1
|
Gross CA. Peering into the Bacterial Cell: From Transcription to Functional Genomics. J Mol Biol 2025; 437:169087. [PMID: 40081792 DOI: 10.1016/j.jmb.2025.169087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
I started my faculty career in 1981 at the UW-Madison in the Department of Bacteriology and moved to the University of California, San Francisco in 1993, where I am a Professor in the Departments of Microbiology and Immunology and Cell and Tissue Biology. In this article, I first review my contributions to understanding the molecular biology of the bacterial transcriptional apparatus and the global role of alternative sigmas (σs), a major pillar of bacterial transcriptional control. I then discuss my role in spearheading the development of bacterial systems biology, specifically to the genome-wide phenotyping approaches necessary for rapid understanding of gene function and the molecular basis of pathway connections across the bacterial universe.
Collapse
Affiliation(s)
- Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Godoy P, Hao N. Design principles of gene circuits for longevity. Trends Cell Biol 2025:S0962-8924(25)00040-6. [PMID: 40082090 DOI: 10.1016/j.tcb.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Aging is a dynamic process that is driven by cellular damage and disruption of homeostatic gene regulatory networks (GRNs). Traditional studies often focus on individual genes, but understanding their interplay is key to unraveling the mechanisms of aging. This review explores the gene circuits that influence longevity and highlights the role of feedback loops in maintaining cellular balance. The SIR2-HAP circuit in yeast serves as a model to explore how mutual inhibition between pathways influences aging trajectories and how engineering stable fixed points or oscillations within these circuits can extend lifespan. Feedback loops crucial for maintaining homeostasis are also reviewed, and we highlight how their destabilization accelerates aging. By leveraging systems and synthetic biology, strategies are proposed that may stabilize these loops within single cells, thereby enhancing their resilience to aging-related damage.
Collapse
Affiliation(s)
- Paula Godoy
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Kim YK, Ramalho-Santos M. 20 years of stemness: From stem cells to hypertranscription and back. Stem Cell Reports 2025; 20:102406. [PMID: 39919752 PMCID: PMC11960510 DOI: 10.1016/j.stemcr.2025.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Transcriptional profiling of stem cells came of age at the beginning of the century with the use of microarrays to analyze cell populations in bulk. Since then, stem cell transcriptomics has become increasingly sophisticated, notably with the recent widespread use of single-cell RNA sequencing. Here, we provide a perspective on how an early signature of genes upregulated in embryonic and adult stem cells, identified using microarrays over 20 years ago, serendipitously led to the recent discovery that stem/progenitor cells across organs are in a state of hypertranscription, a global elevation of the transcriptome. Looking back, we find that the 2002 stemness signature is a robust marker of stem cell hypertranscription, even though it was developed well before it was known what hypertranscription meant or how to detect it. We anticipate that studies of stem cell hypertranscription will be rich in novel insights in physiological and disease contexts for years to come.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| |
Collapse
|
4
|
Wang L, Li X, Shi J, Li LM. A four eigen-phase model of multi-omics unveils new insights into yeast metabolic cycle. NAR Genom Bioinform 2025; 7:lqaf022. [PMID: 40109351 PMCID: PMC11920873 DOI: 10.1093/nargab/lqaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The yeast metabolic cycle (YMC), characterized by cyclic oscillations in transcripts and metabolites, is an ideal model for studying biological rhythms. Although multiple omics datasets on the YMC are available, a unified landscape for this process is missing. To address this gap, we integrated multi-omics datasets by singular value decompositions (SVDs), which stratify each dataset into two levels and define four eigen-phases: primary 1A/1B and secondary 2A/2B. The eigen-phases occur cyclically in the order 1B, 2A, 1A, and 2B, demonstrating an interplay of induction and repression: one eigen-phase induces the next one at a different level, while represses the other one at the same level. Distinct molecular characteristics were identified for each eigen-phase. Novel ones include the production and consumption of glycerol in eigen-phases 2A/2B, and the opposite regulation of ribosome biogenesis and aerobic respiration between 2A/2B. Moreover, we estimated the timing of multi-omics: histone modifications H3K9ac/H3K18ac precede mRNA transcription in ∼3 min, followed by metabolomic changes in ∼13 min. The transition to the next eigen-phase occurs roughly 38 min later. From epigenome H3K9ac/H3K18ac to metabolome, the eigen-entropy increases. This work provides a computational framework applicable to multi-omics data integration.
Collapse
Affiliation(s)
- Linting Wang
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaojie Li
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhui Shi
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Lei M Li
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
5
|
Liu Y, Rao S, Hoskins I, Geng M, Zhao Q, Chacko J, Ghatpande V, Qi K, Persyn L, Wang J, Zheng D, Zhong Y, Park D, Cenik ES, Agarwal V, Ozadam H, Cenik C. Translation efficiency covariation across cell types is a conserved organizing principle of mammalian transcriptomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.11.607360. [PMID: 39149359 PMCID: PMC11326257 DOI: 10.1101/2024.08.11.607360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Characterization of shared patterns of RNA expression between genes across conditions has led to the discovery of regulatory networks and novel biological functions. However, it is unclear if such coordination extends to translation, a critical step in gene expression. Here, we uniformly analyzed 3,819 ribosome profiling datasets from 117 human and 94 mouse tissues and cell lines. We introduce the concept of Translation Efficiency Covariation (TEC), identifying coordinated translation patterns across cell types. We nominate potential mechanisms driving shared patterns of translation regulation. TEC is conserved across human and mouse cells and helps uncover gene functions. Moreover, our observations indicate that proteins that physically interact are highly enriched for positive covariation at both translational and transcriptional levels. Our findings establish translational covariation as a conserved organizing principle of mammalian transcriptomes.
Collapse
Affiliation(s)
- Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Shilpa Rao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael Geng
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan Chacko
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Vighnesh Ghatpande
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Kangsheng Qi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Logan Persyn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Wang
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| | - Dinghai Zheng
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| | - Yochen Zhong
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Dayea Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Present address: Sail Biomedicines, Cambridge, MA, 02141, USA
| | | |
Collapse
|
6
|
Kinsler G, Li Y, Sherlock G, Petrov DA. A high-resolution two-step evolution experiment in yeast reveals a shift from pleiotropic to modular adaptation. PLoS Biol 2024; 22:e3002848. [PMID: 39636818 PMCID: PMC11620474 DOI: 10.1371/journal.pbio.3002848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/17/2024] [Indexed: 12/07/2024] Open
Abstract
Evolution by natural selection is expected to be a slow and gradual process. In particular, the mutations that drive evolution are predicted to be small and modular, incrementally improving a small number of traits. However, adaptive mutations identified early in microbial evolution experiments, cancer, and other systems often provide substantial fitness gains and pleiotropically improve multiple traits at once. We asked whether such pleiotropically adaptive mutations are common throughout adaptation or are instead a rare feature of early steps in evolution that tend to target key signaling pathways. To do so, we conducted barcoded second-step evolution experiments initiated from 5 first-step mutations identified from a prior yeast evolution experiment. We then isolated hundreds of second-step mutations from these evolution experiments, measured their fitness and performance in several growth phases, and conducted whole genome sequencing of the second-step clones. Here, we found that while the vast majority of mutants isolated from the first-step of evolution in this condition show patterns of pleiotropic adaptation-improving both performance in fermentation and respiration growth phases-second-step mutations show a shift towards modular adaptation, mostly improving respiration performance and only rarely improving fermentation performance. We also identified a shift in the molecular basis of adaptation from genes in cellular signaling pathways towards genes involved in respiration and mitochondrial function. Our results suggest that the genes in cellular signaling pathways may be more likely to provide large, adaptively pleiotropic benefits to the organism due to their ability to coherently affect many phenotypes at once. As such, these genes may serve as the source of pleiotropic adaptation in the early stages of evolution, and once these become exhausted, organisms then adapt more gradually, acquiring smaller, more modular mutations.
Collapse
Affiliation(s)
- Grant Kinsler
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuping Li
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
7
|
Price E, Feyertag F, Evans T, Miskin J, Mitrophanous K, Dikicioglu D. What is the real value of omics data? Enhancing research outcomes and securing long-term data excellence. Nucleic Acids Res 2024; 52:12130-12140. [PMID: 39417504 PMCID: PMC11551742 DOI: 10.1093/nar/gkae901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
A wealth of high-throughput biological data, of which omics constitute a significant fraction, has been made publicly available in repositories over the past decades. These data come in various formats and cover a range of species and research areas providing insights into the complexities of biological systems; the public repositories hosting these data serve as multifaceted resources. The potentially greater value of these data lies in their secondary utilization as the deployment of data science and artificial intelligence in biology advances. Here, we critically evaluate challenges in secondary data use, focusing on omics data of human embryonic kidney cell lines available in public repositories. The emerging issues are obstacles faced by secondary data users across diverse domains as they concern platforms and repositories, which accept deposition of data irrespective of their species type. The evolving landscape of data-driven research in biology prompts re-evaluation of open access data curation and submission procedures to ensure that these challenges do not impede novel research opportunities through data exploitation. This paper aims to draw attention to widespread issues with data reporting and encourages data owners to meticulously curate submissions to maximize not only their immediate research impact but also the long-term legacy of datasets.
