1
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. Life Sci Alliance 2025; 8:e202403147. [PMID: 40199585 PMCID: PMC11979363 DOI: 10.26508/lsa.202403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the Caenorhabditis elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promotes starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Pulito C, Vaccarella S, Palcau AC, Ganci F, Brandi R, Frascolla C, Sacconi A, Canu V, Benedetti A, De Pascale V, Donzelli S, Fisch AS, Manciocco V, Covello R, Pimpinelli F, Morrone A, Fazi F, Pellini R, Muti P, Meens J, Karamboulas C, Nichols AC, Strano S, Klinghammer K, Tinhofer I, Ailles L, Fontemaggi G, Blandino G. MicroRNA-mediated PTEN downregulation as a novel non-genetic mechanism of acquired resistance to PI3Kα inhibitors of head & neck squamous cell carcinoma. Drug Resist Updat 2025; 81:101251. [PMID: 40382983 DOI: 10.1016/j.drup.2025.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
AIMS Head and neck squamous cell carcinomas (HNSCCs) frequently harbor alterations in the PI3K signalling axis and, particularly, in the PIK3CA gene. The promising rationale of using PI3K inhibitors for the treatment of HNSCC has, however, clashed with the spontaneous development of resistance over time. METHODS To identify valuable targets for overcoming acquired resistance to PI3Kα inhibitors in HNSCC, we performed microRNA profiling on a cohort of HNSCC PDXs that were treated with alpelisib, including both responsive and resistant tumors. Using CRISPR/Cas9, siRNA, and PTEN-/- isogenic and alpelisib-resistant cell models, we examined the role of PTEN in resistance acquisition. Phospho-proteomic analysis identified PTEN-dependent phosphorylation events, while PI3Kα inhibitor-resistant organoids were used to assess PLK1 inhibitor efficacy. RESULTS We identified microRNAs altered in resistant PDXs, including members of the miR-17-92 cluster. Mechanistically, we observed that the hyperactive c-Myc was recruited to MIR17HG regulatory regions in alpelisib-resistant cells, sustaining miR-17-5p, miR-19b-3p, and miR-20a-5p expression, which downregulated PTEN. PTEN knockout or depletion conferred alpelisib resistance in HNSCC cells. We identified PTEN-dependent phosphorylation events, such as p-PLK1-T210, involved in resistance. Interestingly, pharmacological inhibition of PLK1 strongly reduced the viability of PI3Kα-resistant organoids derived from HNSCC PDXs and cell line models. CONCLUSION Overall, this study unveils a novel, microRNA-driven, non-genetic mechanism contributing to acquired resistance to PI3Kα inhibitors in HNSCC. Indeed, linking hyperactive c-Myc to sustain miR-17-92 expression and consequent PTEN downregulation, we also propose that targeting PTEN-dependent downstream effectors, such as PLK1, may offer a powerful therapeutic strategy for resistant HNSCC.
Collapse
Affiliation(s)
- Claudio Pulito
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sebastiano Vaccarella
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Alina Catalina Palcau
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, Rome 00144, Italy
| | - Federica Ganci
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Renata Brandi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Carlotta Frascolla
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Anna Benedetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Valentina De Pascale
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Anne-Sophie Fisch
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Valentina Manciocco
- Department of Otorhinolaryngology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Renato Covello
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, Rome 00144, Italy
| | - Aldo Morrone
- Scientific Director Office, IRCCS San Gallicano Dermatology Institute, Rome 00144, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Raul Pellini
- Department of Otorhinolaryngology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan La Statale, Milan 20122, Italy
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Sabrina Strano
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Konrad Klinghammer
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Giulia Fontemaggi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy.
| |
Collapse
|
3
|
Lee MK, Woo SR, Noh JK, Bae M, Lee Y, Min S, Kong M, Lee YC, Ko SG, Eun YG. Prognostic value of FLOT1-related gene signature in head and neck squamous cell carcinoma: insights into radioresistance mechanisms and clinical outcomes. Cell Death Discov 2025; 11:224. [PMID: 40335491 PMCID: PMC12058980 DOI: 10.1038/s41420-025-02500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
We aimed to develop and validate the ability of a FLOT1-related gene signature to predict survival in head and neck squamous cell carcinoma (HNSCC) patients and to explore FLOT1's role in modulating the responses to radiation therapy (RT). Using TCGA dataset, we identified a gene expression signature reflective of FLOT1 and applied LASSO regression to build a prediction model. Patients were stratified into high- and low-risk subgroups based on this signature. The prognostic value was confirmed across three independent cohorts, showing that high-risk patients had significantly poorer overall survival. Cox proportional hazards models were used to establish this gene signature as an independent prognostic factor for overall survival in HNSCC patients. Additionally, this signature predicted survival outcomes in patients undergoing RT. In vitro and in vivo experiments revealed that inhibiting FLOT1 expression increased the radiation sensitivity of HNSCC cells by modulating the phospho-PTEN/IGF1R axis. Moreover, silencing FLOT1 decreased radioresistance in radioresistant cell lines and xenograft mouse models. In conclusion, the FLOT1-related gene signature is a strong prognostic marker for HNSCC and may help identify patients who may benefit from RT.
