1
|
Li Y, Zhang H, Zeng W, Miao Y, Sun S, Zhang Y, Xiong B. Intermediate Filament Protein BFSP1 Maintains Oocyte Asymmetric Division by Modulating Spindle Length. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504066. [PMID: 40349178 DOI: 10.1002/advs.202504066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Indexed: 05/14/2025]
Abstract
The cytoskeleton is composed of microtubules, microfilaments, and intermediate filaments in cells. While the functions of microtubules and microfilaments have been well elucidated, the roles of intermediate filaments and associated proteins remain largely unknown, especially in meiosis. BFSP1 is an intermediate filament protein mainly expressed in the eye lens to play important roles in the development of congenital cataract. Here, we document that BFSP1 functions as a spindle regulator to drive the oocyte asymmetric division. Specifically, we found that BFSP1 distributed on the spindle apparatus during oocyte meiotic maturation. Depletion of BFSP1 resulted in symmetric division of oocytes, accompanied by the formation of elongated spindles at metaphase I and anaphase/telophase I stages. In addition, immunoprecipitation combined with mass spectrometry analysis identified MAP1B, a microtubule-associated protein, as an interacting partner of BFSP1. Depletion or mutation of MAP1B phenocopied the meiotic defects observed in BFSP1-depleted oocytes, and expression of exogenous MAP1B-EGFP in BFSP1-depleted oocytes recovered the spindle length and asymmetric division. We further determined that BFSP1 recruited molecular chaperone HSP90α on the spindle to stabilize MAP1B, thereby controlling the spindle length. To sum up, our findings reveal a unique meiotic role for BFSP1 in the regulation of spindle dynamics and oocyte asymmetric division.
Collapse
Affiliation(s)
- Yu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanwen Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenjun Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaochen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Kruize Z, van Campen I, Vermunt L, Geerse O, Stoffels J, Teunissen C, van Zuylen L. Delirium pathophysiology in cancer: neurofilament light chain biomarker - narrative review. BMJ Support Palliat Care 2025; 15:319-325. [PMID: 38290815 DOI: 10.1136/spcare-2024-004781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Background Delirium is a debilitating disorder with high prevalence near the end of life, impacting quality of life of patients and their relatives. Timely recognition of delirium can lead to prevention and/or better treatment of delirium. According to current hypotheses delirium is thought to result from aberrant inflammation and neurotransmission, with a possible role for neuronal damage. Neurofilament light chain (NfL) is a protein biomarker in body fluids that is unique to neurons, with elevated levels when neurons are damaged, making NfL a viable biomarker for early detection of delirium. This narrative review summarises current research regarding the pathophysiology of delirium and the potential of NfL as a susceptibility biomarker for delirium and places this in the context of care for patients with advanced cancer. Results Six studies were conducted exclusively on NfL in patients with delirium. Three of these studies demonstrated that high plasma NfL levels preoperatively predict delirium in older adult patients postoperatively. Two studies demonstrated that high levels of NfL in intensive care unit (ICU) patients are correlated with delirium duration and severity. One study found that incident delirium in older adult patients was associated with increased median NfL levels during hospitalisation. Conclusions Targeted studies are required to understand if NfL is a susceptibility biomarker for delirium in patients with advanced cancer. In this palliative care context, better accessible matrices, such as saliva or urine, would be helpful for repetitive testing. Improvement of biological measures for delirium can lead to improved early recognition and lay the groundwork for novel therapeutic strategies.
Collapse
Affiliation(s)
- Zita Kruize
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Isa van Campen
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Department of Laboratory medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Olaf Geerse
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Josephine Stoffels
- Department of Internal Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Department of Laboratory medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lia van Zuylen
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Aburashed R, Eghzawi A, Long D, Pace R, Madha A, Cote J. Neurofilament Light Chain and Multiple Sclerosis: Building a Neurofoundational Model of Biomarkers and Diagnosis. Neurol Int 2025; 17:56. [PMID: 40278427 PMCID: PMC12029522 DOI: 10.3390/neurolint17040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Neurofilament light chain (NfL), an abundant cytoskeletal protein in neurons, has emerged as a promising serum biomarker that indicates non-specific neuronal damage secondary to various neurologic diseases, including multiple sclerosis (MS). Emerging evidence suggests that serum NfL levels correlate with future disability, brain atrophy, predict new disease activity, and decrease in response to various disease-modifying therapies. As research continues to validate NfL's potential role in clinical practice, the need for a practical model to conceptualize and visualize its relevance to MS pathology becomes evident-not only for healthcare providers but also for patients. To address this, we propose the Neurofoundational Model (NFM), which likens a neuron to a home, with various parts of the home representing distinct regions of the central nervous system (CNS). In this model, the home (neuron) experiences scenarios such as a fire, an earthquake, and a slow flood, representing distinct MS disease states. A fire illustrates an MS relapse with good recovery, where serum NfL levels rise during the relapse and subsequently return near baseline. An earthquake represents an MS relapse with poor recovery, where NfL levels increase and remain elevated above baseline. Finally, a slow flood depicts MS in progressive stages, characterized by sustained and gradually increasing serum NfL levels without abrupt clinical changes. This approach offers a clear and relatable visualization for clinicians and patients alike, illustrating the dynamics of serum NfL levels during CNS damage caused by demyelination. By integrating this model into clinical practice, we aim to enhance understanding and communication regarding the role of NfL in MS pathology and its potential utility as a biomarker.
Collapse
Affiliation(s)
- Rany Aburashed
- Insight Hospital and Medical Center, Chicago, IL 60616, USA
- Neurogen Biomarking LLC, Dover, DE 19901, USA
| | - Ansam Eghzawi
- Insight Hospital and Medical Center, Chicago, IL 60616, USA
- Neurogen Biomarking LLC, Dover, DE 19901, USA
| | | | | | - Ali Madha
- Insight Hospital and Medical Center, Chicago, IL 60616, USA
- Insight Institute of Neurology and Neurosurgery, Flint, MI 48507, USA
| | | |
Collapse
|
4
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Tommasi C, Yogev O, Yee MB, Drousioti A, Jones M, Ring A, Singh M, Dry I, Atkins O, Naeem AS, Kriplani N, Akbar AN, Haas JG, O'Toole EA, Kinchington PR, Breuer J. Upregulation of keratin 15 is required for varicella-zoster virus replication in keratinocytes and is attenuated in the live attenuated vOka vaccine strain. Virol J 2024; 21:253. [PMID: 39385182 PMCID: PMC11465976 DOI: 10.1186/s12985-024-02514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/22/2024] [Indexed: 10/11/2024] Open
Abstract
Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterised by epidermal virus replication in skin and mucosa and the formation of blisters. We have previously shown that VZV infection has a profound effect on keratinocyte differentiation, altering the normal pattern of epidermal gene expression. In particular, VZV infection reduces expression of suprabasal keratins 1 and 10 and desmosomal proteins, disrupting epidermal structure to promote expression of a blistering phenotype. Here, we extend these findings to show that VZV infection upregulates the expression of keratin 15 (KRT15), a marker expressed by basal epidermal keratinocytes and hair follicles stem cells. We demonstrate that KRT15 is essential for VZV replication in the skin, since downregulation of KRT15 inhibits VZV replication in keratinocytes, while KRT15 exogenous overexpression supports viral replication. Importantly, our data show that VZV upregulation of KRT15 depends on the expression of the VZV immediate early gene ORF62. ORF62 is the only regulatory gene that is mutated in the live attenuated VZV vaccine and contains four of the five fixed mutations present in the VZV Oka vaccine. Our data indicate that the mutated vaccine ORF62 is not capable of upregulating KRT15, suggesting that this may contribute to the vaccine attenuation in skin. Taken together our data present a novel association between VZV and KRT15, which may open a new therapeutic window for a topical targeting of VZV replication in the skin via modulation of KRT15.
Collapse
Affiliation(s)
- Cristina Tommasi
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK
| | - Ohad Yogev
- Infection and Immunity Department, University College London, London, UK
- Eleven Therapeutics, Cambridge, UK
| | - Michael B Yee
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, US
- Krystalbio Inc, Pittsburgh, US
| | - Andriani Drousioti
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK
| | - Meleri Jones
- Infection and Immunity Department, University College London, London, UK
- UKHSA, Porton Down, UK
| | - Alice Ring
- Infection and Immunity Department, University College London, London, UK
| | | | - Inga Dry
- Infection and Immunity Department, University College London, London, UK
- The Roslin Institute, Edinburgh, UK
| | - Oscar Atkins
- Infection and Immunity Department, University College London, London, UK
- Francis Crick Institute, London, UK
| | - Aishath S Naeem
- Infection and Immunity Department, University College London, London, UK
- Dana-Farber Cancer Institute, Boston, US
| | - Nisha Kriplani
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Arne N Akbar
- Experimental & Translational Medicine, Division of Medicine, University College London, London, UK
| | - Jürgen G Haas
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, US
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK.
| |
Collapse
|
6
|
Krawczuk D, Kulczyńska-Przybik A, Mroczko B. Clinical Application of Blood Biomarkers in Neurodegenerative Diseases-Present and Future Perspectives. Int J Mol Sci 2024; 25:8132. [PMID: 39125699 PMCID: PMC11311320 DOI: 10.3390/ijms25158132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases are a group of complex diseases characterized by a progressive loss of neurons and degeneration in different areas of the nervous system. They share similar mechanisms, such as neuroinflammation, oxidative stress, and mitochondrial injury, resulting in neuronal loss. One of the biggest challenges in diagnosing neurodegenerative diseases is their heterogeneity. Clinical symptoms are usually present in the advanced stages of the disease, thus it is essential to find optimal biomarkers that would allow early diagnosis. Due to the development of ultrasensitive methods analyzing proteins in other fluids, such as blood, huge progress has been made in the field of biomarkers for neurodegenerative diseases. The application of protein biomarker measurement has significantly influenced not only diagnosis but also prognosis, differentiation, and the development of new therapies, as it enables the recognition of early stages of disease in individuals with preclinical stages or with mild symptoms. Additionally, the introduction of biochemical markers into routine clinical practice may improve diagnosis and allow for a stratification group of people with higher risk, as well as an extension of well-being since a treatment could be started early. In this review, we focus on blood biomarkers, which could be potentially useful in the daily medical practice of selected neurodegenerative diseases.