Collapse
Affiliation(s)
- Eva Price
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Felix Feyertag
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Thomas Evans
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - James Miskin
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | | | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
8
|
Mendes Felgueira CA, Schneider DA. Growth-phase-dependent control of rRNA synthesis in Saccharomyces cerevisiae. mSphere 2024; 9:e0049324. [PMID: 39360849 PMCID: PMC11520348 DOI: 10.1128/msphere.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/07/2024] [Indexed: 10/30/2024] Open
Abstract
Saccharomyces cerevisiae is one of the most well-studied model organisms used in the scientific community. Its ease of manipulation, accessible growth conditions, short life cycle, and conserved eukaryotic metabolic pathways make it a useful model organism. Consequently, yeast has been used to investigate a myriad of phenomena, from microbial to human studies. Most of the research performed using this model organism utilizes yeast cell populations when they are growing exponentially, a growth phase aptly termed exponential or log phase. However, log phase encompasses several yeast generations and ranges several hours of yeast growth, meaning that there is a potential for variability during this "homogenous" growth phase. Cells in log phase require robust ribosome biogenesis to support their rapid growth and cell division. Interestingly, during log phase, ribosomal RNA (rRNA) synthesis (which is the first and rate limiting step in ribosome biosynthesis) has been shown to decrease prior to growth rate decline in stationary phase. In this study, we utilized several genomic and biochemical methods to elucidate the relationship between subphases of log phase and rRNA synthesis. Our results indicate that as yeast cells progress through subphases of log growth, both polymerase I transcription and rRNA processing are repressed. Overall, this study establishes a growth-phase-dependent control of rRNA synthesis that unexpectedly begins prior to the switch to stationary phase (i.e., pre-diauxic shift) as a putative mechanism of anticipating nutrient starvation.IMPORTANCESaccharomyces cerevisiae is a ubiquitously used model organism in a wide range of scientific research fields. The conventional practice when performing yeast studies is to investigate its properties during logarithmic growth phase. This growth phase is defined as the period during which the cell population doubles at regular intervals, and nutrients are not limiting. However, this growth phase lasts hours and encompasses several yeast cell generations which consequently introduce heterogeneity to log growth phase depending on their time of harvest. This study reveals significant changes in the transcriptomic landscape even in early stages of exponential growth. The overall significance of this work is the revelation that even the seemingly homogenous log growth phase is far more diverse than was previously believed.
Collapse
Affiliation(s)
- Catarina A. Mendes Felgueira
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Liu Y, Zhou Z, Su H, Wu S, Ni G, Zhang A, Tsimring LS, Hasty J, Hao N. Enhanced cellular longevity arising from environmental fluctuations. Cell Syst 2024; 15:738-752.e5. [PMID: 39173586 PMCID: PMC11380573 DOI: 10.1016/j.cels.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity-the creation of a stable fixed point in the "healthy" state of the cell and the "dynamic stabilization" of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Hetian Su
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Songlin Wu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gavin Ni
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alex Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Kumawat R, Tomar RS. Dissecting the role of mitogen-activated protein kinase Hog1 in yeast flocculation. FEBS J 2024; 291:3080-3103. [PMID: 38648231 DOI: 10.1111/febs.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Living organisms are frequently exposed to multiple biotic and abiotic stress forms during their lifetime. Organisms cope with stress conditions by regulating their gene expression programs. In response to different environmental stress conditions, yeast cells activate different tolerance mechanisms, many of which share common signaling pathways. Flocculation is one of the key mechanisms underlying yeast survival under unfavorable environmental conditions, and the Tup1-Cyc8 corepressor complex is a major regulator of this process. Additionally, yeast cells can utilize different mitogen-activated protein kinase (MAPK) pathways to modulate gene expression during stress conditions. Here, we show that the high osmolarity glycerol (HOG) MAPK pathway is involved in the regulation of yeast flocculation. We observed that the HOG MAPK pathway was constitutively activated in flocculating cells, and found that the interaction between phosphorylated Hog1 and the FLO genes promoter region increased significantly upon sodium chloride exposure. We found that treatment of cells with cantharidin decreased Hog1 phosphorylation, causing a sharp reduction in the expression of FLO genes and the flocculation phenotype. Similarly, deletion of HOG1 in yeast cells reduced flocculation. Altogether, our results suggest a role for HOG MAPK signaling in the regulation of FLO genes and yeast flocculation.
Collapse
Affiliation(s)
- Ramesh Kumawat
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
11
|
Kremer LS, Rehling P. Coordinating mitochondrial translation with assembly of the OXPHOS complexes. Hum Mol Genet 2024; 33:R47-R52. [PMID: 38779773 PMCID: PMC11112383 DOI: 10.1093/hmg/ddae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
The mitochondrial oxidative phosphorylation (OXPHOS) system produces the majority of energy required by cells. Given the mitochondrion's endosymbiotic origin, the OXPHOS machinery is still under dual genetic control where most OXPHOS subunits are encoded by the nuclear DNA and imported into mitochondria, while a small subset is encoded on the mitochondrion's own genome, the mitochondrial DNA (mtDNA). The nuclear and mtDNA encoded subunits must be expressed and assembled in a highly orchestrated fashion to form a functional OXPHOS system and meanwhile prevent the generation of any harmful assembly intermediates. While several mechanisms have evolved in eukaryotes to achieve such a coordinated expression, this review will focus on how the translation of mtDNA encoded OXPHOS subunits is tailored to OXPHOS assembly.
Collapse
Affiliation(s)
- Laura S Kremer
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, Göttingen 37073, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Robert-Koch-Str. 40, Göttingen 37075, Germany
- Max Planck Institute for Multidisciplinary Science, Am Faßberg 11, Göttingen 37077, Germany
| |
Collapse
|
12
|
Nguyen V, Li Y, Lu T. Emergence of Orchestrated and Dynamic Metabolism of Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1442-1453. [PMID: 38657170 PMCID: PMC11103795 DOI: 10.1021/acssynbio.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Microbial metabolism is a fundamental cellular process that involves many biochemical events and is distinguished by its emergent properties. While the molecular details of individual reactions have been increasingly elucidated, it is not well understood how these reactions are quantitatively orchestrated to produce collective cellular behaviors. Here we developed a coarse-grained, systems, and dynamic mathematical framework, which integrates metabolic reactions with signal transduction and gene regulation to dissect the emergent metabolic traits of Saccharomyces cerevisiae. Our framework mechanistically captures a set of characteristic cellular behaviors, including the Crabtree effect, diauxic shift, diauxic lag time, and differential growth under nutrient-altered environments. It also allows modular expansion for zooming in on specific pathways for detailed metabolic profiles. This study provides a systems mathematical framework for yeast metabolic behaviors, providing insights into yeast physiology and metabolic engineering.
Collapse
Affiliation(s)
- Viviana Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yifei Li
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ting Lu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Barreiro C, Albillos SM, García-Estrada C. Penicillium chrysogenum: Beyond the penicillin. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:143-221. [PMID: 38763527 DOI: 10.1016/bs.aambs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Almost one century after the Sir Alexander Fleming's fortuitous discovery of penicillin and the identification of the fungal producer as Penicillium notatum, later Penicillium chrysogenum (currently reidentified as Penicillium rubens), the molecular mechanisms behind the massive production of penicillin titers by industrial strains could be considered almost fully characterized. However, this filamentous fungus is not only circumscribed to penicillin, and instead, it seems to be full of surprises, thereby producing important metabolites and providing expanded biotechnological applications. This review, in addition to summarizing the classical role of P. chrysogenum as penicillin producer, highlights its ability to generate an array of additional bioactive secondary metabolites and enzymes, together with the use of this microorganism in relevant biotechnological processes, such as bioremediation, biocontrol, production of bioactive nanoparticles and compounds with pharmaceutical interest, revalorization of agricultural and food-derived wastes or the enhancement of food industrial processes and the agricultural production.
Collapse
Affiliation(s)
- Carlos Barreiro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica y Biología Molecular, Departamento de Biotecnología y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain; Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| |
Collapse
|
14
|
Martinez KP, Gasmi N, Jeronimo C, Klimova N, Robert F, Turcotte B. Yeast zinc cluster transcription factors involved in the switch from fermentation to respiration show interdependency for DNA binding revealing a novel type of DNA recognition. Nucleic Acids Res 2024; 52:2242-2259. [PMID: 38109318 PMCID: PMC10954478 DOI: 10.1093/nar/gkad1185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
In budding yeast, fermentation is the most important pathway for energy production. Under low-glucose conditions, ethanol is used for synthesis of this sugar requiring a shift to respiration. This process is controlled by the transcriptional regulators Cat8, Sip4, Rds2 and Ert1. We characterized Gsm1 (glucose starvation modulator 1), a paralog of Rds2 and Ert1. Genome-wide analysis showed that Gsm1 has a DNA binding profile highly similar to Rds2. Binding of Gsm1 and Rds2 is interdependent at the gluconeogenic gene FBP1. However, Rds2 is required for Gsm1 to bind at other promoters but not the reverse. Gsm1 and Rds2 also bind to DNA independently of each other. Western blot analysis revealed that Rds2 controls expression of Gsm1. In addition, we showed that the DNA binding domains of Gsm1 and Rds2 bind cooperatively in vitro to the FBP1 promoter. In contrast, at the HAP4 gene, Ert1 cooperates with Rds2 for DNA binding. Mutational analysis suggests that Gsm1/Rds2 and Ert1/Rds2 bind to short common DNA stretches, revealing a novel mode of binding for this class of factors. Two-point mutations in a HAP4 site convert it to a Gsm1 binding site. Thus, Rds2 controls binding of Gsm1 at many promoters by two different mechanisms: regulation of Gsm1 levels and increased DNA binding by formation of heterodimers.