Collapse
Affiliation(s)
- Min Kyeong Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seon Rang Woo
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Joo Kyung Noh
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - MinJi Bae
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - YeonSeo Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Soonki Min
- Department of Radiation Oncology, Kyung Hee University School of Medicine Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University School of Medicine Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Young Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Gyu Eun
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Taghizadieh M, Kalantari M, Bakhshali R, Kobravi S, Khalilollah S, Baghi HB, Bayat M, Nahand JS, Akhavan-Sigari R. To be or not to be: navigating the influence of MicroRNAs on cervical cancer cell death. Cancer Cell Int 2025; 25:153. [PMID: 40251577 PMCID: PMC12008905 DOI: 10.1186/s12935-025-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
With all diagnostic and therapeutic advances, such as surgery, radiation- and chemo-therapy, cervical cancer (CC) is still ranked fourth among the most frequent cancers in women globally. New biomarkers and therapeutic targets are warranted to be discovered for the early detection, treatment, and prognosis of CC. As component of the non-coding RNA's family, microRNAs (miRNAs) participate in several cellular functions such as cell proliferation, gene expression, many signaling cascades, apoptosis, angiogenesis, etc. MiRNAs can suppress or induce programmed cell death (PCD) pathways by altering their regulatory genes. Besides, abnormal expression of miRNAs weakens or promotes various signaling pathways associated with PCD, resulting in the development of human diseases such as CC. For that reason, understanding the effects that miRNAs exert on the various modes of tumor PCD, and evaluating the potential of miRNAs to serve as targets for induction of cell death and reappearance of chemotherapy. The current study aims to define the effect that miRNAs exert on cell apoptosis, autophagy, pyroptosis, ferroptosis, and anoikis in cervical cancer to investigate possible targets for cervical cancer therapy. Manipulating the PCD pathways by miRNAs could be considered a primary therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kalantari
- Department of Biology, Tehran University of health Sciences, Tehran, Iran
| | | | - Sepehr Kobravi
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
5
|
Hu Z, Tang M, Huang Y, Cai B, Sun X, Chen G, Huang A, Li X, Shah AR, Jiang L, Li Q, Xu X, Lu W, Mao Z, Wan X. SIRT7 facilitates endometrial cancer progression by regulating PTEN stability in an estrogen-dependent manner. Nat Commun 2025; 16:2989. [PMID: 40148340 PMCID: PMC11950185 DOI: 10.1038/s41467-025-58317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
The prognosis of metastatic endometrial carcinoma (EC), one of the most common gynecological malignancies worldwide, remains poor, and the underlying driver of metastases is poorly understood. Dysregulation in estrogen-related signaling and inactivation of tumor suppressor PTEN are two essential risk factors of EC. However, whether and how they are interconnected during EC development remains unclear. Here, we demonstrate that the deacetylase SIRT7 is upregulated in EC patients and mouse models, facilitating EC progression in vitro and in vivo. Mechanistically, in an estrogen-dependent fashion, SIRT7 mediates PTEN deacetylation at K260, promoting PTEN ubiquitination by the E3 ligase NEDD4L, accelerating PTEN degradation and, consequently, expediting EC metastasis. Additionally, SIRT7 expression strongly correlates with poor survival in EC patients with wild-type PTEN, though no significant correlation is observed in PTEN mutation patients. These results lay the foundation for the study of targeting estrogen-SIRT7-PTEN axis, to restore PTEN abundance, offering potential avenues for EC therapy.
Collapse
Affiliation(s)
- Zhiyi Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yujia Huang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bailian Cai
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ao Huang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmacy, Changsha Medical University, Changsha, China
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ab Rauf Shah
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Lu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Yang X, Liu T, Cheng H. PTEN: a new dawn in Parkinson's disease treatment. Front Cell Neurosci 2025; 19:1497555. [PMID: 40129459 PMCID: PMC11931041 DOI: 10.3389/fncel.2025.1497555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
In recent years, the study of phosphatase and tension homolog (PTEN) has gradually become a research hotspot. As an important oncogene, the role of PTEN in cancer has long been widely recognized and intensively studied, but it has been relatively less studied in other diseases. Parkinson's disease (PD) is a neurodegenerative refractory disease commonly observed in middle-aged and elderly individuals. The etiology and pathogenesis of PD are numerous, complex, and incompletely understood. With the continuous deepening of research, numerous studies have proven that PTEN is related to the occurrence of PD. In this review, we discuss the relationship between PTEN and PD through the phosphorylation and ubiquitination of PTEN and other possible regulatory mechanisms, including the role of RNA molecules, exosomes, transcriptional regulation, chemical modification, and subtype variation, with the aim of clarifying the regulatory role of PTEN in PD and better elucidating its pathogenesis. Finally, we summarize the shortcomings of PTEN in PD research and highlight the great potential of its future application in PD clinical treatment. These findings provide research ideas and new perspectives for the possible use of PTEN as a PD therapeutic target for targeted drug development and clinical application in the future.
