of Chemistry, Texas A&M University, College Station, Texas 77842
- ;
| |
Collapse
|
38
|
Lee TS, López CS, Martick M, Scott WG, York DM. Insight into the role of Mg in hammerhead ribozyme catalysis from X-ray crystallography and molecular dynamics simulation. J Chem Theory Comput 2007; 3:325-327. [PMID: 19079784 DOI: 10.1021/ct6003142] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Results of a series of 12 ns molecular dynamics (MD) simulations of the reactant state (with and without a Mg(2+) ion), early and late transition state mimics are presented based on a recently reported crystal structure of a full-length hammerhead RNA. The simulation results support a catalytically active conformation with a Mg(2+) ion bridging the A9 and scissile phosphates. In the reactant state, the Mg(2+) spends significant time closely associated with the 2'OH of G8, but remains fairly distant from the leaving group O(5') position. In the early TS mimic simulation, where the nucleophilic O(2') and leaving group O(5') are equidistant from the phosphorus, the Mg(2+) ion remains tightly coordinated to the 2'OH of G8, but is positioned closer to the O(5') leaving group, stabilizing the accumulating charge. In the late TS mimic simulation, the coordination around the bridging Mg(2+) ion undergoes a transition whereby the coordination with the 2'OH of G8 is replace by the leaving group O(5') that has developed significant charge. At the same time, the 2'OH of G8 forms a hydrogen bond with the leaving group O(5') and is positioned to act as a general acid catalyst. This work represents the first reported simulations of the full-length hammerhead structure and TS mimics, and provides direct evidence for the possible role of a bridging Mg(2+) ion in catalysis that is consistent with both crystallographic and biochemical data.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Consortium for Bioinformatics and Computational Biology, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
39
|
Oliver SG. 1 Introduction to Functional Analysis in Yeast. J Microbiol Methods 2007. [DOI: 10.1016/s0580-9517(06)36001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Hillyard DR, Redd MJ. Identification of Essential Genes in Bacteria. Methods Enzymol 2007; 421:21-34. [PMID: 17352912 DOI: 10.1016/s0076-6879(06)21004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Essential genes are identified in duplicated regions of the bacterial chromosome. Transposition of a vector that forms operon fusions into a strain carrying a chromosomal duplication allows insertion of the transposon into essential genes because a second copy of the essential gene is present. When the duplication is allowed to segregate, only the segregant that carries the copy of the intact essential gene survives. The transposon insertion in the essential gene is maintained only in the duplication derivatives. A technique is described that uses a Tn10 derivative, Tn10dTc-araC(+), which contains a cloned copy of the Escherichia coli araC(+) gene, as a portable region of homology to generate large duplications of the Salmonella chromosome. The duplication is maintained in the population by growth in the presence of tetracycline. When the lac operon fusion vector, MudJ, is transposed into the duplicated region, removal of tetracycline from the growth media allows segregation of the duplication yielding (Ara(-)) haploid segregants which appear as red colonies or as red/white (Ara(-/+)) sectoring colonies on TTC arabinose indicator plates. However, if the insertion is in an essential gene, only segregants that lose the MudJ insertion in the essential gene survive. In this case, selection for the insertion in the essential gene yields solid white (Ara(+)) colonies in the absence of tetracycline. While the specific design presented uses Mud transposon insertions to generate lac operon (transcriptional) and lacZ gene (translational) fusions to essential genes, this technique can be used to generate transposon insertions of any kind into essential genes.
Collapse
Affiliation(s)
- David R Hillyard
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
41
|
|
42
|
Gerdes S, Edwards R, Kubal M, Fonstein M, Stevens R, Osterman A. Essential genes on metabolic maps. Curr Opin Biotechnol 2006; 17:448-56. [PMID: 16978855 DOI: 10.1016/j.copbio.2006.08.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/10/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Within the past five years genome-scale gene essentiality data sets have been published for ten diverse bacterial species. These data are a rich source of information about cellular networks that we are only beginning to explore. The analysis of these data, very heterogeneous in nature, is a challenging task. Even the definition of 'essential genes' in various genome-scale studies varies from genes 'absolutely required for survival' to those 'strongly contributing to fitness' and robust competitive growth. A comparative analysis of gene essentiality across multiple organisms based on projection of experimentally observed essential genes to functional roles in a collection of metabolic pathways and subsystems is emerging as a powerful tool of systems biology.