Collapse
Affiliation(s)
- Karla Páez Martinez
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Najla Gasmi
- Department of Biochemistry, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Natalia Klimova
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Bernard Turcotte
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Biochemistry, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
15
|
Dilmetz BA, Desire CT, Meneses J, Klingler-Hoffmann M, Young C, Hoffmann P. Impact of propagation time on yeast physiology during bottle conditioning of beer on an industrial scale. Food Chem 2024; 435:137655. [PMID: 37806202 DOI: 10.1016/j.foodchem.2023.137655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Bottle conditioning occurs when yeast and a fermentable extract are added to beer prior to packaging. Aside from ethanol and carbon dioxide production, this process can minimize the production of off-flavors and increase the shelf-life of beer. The advantages of bottle conditioning rely on the yeast being able to quickly referment the beer and maintain viability during storage. In this study, a commercial ale yeast was propagated in wort on a large scale (30 hL) for 24 h or 72 h and seeded into pale ale beer for bottle conditioning. We found that yeast propagated until the post-diauxic shift (72 h) provided better longevity in the bottle and improved foam stability compared to the 24 h propagated yeast. At the time of seeding, yeast propagated for 72 h showed an upregulation of proteins involved in cellular respiration and general stress pathways that may indicate responses toward mitigating cellular stress levels.
Collapse
Affiliation(s)
- Brooke A Dilmetz
- Clinical & Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Christopher T Desire
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia.
| | - Jon Meneses
- Coopers Brewery Ltd, Regency Park, 5010, Australia.
| | | | - Clifford Young
- Clinical & Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Peter Hoffmann
- Clinical & Health Sciences, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
16
|
Lee B, Hokamp K, Alhussain MM, Bamagoos AA, Fleming AB. The influence of flocculation upon global gene transcription in a yeast CYC8 mutant. Microb Genom 2024; 10:001216. [PMID: 38529898 PMCID: PMC10995634 DOI: 10.1099/mgen.0.001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
The transcriptome from a Saccharomyces cerevisiae tup1 deletion mutant was one of the first comprehensive yeast transcriptomes published. Subsequent transcriptomes from tup1 and cyc8 mutants firmly established the Tup1-Cyc8 complex as predominantly acting as a repressor of gene transcription. However, transcriptomes from tup1/cyc8 gene deletion or conditional mutants would all have been influenced by the striking flocculation phenotypes that these mutants display. In this study, we have separated the impact of flocculation from the transcriptome in a cyc8 conditional mutant to reveal those genes (i) subject solely to Cyc8p-dependent regulation, (ii) regulated by flocculation only and (iii) regulated by Cyc8p and further influenced by flocculation. We reveal a more accurate list of Cyc8p-regulated genes that includes newly identified Cyc8p-regulated genes that were masked by the flocculation phenotype and excludes genes which were indirectly influenced by flocculation and not regulated by Cyc8p. Furthermore, we show evidence that flocculation exerts a complex and potentially dynamic influence upon global gene transcription. These data should be of interest to future studies into the mechanism of action of the Tup1-Cyc8 complex and to studies involved in understanding the development of flocculation and its impact upon cell function.
Collapse
Affiliation(s)
- Brenda Lee
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohamed M. Alhussain
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alastair B. Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Solari CA, Ortolá Martínez MC, Fernandez JM, Bates C, Cueto G, Valacco MP, Morales-Polanco F, Moreno S, Rossi S, Ashe MP, Portela P. Riboproteome remodeling during quiescence exit in Saccharomyces cerevisiae. iScience 2024; 27:108727. [PMID: 38235324 PMCID: PMC10792236 DOI: 10.1016/j.isci.2023.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/15/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
The quiescent state is the prevalent mode of cellular life in most cells. Saccharomyces cerevisiae is a useful model for studying the molecular basis of the cell cycle, quiescence, and aging. Previous studies indicate that heterogeneous ribosomes show a specialized translation function to adjust the cellular proteome upon a specific stimulus. Using nano LC-MS/MS, we identified 69 of the 79 ribosomal proteins (RPs) that constitute the eukaryotic 80S ribosome during quiescence. Our study shows that the riboproteome is composed of 444 accessory proteins comprising cellular functions such as translation, protein folding, amino acid and glucose metabolism, cellular responses to oxidative stress, and protein degradation. Furthermore, the stoichiometry of both RPs and accessory proteins on ribosome particles is different depending on growth conditions and among monosome and polysome fractions. Deficiency of different RPs resulted in defects of translational capacity, suggesting that ribosome composition can result in changes in translational activity during quiescence.
Collapse
Affiliation(s)
- Clara A. Solari
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Juan M. Fernandez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Christian Bates
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Gerardo Cueto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| | - María Pía Valacco
- CEQUIBIEM- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Fabián Morales-Polanco
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Silvia Moreno
- CEQUIBIEM- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Mark P. Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, S Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. RNA (NEW YORK, N.Y.) 2024; 30:149-170. [PMID: 38071476 PMCID: PMC10798247 DOI: 10.1261/rna.079866.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Asako Tan
- Illumina, Inc., Madison, Wisconsin 53719, USA
| | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Melissa S Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
19
|
Hui TX, Kasim S, Aziz IA, Fudzee MFM, Haron NS, Sutikno T, Hassan R, Mahdin H, Sen SC. Robustness evaluations of pathway activity inference methods on gene expression data. BMC Bioinformatics 2024; 25:23. [PMID: 38216898 PMCID: PMC10785356 DOI: 10.1186/s12859-024-05632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND With the exponential growth of high-throughput technologies, multiple pathway analysis methods have been proposed to estimate pathway activities from gene expression profiles. These pathway activity inference methods can be divided into two main categories: non-Topology-Based (non-TB) and Pathway Topology-Based (PTB) methods. Although some review and survey articles discussed the topic from different aspects, there is a lack of systematic assessment and comparisons on the robustness of these approaches. RESULTS Thus, this study presents comprehensive robustness evaluations of seven widely used pathway activity inference methods using six cancer datasets based on two assessments. The first assessment seeks to investigate the robustness of pathway activity in pathway activity inference methods, while the second assessment aims to assess the robustness of risk-active pathways and genes predicted by these methods. The mean reproducibility power and total number of identified informative pathways and genes were evaluated. Based on the first assessment, the mean reproducibility power of pathway activity inference methods generally decreased as the number of pathway selections increased. Entropy-based Directed Random Walk (e-DRW) distinctly outperformed other methods in exhibiting the greatest reproducibility power across all cancer datasets. On the other hand, the second assessment shows that no methods provide satisfactory results across datasets. CONCLUSION However, PTB methods generally appear to perform better in producing greater reproducibility power and identifying potential cancer markers compared to non-TB methods.
Collapse
Affiliation(s)
- Tay Xin Hui
- Soft Computing and Data Mining Center, Faculty of Computer Sciences and Information Technology, Universiti Tun Hussein Onn Malaysia (UTHM), 83000, Batu Pahat, Malaysia
| | - Shahreen Kasim
- Soft Computing and Data Mining Center, Faculty of Computer Sciences and Information Technology, Universiti Tun Hussein Onn Malaysia (UTHM), 83000, Batu Pahat, Malaysia.
| | - Izzatdin Abdul Aziz
- Computer and Information Sciences Department (CISD), Universiti Teknologi PETRONAS (UTP), 32610, Seri Iskandar, Malaysia
| | - Mohd Farhan Md Fudzee
- Soft Computing and Data Mining Center, Faculty of Computer Sciences and Information Technology, Universiti Tun Hussein Onn Malaysia (UTHM), 83000, Batu Pahat, Malaysia
| | - Nazleeni Samiha Haron
- Computer and Information Sciences Department (CISD), Universiti Teknologi PETRONAS (UTP), 32610, Seri Iskandar, Malaysia
| | - Tole Sutikno
- Department of Electrical Engineering, Universitas Ahmad Dahlan (UAD), 55166, Yogyakarta, Indonesia
| | - Rohayanti Hassan
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
| | - Hairulnizam Mahdin
- Soft Computing and Data Mining Center, Faculty of Computer Sciences and Information Technology, Universiti Tun Hussein Onn Malaysia (UTHM), 83000, Batu Pahat, Malaysia
| | - Seah Choon Sen
- Faculty of Computing, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia
| |
Collapse
|
20
|
Songdech P, Butkinaree C, Yingchutrakul Y, Promdonkoy P, Runguphan W, Soontorngun N. Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes. FEMS Yeast Res 2024; 24:foae006. [PMID: 38331422 PMCID: PMC10878408 DOI: 10.1093/femsyr/foae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
Only trace amount of isobutanol is produced by the native Saccharomyces cerevisiae via degradation of amino acids. Despite several attempts using engineered yeast strains expressing exogenous genes, catabolite repression of glucose must be maintained together with high activity of downstream enzymes, involving iron-sulfur assimilation and isobutanol production. Here, we examined novel roles of nonfermentable carbon transcription factor Znf1 in isobutanol production during xylose utilization. RNA-seq analysis showed that Znf1 activates genes in valine biosynthesis, Ehrlich pathway and iron-sulfur assimilation while coupled deletion or downregulated expression of BUD21 further increased isobutanol biosynthesis from xylose. Overexpression of ZNF1 and xylose-reductase/dehydrogenase (XR-XDH) variants, a xylose-specific sugar transporter, xylulokinase, and enzymes of isobutanol pathway in the engineered S. cerevisiae pho13gre3Δ strain resulted in the superb ZNXISO strain, capable of producing high levels of isobutanol from xylose. The isobutanol titer of 14.809 ± 0.400 g/L was achieved, following addition of 0.05 g/L FeSO4.7H2O in 5 L bioreactor. It corresponded to 155.88 mg/g xylose consumed and + 264.75% improvement in isobutanol yield. This work highlights a new regulatory control of alternative carbon sources by Znf1 on various metabolic pathways. Importantly, we provide a foundational step toward more sustainable production of advanced biofuels from the second most abundant carbon source xylose.