Collapse
Affiliation(s)
| | - Tianqi Liu
- Medical College, Yangzhou University, Yangzhou, China
| | - Hong Cheng
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638677. [PMID: 40027768 PMCID: PMC11870551 DOI: 10.1101/2025.02.17.638677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the C. elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promote starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
|
8
|
Tavakolian S, Eshkiki ZS, Akbari A, Faghihloo E, Tabaeian SP. PTEN regulation in virus-associated cancers. Pathol Res Pract 2025; 266:155749. [PMID: 39642806 DOI: 10.1016/j.prp.2024.155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Despite advancements in science, researchers still face challenges in curing patients with malignancies. This health issue is linked to various risk factors, including alcohol consumption, age, sex, and infectious diseases. Among these, viral agents play a significant role in cancer-related health problems and are currently a subject of ongoing research. In this review, we summarize how several viruses-such as herpesviruses, human papillomavirus, hepatitis B virus, hepatitis C virus, and adenovirus-impact cancer signaling pathways through their effects on the tumor suppressor PTEN.
Collapse
Affiliation(s)
- Shaian Tavakolian
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Lu Q, Sasaki S, Sera T, Kudo S. Spatiotemporal distribution of PTEN before directed cell migration in monolayers. In Vitro Cell Dev Biol Anim 2024; 60:1160-1173. [PMID: 38926230 DOI: 10.1007/s11626-024-00927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/12/2024] [Indexed: 06/28/2024]
Abstract
The intracellular distribution of phosphatase and tensin homolog (PTEN) is closely related to directed cell migration. In single cells, PTEN accumulates at the rear of the cell before and during directed migration; however, the spatiotemporal distribution of PTEN in confluent cell monolayers, particularly before directed migration, remains unclear. In this study, we wounded a cell in confluent fetal rat skin keratinocytes (FRSKs) and examined the dynamics of PTEN in the cells adjacent to the wounded cell. In contrast to single-cell migration, we found that PTEN translocated to the nucleus before the beginning of directed migration. This nuclear translocation of PTEN did not occur in disconnected cells, and it was also suppressed by importin-β inhibitor and actin inhibitor. When the nuclear localization of PTEN was inhibited by an importin-β inhibitor, cell elongation in the direction of migration was also significantly inhibited. Our results indicate that PTEN translocation is induced by the disruption of cell-cell adhesion and requires the involvement of importin-β and actin cytoskeleton signaling. In addition, phosphatidylinositol 3,4,5-triphosphate (PIP3) may regulate PTEN distribution through its localized accumulation at the cell edge. Our findings suggest that the translocation of PTEN is crucial for directed cell migration and for responding to mechanical environmental changes in confluent cell monolayers.
Collapse
Affiliation(s)
- Quanzhi Lu
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan
| | - Saori Sasaki
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan
| | - Toshihiro Sera
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan.
| |
Collapse
|
10
|
Hoffmann-Młodzianowska M, Maksym RB, Pucia K, Kuciak M, Mackiewicz A, Kieda C. Endometriosis development in relation to hypoxia: a murine model study. Mol Med 2024; 30:195. [PMID: 39478503 PMCID: PMC11526686 DOI: 10.1186/s10020-024-00973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Endometriosis, due to its ambiguous symptoms, still remains one of the most difficult female diseases to treat, with an average diagnosis time of 7-9 years. The changing level of hypoxia plays an important role in a healthy endometrium during menstruation and an elevated expression of the hypoxia-inducible factor 1-alpha (HIF-1α) has been demonstrated in ectopic endometria. HIF-1α mediates the induction of proangiogenic factors and the development of angiogenesis is a critical step in the establishment and pathogenesis of endometriosis. Although the inhibition of angiogenesis has been proposed as one of the actionable therapeutic modalities, vascular normalization and re-oxygenation may become a possible new approach for therapeutic intervention. METHODS Our goal was to investigate whether a selected murine model of endometriosis would be suitable for future studies on new methods for treating endometriosis. Non-invasive, high-resolution ultrasound-monitored observation was selected as the preclinical approach to obtain imaging of the presence and volume of the endometriotic-like lesions. The EF5 (2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide) compound that selectively binds to reduced proteins in hypoxic cells was used for hypoxia detection. The expression of Pten and other crucial genes linking endometriosis and hypoxia were also assessed. RESULTS Using EF5, a pentafluorinated derivative of the 2-nitroimidazole that is metabolically reduced by oxygen-inhibitable nitroreductase, we confirmed that hypoxia did develop in the selected model and was detected in uterine and ectopic endometriotic lesions. Moreover, the changes in oxygen tension also influenced the expression level of significant genes related to endometriosis, like Pten, Trp53, Hif1a, Epas1, and Vegfa. Their strong modulation evidenced here is indicative of model reliability. Using high-resolution ultrasound-based imaging, we present a non-invasive method of visualization that enables the detection and observation of lesion evolution throughout the duration of the experiment, which is fundamental for further preclinical studies and treatment evaluation. CONCLUSIONS The selected model and method of visualization appear to be suitable for the study of new treatment strategies based on hypoxia alleviation and blood flow restoration.