Collapse
Affiliation(s)
- Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Neyfakh AA, Baranova NN, Mizrokhi LJ. A system for studying evolution of life-like virtual organisms. Biol Direct 2006; 1:23. [PMID: 16916465 PMCID: PMC1569368 DOI: 10.1186/1745-6150-1-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/17/2006] [Indexed: 11/25/2022] Open
Abstract
Background Fitness landscapes, the dependences of fitness on the genotype, are of critical importance for the evolution of living beings. Unfortunately, fitness landscapes that are relevant to the evolution of complex biological functions are very poorly known. As a result, the existing theory of evolution is mostly based on postulated fitness landscapes, which diminishes its usefulness. Attempts to deduce fitness landscapes from models of actual biological processes led, so far, to only limited success. Results We present a model system for studying the evolution of biological function, which makes it possible to attribute fitness to genotypes in a natural way. The system mimics a very simple cell and takes into account the basic properties of gene regulation and enzyme kinetics. A virtual cell contains only two small molecules, an organic nutrient A and an energy carrier X, and proteins of five types – two transcription factors, two enzymes, and a membrane transporter. The metabolism of the cell consists of importing A from the environment and utilizing it in order to produce X and an unspecified end product. The genome may carry an arbitrary number of genes, each one encoding a protein of one of the five types. Both major mutations that affect whole genes and minor mutations that affect individual characteristics of genes are possible. Fitness is determined by the ability of the cell to maintain homeostasis when its environment changes. The system has been implemented as a computer program, and several numerical experiments have been performed on it. Evolution of the virtual cells usually involves a rapid initial increase of fitness, which eventually slows down, until a fitness plateau is reached. The origin of a wide variety of genetic networks is routinely observed in independent experiments performed under the same conditions. These networks can have different, including very high, levels of complexity and often include large numbers of non-essential genes. Conclusion The described system displays a rich repertoire of biologically sensible behaviors and, thus, can be useful for investigating a number of unresolved issues in evolutionary biology, including evolution of complexity, modularity and redundancy, as well as for studying the general properties of genotype-to-fitness maps. Reviewers This article was reviewed by Drs. Eugene Koonin, Shamil Sunyaev and Arcady Mushegian.
Collapse
Affiliation(s)
- Alex A Neyfakh
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Natalya N Baranova
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
44
|
Jennings TL, Schlatterer JC, Singh MP, Greenbaum NL, Strouse GF. NSET molecular beacon analysis of hammerhead RNA substrate binding and catalysis. NANO LETTERS 2006; 6:1318-24. [PMID: 16834403 DOI: 10.1021/nl052458a] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanometal surface energy transfer (NSET), which describes an energy transfer event from optically excited organic fluorophores to small metal nanoparticles, may be used as a molecular beacon/ruler similar to FRET, but with advantages over this classical technique. Here we use NSET to measure Mg(2+)-induced conformational changes for a hammerhead ribozyme and confirm these measurements using FRET. These optical experiments enhance our understanding of the different kinetic pathways for this ribozyme.
Collapse
Affiliation(s)
- T L Jennings
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, 32306-4390, USA
| | | | | | | | | |
Collapse
|
45
|
Yesilkaya H, Dale JW, Strachan NJC, Forbes KJ. Natural transposon mutagenesis of clinical isolates of Mycobacterium tuberculosis: how many genes does a pathogen need? J Bacteriol 2005; 187:6726-32. [PMID: 16166535 PMCID: PMC1251597 DOI: 10.1128/jb.187.19.6726-6732.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposable elements can affect an organism's fitness through the insertional inactivation of genes and can therefore be used to identify genes that are nonessential for growth in vitro or in animal models. However, these models may not adequately represent the genetic requirements during chains of human infection. We have therefore conducted a genome-wide survey of transposon mutations in Mycobacterium tuberculosis isolates from cases of human infection, identifying the precise, base-specific insertion sites of the naturally occurring transposable element IS6110. Of 294 distinct insertions mapped to the strain H37Rv genome, 180 were intragenic, affecting 100 open reading frames. The number of genes carrying IS6110 in clinical isolates, and hence apparently not essential for infection and transmission, is very much lower than the estimates of nonessential genes derived from in vitro studies. This suggests that most genes in M. tuberculosis play a significant role in human infection chains. IS6110 insertions were underrepresented in genes associated with virulence, information pathways, lipid metabolism, and membrane proteins but overrepresented in multicopy genes of the PPE family, genes of unknown function, and intergenic sequences. Population genomic analysis of isolates recovered from an organism's natural habitat is an important tool for determining the significance of genes or classes of genes in the natural biology of an organism.