Collapse
Affiliation(s)
- Pattanan Songdech
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chutikarn Butkinaree
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Peerada Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nitnipa Soontorngun
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
21
|
Gaikani HK, Stolar M, Kriti D, Nislow C, Giaever G. From beer to breadboards: yeast as a force for biological innovation. Genome Biol 2024; 25:10. [PMID: 38178179 PMCID: PMC10768129 DOI: 10.1186/s13059-023-03156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The history of yeast Saccharomyces cerevisiae, aka brewer's or baker's yeast, is intertwined with our own. Initially domesticated 8,000 years ago to provide sustenance to our ancestors, for the past 150 years, yeast has served as a model research subject and a platform for technology. In this review, we highlight many ways in which yeast has served to catalyze the fields of functional genomics, genome editing, gene-environment interaction investigation, proteomics, and bioinformatics-emphasizing how yeast has served as a catalyst for innovation. Several possible futures for this model organism in synthetic biology, drug personalization, and multi-omics research are also presented.
Collapse
Affiliation(s)
- Hamid Kian Gaikani
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Monika Stolar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Divya Kriti
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Choubey J, Wolkenhauer O, Chatterjee T. Systems Biology Approach to Analyze Microarray Datasets for Identification of Disease-Causing Genes: Case Study of Oral Squamous Cell Carcinoma. Methods Mol Biol 2024; 2719:13-31. [PMID: 37803110 DOI: 10.1007/978-1-0716-3461-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The discovery of potential disease-causing genes can aid medical progress. The post-genomic era has made this a more difficult task. Modern high-throughput methods have not solved the problem of identifying disease genes. Conventional methods cannot be used to investigate many rare or lethal diseases. Monitoring gene expression values in different samples using microarray technology is one of the best and most accurate ways to identify disease-causing genes. One of the most recent advances in experimental molecular biology is microarrays, which allow researchers to simultaneously monitor the expression levels of thousands of genes. Statistical analysis of microarray data might aid gene discovery by revealing pathways related to the target gene and facilitating identification of candidate genes. Systems biology, an interdisciplinary approach, has emerged as a crucial analytic tool with the potential to reveal previously unidentified causes and consequences of human illness. Genetic, environmental, immunological, or neurological factors have been implicated in the developing complex disorders like cancer. Because of this, it is important to approach the study of such disease from a novel perspective. The system biology approach allows us to rapidly identify disease-causing genes and assess their viability as therapeutic targets. This chapter demonstrates systems biology approaches to identify candidate genes using public database. Oral squamous cell carcinoma (OSCC) is used as a model disease to show how systems biology can be used successfully to identify and prioritize disease genes.
Collapse
Affiliation(s)
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, Germany
| | | |
Collapse
|
23
|
D'Alessio Y, D'Alfonso A, Camilloni G. Chromatin conformations of HSP12 during transcriptional activation in the Saccharomyces cerevisiae stationary phase. Adv Biol Regul 2023; 90:100986. [PMID: 37741159 DOI: 10.1016/j.jbior.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
During evolution, living cells have developed sophisticated molecular and physiological processes to cope with a variety of stressors. These mechanisms, which collectively constitute the Environmental Stress Response, involve the activation/repression of hundreds of genes that are regulated to respond rapidly and effectively to protect the cell. The main stressors include sudden increases in environmental temperature and osmolarity, exposure to heavy metals, nutrient limitation, ROS accumulation, and protein-damaging events. The growth stages of the yeast S. cerevisiae proceed from the exponential to the diauxic phase, finally reaching the stationary phase. It is in this latter phase that the main stressor events are more active. In the present work, we aim to understand whether the responses evoked by the sudden onset of a stressor, like what happens to cells going through the stationary phase, would be different or similar to those induced by a gradual increase in the same stimulus. To this aim, we studied the expression of the HSP12 gene of the HSP family of proteins, typically induced by stress conditions, with a focus on the role of chromatin in this regulation. Analyses of nucleosome occupancy and three-dimensional chromatin conformation suggest the activation of a different response pathway upon a sudden vs a gradual onset of a stress stimulus. Here we show that it is the three-dimensional chromatin structure of HSP12, rather than nucleosome remodeling, that becomes altered in HSP12 transcription during the stationary phase.
Collapse
Affiliation(s)
- Yuri D'Alessio
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Anna D'Alfonso
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
24
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.560965. [PMID: 37873484 PMCID: PMC10592967 DOI: 10.1101/2023.10.05.560965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | | | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Melissa Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| |
Collapse
|
25
|
Dumeaux V, Massahi S, Bettauer V, Mottola A, Dukovny A, Khurdia SS, Costa ACBP, Omran RP, Simpson S, Xie JL, Whiteway M, Berman J, Hallett MT. Candida albicans exhibits heterogeneous and adaptive cytoprotective responses to antifungal compounds. eLife 2023; 12:e81406. [PMID: 37888959 PMCID: PMC10699808 DOI: 10.7554/elife.81406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
Candida albicans, an opportunistic human pathogen, poses a significant threat to human health and is associated with significant socio-economic burden. Current antifungal treatments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that allows some cells to grow at drug concentrations above their minimal inhibitory concentration. To better characterize this cytoprotective tolerance program at the molecular single-cell level, we used a nanoliter droplet-based transcriptomics platform to profile thousands of individual fungal cells and establish their subpopulation characteristics in the absence and presence of antifungal drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle stage with distinct metabolic and stress responses. At 2 days post-fluconazole exposure (a time when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one characterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, and mitochondrial cellular respiration capacity, termed the Ribo-dominant (Rd) state; and the other enriched for genes encoding stress responses and related processes, termed the Stress-dominant (Sd) state. This bifurcation persists at 3 and 6 days post-treatment. We provide evidence that the ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate cell survival.
Collapse
Affiliation(s)
- Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Western University, London, Canada
| | - Samira Massahi
- Department of Biology, Concordia University, Montreal, Canada
| | - Van Bettauer
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Austin Mottola
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Anna Dukovny
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | | | | | - Shawn Simpson
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Jinglin Lucy Xie
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | | | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | |
Collapse
|
26
|
Szatkowska R, Furmanek E, Kierzek AM, Ludwig C, Adamczyk M. Mitochondrial Metabolism in the Spotlight: Maintaining Balanced RNAP III Activity Ensures Cellular Homeostasis. Int J Mol Sci 2023; 24:14763. [PMID: 37834211 PMCID: PMC10572830 DOI: 10.3390/ijms241914763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
RNA polymerase III (RNAP III) holoenzyme activity and the processing of its products have been linked to several metabolic dysfunctions in lower and higher eukaryotes. Alterations in the activity of RNAP III-driven synthesis of non-coding RNA cause extensive changes in glucose metabolism. Increased RNAP III activity in the S. cerevisiae maf1Δ strain is lethal when grown on a non-fermentable carbon source. This lethal phenotype is suppressed by reducing tRNA synthesis. Neither the cause of the lack of growth nor the underlying molecular mechanism have been deciphered, and this area has been awaiting scientific explanation for a decade. Our previous proteomics data suggested mitochondrial dysfunction in the strain. Using model mutant strains maf1Δ (with increased tRNA abundance) and rpc128-1007 (with reduced tRNA abundance), we collected data showing major changes in the TCA cycle metabolism of the mutants that explain the phenotypic observations. Based on 13C flux data and analysis of TCA enzyme activities, the present study identifies the flux constraints in the mitochondrial metabolic network. The lack of growth is associated with a decrease in TCA cycle activity and downregulation of the flux towards glutamate, aspartate and phosphoenolpyruvate (PEP), the metabolic intermediate feeding the gluconeogenic pathway. rpc128-1007, the strain that is unable to increase tRNA synthesis due to a mutation in the C128 subunit, has increased TCA cycle activity under non-fermentable conditions. To summarize, cells with non-optimal activity of RNAP III undergo substantial adaptation to a new metabolic state, which makes them vulnerable under specific growth conditions. Our results strongly suggest that balanced, non-coding RNA synthesis that is coupled to glucose signaling is a fundamental requirement to sustain a cell's intracellular homeostasis and flexibility under changing growth conditions. The presented results provide insight into the possible role of RNAP III in the mitochondrial metabolism of other cell types.