Collapse
Affiliation(s)
- Marta Hoffmann-Młodzianowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, 04-141, Warsaw, Poland.
| | - Radosław B Maksym
- 1st Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, 01-004, Warsaw, Poland
| | - Katarzyna Pucia
- Animal Experimentation Laboratory of the Center for Biostructure Research, Medical University of Warsaw, 02-106, Warsaw, Poland
| | - Monika Kuciak
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-806, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-806, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, 04-141, Warsaw, Poland
- Centre for Molecular Biophysics, UPR4301 CNRS, 45071, Orléans, France
| |
Collapse
|
11
|
El-Korany WA, Zahran WE, Alm El-Din MA, Al-Shenawy HA, Soliman AF. Rs12039395 Variant Influences the Expression of hsa-miR-181a-5p and PTEN Toward Colorectal Cancer Risk. Dig Dis Sci 2024; 69:3318-3332. [PMID: 38940971 DOI: 10.1007/s10620-024-08517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes could alter miRNA expression levels or processing and, thus, may contribute to colorectal cancer (CRC) development. Therefore, this study aimed to examine whether the MIR181A1 genomic sequence possesses SNPs that can affect the expression of hsa-miR-181a-5p and, subsequently, impact its targets and associate with CRC risk. METHODS The NCBI dbSNP database was searched for possible SNPs associated with MIR181A1. One SNP with a minor allele frequency > 5%, rs12039395 G > T was identified. In silico analyses determined the effect of the SNP on the secondary structure of the miRNA and predicted the hsa-miR-181a-5p target genes. The SNP was genotyped using allelic discrimination assay, the relative hsa-miR-181a-5p expression level was determined using quantitative real-time PCR, and immunohistochemical staining was used to detect target genes in 192 paraffin-embedded specimens collected from 160 CRC patients and 32 healthy subjects. RESULTS The rs6505162 SNP conferred protection against CRC, and the G-allele presence provides may provide accessibility for the transcriptional machinery. Hsa-miR-181a-5p was significantly over-expressed in the CRC group compared to controls and in samples carrying the G-allele compared to those with T-allele. PTEN, identified as the only hsa-miR-181a-5p target implicated in CRC, was significantly diminished in the CRC group compared to controls and showed an inverse relationship with hsa-miR-181a-5p expression level as well as negatively associated with the G-allele presence in CRC. CONCLUSION This study highlights that rs12039395 G > T may protect against CRC by influencing the expression of hsa-mir-181a-5p and its target gene, PTEN.
Collapse
Affiliation(s)
- Wael A El-Korany
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid E Zahran
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed A Alm El-Din
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Hanan A Al-Shenawy
- Pathology Department, Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
12
|
Xing S, Xiong Z, Wang M, Li Y, Shi J, Qian Y, Lei J, Jia J, Zeng W, Huang Z, Jiang Y. Sophocarpine inhibits the progression of glioblastoma via PTEN/PI3K/Akt signaling pathway. Am J Cancer Res 2024; 14:3757-3772. [PMID: 39267674 PMCID: PMC11387860 DOI: 10.62347/sqjb1901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most fatal primary brain tumor which lacks effective treatment drugs. Alkaloids are known as a class of potential anti-tumor agents. Sophocarpine, a tetracyclic quinazoline alkaloid derived from Sophora alopecuroides L., possesses several pharmacological effects including anti-tumor effects in some malignancies. However, the effect and mechanism of sophocarpine on GBM remains to be explored. In this study, based on in vitro experiments, we found that sophocarpine significantly inhibited the viability, proliferation and migration of GBM cells including U251 and C6 cells in a dose- and time-dependent manner. Besides, sophocarpine arrested GBM cell cycle in G0/G1 phase and induced their apoptosis. Subsequently, we found that sophocarpine upregulated the expression of PTEN, a GBM tumor suppressor, and downregulated PI3K/Akt signaling in GBM cells. Moreover, inactivating of PTEN with bpV(phen) trihydrate partially restored the anti-GBM effects of sophocarpine via PI3K/Akt signaling. Finally, sophocarpine significantly inhibited the growth of tumor both in subcutaneous and orthotopic U251 xenograft GBM model in nude mice via PTEN/PI3K/Akt axis. Taken together, these results suggested that sophocarpine impeded GBM progression via PTEN/PI3K/Akt axis both in vitro and in vivo, providing with a promising therapy for treating GBM.