Collapse
Affiliation(s)
- Daria Krawczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland
| |
Collapse
|
7
|
Jeong S, Ha NC. Deciphering vimentin assembly: Bridging theoretical models and experimental approaches. Mol Cells 2024; 47:100080. [PMID: 38871297 PMCID: PMC11267000 DOI: 10.1016/j.mocell.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate assembly process of vimentin intermediate filaments (IFs), key components of the eukaryotic cytoskeleton, has yet to be elucidated. In this work, we investigated the transition from soluble tetrameric vimentin units to mature 11-nm tubular filaments, addressing a significant gap in the understanding of IF assembly. Through a combination of theoretical modeling and analysis of experimental data, we propose a novel assembly sequence, emphasizing the role of helical turns and gap filling by soluble tetramers. Our findings shed light on the unique structural dynamics of vimentin and suggest broader implications for the general principles of IF formation.
Collapse
Affiliation(s)
- Soyeon Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconversions, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food and Bioconversions, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Luo W, Egger M, Cruz-Ochoa N, Tse A, Maloveczky G, Tamás B, Lukacsovich D, Seng C, Amrein I, Lukacsovich T, Wolfer D, Földy C. Activation of feedforward wiring in adult hippocampal neurons by the basic-helix-loop-helix transcription factor Ascl4. PNAS NEXUS 2024; 3:pgae174. [PMID: 38711810 PMCID: PMC11071515 DOI: 10.1093/pnasnexus/pgae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.
Collapse
Affiliation(s)
- Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Matteo Egger
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Alice Tse
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Gyula Maloveczky
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Bálint Tamás
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
| | - Tamás Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Wolfer
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
- Institute of Human Movement Sciences and Sport, D-HEST, ETH Zürich, Zürich 8057, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
9
|
Lista S, Mapstone M, Caraci F, Emanuele E, López-Ortiz S, Martín-Hernández J, Triaca V, Imbimbo C, Gabelle A, Mielke MM, Nisticò R, Santos-Lozano A, Imbimbo BP. A critical appraisal of blood-based biomarkers for Alzheimer's disease. Ageing Res Rev 2024; 96:102290. [PMID: 38580173 DOI: 10.1016/j.arr.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-β (Aβ) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aβ1-42, the Aβ1-42/Aβ1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aβ1-42/Aβ1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome 00015, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | - Audrey Gabelle
- Memory Resources and Research Center, Montpellier University of Excellence i-site, Montpellier 34295, France.
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome 00133, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome 00143, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| |
Collapse
|
10
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
11
|
De Conto F. Avian Influenza A Viruses Modulate the Cellular Cytoskeleton during Infection of Mammalian Hosts. Pathogens 2024; 13:249. [PMID: 38535592 PMCID: PMC10975405 DOI: 10.3390/pathogens13030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 02/11/2025] Open
Abstract
Influenza is one of the most prevalent causes of death worldwide. Influenza A viruses (IAVs) naturally infect various avian and mammalian hosts, causing seasonal epidemics and periodic pandemics with high morbidity and mortality. The recent SARS-CoV-2 pandemic showed how an animal virus strain could unpredictably acquire the ability to infect humans with high infection transmissibility. Importantly, highly pathogenic avian influenza A viruses (AIVs) may cause human infections with exceptionally high mortality. Because these latter infections pose a pandemic potential, analyzing the ecology and evolution features of host expansion helps to identify new broad-range therapeutic strategies. Although IAVs are the prototypic example of molecular strategies that capitalize on their coding potential, the outcome of infection depends strictly on the complex interactions between viral and host cell factors. Most of the studies have focused on the influenza virus, while the contribution of host factors remains largely unknown. Therefore, a comprehensive understanding of mammals' host response to AIV infection is crucial. This review sheds light on the involvement of the cellular cytoskeleton during the highly pathogenic AIV infection of mammalian hosts, allowing a better understanding of its modulatory role, which may be relevant to therapeutic interventions for fatal disease prevention and pandemic management.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Viale Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
12
|
Silverman JB, Vega PN, Tyska MJ, Lau KS. Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. Annu Rev Physiol 2024; 86:479-504. [PMID: 37863104 PMCID: PMC11193883 DOI: 10.1146/annurev-physiol-042022-030310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.
Collapse
Affiliation(s)
- Jennifer B Silverman
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Paige N Vega
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Matthew J Tyska
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| |
Collapse
|
13
|
Truong HP, Saleh OA. Magnetic tweezers characterization of the entropic elasticity of intrinsically disordered proteins and peptoids. Methods Enzymol 2024; 694:209-236. [PMID: 38492952 DOI: 10.1016/bs.mie.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Understanding the conformational behavior of biopolymers is essential to unlocking knowledge of their biophysical mechanisms and functional roles. Single-molecule force spectroscopy can provide a unique perspective on this by exploiting entropic elasticity to uncover key biopolymer structural parameters. A particularly powerful approach involves the use of magnetic tweezers, which can easily generate lower stretching forces (0.1-20 pN). For forces at the low end of this range, the elastic response of biopolymers is sensitive to excluded volume effects, and they can be described by Pincus blob elasticity model that allow robust extraction of the Flory polymer scaling exponent. Here, we detail protocols for the use of magnetic tweezers for force-extension measurements of intrinsically disordered proteins and peptoids. We also discuss procedures for fitting low-force elastic curves to the predictions of polymer physics models to extract key conformational parameters.
Collapse
Affiliation(s)
- Hoang P Truong
- Materials Department, University of California, Santa Barbara, CA, United States
| | - Omar A Saleh
- Materials Department, University of California, Santa Barbara, CA, United States; Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, CA, United States; Physics Department, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
14
|
Coulombe PA, Pineda CM, Jacob JT, Nair RR. Nuclear roles for non-lamin intermediate filament proteins. Curr Opin Cell Biol 2024; 86:102303. [PMID: 38113712 PMCID: PMC11056187 DOI: 10.1016/j.ceb.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
The nuclear-localized lamins have long been thought to be the only intermediate filaments (IFs) with an impact on the architecture, properties, and functions of the nucleus. Recent studies, however, uncovered significant roles for IFs other than lamins (here referred to as "non-lamin IFs") in regulating key properties of the nucleus in various cell types and biological settings. In the cytoplasm, IFs often occur in the perinuclear space where they contribute to local stiffness and impact the shape and/or the integrity of the nucleus, particularly in cells under stress. In addition, selective non-lamin IF proteins can occur inside the nucleus where they partake in fundamental processes including nuclear architecture and chromatin organization, regulation of gene expression, cell cycle progression, and the repair of DNA damage. This text reviews the evidence supporting a role for non-lamin IF proteins in regulating various properties of the nucleus and highlights opportunities for further study.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christopher M Pineda
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin T Jacob
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, DC 20024, USA
| | - Raji R Nair
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Zhou Z, Jiang Q, Zheng Y, Hao C, Ding S, Guo M, Zhao Y, Liu G, Miao S. Proteomics-Based Investigation of Different Live Prey Administered to Freshwater Dark Sleeper ( Odontobutis potamophila): Examining the Effects on Glycolipids and Energy Metabolism. Metabolites 2024; 14:85. [PMID: 38392977 PMCID: PMC10890520 DOI: 10.3390/metabo14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 02/25/2024] Open
Abstract
Live prey is characterized by balanced rich nutrients and high palatability and is widely used for the seedling cultivation of freshwater dark sleeper (Odontobutis potamophila) larvae. In this study, we evaluated the effects of four groups of paired feeding regimens (group C (Daphnia magna), group L (Limnodrilus hoffmeisteri), group H (Hypophthalmichthys molitrix fry), and group M (mixed groups C, L, and H)) on glycolipid and energy metabolism in O. potamophila larvae. We observed that fatty acid synthase (FAS) and sterol-regulatory-element-binding protein-1 (SREBP-1) mRNA levels were significantly lower in group H when compared to mRNA levels in the other three groups (p < 0.05) and that carnitine palmitoyltransferase 1α (CPT1-α) mRNA levels were significantly lower in group L when compared to group M (p < 0.05). Relative glucokinase (GK) expression levels were significantly lower in group M when compared to the other three groups (p < 0.05). Using proteomics, we analyzed and compared groups H and L and identified 457 differentially expressed proteins (DEPs), of which 151 were significantly up-regulated and 306 were significantly down-regulated. In the comparison of group M with groups C, L, and H, we found significant enrichment in glycolytic processes, the endoplasmic reticulum lumen, NAD binding, intermediate filaments, and nutrient reservoir activity. Our results provide a theoretical guidance for bait selection during larvae cultivation stages in carnivorous fish.