Collapse
Affiliation(s)
- Roza Szatkowska
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| | - Emil Furmanek
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| | - Andrzej M. Kierzek
- Certara UK Limited, Sheffield S1 2BJ, UK;
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| |
Collapse
|
27
|
Courtin B, Namane A, Gomard M, Meyer L, Jacquier A, Fromont-Racine M. Xrn1 biochemically associates with eisosome proteins after the post diauxic shift in yeast. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000926. [PMID: 37746059 PMCID: PMC10514700 DOI: 10.17912/micropub.biology.000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
mRNA degradation is one of the main steps of gene expression, and a key player is the 5'-3' exonuclease Xrn1. In Saccharomyces cerevisiae , it was previously shown, by a microscopy approach, that Xrn1 is located to different cellular compartments, depending on physiological state. During exponential growth, Xrn1 is distributed in the cytoplasm, while it co-localizes with eisosomes after the post-diauxic shift (PDS). Here, we biochemically characterize the Xrn1-associated complexes in different cellular states. We demonstrate that, after PDS, Xrn1 but not the decapping nor Lsm1-7/Pat1 complexes associates with eisosomal proteins, strengthening the model that sequestration of Xrn1 in eisosomes preserves mRNAs from degradation during PDS.
Collapse
Affiliation(s)
- Baptiste Courtin
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Abdelkader Namane
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Maite Gomard
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Laura Meyer
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Alain Jacquier
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Micheline Fromont-Racine
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| |
Collapse
|
28
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
29
|
Makeeva AS, Sidorin AV, Ishtuganova VV, Padkina MV, Rumyantsev AM. Effect of Biotin Starvation on Gene Expression in Komagataella phaffii Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1368-1377. [PMID: 37770403 DOI: 10.1134/s000629792309016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/30/2023]
Abstract
Methylotrophic yeast Komagataella phaffii is widely used in biotechnology for recombinant protein production. Due to the practical significance of these yeasts, it is extremely important to properly select cultivation conditions and optimize the media composition. In this study the effect of biotin starvation on gene expression in K. phaffii at transcriptome level was investigated. It was demonstrated, that the response of K. phaffii cell to biotin deficiency strongly depends on the carbon source in the medium. In the media containing glycerol, biotin deficiency led to activation of the genes involved in biotin metabolism, glyoxylate cycle, and synthesis of acetyl-CoA in cytoplasm, as well as repression of the genes, involved in lipo- and gluconeogenesis. In the methanol-containing media, biotin deficiency primarily led to repression of the genes, involved in protein synthesis, and activation of cell response to oxidative stress.
Collapse
Affiliation(s)
- Anastasiya S Makeeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton V Sidorin
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Valeria V Ishtuganova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Marina V Padkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrey M Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
| |
Collapse
|
30
|
Lee B, Church M, Hokamp K, Alhussain MM, Bamagoos AA, Fleming AB. Systematic analysis of tup1 and cyc8 mutants reveals distinct roles for TUP1 and CYC8 and offers new insight into the regulation of gene transcription by the yeast Tup1-Cyc8 complex. PLoS Genet 2023; 19:e1010876. [PMID: 37566621 PMCID: PMC10446238 DOI: 10.1371/journal.pgen.1010876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/23/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The Tup1-Cyc8 complex in Saccharomyces cerevisiae was one of the first global co-repressors of gene transcription discovered. However, despite years of study, a full understanding of the contribution of Tup1p and Cyc8p to complex function is lacking. We examined TUP1 and CYC8 single and double deletion mutants and show that CYC8 represses more genes than TUP1, and that there are genes subject to (i) unique repression by TUP1 or CYC8, (ii) redundant repression by TUP1 and CYC8, and (iii) there are genes at which de-repression in a cyc8 mutant is dependent upon TUP1, and vice-versa. We also reveal that Tup1p and Cyc8p can make distinct contributions to commonly repressed genes most likely via specific interactions with different histone deacetylases. Furthermore, we show that Tup1p and Cyc8p can be found independently of each other to negatively regulate gene transcription and can persist at active genes to negatively regulate on-going transcription. Together, these data suggest that Tup1p and Cyc8p can associate with active and inactive genes to mediate distinct negative and positive regulatory roles when functioning within, and possibly out with the complex.
Collapse
Affiliation(s)
- Brenda Lee
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Michael Church
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohamed M. Alhussain
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alastair B. Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Muller G, de Godoy VR, Dário MG, Duval EH, Alves-Jr SL, Bücker A, Rosa CA, Dunn B, Sherlock G, Stambuk BU. Improved Sugarcane-Based Fermentation Processes by an Industrial Fuel-Ethanol Yeast Strain. J Fungi (Basel) 2023; 9:803. [PMID: 37623574 PMCID: PMC10456111 DOI: 10.3390/jof9080803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
In Brazil, sucrose-rich broths (cane juice and/or molasses) are used to produce billions of liters of both fuel ethanol and cachaça per year using selected Saccharomyces cerevisiae industrial strains. Considering the important role of feedstock (sugar) prices in the overall process economics, to improve sucrose fermentation the genetic characteristics of a group of eight fuel-ethanol and five cachaça industrial yeasts that tend to dominate the fermentors during the production season were determined by array comparative genomic hybridization. The widespread presence of genes encoding invertase at multiple telomeres has been shown to be a common feature of both baker's and distillers' yeast strains, and is postulated to be an adaptation to sucrose-rich broths. Our results show that only two strains (one fuel-ethanol and one cachaça yeast) have amplification of genes encoding invertase, with high specific activity. The other industrial yeast strains had a single locus (SUC2) in their genome, with different patterns of invertase activity. These results indicate that invertase activity probably does not limit sucrose fermentation during fuel-ethanol and cachaça production by these industrial strains. Using this knowledge, we changed the mode of sucrose metabolism of an industrial strain by avoiding extracellular invertase activity, overexpressing the intracellular invertase, and increasing its transport through the AGT1 permease. This approach allowed the direct consumption of the disaccharide by the cells, without releasing glucose or fructose into the medium, and a 11% higher ethanol production from sucrose by the modified industrial yeast, when compared to its parental strain.
Collapse
Affiliation(s)
- Gabriela Muller
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Victor R. de Godoy
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Marcelo G. Dário
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Eduarda H. Duval
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Sergio L. Alves-Jr
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Augusto Bücker
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Carlos A. Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Barbara Dunn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Boris U. Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| |
Collapse
|
32
|
Gordon-Lipkin EM, Banerjee P, Franco JLM, Tarasenko T, Kruk S, Thompson E, Gildea DE, Zhang S, Wolfsberg TG, NISC Comparative Sequencing Program, Flegel WA, McGuire PJ. Primary oxidative phosphorylation defects lead to perturbations in the human B cell repertoire. Front Immunol 2023; 14:1142634. [PMID: 37483601 PMCID: PMC10361569 DOI: 10.3389/fimmu.2023.1142634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The majority of studies on oxidative phosphorylation in immune cells have been performed in mouse models, necessitating human translation. To understand the impact of oxidative phosphorylation (OXPHOS) deficiency on human immunity, we studied children with primary mitochondrial disease (MtD). Methods scRNAseq analysis of peripheral blood mononuclear cells was performed on matched children with MtD (N = 4) and controls (N = 4). To define B cell function we performed phage display immunoprecipitation sequencing on a cohort of children with MtD (N = 19) and controls (N = 16). Results Via scRNAseq, we found marked reductions in select populations involved in the humoral immune response, especially antigen presenting cells, B cell and plasma populations, with sparing of T cell populations. MTRNR2L8, a marker of bioenergetic stress, was significantly elevated in populations that were most depleted. mir4485, a miRNA contained in the intron of MTRNR2L8, was co-expressed. Knockdown studies of mir4485 demonstrated its role in promoting survival by modulating apoptosis. To determine the functional consequences of our findings on humoral immunity, we studied the antiviral antibody repertoire in children with MtD and controls using phage display and immunoprecipitation sequencing. Despite similar viral exposomes, MtD displayed antiviral antibodies with less robust fold changes and limited polyclonality. Discussion Overall, we show that children with MtD display perturbations in the B cell repertoire which may impact humoral immunity and the ability to clear viral infections.