Collapse
Affiliation(s)
- Shuqiao Xing
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Zhenrong Xiong
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Mengmeng Wang
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Yifan Li
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- School of Medicine, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Jiali Shi
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Jia Lei
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Jiamei Jia
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Weiquan Zeng
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| |
Collapse
|
13
|
Qiu L, Li R, Wang Y, Lu Z, Tu Z, Liu H. PTEN inhibition enhances sensitivity of ovarian cancer cells to the poly (ADP-ribose) polymerase inhibitor by suppressing the MRE11-RAD50-NBN complex. Br J Cancer 2024; 131:577-588. [PMID: 38866962 PMCID: PMC11300449 DOI: 10.1038/s41416-024-02749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPis) can effectively treat ovarian cancer patients with defective homologous recombination (HR). Loss or dysfunction of PTEN, a typical tumour suppressor, impairs double-strand break (DSB) repair. Hence, we explored the possibility of inhibiting PTEN to induce HR deficiency (HRD) for PARPi application. METHODS Functional studies using PTEN inhibitor VO-OHpic and PARPi olaparib were performed to explore the molecular mechanisms in vitro and in vivo. RESULTS In this study, the combination of VO-OHpic with olaparib exhibited synergistic inhibitory effects on ovarian cancer cells was demonstrated. Furthermore, VO-OHpic was shown to enhance DSBs by reducing nuclear expression of PTEN and inhibiting HR repair through the modulation of MRE11-RAD50-NBN (MRN) complex, critical for DSB repair. TCGA and GTEx analysis revealed a strong correlation between PTEN and MRN in ovarian cancer. Mechanistic studies indicated that VO-OHpic reduced expression of MRN, likely by decreasing PTEN/E2F1-mediated transcription. Moreover, PTEN-knockdown inhibited expression of MRN, increased sensitivities to olaparib, and induced DSBs. In vivo experiments showed that the combination of VO-OHpic with olaparib exhibited enhanced inhibitory effects on tumour growth. CONCLUSIONS Collectively, this study highlights the potential of PTEN inhibitors in combination therapy with PARPis to create HRD for HRD-negative ovarian cancers.
Collapse
Affiliation(s)
- Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ruyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- School of Health Medicine, Nantong Institute of Technology, Nantong, 226000, Jiangsu, China
| | - Yue Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
14
|
Hsu CY, Li JY, Yang EY, Liao TL, Wen HW, Tsai PC, Ju TC, Lye LF, Nielsen BL, Liu HJ. The Oncolytic Avian Reovirus p17 Protein Inhibits Invadopodia Formation in Murine Melanoma Cancer Cells by Suppressing the FAK/Src Pathway and the Formation of theTKs5/NCK1 Complex. Viruses 2024; 16:1153. [PMID: 39066315 PMCID: PMC11281681 DOI: 10.3390/v16071153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
To explore whether the p17 protein of oncolytic avian reovirus (ARV) mediates cell migration and invadopodia formation, we applied several molecular biological approaches for studying the involved cellular factors and signal pathways. We found that ARV p17 activates the p53/phosphatase and tensin homolog (PTEN) pathway to suppress the focal adhesion kinase (FAK)/Src signaling and downstream signal molecules, thus inhibiting cell migration and the formation of invadopodia in murine melanoma cancer cell line (B16-F10). Importantly, p17-induced formation of invadopodia could be reversed in cells transfected with the mutant PTENC124A. p17 protein was found to significantly reduce the expression levels of tyrosine kinase substrate 5 (TKs5), Rab40b, non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), and matrix metalloproteinases (MMP9), suggesting that TKs5 and Rab40b were transcriptionally downregulated by p17. Furthermore, we found that p17 suppresses the formation of the TKs5/NCK1 complex. Coexpression of TKs5 and Rab40b in B16-F10 cancer cells reversed p17-modulated suppression of the formation of invadopodia. This work provides new insights into p17-modulated suppression of invadopodia formation by activating the p53/PTEN pathway, suppressing the FAK/Src pathway, and inhibiting the formation of the TKs5/NCK1 complex.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (T.-L.L.); (P.-C.T.)
| | - Jyun-Yi Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan (T.-C.J.)
| | - En-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan (T.-C.J.)
| | - Tsai-Ling Liao
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (T.-L.L.); (P.-C.T.)