Collapse
Affiliation(s)
- Zihan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
- Low-Temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China
| | - You Zheng
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
- Low-Temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China
| | - Chen Hao
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
- Low-Temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China
| | - Shuyan Ding
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
- Low-Temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China
| | - Mengya Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Guoxing Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
- Low-Temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China
| | - Shuyan Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Yokokura TJ, Duan C, Ding EA, Kumar S, Wang R. Effects of Ionic Strength on the Morphology, Scattering, and Mechanical Response of Neurofilament-Derived Protein Brushes. Biomacromolecules 2024; 25:328-337. [PMID: 38052005 PMCID: PMC10872360 DOI: 10.1021/acs.biomac.3c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Protein brushes not only play a key role in the functionality of neurofilaments but also have wide applications in biomedical materials. Here, we investigate the effect of ionic strength on the morphology of protein brushes using continuous-space self-consistent field theory. A coarse-grained multiblock charged macromolecular model is developed to capture the chemical identity of amino acid sequences. For neurofilament heavy (NFH) brushes at pH 2.4, we predict three morphological regimes: swollen brushes, condensed brushes, and coexisting brushes, which consist of both a dense inner layer and a diffuse outer layer. The brush height predicted by our theory is in good agreement with the experimental data for a wide range of ionic strengths. The dramatic height decrease is a result of the electrostatic screening-induced transition from the overlapping state to the isolated state of the coexisting brushes. We also studied the evolution of the scattering and mechanical responses accompanying the morphological change. The oscillation in the reflectivity spectra characterizes the existence and microstructure of the inner condensed layer, whereas the shoulder in the force spectra signifies a swollen morphology.
Collapse
Affiliation(s)
- Takashi J Yokokura
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chao Duan
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Hosseinalizadeh H, Hussain QM, Poshtchaman Z, Ahsan M, Amin AH, Naghavi S, Mahabady MK. Emerging insights into keratin 7 roles in tumor progression and metastasis of cancers. Front Oncol 2024; 13:1243871. [PMID: 38260844 PMCID: PMC10800941 DOI: 10.3389/fonc.2023.1243871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Keratin 7 (KRT7), also known as cytokeratin-7 (CK-7) or K7, constitutes the principal constituent of the intermediate filament cytoskeleton and is primarily expressed in the simple epithelia lining the cavities of the internal organs, glandular ducts, and blood vessels. Various pathological conditions, including cancer, have been linked to the abnormal expression of KRT7. KRT7 overexpression promotes tumor progression and metastasis in different human cancers, although the mechanisms of these processes caused by KRT7 have yet to be established. Studies have indicated that the suppression of KRT7 leads to rapid regression of tumors, highlighting the potential of KRT7 as a novel candidate for therapeutic interventions. This review aims to delineate the various roles played by KRT7 in the progression and metastasis of different human malignancies and to investigate its prognostic significance in cancer treatment. Finally, the differential diagnosis of cancers based on the KRT7 is emphasized.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zahra Poshtchaman
- Department of Nursing, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | | | - Ali H. Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Soroush Naghavi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Kim HY, Cooley V, Kim EJ, Li S, Lee JM, Sheyfer D, Liu W, Klein OD, Joester D, Jung HS. Adult dental epithelial stem cell-derived organoids deposit hydroxylapatite biomineral. Int J Oral Sci 2023; 15:55. [PMID: 38062012 PMCID: PMC10703793 DOI: 10.1038/s41368-023-00257-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Ameloblasts are specialized cells derived from the dental epithelium that produce enamel, a hierarchically structured tissue comprised of highly elongated hydroxylapatite (OHAp) crystallites. The unique function of the epithelial cells synthesizing crystallites and assembling them in a mechanically robust structure is not fully elucidated yet, partly due to limitations with in vitro experimental models. Herein, we demonstrate the ability to generate mineralizing dental epithelial organoids (DEOs) from adult dental epithelial stem cells (aDESCs) isolated from mouse incisor tissues. DEOs expressed ameloblast markers, could be maintained for more than five months (11 passages) in vitro in media containing modulators of Wnt, Egf, Bmp, Fgf and Notch signaling pathways, and were amenable to cryostorage. When transplanted underneath murine kidney capsules, organoids produced OHAp crystallites similar in composition, size, and shape to mineralized dental tissues, including some enamel-like elongated crystals. DEOs are thus a powerful in vitro model to study mineralization process by dental epithelium, which can pave the way to understanding amelogenesis and developing regenerative therapy of enamel.
Collapse
Affiliation(s)
| | - Victoria Cooley
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Dina Sheyfer
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Wenjun Liu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
19
|
Li P, Rietscher K, Jopp H, Magin TM, Omary MB. Posttranslational modifications of keratins and their associated proteins as therapeutic targets in keratin diseases. Curr Opin Cell Biol 2023; 85:102264. [PMID: 37925932 DOI: 10.1016/j.ceb.2023.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 11/07/2023]
Abstract
The keratin cytoskeleton protects epithelia against mechanical, nonmechanical, and physical stresses, and participates in multiple signaling pathways that regulate cell integrity and resilience. Keratin gene mutations cause multiple rare monoallelic epithelial diseases termed keratinopathies, including the skin diseases Epidermolysis Bullosa Simplex (EBS) and Pachyonychia Congenita (PC), with limited available therapies. The disease-related keratin mutations trigger posttranslational modifications (PTMs) in keratins and their associated proteins that can aggravate the disease. Recent findings of drug high-throughput screening have led to the identification of compounds that may be repurposed, since they are used for other human diseases, to treat keratinopathies. These drugs target unique PTM pathways and sites, including phosphorylation and acetylation of keratins and their associated proteins, and have shed insights into keratin regulation and interactions. They also offer the prospect of testing the use of drug mixtures, with the long view of possible beneficial human use coupled with increased efficacy and lower side effects.
Collapse
Affiliation(s)
- Pei Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Katrin Rietscher
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Henriette Jopp
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Thomas M Magin
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany.
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
20
|
Xu Z, Xu X, Yang B, Mi Y, Wang J. 3D sheep rumen epithelial structures driven from single cells in vitro. Vet Res 2023; 54:104. [PMID: 37946298 PMCID: PMC10636852 DOI: 10.1186/s13567-023-01234-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 11/12/2023] Open
Abstract
Ruminants play a vital economic role as livestock, providing high-quality protein for humans. At present, 3D-cultured ruminant abomasum and intestinal organoids have been successfully established to study host and pathogen interaction. The rumen is a unique digestive organ of ruminants that occupies 70% of the volume of the digestive tract and its microbiota can decompose lignocellulose to support animal growth. Here we report a method for culturing rumen epithelial organoids. We found that single rumen epithelial cells form self-organized 3D structures representative of typical stratified squamous epithelium, which is similar to rumen epithelium. EGF, Noggin, Wnt3a, IGF-1, and FGF-10 significantly enhanced the seeding efficiency of organoids. Moreover, the inclusion of CHIR-99021, A83-01, SB202190, and Y-27632 is crucial for organoid formation and maintenance. Importantly, we demonstrate that rumen epithelial cells retain their ability to form organoids after passage, cryopreservation, and resuscitation. The rumen epithelial organoids express rumen cell type-specific genes, uptake fatty acids, and generate 2D cultures. In summary, our data demonstrate that it is feasible to establish organoids from single rumen epithelial cells, which is a novel in vitro system that may reduce the use of experimental animals.
Collapse
Affiliation(s)
- Zebang Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Xinxin Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yuling Mi
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Zhulina EB, Borisov OV. Cylindrical brushes with ionized side chains: Scaling theory revisited. SOFT MATTER 2023; 19:8440-8452. [PMID: 37881868 DOI: 10.1039/d3sm00727h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We revisit the classic scaling model of a cylindrical polyelectrolyte (PE) brush focusing on molecular brushes with stiff backbones and dispersions of polymer-decorated nanorods. Based on the blob representation we demonstrate that similarly to the case of planar PE brushes, separation of intra- and intermolecular repulsions between charges leads to novel scaling regimes for cylindrical PE brushes in salt-added solution and a sharper decrease in its thickness versus salt concentration dependence. These theoretical predictions may inspire further comprehensive experimental research and computer simulations of synthetic and biopolyelectrolyte cylindrical brushes.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia.
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia.
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France
| |
Collapse
|
22
|
Ghatak S, Hemann C, Boslett J, Singh K, Sharma A, El Masry MS, Abouhashem AS, Ghosh N, Mathew-Steiner SS, Roy S, Zweier JL, Sen CK. Bacterial Pyocyanin Inducible Keratin 6A Accelerates Closure of Epithelial Defect under Conditions of Mitochondrial Dysfunction. J Invest Dermatol 2023; 143:2052-2064.e5. [PMID: 37044260 PMCID: PMC10529774 DOI: 10.1016/j.jid.2023.03.1671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023]
Abstract
Repair of epithelial defect is complicated by infection and related metabolites. Pyocyanin (PYO) is one such metabolite that is secreted during Pseudomonas aeruginosa infection. Keratinocyte (KC) migration is required for the closure of skin epithelial defects. This work sought to understand PYO-KC interaction and its significance in tissue repair. Stable Isotope Labeling by Amino acids in Cell culture proteomics identified mitochondrial dysfunction as the top pathway responsive to PYO exposure in human KCs. Consistently, functional studies showed mitochondrial stress, depletion of reducing equivalents, and adenosine triphosphate. Strikingly, despite all stated earlier, PYO markedly accelerated KC migration. Investigation of underlying mechanisms revealed, to our knowledge, a previously unreported function of keratin 6A in KCs. Keratin 6A was PYO inducible and accelerated closure of epithelial defect. Acceleration of closure was associated with poor quality healing, including compromised expression of apical junction proteins. This work recognizes keratin 6A for its role in enhancing KC migration under conditions of threat posed by PYO. Qualitatively deficient junctional proteins under conditions of defensive acceleration of KC migration explain why an infected wound close with deficient skin barrier function as previously reported.