Collapse
Affiliation(s)
- Eliza M. Gordon-Lipkin
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Payal Banerjee
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jose Luis Marin Franco
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tatiana Tarasenko
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shannon Kruk
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth Thompson
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Derek E. Gildea
- Bioinformatics and Scientific Programming Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Suiyuan Zhang
- Bioinformatics and Scientific Programming Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tyra G. Wolfsberg
- Bioinformatics and Scientific Programming Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Willy A. Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Peter J. McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Liu Y, Zhou Z, Wu S, Ni G, Zhang A, Tsimring LS, Hasty J, Hao N. Enhanced cellular longevity arising from environmental fluctuations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547867. [PMID: 37461504 PMCID: PMC10350066 DOI: 10.1101/2023.07.05.547867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions, but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity - the creation of a stable fixed point in the "healthy" state of the cell and the dynamic stabilization of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Songlin Wu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gavin Ni
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lev S. Tsimring
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
Li Z, Cai C, Huo X, Li X, Lin Z. Sucrose-nonfermenting 1 kinase activates histone acetylase GCN5 to promote cellulase production in Trichoderma. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12617-x. [PMID: 37318636 DOI: 10.1007/s00253-023-12617-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Trichoderma serves as the primary producer of cellulases and hemicellulases in industrial settings as it readily secretes a variety of cellulolytic enzymes. The protein kinase SNF1 (sucrose-nonfermenting 1) can enable cells to adapt to changes in carbon metabolism by phosphorylating key rate-limiting enzymes involved in the maintenance of energy homeostasis and carbon metabolism within cells. Histone acetylation is an important epigenetic regulatory mechanism that influences physiological and biochemical processes. GCN5 is a representative histone acetylase involved in promoter chromatin remodeling and associated transcriptional activation. Here, the TvSNF1 and TvGCN5 genes were identified in Trichoderma viride Tv-1511, which exhibits promising activity with respect to its ability to produce cellulolytic enzymes for biological transformation. The SNF1-mediated activation of the histone acetyltransferase GCN5 was herein found to promote cellulase production in T. viride Tv-1511 via facilitating changes in histone acetylation. These results demonstrated that cellulolytic enzyme activity and the expression of genes encoding cellulases and transcriptional activators were clearly enhanced in T. viride Tv-1511 mutants in which TvSNF1 and TvGCN5 were overexpressed, with concomitant changes in histone H3 acetylation levels associated with these genes. GCN5 was also found to be directly recruited to promoter regions to alter histone acetylation, while SNF1 functioned upstream as a transcriptional activator that promotes GCN5 upregulation at the mRNA and protein levels in the context of cellulase induction in T. viride Tv-1511. These findings underscore the important role that this SNF1-GCN5 cascade plays in regulating cellulase production in T. viride Tv-1511 by promoting altered histone acetylation, offering a theoretical basis for the optimization of T. viride in the context of industrial cellulolytic enzyme production. KEY POINTS: • SNF1 kinase and GCN5 acetylase promoted cellulase production in Trichoderma by increasing the expression of genes encoding cellulases and transcriptional activators • SNF1 and GCN5 promoted cellulase production by driving H3ac modifications, and GCN5 directly band to the promoter regions to catalyze distinct H3ac modifications • SNF1 acts upstream of GCN5 as a transcriptional activator in the cellulase production of Trichoderma.
Collapse
Affiliation(s)
- Zhe Li
- Biology Institute, Qilu University of Technology, Jinan, 250014, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China.
| | - Chunjing Cai
- Biology Institute, Qilu University of Technology, Jinan, 250014, China
| | - Xuexue Huo
- Biology Institute, Qilu University of Technology, Jinan, 250014, China
| | - Xuan Li
- Biology Institute, Qilu University of Technology, Jinan, 250014, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
35
|
Rothman DL, Moore PB, Shulman RG. The impact of metabolism on the adaptation of organisms to environmental change. Front Cell Dev Biol 2023; 11:1197226. [PMID: 37377740 PMCID: PMC10291235 DOI: 10.3389/fcell.2023.1197226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Since Jacob and Monod's discovery of the lac operon ∼1960, the explanations offered for most metabolic adaptations have been genetic. The focus has been on the adaptive changes in gene expression that occur, which are often referred to as "metabolic reprogramming." The contributions metabolism makes to adaptation have been largely ignored. Here we point out that metabolic adaptations, including the associated changes in gene expression, are highly dependent on the metabolic state of an organism prior to the environmental change to which it is adapting, and on the plasticity of that state. In support of this hypothesis, we examine the paradigmatic example of a genetically driven adaptation, the adaptation of E. coli to growth on lactose, and the paradigmatic example of a metabolic driven adaptation, the Crabtree effect in yeast. Using a framework based on metabolic control analysis, we have reevaluated what is known about both adaptations, and conclude that knowledge of the metabolic properties of these organisms prior to environmental change is critical for understanding not only how they survive long enough to adapt, but also how the ensuing changes in gene expression occur, and their phenotypes post-adaptation. It would be useful if future explanations for metabolic adaptations acknowledged the contributions made to them by metabolism, and described the complex interplay between metabolic systems and genetic systems that make these adaptations possible.
Collapse
Affiliation(s)
- Douglas L. Rothman
- Departments of Radiology, Yale University, New Haven, CT, United States
- Biomedical Engineering, Yale University, New Haven, CT, United States
- Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - Peter B. Moore
- Department of Molecular Biology and Biophysics, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Robert G. Shulman
- Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Molecular Biology and Biophysics, Yale University, New Haven, CT, United States
| |
Collapse
|
36
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
37
|
Huang Z, Lou J, Gao Y, Noman M, Li D, Song F. FonTup1 functions in growth, conidiogenesis and pathogenicity of Fusarium oxysporum f. sp. niveum through modulating the expression of the tricarboxylic acid cycle genes. Microbiol Res 2023; 272:127389. [PMID: 37099956 DOI: 10.1016/j.micres.2023.127389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
The Tup1-Cyc8 complex is a highly conserved transcriptional corepressor that regulates intricate genetic network associated with various biological processes in fungi. Here, we report the role and mechanism of FonTup1 in regulating physiological processes and pathogenicity in watermelon Fusarium wilt fungus, Fusarium oxysporum f. sp. niveum (Fon). FonTup1 deletion impairs mycelial growth, asexual reproduction, and macroconidia morphology, but not macroconidial germination in Fon. The ΔFontup1 mutant exhibits altered tolerance to cell wall perturbing agent (congo red) and osmotic stressors (sorbitol or NaCl), but unchanged sensitivity to paraquat. The deletion of FonTup1 significantly decreases the pathogenicity of Fon toward watermelon plants through attenuating the ability to colonize and grow within the host. Transcriptome analysis revealed that FonTup1 regulates primary metabolic pathways, including the tricarboxylic acid (TCA) cycle, via altering the expression of corresponding genes. Downregulation of three malate dehydrogenase genes, FonMDH1-3, occurs in ΔFontup1, and disruption of FonMDH2 causes significant abnormalities in mycelial growth, conidiation, and virulence of Fon. These findings demonstrate that FonTup1, as a global transcriptional corepressor, plays crucial roles in different biological processes and pathogenicity of Fon through regulating various primary metabolic processes, including the TCA cycle. This study highlights the importance and molecular mechanism of the Tup1-Cyc8 complex in multiple basic biological processes and pathogenicity of phytopathogenic fungi.
Collapse
Affiliation(s)
- Ziling Huang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajun Lou
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Gao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dayong Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Fengming Song
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Peng G, Hu K, Shang X, Li W, Dou F. The phosphorylation status of Hsp82 regulates mitochondrial homeostasis during glucose sensing in Saccharomyces cerevisiae. J Mol Biol 2023; 435:168106. [PMID: 37068581 DOI: 10.1016/j.jmb.2023.168106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Sensing extracellular glucose, budding yeast switches from aerobic glycolysis to oxidative phosphorylation to adapt to environmental changes. During the conversion of metabolic mode, mitochondrial function and morphology change significantly. Mitochondria are the main supply factories of energy for various life activities in cells. However, the research on the signal pathways from glucose sensing to changes in mitochondrial function and morphology is still scarce and worthy of further exploration. In this study, we found that in addition to the known involvement of molecular chaperone Hsp82 in stress response during the conversion of metabolic mode, the phosphorylation status of Hsp82 at S485 residue regulates mitochondrial function and morphology to maintain mitochondrial homeostasis. The Hsp82S485A mutant that mimics dephosphorylation at S485 residue showed abnormal growth phenotypes related to mitochondrial defects, such as the petite phenotype, slow growth rates, and inability to use non-fermentable carbon sources. Further exploring the causes of growth defects, we found that the Hsp82S485A mutant caused mitochondrial dysfunction, including a decrease in cellular oxygen consumption rate, defects in mitochondrial electron transport chain, decreased mitochondrial membrane potential and complete loss of mtDNA. Furthermore, the Hsp82S485A mutant displayed fragmented or globular mitochondria, which may be responsible for its mitochondrial dysfunction. Our findings suggested that the phosphorylation status of Hsp82 at S485 residue might regulate mitochondrial function and morphology by affecting the stability of mitochondrial fission and fusion-related proteins. Thus, Hsp82 might be a key molecule in the signal pathway from glucose sensing to changes in mitochondrial function and morphology.