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Pei-Chien Tsai
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (T.-L.L.); (P.-C.T.)
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Tz-Chuen Ju
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan (T.-C.J.)
| | - Lon-Fye Lye
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Hung-Jen Liu
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (T.-L.L.); (P.-C.T.)
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan (T.-C.J.)
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
15
|
Santagata S, Rea G, Bello AM, Capiluongo A, Napolitano M, Desicato S, Fragale A, D'Alterio C, Trotta AM, Ieranò C, Portella L, Persico F, Di Napoli M, Di Maro S, Feroce F, Azzaro R, Gabriele L, Longo N, Pignata S, Perdonà S, Scala S. Targeting CXCR4 impaired T regulatory function through PTEN in renal cancer patients. Br J Cancer 2024; 130:2016-2026. [PMID: 38704478 PMCID: PMC11183124 DOI: 10.1038/s41416-024-02702-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Tregs trafficking is controlled by CXCR4. In Renal Cell Carcinoma (RCC), the effect of the new CXCR4 antagonist, R54, was explored in peripheral blood (PB)-Tregs isolated from primary RCC patients. METHODS PB-Tregs were isolated from 77 RCC patients and 38 healthy donors (HDs). CFSE-T effector-Tregs suppression assay, IL-35, IFN-γ, IL-10, TGF-β1 secretion, and Nrp-1+Tregs frequency were evaluated. Tregs were characterised for CTLA-4, PD-1, CD40L, PTEN, CD25, TGF-β1, FOXP3, DNMT1 transcriptional profile. PTEN-pAKT signalling was evaluated in the presence of R54 and/or triciribine (TCB), an AKT inhibitor. Methylation of TSDR (Treg-Specific-Demethylated-Region) was conducted. RESULTS R54 impaired PB-RCC-Tregs function, reduced Nrp-1+Tregs frequency, the release of IL-35, IL-10, and TGF-β1, while increased IFN-γ Teff-secretion. The CXCR4 ligand, CXCL12, recruited CD25+PTEN+Tregs in RCC while R54 significantly reduced it. IL-2/PMA activates Tregs reducing pAKT+Tregs while R54 increases it. The AKT inhibitor, TCB, prevented the increase in pAKT+Tregs R54-mediated. Moreover, R54 significantly reduced FOXP3-TSDR demethylation with DNMT1 and FOXP3 downregulation. CONCLUSION R54 impairs Tregs function in primary RCC patients targeting PTEN/PI3K/AKT pathway, reducing TSDR demethylation and FOXP3 and DNMT1 expression. Thus, CXCR4 targeting is a strategy to inhibit Tregs activity in the RCC tumour microenvironment.
Collapse
Affiliation(s)
- Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Capiluongo
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Napolitano
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Sonia Desicato
- Urology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Alessandra Fragale
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Caterina Ieranò
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Francesco Persico
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138, Napoli, Italy
| | - Marilena Di Napoli
- Uro-gynecological Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Florinda Feroce
- Pathology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Rosa Azzaro
- Transfusion Medicine Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Lucia Gabriele
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Nicola Longo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138, Napoli, Italy
| | - Sandro Pignata
- Uro-gynecological Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Sisto Perdonà
- Urology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| |
Collapse
|
16
|
Wang S, Riedstra CP, Zhang Y, Anandh S, Dudley AC. PTEN-restoration abrogates brain colonisation and perivascular niche invasion by melanoma cells. Br J Cancer 2024; 130:555-567. [PMID: 38148377 PMCID: PMC10876963 DOI: 10.1038/s41416-023-02530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Melanoma brain metastases (MBM) continue to be a significant clinical problem with limited treatment options. Highly invasive melanoma cells migrate along the vasculature and perivascular cells may contribute to residual disease and recurrence. PTEN loss and hyperactivation of AKT occur in MBM; however, a role for PTEN/AKT in perivascular invasion has not been described. METHODS We used in vivo intracranial injections of murine melanoma and bulk RNA sequencing of melanoma cells co-cultured with brain endothelial cells (brECs) to investigate brain colonisation and perivascular invasion. RESULTS We found that PTEN-null melanoma cells were highly efficient at colonising the perivascular niche relative to PTEN-expressing counterparts. PTEN re-expression (PTEN-RE) in melanoma cells significantly reduced brain colonisation and migration along the vasculature. We hypothesised this phenotype was mediated through vascular-induced TGFβ secretion, which drives AKT phosphorylation. Disabling TGFβ signalling in melanoma cells reduced colonisation and perivascular invasion; however, the introduction of constitutively active myristolated-AKT (myrAKT) restored overall tumour size but not perivascular invasion. CONCLUSIONS PTEN loss facilitates perivascular brain colonisation and invasion of melanoma. TGFβ-AKT signalling partially contributes to this phenotype, but further studies are needed to determine the complementary mechanisms that enable melanoma cells to both survive and spread along the brain vasculature.