Collapse
Affiliation(s)
- Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Craig Hemann
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - James Boslett
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Anu Sharma
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Ahmed Safwat Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Shomita S Mathew-Steiner
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
23
|
Rickabaugh E, Weatherston D, Harris TI, Jones JA, Vargis E. Engineering a Biomimetic In Vitro Model of Bruch's Membrane Using Hagfish Slime Intermediate Filament Proteins. ACS Biomater Sci Eng 2023; 9:5051-5061. [PMID: 37458693 DOI: 10.1021/acsbiomaterials.3c00411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bruch's membrane resides in the subretinal tissue and regulates the flow of nutrients and waste between the retinal pigment epithelial (RPE) and vascular layers of the eye. With age, Bruch's membrane becomes thicker, stiffer, and less permeable, which impedes its function as a boundary layer in the subretina. These changes contribute to pathologies such as age-related macular degeneration (AMD). To better understand how aging in Bruch's membrane affects surrounding tissues and to determine the relationship between aging and disease, an in vitro model of Bruch's membrane is needed. An accurate model of Bruch's membrane must be a proteinaceous, semipermeable, and nonporous biomaterial with similar mechanical properties to in vivo conditions. Additionally, this model must support RPE cell growth. While models of subretinal tissue exist, they typically differ from in vivo Bruch's membrane in one or more of these properties. This study evaluates the capability of membranes created from recombinant hagfish intermediate filament (rHIF) proteins to accurately replicate Bruch's membrane in an in vitro model of the subretinal tissue. The physical characteristics of these rHIF membranes were evaluated using mechanical testing, permeability assays, brightfield microscopy, and scanning electron microscopy. The capacity of the membranes to support RPE cell culture was determined using brightfield and fluorescent microscopy, as well as immunocytochemical staining. This study demonstrates that rHIF protein membranes are an appropriate biomaterial to accurately mimic both healthy and aged Bruch's membrane for in vitro modeling of the subretinal tissue.
Collapse
Affiliation(s)
- Emilee Rickabaugh
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| | - Dillon Weatherston
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| | - Thomas I Harris
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Justin A Jones
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| |
Collapse
|
24
|
Vermeersch AS, Ali M, Gansemans Y, Van Nieuwerburgh F, Geldhof P, Ducatelle R, Deforce D, Callens J, Opsomer G. Severe udder cleft dermatitis lesion transcriptomics points to an impaired skin barrier, defective wound repair and a dysregulated inflammatory response as key elements in the pathogenesis. PLoS One 2023; 18:e0288347. [PMID: 37486897 PMCID: PMC10365316 DOI: 10.1371/journal.pone.0288347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
This study is the first to investigate the transcriptomic changes occurring in severe udder cleft dermatitis lesions (UCD) in Holstein-Friesian cows. An examination of the gene expression levels in natural UCD lesions and healthy udder skin through RNA Seq-Technology provided a deeper insight into the inflammatory pathways associated with this disease. A clear distinction between the gene expression patterns of UCD lesions and healthy skin was shown in the principal component analysis. Genes coding for inflammatory molecules were upregulated such as the chemokines C-X-C motif ligand 2 (CXCL2), 5 (CXCL5) and 8 (CXCL8), and C-C motif ligand 11 (CCL11). Moreover, the genes coding for the multifunctional molecules ADAM12 and SLPI were amongst the highest upregulated ones, whereas the most downregulated genes included the ones coding for keratins and keratin-associated molecules. Predominantly inflammatory pathways such as the chemokine signaling, cytokine receptor interaction and IL-17 signaling pathway were significantly upregulated in the pathway analysis. These results point towards a fulminant, dysregulated inflammatory response concomitant with a disruption of the skin barrier integrity and a hampered wound repair mechanism in severe UCD lesions.
Collapse
Affiliation(s)
- A S Vermeersch
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Ali
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Y Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - P Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - J Callens
- Dierengezondheidszorg Vlaanderen, Torhout, Belgium
| | - G Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
25
|
Gu Y, Zhang C, Zhang Y, Tan W, Yu X, Zhang T, Liu L, Zhao Y, Hao L. A Review of the Development and Challenges of Cell Mechanical Models. IEEE Trans Nanobioscience 2023; 22:673-684. [PMID: 37018687 DOI: 10.1109/tnb.2023.3235868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell models can express a variety of cell information, including mechanical properties, electrical properties, and chemical properties. Through the analysis of these properties, we can fully understand the physiological state of cells. As such, cell modeling has gradually become a topic of great interest, and a number of cell models have been established over the last few decades. In this paper, the development of various cell mechanical models has been systematically reviewed. First, continuum theoretical models, which were established by ignoring cell structures, are summarized, including the cortical membrane droplet model, solid model, power series structure damping model, multiphase model, and finite element model. Next, microstructural models based on the structure and function of cells are summarized, including the tension integration model, porous solid model, hinged cable net model, porous elastic model, energy dissipation model, and muscle model. What's more, from multiple viewpoints, the strengths and weaknesses of each cell mechanical model have been analyzed in detail. Finally, the potential challenges and applications in the development of cell mechanical models are discussed. This paper contributes to the development of different fields, such as biological cytology, drug therapy, and bio-syncretic robots.
Collapse
|
26
|
Saito H, Yokota S, Kitajima S. Immunohistochemical analysis of the vimentin filaments in Sertoli cells is a powerful tool for the prediction of spermatogenic dysfunction. Acta Histochem 2023; 125:152046. [PMID: 37224719 DOI: 10.1016/j.acthis.2023.152046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
The close interaction between male germ cells and Sertoli cells, a type of somatic cell found in the seminiferous tubules of mammalian testis, is essential for the normal progression of spermatogenesis in mammals. Vimentin is an intermediate filament protein that primarily provides mechanical support, preserves cell shape, and maintains the nuclear position, and it is often used as a marker to identify Sertoli cells. Vimentin is known to be involved in many diseases and aging processes; however, how vimentin is related to spermatogenic dysfunction and the associated functional changes is still unclear. In a previous study, we reported that vitamin E deficiency affected the testes, epididymis, and spermatozoa of mice, accelerating the progression of senescence. In this study, we focused on the Sertoli cell marker vimentin and explored the relationship between the cytoskeletal system of Sertoli cells and spermatogenic dysfunction using testis tissue sections that caused male reproductive dysfunction with vitamin E deficiency. The immunohistochemical analysis showed that the proportion of the vimentin-positive area in seminiferous tubule cross-sections was significantly increased in testis tissue sections of the vitamin E-deficient group compared with the proportion in the control group. The histological analysis of testis tissue sections from the vitamin E-deficient group showed that vimentin-positive Sertoli cells were greatly extended from the basement membrane, along with an increased abundance of vimentin. These findings suggest that vimentin may be a potential indicator for detecting spermatogenic dysfunction.
Collapse
Affiliation(s)
- Hirokatsu Saito
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Satoshi Kitajima
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
27
|
Renganathan B, Zewe JP, Cheng Y, Paumier J, Kittisopikul M, Ridge KM, Opal P, Gelfand VI. Gigaxonin is required for intermediate filament transport. FASEB J 2023; 37:e22886. [PMID: 37043392 PMCID: PMC10237250 DOI: 10.1096/fj.202202119r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 04/13/2023]
Abstract
Gigaxonin is an adaptor protein for E3 ubiquitin ligase substrates. It is necessary for ubiquitination and degradation of intermediate filament (IF) proteins. Giant axonal neuropathy is a pathological condition caused by mutations in the GAN gene that encodes gigaxonin. This condition is characterized by abnormal accumulation of IFs in both neuronal and non-neuronal cells; however, it is unclear what causes IF aggregation. In this work, we studied the dynamics of IFs using their subunits tagged with a photoconvertible protein mEOS 3.2. We have demonstrated that the loss of gigaxonin dramatically inhibited transport of IFs along microtubules by the microtubule motor kinesin-1. This inhibition was specific for IFs, as other kinesin-1 cargoes, with the exception of mitochondria, were transported normally. Abnormal distribution of IFs in the cytoplasm can be rescued by direct binding of kinesin-1 to IFs, demonstrating that transport inhibition is the primary cause for the abnormal IF distribution. Another effect of gigaxonin loss was a more than 20-fold increase in the amount of soluble vimentin oligomers in the cytosol of gigaxonin knock-out cells. We speculate that these oligomers saturate a yet unidentified adapter that is required for kinesin-1 binding to IFs, which might inhibit IF transport along microtubules causing their abnormal accumulation.
Collapse
Affiliation(s)
- Bhuvanasundar Renganathan
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - James P. Zewe
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jean‐Michel Paumier
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Mark Kittisopikul
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Karen M. Ridge
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Puneet Opal
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
28
|
Sanchez-Tejerina D, Llaurado A, Sotoca J, Lopez-Diego V, Vidal Taboada JM, Salvado M, Juntas-Morales R. Biofluid Biomarkers in the Prognosis of Amyotrophic Lateral Sclerosis: Recent Developments and Therapeutic Applications. Cells 2023; 12:cells12081180. [PMID: 37190090 DOI: 10.3390/cells12081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons for which effective therapies are lacking. One of the most explored areas of research in ALS is the discovery and validation of biomarkers that can be applied to clinical practice and incorporated into the development of innovative therapies. The study of biomarkers requires an adequate theoretical and operational framework, highlighting the "fit-for-purpose" concept and distinguishing different types of biomarkers based on common terminology. In this review, we aim to discuss the current status of fluid-based prognostic and predictive biomarkers in ALS, with particular emphasis on those that are the most promising ones for clinical trial design and routine clinical practice. Neurofilaments in cerebrospinal fluid and blood are the main prognostic and pharmacodynamic biomarkers. Furthermore, several candidates exist covering various pathological aspects of the disease, such as immune, metabolic and muscle damage markers. Urine has been studied less often and should be explored for its possible advantages. New advances in the knowledge of cryptic exons introduce the possibility of discovering new biomarkers. Collaborative efforts, prospective studies and standardized procedures are needed to validate candidate biomarkers. A combined biomarkers panel can provide a more detailed disease status.