Collapse
Affiliation(s)
- Hasan Yesilkaya
- Department of Medical Microbiology, University of Aberdeen, Medical School Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | |
Collapse
|
46
|
Garfinkel DJ. Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet Genome Res 2005; 110:63-9. [PMID: 16093659 DOI: 10.1159/000084939] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 12/03/2003] [Indexed: 11/19/2022] Open
Abstract
How mobile genetic elements molded eukaryotic genomes is a key evolutionary question that gained wider popularity when mobile DNA sequences were shown to comprise about half of the human genome. Although Saccharomyces cerevisiae does not suffer such "genome obesity", five families of LTR-retrotransposons, Ty1, Ty2, Ty3, Ty4, and Ty5 elements, comprise about 3% of its genome. The availability of complete genome sequences from several Saccharomyces species, including members of the closely related sensu stricto group, present new opportunities for analyzing molecular mechanisms for chromosome evolution, speciation, and reproductive isolation. In this review I present key experiments from both the pre- and current genomic sequencing eras suggesting how Ty elements mediate genome evolution.
Collapse
Affiliation(s)
- D J Garfinkel
- National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
47
|
Boero M, Tateno M, Terakura K, Oshiyama A. Double-Metal-Ion/Single-Metal-Ion Mechanisms of the Cleavage Reaction of Ribozymes: First-Principles Molecular Dynamics Simulations of a Fully Hydrated Model System. J Chem Theory Comput 2005; 1:925-34. [DOI: 10.1021/ct050066q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mauro Boero
- Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan, Division of Frontier Research, Creative Research Initiative “Sousei”, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan, and Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono,
| | - Masaru Tateno
- Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan, Division of Frontier Research, Creative Research Initiative “Sousei”, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan, and Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono,
| | - Kiyoyuki Terakura
- Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan, Division of Frontier Research, Creative Research Initiative “Sousei”, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan, and Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono,
| | - Atsushi Oshiyama
- Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan, Division of Frontier Research, Creative Research Initiative “Sousei”, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan, and Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono,
| |
Collapse
|
48
|
Abstract
A biological system is robust to mutations if it continues to function after genetic changes in its parts. Such robustness is pervasive on different levels of biological organization, from macromolecules to genetic networks and whole organisms. I here ask which of two possible causes of such robustness are more important on a genome-wide scale, for systems whose parts are genes, such as metabolic and genetic networks. The first of the two causes is redundancy of a system's parts: A gene may be dispensable if the genome contains redundant, back-up copies of the gene. The second cause, distributed robustness, is more poorly understood. It emerges from the distributed nature of many biological systems, where many (and different) parts contribute to system functions. I will here discuss evidence suggesting that distributed robustness is equally or more important for mutational robustness than gene redundancy. This evidence comes from the functional divergence of redundant genes, as well as from large-scale gene deletion studies. I also ask whether one can quantify the extent to which redundancy or distributed robustness contribute to mutational robustness.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Biology, University of New Mexico, 167A Castetter Hall, Albuquerque, NM 87131-1091, USA.
| |
Collapse
|
49
|
Ho HL, Shiau YS, Chen MY. Saccharomyces cerevisiaeTSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex. Curr Genet 2005; 47:273-88. [PMID: 15809876 DOI: 10.1007/s00294-005-0570-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 02/10/2005] [Accepted: 02/20/2005] [Indexed: 12/22/2022]
Abstract
Saccharomyces cerevisiae TSC11/AVO3 is an essential gene encoding one component of TORC2, a multi-protein complex of yeast Tor2p that also contains Lst8p, Avo1p, and Avo2p. Despite the proven physical association among TORC2 components, little is known about the functional linkage or cellular pathways these proteins act in. Here, we present genetic data linking the function of TSC11 to the regulation of cell integrity. Mutants carrying temperature-sensitive (ts) alleles in different regions of TSC11 displayed cell wall defects, evidenced by characteristic osmotic stabilizer-remediable cell lysis, susceptibility to trypan blue staining, and sensitivity to cell wall-digesting enzymes. Dosage suppression analysis identified different groups of genes in rescuing phenotypes of different tsc11(ts) mutants. AVO1 suppressed one class of mutants, whereas active PKC1, AVO2, and SLM1 partially rescued another. Our findings demonstrate functional connections among TORC2 components and we speculate that Tsc11p exerts its function via a Pkc1p-independent mechanism mediated through Avo1p, and a Pkc1p-dependent mechanism mediated through Avo2p and Slm1p.
Collapse
Affiliation(s)
- Hsiang-Ling Ho
- Institute of Biochemistry, School of Life Sciences and Department of Biochemistry, School of Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Shih-Pai, Taipei, 112, Taiwan
| | | | | |
Collapse
|
50
|
Brown ED, Wright GD. New Targets and Screening Approaches in Antimicrobial Drug Discovery. Chem Rev 2005; 105:759-74. [PMID: 15700964 DOI: 10.1021/cr030116o] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric D Brown
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|