Collapse
Affiliation(s)
- Sarah Wang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Caroline P Riedstra
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Yu Zhang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Swetha Anandh
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
- The University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
17
|
Chen W, Lai J, Dong S, Chen L, Yang H. Engineering Logic DNA Nanoprobes on Live Cell Membranes for Simultaneously Monitoring Extracellular pH and Precise Drug Delivery. Anal Chem 2024; 96:3462-3469. [PMID: 38358853 DOI: 10.1021/acs.analchem.3c05064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
It remains a challenge to use a single probe to simultaneously detect extracellular pH fluctuations and specifically recognize cancer cells for precise drug delivery. Here, we engineered a tetrahedral framework nucleic acid-based logic nanoprobe (isgc8-tFNA) on live cell membranes for simultaneously monitoring extracellular pH and targeted drug delivery. Isgc8-tFNA was anchored stably on the cell surface through three cholesterol molecules inserting into the bilayer of the cell membrane. Once responding to the acidic tumor microenvironment, isgc8-tFNA formed an i-motif structure, leading to turn-on FRET signals for monitoring changes of extracellular pH. The nanoprobe exhibited a narrow pH-response window and excellent reversibility. Moreover, the nanoprobe could execute logic identification on the cell surface for precise drug delivery. Only if both in the acidic microenvironment and aptamer-targeting marker are present on the cell surface, the sgc8-ASO-chimera strand, carrying an antisense oligonucleotide drug, was released from the nanoprobe and entered into targeted cancer cells for gene silence. Additionally, the in situ drug release facilitated the uptake of drugs mediated by the interaction between sgc8 aptamer and membrane proteins, resulting in enhanced inhibition of cancer cell migration and proliferation. This logic nanoprobe will provide inspiration for designing smart devices for diagnosis of pH-related diseases and targeted drug delivery.
Collapse
Affiliation(s)
- Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Jingjing Lai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Siqi Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| |
Collapse
|
18
|
Xu X, Bok I, Jasani N, Wang K, Chadourne M, Mecozzi N, Deng O, Welsh EA, Kinose F, Rix U, Karreth FA. PTEN Lipid Phosphatase Activity Suppresses Melanoma Formation by Opposing an AKT/mTOR/FRA1 Signaling Axis. Cancer Res 2024; 84:388-404. [PMID: 38193852 PMCID: PMC10842853 DOI: 10.1158/0008-5472.can-23-1730] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
Inactivating mutations in PTEN are prevalent in melanoma and are thought to support tumor development by hyperactivating the AKT/mTOR pathway. Conversely, activating mutations in AKT are relatively rare in melanoma, and therapies targeting AKT or mTOR have shown disappointing outcomes in preclinical models and clinical trials of melanoma. This has led to the speculation that PTEN suppresses melanoma by opposing AKT-independent pathways, potentially through noncanonical functions beyond its lipid phosphatase activity. In this study, we examined the mechanisms of PTEN-mediated suppression of melanoma formation through the restoration of various PTEN functions in PTEN-deficient cells or mouse models. PTEN lipid phosphatase activity predominantly inhibited melanoma cell proliferation, invasion, and tumor growth, with minimal contribution from its protein phosphatase and scaffold functions. A drug screen underscored the exquisite dependence of PTEN-deficient melanoma cells on the AKT/mTOR pathway. Furthermore, activation of AKT alone was sufficient to counteract several aspects of PTEN-mediated melanoma suppression, particularly invasion and the growth of allograft tumors. Phosphoproteomics analysis of the lipid phosphatase activity of PTEN validated its potent inhibition of AKT and many of its known targets, while also identifying the AP-1 transcription factor FRA1 as a downstream effector. The restoration of PTEN dampened FRA1 translation by inhibiting AKT/mTOR signaling, and FRA1 overexpression negated aspects of PTEN-mediated melanoma suppression akin to AKT. This study supports AKT as the key mediator of PTEN inactivation in melanoma and identifies an AKT/mTOR/FRA1 axis as a driver of melanomagenesis. SIGNIFICANCE PTEN suppresses melanoma predominantly through its lipid phosphatase function, which when lost, elevates FRA1 levels through AKT/mTOR signaling to promote several aspects of melanomagenesis.