Collapse
Affiliation(s)
- Daniel Sanchez-Tejerina
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Arnau Llaurado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Veronica Lopez-Diego
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Jose M Vidal Taboada
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Maria Salvado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Raul Juntas-Morales
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| |
Collapse
|
29
|
Pan L, E T, Xu C, Fan X, Xia J, Liu Y, Liu J, Zhao J, Bao N, Zhao Y, Sun H, Qin G, Farouk MH. The apoptotic effects of soybean agglutinin were induced through three different signal pathways by down-regulating cytoskeleton proteins in IPEC-J2 cells. Sci Rep 2023; 13:5753. [PMID: 37031286 PMCID: PMC10082828 DOI: 10.1038/s41598-023-32951-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
Soybean agglutinin (SBA) is a main anti-nutritional factor in soybean. SBA exhibits its anti-nutritional functions by binding to intestinal epithelial cells. Keratin8 (KRT8), Keratin18 (KRT18) and Actin (ACTA) are the representative SBA-specific binding proteins. Such cytoskeletal proteins act a crucial role in different cell activities. However, limited reports reveal what the signal transduction pathway of apoptosis caused by SBA when binding to KRT8, KRT18 and ACTA. We aimed to evaluate the effects of SBA on cell apoptosis and the expression of the cytoskeletal protein (KRT8, KRT18 and ACTA), reveal the roles of these cytoskeletal proteins or their combinations on SBA-induced cell apoptosis in IPEC-J2 cell line, evaluate the influences of SBA on the mitochondria, endoplasmic reticulum stress and death receptor-mediated apoptosis signal pathway and to show the roles of KRT8, KRT18 and ACTA in different apoptosis signal pathways induced by SBA. The results showed that SBA induced the IPEC-J2 cell apoptosis and decreased the mRNA expression of KRT8, KRT18 and ACTA (p < 0.05). The degree of effect of three cytoskeleton proteins on cell apoptosis was ACTA > KRT8 > KRT18. The roles of these three cytoskeletal proteins on IPEC-J2 apoptotic rates had a certain accumulation effect. SBA up-regulated mitochondrial fission variant protein (FIS1) and fusion protein (Mfn2) promoted CytC and AIF in mitochondria to enter the cytoplasm, activated caspase-9 and caspase-3, damaged or declined mitochondrial function and reduced ATP synthesis (p < 0.05). Also, SBA up-regulated the expression of GRP78, XBP-1, eIF2α, p-eIF2α and CHOP (p < 0.05), down-regulated the expression level of ASK1 protein (p < 0.05). SBA led to the recruitment of FADD to the cytoplasmic membrane and increased the expression of FasL, resulting in caspase-8 processing. SBA up-regulated the expression level of Bax protein and decreased cytosolic Bcl-2 and Bid (p < 0.05). In addition, there was a significant negative correlation between the gene expression of cytoskeleton proteins and apoptosis, as well as the expression of key proteins of apoptosis-related signal transduction pathways. In conclusion, SBA induced the activation of the mitochondria, endoplasmic reticulum stress and the death receptor-mediated apoptosis signal pathway and the crosstalk between them. The effect of SBA on these three pathways was mainly exhibited via down-regulation of the mRNA expression of the three cytoskeletal expressions. This study elucidates the molecular mechanism and signaling pathway of SBA that lead to apoptosis from the perspective of cell biology and molecular biology and provides a new perspective on the toxicity mechanism of other food-derived anti-nutrients, medical gastrointestinal health and related cancer treatment.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tianjiao E
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Chengyu Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xiapu Fan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jiajia Xia
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yan Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jiawei Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jinpeng Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Hui Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
30
|
Zhu JG, Xie P, Zheng MD, Meng Y, Wei ML, Liu Y, Liu TW, Gong DQ. Dynamic changes in protein concentrations of keratins in crop milk and related gene expression in pigeon crops during different incubation and chick rearing stages. Br Poult Sci 2023; 64:100-109. [PMID: 36069156 DOI: 10.1080/00071668.2022.2119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The objective of this study was to examine the keratin composition of crop milk, the variation of epithelial thickness and keratin (K) gene expression in samples from young pigeon during incubation and chick rearing.2. Crop milk was collected from 1-, 3- and 5-day-old squab crops for keratin content analysis. Results showed that K4 accounted for the highest proportion of all detected keratins.3. In total, 42 pairs of adult pigeons were allocated to seven groups according to different stages to collect crop samples. Gene expression studies showed that the K3 gene expression was maximised at rearing Day 15 (15) and R1 in males and females, respectively. K6a gene level was the greatest at R15 in females, whereas it peaked at incubation Day 4 (I4) in males. The K12, K13, K23 and K80 gene levels were inhibited at the peak period of crop milk formation in comparison with I4. In females, K cochleal expression peaked at I10, whereas it was the greatest at R25 in males. K4 and K14 gene expression was the highest at I10 in females, while K4 and K14 were minimised at I17 and R7 in males, respectively. Gene expressions of K5, K8, K19 and K20 in males and K19 in females were maximised at R1. The K5, K20 and K75 gene levels in females peaked at R7. K75 and K8 expressions in males and females reached a maximum value at R25 and I17, respectively.4. The epithelial thickness of male and female crops reached their greatest levels at R1 and had the highest correlation with K19.5. These results emphasised the importance of keratinisation in crop milk formation, and different keratins probably play various roles during this period. The K19 was probably a marker for pigeon crop epithelium development. The sex of the parent pigeon affected keratin gene expression profiles.
Collapse
Affiliation(s)
- J G Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - M D Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Meng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - M L Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - Y Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - T W Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
31
|
Kiener S, Mauldin EA, Jagannathan V, Casal ML, Leeb T. KRT5 missense variant in a Cardigan Welsh Corgi with epidermolysis bullosa simplex. Anim Genet 2022; 53:892-896. [PMID: 36004757 PMCID: PMC9804678 DOI: 10.1111/age.13257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 01/09/2023]
Abstract
Epidermolysis bullosa (EB) is a group of blistering disorders that includes several subtypes, classified according to their level of cleavage. Typical clinical signs are blisters and erosions resulting from minimal trauma. The disease has been described in many mammalian species and pathogenic variants in at least 18 different genes have been identified. In the present study, we investigated a Cardigan Welsh Corgi with congenital clinical signs consistent with epidermolysis bullosa. The puppy had blisters and erosions on the paw pads, and the oral mucosa. Histologic examination demonstrated the typical clefting between the dermis and epidermis and confirmed the clinical suspicion. We obtained whole genome sequencing data from the affected puppy and searched for variants in candidate genes known to cause EB. This revealed a heterozygous missense variant, KRT5:p.(E476K), affecting the highly conserved KLLEGE motif of keratin 5. The mutant allele in the affected puppy arose owing to a de novo mutation event as it was absent from both unaffected parents. Knowledge of the functional impact of KRT5 variants in other species together with the demonstration of the de novo mutation event establishes KRT5:p.(E476K) as causative variant for the observed EBS.
Collapse
Affiliation(s)
- Sarah Kiener
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland,DermFocusUniversity of BernBernSwitzerland
| | - Elizabeth A. Mauldin
- School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Vidhya Jagannathan
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland,DermFocusUniversity of BernBernSwitzerland
| | - Margret L. Casal
- School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tosso Leeb
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland,DermFocusUniversity of BernBernSwitzerland
| |
Collapse
|
32
|
Shukla P, Dange P, Mohanty BS, Gadewal N, Chaudhari P, Sarin R. ARID2 suppression promotes tumor progression and upregulates cytokeratin 8, 18 and β-4 integrin expression in TP53-mutated tobacco-related oral cancer and has prognostic implications. Cancer Gene Ther 2022; 29:1908-1917. [PMID: 35869277 DOI: 10.1038/s41417-022-00505-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Mutations in ARID2 and TP53 genes are found to be implicated in the tobacco related tumorigeneses. However, the effect of loss of ARID2 in the TP53 mutated background in tobacco related cancer including oral cancer has not been investigated yet. Hence, in this study we knockdown ARID2 using shRNA mediated knockdown strategy in TP53 mutated oral squamous cell carcinoma (OSCC) cell line and studied its tumorigenic role. Our study revealed that suppression of ARID2 in TP53 mutated oral cancer cells increases cell motility and invasion, induces drastic morphological changes and leads to a marked increase in the expression levels of cytokeratins, and integrins, CK8, CK18 and β4-Integrin, markers of cell migration/invasion in oral cancer. ARID2 suppression also showed early onset and increased tumorigenicity in-vivo. Interestingly, transcriptome profiling revealed differentially expressed genes associated with migration and invasion in oral cancer cells including AKR1C2, NCAM2, NOS1, ADAM23 and genes of S100A family in ARID2 knockdown TP53 mutated oral cancer cells. Pathway analysis of differentially regulated genes identified "cancer pathways" and "PI3K/AKT Pathway" to be significantly dysregulated upon suppression of ARID2 in TP53 mutated OSCC cells. Notably, decreased ARID2 expression and increased CK8, CK18 expression leads to poor prognosis in Head and Neck cancer (HNSC) patients as revealed by Pan-Cancer TCGA data analysis. To conclude, our study is the first to demonstrate tumor suppressor role of ARID2 in TP53 mutated background indicating their cooperative role in OSCC, and also highlights its prognostic implications suggesting ARID2 as an important therapeutic target in OSCC.
Collapse
Affiliation(s)
- Pallavi Shukla
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Prerana Dange
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Bhabani Shankar Mohanty
- Comparative Oncology & Small Animal Imaging Facility, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Nikhil Gadewal
- Bioinformatics Centre, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Pradip Chaudhari
- Comparative Oncology & Small Animal Imaging Facility, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Rajiv Sarin
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India.