Collapse
Affiliation(s)
- Guanzu Peng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kaiyu Hu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xuan Shang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Fei Dou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
39
|
Chen Y, Zeng W, Yu S, Gao S, Zhou J. Chromatin regulator Ahc1p co-regulates nitrogen metabolism via interactions with multiple transcription factors in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2023; 662:31-38. [PMID: 37099808 DOI: 10.1016/j.bbrc.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Chromatin regulation is an important gene expression/regulation system, but little is known about how it affects nitrogen metabolism in Saccharomyces cerevisiae. A previous study demonstrated the regulatory role of the chromatin regulator Ahc1p on multiple key genes of nitrogen metabolism in S. cerevisiae, but the regulatory mechanism remains unknown. In this study, multiple key nitrogen metabolism genes directly regulated by Ahc1p were identified, and the transcription factors interacting with Ahc1p were analyzed. It was ultimately found that Ahc1p may regulate some key nitrogen metabolism genes in two ways. First, Ahc1p acts as a co-factor and is recruited with transcription factors such as Rtg3p or Gcr1p to facilitate transcription complex binding to target gene core promoters and promote transcription initiation. Second, Ahc1p binds at enhancers to promote the transcription of target genes in concert with transcription factors. This study furthers the understanding of the regulatory network of nitrogen metabolism in S. cerevisiae from an epigenetic perspective.
Collapse
Affiliation(s)
- Yu Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
40
|
Giacoletto CJ, Schiller MR. The history and conceptual framework of assays and screens. Bioessays 2023; 45:e2200191. [PMID: 36789580 PMCID: PMC10024921 DOI: 10.1002/bies.202200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
Since the 16th century, assays and screens have been essential for scientific investigation. However, most methods could be significantly improved, especially in accuracy, scalability, and often lack adequate comparisons to negative controls. There is a lack of consistency in distinguishing assays, in which accuracy is the main goal, from screens, in which scalability is prioritized over accuracy. We dissected and modernized the original definitions of assays and screens based upon recent developments and the conceptual framework of the original definitions. All methods have three components: design/measurement, performance, and interpretation. We propose a model of method development in which reproducible observations become new methods, initially assessed by sensitivity. Further development can proceed along a path to either screens or assays. The screen path focuses on scalability first, but can later prioritize analysis of negatives. Alternatively, the assay path first compares results to negative controls, assessing specificity and accuracy, later adding scalability. Both pathways converge on a high-accuracy and throughput (HAT) assay, like next generation sequencing, which we suggest should be the ultimate goal of all testing methods. Our model will help scientists better select among available methods, as well as improve existing methods, expanding their impact on science.
Collapse
Affiliation(s)
- Christopher J. Giacoletto
- Nevada Institute of Personalized Medicine, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154 USA
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| |
Collapse
|
41
|
Valorization of rice straw, sugarcane bagasse and sweet sorghum bagasse for the production of bioethanol and phenylacetylcarbinol. Sci Rep 2023; 13:727. [PMID: 36639688 PMCID: PMC9839728 DOI: 10.1038/s41598-023-27451-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Open burning of agricultural residues causes numerous complications including particulate matter pollution in the air, soil degradation, global warming and many more. Since they possess bio-conversion potential, agro-industrial residues including sugarcane bagasse (SCB), rice straw (RS), corncob (CC) and sweet sorghum bagasse (SSB) were chosen for the study. Yeast strains, Candida tropicalis, C. shehatae, Saccharomyces cerevisiae, and Kluyveromyces marxianus var. marxianus were compared for their production potential of bioethanol and phenylacetylcarbinol (PAC), an intermediate in the manufacture of crucial pharmaceuticals, namely, ephedrine, and pseudoephedrine. Among the substrates and yeasts evaluated, RS cultivated with C. tropicalis produced significantly (p ≤ 0.05) higher ethanol concentration at 15.3 g L-1 after 24 h cultivation. The product per substrate yield (Yeth/s) was 0.38 g g-1 with the volumetric productivity (Qp) of 0.64 g L-1 h-1 and fermentation efficiency of 73.6% based on a theoretical yield of 0.51 g ethanol/g glucose. C. tropicalis grown in RS medium produced 0.303 U mL-1 pyruvate decarboxylase (PDC), a key enzyme that catalyzes the production of PAC, with a specific activity of 0.400 U mg-1 protein after 24 h cultivation. This present study also compared the whole cells biomass of C. tropicalis with its partially purified PDC preparation for PAC biotransformation. The whole cells C. tropicalis PDC at 1.29 U mL-1 produced an overall concentration of 62.3 mM PAC, which was 68.4% higher when compared to partially purified enzyme preparation. The results suggest that the valorization of lignocellulosic residues into bioethanol and PAC will not only aid in mitigating the environmental challenge posed by their surroundings but also has the potential to improve the bioeconomy.
Collapse
|
42
|
Yamada Y, Shiroma A, Hirai S, Iwasaki J. Zuo1, a ribosome-associated J protein, is involved in glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 2023; 23:foad038. [PMID: 37550218 DOI: 10.1093/femsyr/foad038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
In Saccharomyces cerevisiae, the J-protein Zuo1 and the nonconventional Hsp70 homologue Ssz1 stimulate the ATPase activity of the chaperone proteins Ssb1 and Ssb2 (Ssb1/2), which are associated with the ribosomes. The dephosphorylation of sucrose nonfermenting 1 (Snf1) on Thr210 is required for glucose repression. The Ssb1/2 and 14-3-3 proteins Bmh1 and Bmh2 appear to be responsible for the dephosphorylation of Snf1 on Thr210 and glucose repression. Here, we investigated the role of Zuo1 in glucose repression. The zuo1∆ strain as well as the ssb1∆ssb2∆ strain exhibited a glucose-specific growth defect during logarithmic growth on glucose. Many of the respiratory chain genes examined were statistically significantly upregulated, but less than 2-fold, in the zuo1∆ strain as well as in the ssb1∆ssb2∆ strain on glucose. In addition, excessive phosphorylation of Snf1 on Thr210 was observed in the zuo1∆ strain as well as in the ssb1∆ssb2∆ strain in the presence of glucose. The mRNA levels of SSB1/2 and BMH1 were statistically significantly reduced by approximately 0.5- to 0.8-fold relative to the wild-type level in the zuo1∆ strain on glucose. These results suggest that Zuo1 is responsible for glucose repression, possibly by increasing the mRNA levels of SSB1/2 and BMH1 during growth on glucose.
Collapse
Affiliation(s)
- Yoichi Yamada
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Atsuki Shiroma
- School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Suguru Hirai
- School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Jun Iwasaki
- School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
43
|
Joseph SM, Sathidevi PS. An Automated cDNA Microarray Image Analysis for the Determination of Gene Expression Ratios. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:136-150. [PMID: 34910637 DOI: 10.1109/tcbb.2021.3135650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper proposes a fully automated technique for cDNA microarray image analysis. Initially, an effective preprocessing stage combined with gridding is built to get the individual spot regions of images. Current work begins with the proposal of a new rule to get the foreground (spot) and background regions in the spot blocks, which uses TV-L1 image denoising, spot block binarization, and finds the most accurate spot label by measuring the centroid differences of labelled regions in the block with that of the spot block centroid. The credibility of the segmentation rule on real images is evaluated by metrics: mean absolute error (MAE) and coefficient of variation (CV) and on synthetic images by metrics: probability of error (PE) and discrepancy distance (DD). The performance values on real and synthetic datasets reveal better results than the competitive methods. After the segmentation, prior to the spot intensity extraction, background intensity correction and flagging of noisy spots are executed. Using the lowess method, intensities are normalized, and gene expression ratios are determined. To comprehend the linearities of red and green intensities and to discern up and down-regulated genes (abnormal), fold-change factor, scatter and box plots are also used to represent the gene expression levels.
Collapse
|
44
|
Fan W, Yang L, Bouguila N. Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models With Watson Distributions. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:9654-9668. [PMID: 34784270 DOI: 10.1109/tpami.2021.3128271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper aims at proposing an unsupervised hierarchical nonparametric Bayesian framework for modeling axial data (i.e., observations are axes of direction) that can be partitioned into multiple groups, where each observation within a group is sampled from a mixture of Watson distributions with an infinite number of components that are allowed to be shared across different groups. First, we propose a hierarchical nonparametric Bayesian model for modeling grouped axial data based on the hierarchical Pitman-Yor process mixture model of Watson distributions. Then, we demonstrate that by setting the discount parameters of the proposed model to 0, another hierarchical nonparametric Bayesian model based on hierarchical Dirichlet process can be derived for modeling axial data. To learn the proposed models, we systematically develop a closed-form optimization algorithm based on the collapsed variational Bayes (CVB) inference. Furthermore, to ensure the convergence of the proposed learning algorithm, an annealing mechanism is introduced to the framework of CVB inference, leading to an averaged collapsed variational Bayes inference strategy. The merits of the proposed models for modeling grouped axial data are demonstrated through experiments on both synthetic data and real-world applications involving gene expression data clustering and depth image analysis.
Collapse
|
45
|
Xiao T, Khan A, Shen Y, Chen L, Rabinowitz JD. Glucose feeds the tricarboxylic acid cycle via excreted ethanol in fermenting yeast. Nat Chem Biol 2022; 18:1380-1387. [PMID: 35970997 PMCID: PMC12054635 DOI: 10.1038/s41589-022-01091-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/22/2022] [Indexed: 01/08/2023]
Abstract
Ethanol and lactate are typical waste products of glucose fermentation. In mammals, glucose is catabolized by glycolysis into circulating lactate, which is broadly used throughout the body as a carbohydrate fuel. Individual cells can both uptake and excrete lactate, uncoupling glycolysis from glucose oxidation. Here we show that similar uncoupling occurs in budding yeast batch cultures of Saccharomyces cerevisiae and Issatchenkia orientalis. Even in fermenting S. cerevisiae that is net releasing ethanol, media 13C-ethanol rapidly enters and is oxidized to acetaldehyde and acetyl-CoA. This is evident in exogenous ethanol being a major source of both cytosolic and mitochondrial acetyl units. 2H-tracing reveals that ethanol is also a major source of both NADH and NADPH high-energy electrons, and this role is augmented under oxidative stress conditions. Thus, uncoupling of glycolysis from the oxidation of glucose-derived carbon via rapidly reversible reactions is a conserved feature of eukaryotic metabolism.