- Cancer Genetics Clinic, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India.
| |
Collapse
|
33
|
Saunders TS, Gadd DA, Spires‐Jones TL, King D, Ritchie C, Muniz‐Terrera G. Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review. Eur J Neurosci 2022; 56:5650-5713. [PMID: 35338546 PMCID: PMC9790745 DOI: 10.1111/ejn.15656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/30/2022]
Abstract
A biomarker associated with cognition in neurodegenerative dementias would aid in the early detection of disease progression, complement clinical staging and act as a surrogate endpoint in clinical trials. The current systematic review evaluates the association between cerebrospinal fluid protein markers of synapse loss and neuronal injury and cognition. We performed a systematic search which revealed 67 studies reporting an association between cerebrospinal fluid markers of interest and neuropsychological performance. Despite the substantial heterogeneity between studies, we found some evidence for an association between neurofilament-light and worse cognition in Alzheimer's diseases, frontotemporal dementia and typical cognitive ageing. Moreover, there was an association between cerebrospinal fluid neurogranin and cognition in those with an Alzheimer's-like cerebrospinal fluid biomarker profile. Some evidence was found for cerebrospinal fluid neuronal pentraxin-2 as a correlate of cognition across dementia syndromes. Due to the substantial heterogeneity of the field, no firm conclusions can be drawn from this review. Future research should focus on improving standardization and reporting as well as establishing the importance of novel markers such as neuronal pentraxin-2 and whether such markers can predict longitudinal cognitive decline.
Collapse
Affiliation(s)
- Tyler S. Saunders
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Danni A. Gadd
- Center for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tara L. Spires‐Jones
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Declan King
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Craig Ritchie
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Graciela Muniz‐Terrera
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| |
Collapse
|
34
|
Lin GW, Liang YC, Wu P, Chen CK, Lai YC, Jiang TX, Haung YH, Chuong CM. Regional specific differentiation of integumentary organs: SATB2 is involved in α- and β-keratin gene cluster switching in the chicken. Dev Dyn 2022; 251:1490-1508. [PMID: 34240503 PMCID: PMC8742846 DOI: 10.1002/dvdy.396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Animals develop skin regional specificities to best adapt to their environments. Birds are excellent models in which to study the epigenetic mechanisms that facilitate these adaptions. Patients suffering from SATB2 mutations exhibit multiple defects including ectodermal dysplasia-like changes. The preferential expression of SATB2, a chromatin regulator, in feather-forming compared to scale-forming regions, suggests it functions in regional specification of chicken skin appendages by acting on either differentiation or morphogenesis. RESULTS Retrovirus mediated SATB2 misexpression in developing feathers, beaks, and claws causes epidermal differentiation abnormalities (e.g. knobs, plaques) with few organ morphology alterations. Chicken β-keratins are encoded in 5 sub-clusters (Claw, Feather, Feather-like, Scale, and Keratinocyte) on Chromosome 25 and a large Feather keratin cluster on Chromosome 27. Type I and II α-keratin clusters are located on Chromosomes 27 and 33, respectively. Transcriptome analyses showed these keratins (1) are often tuned up or down collectively as a sub-cluster, and (2) these changes occur in a temporo-spatial specific manner. CONCLUSIONS These results suggest an organizing role of SATB2 in cluster-level gene co-regulation during skin regional specification.
Collapse
Affiliation(s)
- Gee-Way Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402204, Taiwan
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yen-Hua Haung
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
35
|
Rübsamen N, Willemse EAJ, Leppert D, Wiendl H, Nauck M, Karch A, Kuhle J, Berger K. A Method to Combine Neurofilament Light Measurements From Blood Serum and Plasma in Clinical and Population-Based Studies. Front Neurol 2022; 13:894119. [PMID: 35775045 PMCID: PMC9237479 DOI: 10.3389/fneur.2022.894119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionNeurofilament light (NfL) can be detected in blood of healthy individuals and at elevated levels in those with different neurological diseases. We investigated if the choice of biological matrix can affect results when using NfL as biomarker in epidemiological studies.MethodWe obtained paired serum and EDTA-plasma samples of 299 individuals aged 37–67 years (BiDirect study) and serum samples of 373 individuals aged 65–83 years (MEMO study). In BiDirect, Passing–Bablok analyses were performed to assess proportional and systematic differences between biological matrices. Associations between serum or EDTA-plasma NfL and renal function (serum creatinine, serum cystatin C, glomerular filtration rate, and kidney disease) were investigated using linear or logistic regression, respectively. All regression coefficients were estimated (1) per one ng/L increase and (2) per one standard deviation increase (standardization using z-scores). In MEMO, regression coefficients were estimated (1) per one ng/L increase of serum or calculated EDTA-plasma NfL and (2) per one standard deviation increase providing a comparison to the results from BiDirect.ResultsWe found proportional and systematic differences between paired NfL measurements in BiDirect, i.e., serum NfL [ng/L] = −0.33 [ng/L] + 1.11 × EDTA-plasma NfL [ng/L]. Linear regression coefficients for the associations between NfL and renal function did not vary between the different NfL measurements. In MEMO, one standard deviation increase in serum NfL was associated with greater changes in the outcomes than in BiDirect.ConclusionAlthough there are differences between serum and EDTA-plasma NfL, results can be used interchangeably if standardized values are used.
Collapse
Affiliation(s)
- Nicole Rübsamen
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- *Correspondence: Nicole Rübsamen
| | - Eline A. J. Willemse
- Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
| | - André Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
36
|
Tommasi C, Breuer J. The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses 2022; 14:982. [PMID: 35632723 PMCID: PMC9147561 DOI: 10.3390/v14050982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
The replication of varicella-zoster virus (VZV) in skin is critical to its pathogenesis and spread. Primary infection causes chickenpox, which is characterised by centrally distributed skin blistering lesions that are rich in infectious virus. Cell-free virus in the cutaneous blistering lesions not only spreads to cause further cases, but infects sensory nerve endings, leading to the establishment of lifelong latency in sensory and autonomic ganglia. The reactivation of virus to cause herpes zoster is again characterised by localised painful skin blistering rash containing infectious virus. The development of in vitro and in vivo models of VZV skin replication has revealed aspects of VZV replication and pathogenesis in this important target organ and improved our understanding of the vaccine strain vOKa attenuation. In this review, we outline the current knowledge on VZV interaction with host signalling pathways, the viral association with proteins associated with epidermal terminal differentiation, and how these interconnect with the VZV life cycle to facilitate viral replication and shedding.
Collapse
Affiliation(s)
- Cristina Tommasi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Judith Breuer
- Department of Infection, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
37
|
Sen S, Lagas S, Roy A, Kumar H. Cytoskeleton saga: Its regulation in normal physiology and modulation in neurodegenerative disorders. Eur J Pharmacol 2022; 925:175001. [PMID: 35525310 DOI: 10.1016/j.ejphar.2022.175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Cells are fundamental units of life. To ensure the maintenance of homeostasis, integrity of structural and functional counterparts is needed to be essentially balanced. The cytoskeleton plays a vital role in regulating the cellular morphology, signalling and other factors involved in pathological conditions. Microtubules, actin (microfilaments), intermediate filaments (IF) and their interactions are required for these activities. Various proteins associated with these components are primary requirements for directing their functions. Disruption of this organization due to faulty genetics, oxidative stress or impaired transport mechanisms are the major causes of dysregulated signalling cascades leading to various pathological conditions like Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD) or amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP) or any traumatic injury like spinal cord injury (SCI). Novel or conventional therapeutic approaches may be specific or non-specific, targeting either three basic components of the cytoskeleton or various cascades that serve as a cue to numerous pathways like ROCK signalling or the GSK-3β pathway. An enormous number of drugs have been redirected for modulating the cytoskeletal dynamics and thereby may pave the way for inhibiting the progression of these diseases and their complications.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Sheetal Lagas
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
38
|
Zhang T, Song B, Li Y, Duan R, Gong Z, Jing L, Wang K, Ma B, Jia Y. Neurofilament Light Chain as a Biomarker for Monitoring the Efficacy of Transcranial Magnetic Stimulation on Alcohol Use Disorder. Front Behav Neurosci 2022; 16:831901. [PMID: 35197833 PMCID: PMC8859255 DOI: 10.3389/fnbeh.2022.831901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study assessed the effects of repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) on serum neurofilament light chain (NfL) levels, alcohol consumption, craving, and psychological impairment in participants with alcohol use disorder (AUD).MethodsParticipants with AUD were randomly assigned to receive one of two treatments (active or sham rTMS). All participants received 10 daily active or sham rTMS sessions over the left DLPFC for 2 weeks, with follow-up visits at baseline and immediately after the completion of the treatments. Serum samples were obtained before and after the intervention. Days of heavy drinking, visual analog scale (VAS) scores, and mental health component scores (MCSs) of the Medical Outcomes Study 36-Item Short Form Health Survey were used to assess the effects of rTMS.ResultsActive rTMS had a significant effect on reducing days of heavy drinking, alcohol craving, and serum NfL levels, and improved social functioning and mental health. The improvement with active rTMS was significantly greater than that with sham rTMS. Correlation analysis revealed that the reduction in the baseline drinking level was positively correlated with declines in the VAS and NfL levels but not with psychological scores.ConclusionRepetitive transcranial magnetic stimulation of the left DLPFC was associated with reducing alcohol consumption and craving in patients with AUD and positively impacted neuropsychological and social function. Serum NfL levels may be useful as an early serological indicator of alcohol-induced brain injury.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Rehabilitation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Song
- Department of Rehabilitation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Gong
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Jing
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaixin Wang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingquan Ma
- Department of Rehabilitation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanjie Jia,
| |
Collapse
|
39
|
Masvekar RR, Kosa P, Jin K, Dobbs K, Stack MA, Castagnoli R, Quaresima V, Su HC, Imberti L, Notarangelo LD, Bielekova B. Prognostic Value of Serum/Plasma Neurofilament Light Chain for COVID-19 Associated Mortality.. [PMID: 35075461 PMCID: PMC8786234 DOI: 10.1101/2022.01.13.22269244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Given the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), early predictors of coronavirus disease 19 (COVID-19) mortality might improve patients’ outcomes. Increased levels of circulating neurofilament light chain (NfL), a biomarker of neuro-axonal injury, have been observed in patients with severe COVID-19. We investigated whether NfL provides non-redundant clinical value to previously identified predictors of COVID-19 mortality. We measured serum or plasma NfL concentrations in a blinded fashion in 3 cohorts totaling 338 COVID-19 patients. In cohort 1, we found significantly elevated NfL levels only in critically ill COVID-19 patients compared to healthy controls. Longitudinal cohort 2 data showed that NfL is elevated late in the course of the disease, following two other prognostic markers of COVID-19: decrease in absolute lymphocyte count (ALC) and increase in lactate dehydrogenase (LDH). Significant correlations between LDH and ALC abnormalities and subsequent rise of NfL implicate multi-organ failure as a likely cause of neuronal injury at the later stages of COVID-19. Addition of NfL to age and gender in cohort 1 significantly improved the accuracy of mortality prediction and these improvements were validated in cohorts 2 and 3. In conclusion, although substantial increase in serum/plasma NfL reproducibly enhances COVID-19 mortality prediction, NfL has clinically meaningful prognostic value only close to death, which may be too late to alter medical management. When combined with other prognostic biomarkers, rising longitudinal NfL measurements triggered by LDH and ALC abnormalities would identify patients at risk of COVID-19 associated mortality who might still benefit from escalated care.
Collapse
|
40
|
Schepers AV, Kraxner J, Lorenz C, Köster S. Mechanics of Single Vimentin Intermediate Filaments Under Load. Methods Mol Biol 2022; 2478:677-700. [PMID: 36063338 DOI: 10.1007/978-1-0716-2229-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The eukaryotic cytoskeleton consists of three different types of biopolymers - microtubules, actin filaments, and intermediate filaments - and provides cells with versatile mechanical properties, combining stability and flexibility. The unique molecular structure of intermediate filaments leads to high extensibility and stability under load. With high laser power dual optical tweezers, the mechanical properties of intermediate filaments may be investigated, while monitoring the extension with fluorescence microscopy. Here, we provide detailed protocols for the preparation of single vimentin intermediate filaments and general measurement protocols for (i) stretching experiments, (ii) repeated loading and relaxation cycles, and (iii) force-clamp experiments. We describe methods for the analysis of the experimental data in combination with computational modeling approaches.
Collapse
Affiliation(s)
- Anna V Schepers
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Julia Kraxner
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Charlotta Lorenz
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Sarah Köster
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany.
| |
Collapse
|
41
|
Onwudiwe K, Obayemi J, Hu J, Oparah J, Onyekanne C, Nwazojie C, Aina T, Uzonwanne V, Salifu A, Soboyejo W. Investigation of creep properties and the cytoskeletal structures of non-tumorigenic breast cells and triple-negative breast cancer cells. J Biomed Mater Res A 2021; 110:1004-1020. [PMID: 34967111 DOI: 10.1002/jbm.a.37348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/07/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023]
Abstract
This article presents the correlation of creep and viscoelastic properties to the cytoskeletal structure of both tumorigenic and non-tumorigenic cells. Unique shear assay and strain mapping techniques were used to study the creep and viscoelastic properties of single non-tumorigenic and tumorigenic cells. At least 20 individual cells, three locations per cell, were studied. From the results, lower densities in the volume of actin, and keratin 18 structures were observed with the progression of cancer and were correlated to the increased creep rates and reduced mechanical properties (Young's moduli and viscosities) of tumorigenic (MDA-MB-231) cells. The study reveals significant differences between the creep and viscoelastic properties of non-tumorigenic breast cells versus tumorigenic cells. The variations in the creep strain rates are shown to be well characterized by lognormal distributions, while the statistical variations in the viscoelastic properties are well-described by normal distributions. The implications of the results are discussed for the study of discrete cell behaviors, strain and viscoelastic responses of the cell, and the role of cell cytoskeleton in the onset and progression of cancers.
Collapse
Affiliation(s)
- Killian Onwudiwe
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - John Obayemi
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA
| | - Jingjie Hu
- Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Arizona, USA.,Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Josephine Oparah
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - Chinyerem Onyekanne
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - Chukwudalu Nwazojie
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - Toyin Aina
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria
| | - Vanessa Uzonwanne
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA
| | - Ali Salifu
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA
| | - Winston Soboyejo
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Nigeria.,Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), Worcester, Massachusetts, USA
| |
Collapse
|
42
|
Lázaro MT, Aliabadi R, Wensink HH. Second-virial theory for shape-persistent living polymers templated by disks. Phys Rev E 2021; 104:054505. [PMID: 34942807 DOI: 10.1103/physreve.104.054505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 11/07/2022]
Abstract
Living polymers composed of noncovalently bonded building blocks with weak backbone flexibility may self-assemble into thermoresponsive lyotropic liquid crystals. We demonstrate that the reversible polymer assembly and phase behavior can be controlled by the addition of (nonadsorbing) rigid colloidal disks which act as an entropic reorienting "template" onto the supramolecular polymers. Using a particle-based second-virial theory that correlates the various entropies associated with the polymers and disks, we demonstrate that small fractions of discotic additives promote the formation of a polymer nematic phase. At larger disk concentrations, however, the phase is disrupted by collective disk alignment in favor of a discotic nematic fluid in which the polymers are dispersed antinematically. We show that the antinematic arrangement of the polymers generates a nonexponential molecular-weight distribution and stimulates the formation of oligomeric species. At sufficient concentrations the disks facilitate a liquid-liquid phase separation which can be brought into simultaneously coexistence with the two fractionated nematic phases, providing evidence for a four-fluid coexistence in reversible shape-dissimilar hard-core mixtures without cohesive interparticle forces. We stipulate the conditions under which such a phenomenon could be found in experiment.
Collapse
Affiliation(s)
- M Torres Lázaro
- Laboratoire de Physique des Solides, UMR 8502, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - R Aliabadi
- Physics Department, Sirjan University of Technology, Sirjan 78137, Iran
| | - H H Wensink
- Laboratoire de Physique des Solides, UMR 8502, CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
43
|
Neurofilaments can differentiate ALS subgroups and ALS from common diagnostic mimics. Sci Rep 2021; 11:22128. [PMID: 34764380 PMCID: PMC8585882 DOI: 10.1038/s41598-021-01499-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
Delayed diagnosis and misdiagnosis are frequent in people with amyotrophic lateral sclerosis (ALS), the most common form of motor neuron disease (MND). Neurofilament light chain (NFL) and phosphorylated neurofilament heavy chain (pNFH) are elevated in ALS patients. We retrospectively quantified cerebrospinal fluid (CSF) NFL, CSF pNFH and plasma NFL in stored samples that were collected at the diagnostic work-up of ALS patients (n = 234), ALS mimics (n = 44) and controls (n = 9). We assessed the diagnostic performance, prognostication value and relationship to the site of onset and genotype. CSF NFL, CSF pNFH and plasma NFL levels were significantly increased in ALS patients compared to patients with neuropathies & myelopathies, patients with myopathies and controls. Furthermore, CSF pNFH and plasma NFL levels were significantly higher in ALS patients than in patients with other MNDs. Bulbar onset ALS patients had significantly higher plasma NFL levels than spinal onset ALS patients. ALS patients with C9orf72HRE mutations had significantly higher plasma NFL levels than patients with SOD1 mutations. Survival was negatively correlated with all three biomarkers. Receiver operating characteristics showed the highest area under the curve for CSF pNFH for differentiating ALS from ALS mimics and for plasma NFL for estimating ALS short and long survival. All three biomarkers have diagnostic value in differentiating ALS from clinically relevant ALS mimics. Plasma NFL levels can be used to differentiate between clinical and genetic ALS subgroups.
Collapse
|
44
|
Recurrent rewiring of the adult hippocampal mossy fiber system by a single transcriptional regulator, Id2. Proc Natl Acad Sci U S A 2021; 118:2108239118. [PMID: 34599103 PMCID: PMC8501755 DOI: 10.1073/pnas.2108239118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Neurons have an exceptional capacity to grow axons and form synaptic circuits during development but not later life. In adults, the lack of circuit formation may support retention of skilled actions and memories but also limits regeneration and repair after injuries and in disorders. Research on developing and damaged neurons has revealed many molecules that help circuit formation and regeneration, and yet factors that could induce axon growth and synapse formation in adult brain neurons remain elusive. Here, we searched for such key molecules and find one that alone can induce complete circuit formation. After engineering a new circuit in adult mice, we also looked into its function and relevance for memories. Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.
Collapse
|
45
|
Kouchaki E, Dashti F, Mirazimi SMA, Alirezaei Z, Jafari SH, Hamblin MR, Mirzaei H. Neurofilament light chain as a biomarker for diagnosis of multiple sclerosis. EXCLI JOURNAL 2021; 20:1308-1325. [PMID: 34602928 PMCID: PMC8481790 DOI: 10.17179/excli2021-3973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
The treatments for multiple sclerosis (MS) have improved over the past 25 years, but now the main question for physicians is deciding who should receive treatment, for how long, and when to switch to other options. These decisions are typically based on treatment tolerance and a reasonable expectation of long-term efficacy. A significant unmet need is the lack of accurate laboratory measurements for diagnosis, and monitoring of treatment response, including deterioration and disease progression. There are few validated biomarkers for MS, and in practice, physicians employ two biomarkers discovered fifty years ago for MS diagnosis, often in combination with MRI scans. These biomarkers are intrathecal IgG and oligoclonal bands in the CSF (cerebrospinal fluid). Neurofilament light chain (NfL) is a relatively new biomarker for MS diagnosis and follow up. Neurofilaments are neuron-specific cytoskeleton proteins that can be measured in various body compartments. NfL is a new biomarker for MS that can be measured in serum samples, but this still needs further study to specify the laboratory cut-off values in clinical practice. In the present review we discuss the evidence for NfL as a reliable biomarker for the early detection and management of MS. Moreover, we highlight the correlation between MRI and NfL, and ask whether they can be combined.