Collapse
Affiliation(s)
- Tianxia Xiao
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Artem Khan
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Yihui Shen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Li Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, USA.
| |
Collapse
|
46
|
Capps D, Hunter A, Chiang M, Pracheil T, Liu Z. Ubiquitin-Conjugating Enzymes Ubc1 and Ubc4 Mediate the Turnover of Hap4, a Master Regulator of Mitochondrial Biogenesis in Saccharomyces cerevisiae. Microorganisms 2022; 10:microorganisms10122370. [PMID: 36557625 PMCID: PMC9787919 DOI: 10.3390/microorganisms10122370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial biogenesis is tightly regulated in response to extracellular and intracellular signals, thereby adapting yeast cells to changes in their environment. The Hap2/3/4/5 complex is a master transcriptional regulator of mitochondrial biogenesis in yeast. Hap4 is the regulatory subunit of the complex and exhibits increased expression when the Hap2/3/4/5 complex is activated. In cells grown under glucose derepression conditions, both the HAP4 transcript level and Hap4 protein level are increased. As part of an inter-organellar signaling mechanism coordinating gene expression between the mitochondrial and nuclear genomes, the activity of the Hap2/3/4/5 complex is reduced in respiratory-deficient cells, such as ρ0 cells lacking mitochondrial DNA, as a result of reduced Hap4 protein levels. However, the underlying mechanism is unclear. Here, we show that reduced HAP4 expression in ρ0 cells is mediated through both transcriptional and post-transcriptional mechanisms. We show that loss of mitochondrial DNA increases the turnover of Hap4, which requires the 26S proteasome and ubiquitin-conjugating enzymes Ubc1 and Ubc4. Stabilization of Hap4 in the ubc1 ubc4 double mutant leads to increased expression of Hap2/3/4/5-target genes. Our results indicate that mitochondrial biogenesis in yeast is regulated by the functional state of mitochondria partly through ubiquitin/proteasome-dependent turnover of Hap4.
Collapse
|
47
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
48
|
Tayyab M, Xie P, Sami MA, Raji H, Lin Z, Meng Z, Mahmoodi SR, Javanmard M. A portable analog front-end system for label-free sensing of proteins using nanowell array impedance sensors. Sci Rep 2022; 12:20119. [PMID: 36418852 PMCID: PMC9684124 DOI: 10.1038/s41598-022-23286-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Proteins are useful biomarkers for a wide range of applications such as cancer detection, discovery of vaccines, and determining exposure to viruses and pathogens. Here, we present a low-noise front-end analog circuit interface towards development of a portable readout system for the label-free sensing of proteins using Nanowell array impedance sensing with a form factor of approximately 35cm2. The electronic interface consists of a low-noise lock-in amplifier enabling reliable detection of changes in impedance as low as 0.1% and thus detection of proteins down to the picoMolar level. The sensitivity of our system is comparable to that of a commercial bench-top impedance spectroscope when using the same sensors. The aim of this work is to demonstrate the potential of using impedance sensing as a portable, low-cost, and reliable method of detecting proteins, thus inching us closer to a Point-of-Care (POC) personalized health monitoring system. We have demonstrated the utility of our system to detect antibodies at various concentrations and protein (45 pM IL-6) in PBS, however, our system has the capability to be used for assaying various biomarkers including proteins, cytokines, virus molecules and antibodies in a portable setting.
Collapse
Affiliation(s)
- Muhammad Tayyab
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Pengfei Xie
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Muhammad Ahsan Sami
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Hassan Raji
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Zhongtian Lin
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Zhuolun Meng
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Seyed Reza Mahmoodi
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA.
| |
Collapse
|
49
|
Shah I, Bundy J, Chambers B, Everett LJ, Haggard D, Harrill J, Judson RS, Nyffeler J, Patlewicz G. Navigating Transcriptomic Connectivity Mapping Workflows to Link Chemicals with Bioactivities. Chem Res Toxicol 2022; 35:1929-1949. [PMID: 36301716 PMCID: PMC10483698 DOI: 10.1021/acs.chemrestox.2c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Screening new compounds for potential bioactivities against cellular targets is vital for drug discovery and chemical safety. Transcriptomics offers an efficient approach for assessing global gene expression changes, but interpreting chemical mechanisms from these data is often challenging. Connectivity mapping is a potential data-driven avenue for linking chemicals to mechanisms based on the observation that many biological processes are associated with unique gene expression signatures (gene signatures). However, mining the effects of a chemical on gene signatures for biological mechanisms is challenging because transcriptomic data contain thousands of noisy genes. New connectivity mapping approaches seeking to distinguish signal from noise continue to be developed, spurred by the promise of discovering chemical mechanisms, new drugs, and disease targets from burgeoning transcriptomic data. Here, we analyze these approaches in terms of diverse transcriptomic technologies, public databases, gene signatures, pattern-matching algorithms, and statistical evaluation criteria. To navigate the complexity of connectivity mapping, we propose a harmonized scheme to coherently organize and compare published workflows. We first standardize concepts underlying transcriptomic profiles and gene signatures based on various transcriptomic technologies such as microarrays, RNA-Seq, and L1000 and discuss the widely used data sources such as Gene Expression Omnibus, ArrayExpress, and MSigDB. Next, we generalize connectivity mapping as a pattern-matching task for finding similarity between a query (e.g., transcriptomic profile for new chemical) and a reference (e.g., gene signature of known target). Published pattern-matching approaches fall into two main categories: vector-based use metrics like correlation, Jaccard index, etc., and aggregation-based use parametric and nonparametric statistics (e.g., gene set enrichment analysis). The statistical methods for evaluating the performance of different approaches are described, along with comparisons reported in the literature on benchmark transcriptomic data sets. Lastly, we review connectivity mapping applications in toxicology and offer guidance on evaluating chemical-induced toxicity with concentration-response transcriptomic data. In addition to serving as a high-level guide and tutorial for understanding and implementing connectivity mapping workflows, we hope this review will stimulate new algorithms for evaluating chemical safety and drug discovery using transcriptomic data.
Collapse
Affiliation(s)
- Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Joseph Bundy
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bryant Chambers
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Logan J. Everett
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Derik Haggard
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Johanna Nyffeler
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, Tennessee, 37831, US
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
50
|
Carrillo-Garmendia A, Martinez-Ortiz C, Canizal-Garcia M, González-Hernández JC, Arvizu-Medrano SM, Gracida J, Madrigal-Perez LA, Regalado-Gonzalez C. Cytotoxicity of quercetin is related to mitochondrial respiration impairment in Saccharomyces cerevisiae. Yeast 2022; 39:617-628. [PMID: 36285422 DOI: 10.1002/yea.3818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 01/28/2023] Open
Abstract
Quercetin is a flavonol ubiquitously present in fruits and vegetables that shows a potential therapeutic use in non-transmissible chronic diseases, such as cancer and diabetes. Although this phytochemical has shown promising health benefits, the molecular mechanism behind this compound is still unclear. Interestingly, quercetin displays toxic properties against phylogenetically distant organisms such as bacteria and eukaryotic cells, suggesting that its molecular target resides on a highly conserved pathway. The cytotoxicity of quercetin could be explained by energy depletion occasioned by mitochondrial respiration impairment and its concomitant pleiotropic effect. Thereby, the molecular basis of quercetin cytotoxicity could shed light on potential molecular mechanisms associated with its health benefits. Nonetheless, the evidence supporting this hypothesis is still lacking. Thus, this study aimed to evaluate whether quercetin supplementation affects mitochondrial respiration and whether this is related to quercetin cytotoxicity. Saccharomyces cerevisiae was used as a study model to assess the effect of quercetin on energetic metabolism. Herein, we provide evidence that quercetin supplementation: (1) decreased the exponential growth of S. cerevisiae in a glucose-dependent manner; (2) affected diauxic growth in a similar way to antimycin A (complex III inhibitor of electron transport chain); (3) suppressed the growth of S. cerevisiae cultures supplemented with non-fermentable carbon sources (glycerol and lactate); (4) promoted a glucose-dependent inhibition of the basal, maximal, and ATP-linked respiration; (5) diminished complex II and IV activities. Altogether, these data indicate that quercetin disturbs mitochondrial respiration between the ubiquinone pool and cytochrome c, and this phenotype is associated with its cytotoxic properties.
Collapse
Affiliation(s)
| | - Cecilia Martinez-Ortiz
- Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, Qro, Mexico
| | - Melina Canizal-Garcia
- Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Morelia, Michoacán, Mexico
| | | | | | - Jorge Gracida
- Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, Qro, Mexico
| | - Luis Alberto Madrigal-Perez
- Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Michoacán, Mexico
| | | |
Collapse
|