Collapse
Affiliation(s)
- Ebrahim Kouchaki
- MS Fellowship, Department of Neurology, School of Medicine, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
46
|
Chen Z, Li R, Wang Y, Cao L, Lin C, Liu F, Hu R, Nan J, Zhuang X, Lu X, Nan G, Hu G, Xue J, Zhang Y, Xiao J, Yao Y, Guo S, Lei J. Features of myocardial injury detected by cardiac magnetic resonance in a patient with desmin-related restrictive cardiomyopathy. ESC Heart Fail 2021; 8:5560-5564. [PMID: 34612024 PMCID: PMC8712804 DOI: 10.1002/ehf2.13624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Myocardial fibrosis detected by cardiac magnetic resonance (CMR) has been reported in patients with desmin‐related myopathy, although its characteristics remain unclear. Here, we describe a case of desmin‐related restrictive cardiomyopathy wherein CMR imaging revealed myocardial oedema, ischaemia, and fibrosis in the left ventricle; the different types and processes of myocardial injury were detected by CMR. Middle wall left ventricular enhancement may be a feature of late gadolinium enhancement, and the lateral wall is often involved in cases of myocardial injury. CMR is useful for the early detection of cardiac involvement and the prediction of prognosis in patients diagnosed with desmin‐related myopathy.
Collapse
Affiliation(s)
- Zixian Chen
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Rui Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yongxiang Wang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liang Cao
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Chen Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Liu
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Rui Hu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiang Nan
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Xin Zhuang
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Xiande Lu
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Guangxian Nan
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Guocui Hu
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Jingmei Xue
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Yaping Zhang
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Jing Xiao
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Yali Yao
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shunlin Guo
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Junqiang Lei
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| |
Collapse
|
47
|
Agubata CO, Mbah MA, Akpa PA, Ugwu G. Application of self-healing, swellable and biodegradable polymers for wound treatment. J Wound Care 2021; 30:IVi-IVx. [PMID: 34597167 DOI: 10.12968/jowc.2021.30.sup9a.iv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIM Self-healing, swellable and biodegradable polymers are vital materials that may facilitate the different stages of wound healing. The aim of this research was to prepare wound healing films using self-healing polyvinyl alcohol (PVA), swellable hydroxypropyl methylcellulose (HPMC), biodegradable polyglycolic acid (PGA) sutures and ciprofloxacin antibiotic for improved treatment outcome. METHODS Films were formulated through aqueous-based mixing of varying amounts of polyvinyl alcohol (10-20% weight/weight (w/w)) and hydroxypropyl methylcellulose (0.5, 1% w/w) with fixed quantities of ciprofloxacin. PGA sutures were placed as grids within the wet mixtures of the polymers and ciprofloxacin, and thereafter products were air dried. The formulated films were evaluated for swelling ratio, breaking elongation, folding endurance, moisture uptake and loss, compatibility and in vitro antibiotic release. Furthermore, in vivo wound healing was studied using excision model and histopathological examinations. RESULTS Swelling ratios were above 1.0 and the films were minimally stretchable, with folding endurance greater than 500. Films were stable while moisture uptake and loss were observed to be less than 30%. Among the optimised hydrogel batches, those containing 10% w/w PVA and 1% w/w HPMC with no PGA showed the highest drug release of 73%, whereas the batches with higher PGA content showed higher percentage wound size reduction with minimal scar. The completeness of wound healing with batches containing PVA, HPMC, ciprofloxacin and PGA, along with the standard, is evident considering the massive cornification, regeneration of the epithelial front and stratum spinosum. CONCLUSION The findings show that polymer-based multifunctional composite films are suitable for use as dressings for improved wound healing.
Collapse
Affiliation(s)
- Chukwuma O Agubata
- 1 Department of Pharmaceutical Technology and Industrial Pharmacy University of Nigeria, Nsukka, Nigeria
| | - Mary A Mbah
- 1 Department of Pharmaceutical Technology and Industrial Pharmacy University of Nigeria, Nsukka, Nigeria
| | - Paul A Akpa
- 2 Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | - Godwin Ugwu
- 1 Department of Pharmaceutical Technology and Industrial Pharmacy University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
48
|
Lin Y, Zhang W, Li B, Wang G. Keratin 17 in psoriasis: Current understanding and future perspectives. Semin Cell Dev Biol 2021; 128:112-119. [PMID: 34229948 DOI: 10.1016/j.semcdb.2021.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Keratin 17 (K17) is a multifaceted cytoskeletal protein that is not commonly expressed in the epidermis under normal physiological conditions. However, in psoriasis, K17 is overexpressed in the suprabasal layer of the epidermis and plays an important role in the pathogenesis of the disease. In this review, we have summarized our findings and those reported in other studies concerning the pathogenic functions of K17, as well as the mechanisms underlying the increase in K17 expression in psoriasis. K17 exerts both pro-proliferative and pro-inflammatory effects on keratinocytes. Moreover, K17 peptides trigger autoreactive T cells and promote psoriasis-related cytokine production. In turn, these cytokines modulate the expression, stability, and protein-protein interactions of K17 through transcriptional and translational regulation and post-translational modification of K17 in keratinocytes. Thus, a K17/T-cell/cytokine autoimmune loop is implicated in the pathogenesis of psoriasis, which is supported by the fact that therapies targeting K17 have achieved good outcomes in psoriasis-like mouse models. Future perspectives of K17 in psoriasis have also been discussed to provide potential directions for further studies.
Collapse
Affiliation(s)
- Yiting Lin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
49
|
Lim ZQ, Ng QY, Oo Y, Chu JJH, Ng SY, Sze SK, Alonso S. Enterovirus-A71 exploits peripherin and Rac1 to invade the central nervous system. EMBO Rep 2021; 22:e51777. [PMID: 33871166 DOI: 10.15252/embr.202051777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
Enterovirus-A71 (EV-A71) has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD). EV-A71 infects motor neurons at neuromuscular junctions (NMJs) to invade the central nervous system (CNS). Here, we investigate the role of peripherin (PRPH) during EV-A71 infection, a type III intermediate neurofilament involved in neurodegenerative conditions. In mice infected with EV-A71, PRPH co-localizes with viral particles in the muscles at NMJs and in the spinal cord. In motor neuron-like and neuroblastoma cell lines, surface-expressed PRPH facilitates viral entry, while intracellular PRPH influences viral genome replication through interactions with structural and non-structural viral components. Importantly, PRPH does not play a role during infection with coxsackievirus A16, another causative agent of HFMD rarely associated with neurological complications, suggesting that EV-A71 ability to exploit PRPH represents a unique attribute for successful CNS invasion. Finally, we show that EV-A71 also exploits some of the many PRPH-interacting partners. Of these, small GTP-binding protein Rac1 represents a potential druggable host target to limit neuroinvasion of EV-A71.
Collapse
Affiliation(s)
- Ze Qin Lim
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qing Yong Ng
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yukei Oo
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Siu Kwan Sze
- Proteomics and Mass Spectrometry Services Core Facility, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Masvekar R, Phillips J, Komori M, Wu T, Bielekova B. Cerebrospinal Fluid Biomarkers of Myeloid and Glial Cell Activation Are Correlated With Multiple Sclerosis Lesional Inflammatory Activity. Front Neurosci 2021; 15:649876. [PMID: 33859547 PMCID: PMC8042223 DOI: 10.3389/fnins.2021.649876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS)-related inflammation can be divided into lesional activity, mediated by immune cells migrating from the periphery to the central nervous system (CNS) and non-lesional activity, mediated by inflammation compartmentalized to CNS tissue. Lesional inflammatory activity, reflected by contrast-enhancing lesions (CELs) on the magnetic resonance imaging (MRI), is effectively inhibited by current disease modifying therapies (DMTs). While, the effect of DMTs on non-lesional inflammatory activity is currently unknown. Reliable and simultaneous measurements of both lesional and non-lesional MS activity is necessary to understand their contribution to CNS tissue destruction in individual patients. We previously demonstrated that CNS compartmentalized inflammation can be measured by combined quantification of cerebrospinal fluid (CSF) immune cells and cell-specific soluble markers. The goal of this study is to develop and validate a CSF-biomarker-based molecular surrogate of MS lesional activity. The training cohort was dichotomized into active (CELs > 1 or clinical relapse) and inactive lesional activity (no CELs or relapse) groups. Matched CSF and serum samples were analyzed for 20 inflammatory and axonal damage biomarkers in a blinded fashion. Only the findings from the training cohort with less than 0.1% probability of false positive (i.e., p < 0.001) were validated in an independent validation cohort. MS patients with lesional activity have elevated IL-12p40, CHI3L1, TNFα, TNFβ, and IL-10, with the first two having the strongest effects and validated statistically-significant association with lesional activity in an independent validation cohort. Marker of axonal damage, neurofilament light (NfL), measured in CSF (cNfL) was also significantly elevated in MS patients with active lesions. NfL measured in serum (sNfL) did not differentiate the two MS subgroups with pre-determined significance, (p = 0.0690) even though cCSF and sNfL correlated (Rho = 0.66, p < 0.0001). Finally, the additive model of IL12p40 and CHI3L1 outperforms any biomarker discretely. IL12p40 and CHI3L1, released predominantly by immune cells of myeloid lineage are reproducibly the best CSF biomarkers of MS lesional activity. The residuals from the IL12p40/CHI3L1-cNfL correlations may identify MS patients with more destructive inflammation or contributing neurodegeneration.
Collapse
Affiliation(s)
- Ruturaj Masvekar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jonathan Phillips
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mika Komori
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, United States
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, United States
| | - Bibiana Bielekova
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|