Collapse
Affiliation(s)
- Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Kaizhen Wang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Manon Chadourne
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicol Mecozzi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Ou Deng
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| |
Collapse
|
19
|
Marzhoseyni Z, Shaghaghi Z, Alvandi M, Shirvani M. Investigating the Influence of Gut Microbiota-related Metabolites in Gastrointestinal Cancer. Curr Cancer Drug Targets 2024; 24:612-628. [PMID: 38213140 DOI: 10.2174/0115680096274860231111210214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 01/13/2024]
Abstract
Gastrointestinal (GI) cancer is a major health concern due to its prevalence, impact on well-being, high mortality rate, economic burden, and potential for prevention and early detection. GI cancer research has made remarkable strides in understanding biology, risk factors, and treatment options. An emerging area of research is the gut microbiome's role in GI cancer development and treatment response. The gut microbiome, vital for digestion, metabolism, and immune function, is increasingly linked to GI cancers. Dysbiosis and alterations in gut microbe composition may contribute to cancer development. Scientists study how specific bacteria or microbial metabolites influence cancer progression and treatment response. Modulating the gut microbiota shows promise in enhancing treatment efficacy and preventing GI cancers. Gut microbiota dysbiosis can impact GI cancer through inflammation, metabolite production, genotoxicity, and immune modulation. Microbes produce metabolites like short-chain fatty acids, bile acids, and secondary metabolites. These affect host cells, influencing processes like cell proliferation, apoptosis, DNA damage, and immune regulation, all implicated in cancer development. This review explores the latest research on gut microbiota metabolites and their molecular mechanisms in GI cancers. The hope is that this attempt will help in conducting other relevant research to unravel the precise mechanism involved, identify microbial signatures associated with GI cancer, and develop targets.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Iran, Sari, Iran
| | - Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maria Shirvani
- Infectious Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Deng X, Ning Z, Li L, Cui Z, Du X, Amevor FK, Tian Y, Shu G, Du X, Han X, Zhao X. High expression of miR-22-3p in chicken hierarchical follicles promotes granulosa cell proliferation, steroidogenesis, and lipid metabolism via PTEN/PI3K/Akt/mTOR signaling pathway. Int J Biol Macromol 2023; 253:127415. [PMID: 37848113 DOI: 10.1016/j.ijbiomac.2023.127415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
MicroRNAs (miRNAs) are a class of RNA macromolecules that play regulatory roles in follicle development by inhibiting protein translation through binding to the 3'UTR of its target genes. Granulosa cell (GC) proliferation, steroidogenesis, and lipid metabolism have indispensable effect during folliculogenesis. In this study, we found that miR-22-3p was highly expressed in the hierarchical follicles of the chickens, which indicated that it may be involved in follicle development. The results obtained suggested that miR-22-3p promoted proliferation, hormone secretion (progesterone and estrogen), and the content of lipid droplets (LDs) in the chicken primary GC. The results from the bioinformatics analysis, luciferase reporter assay, qRT-PCR, and Western blotting, confirmed that PTEN was directly targeted to miR-22-3p. Subsequently, it was revealed that PTEN inhibited proliferation, hormone secretion, and the content of LDs in GC. Therefore, this study showed that miR-22-3p could activate PI3K/Akt/mTOR pathway via targeting PTEN. Taken together, the findings from this study indicated that miR-22-3p was highly expressed in the hierarchical follicles of chickens, which promotes GC proliferation, steroidogenesis, and lipid metabolism by repressing PTEN to activate PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, PR China; Guizhou Hongyu Animal Husbandry Technology Development Co., Ltd, Guiyang, PR China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, PR China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, PR China; Guizhou Hongyu Animal Husbandry Technology Development Co., Ltd, Guiyang, PR China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China.
| |
Collapse
|
21
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
22
|
Mayo LD. Alteration of tumor suppressors changes the endometrial tumor spectrum. EMBO Mol Med 2023; 15:e18166. [PMID: 37587857 PMCID: PMC10565631 DOI: 10.15252/emmm.202318166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
The most common gynecological cancer in Europe and the United States is endometrial. Like most cancers, early-stage endometrial cancer has a more favorable prognosis, while high-grade, including endometrioid and nonendometrioid, has the worst prognosis. In endometrioid human tumors, the tumor suppressor genes PTEN and p53 (Trp53) are frequently altered or lost, as identified in datasets from The Cancer Genome Atlas. These suppressors' somatic mutations or loss of gene expression can lead to neoplastic development, tumor progression, and therapeutic resistance. In addition, somatic missense mutations are prevalent in another tumor suppressor, the F-box and WD repeats containing 7 (FBXW7). FBXW7 is part of the SCF-βTrCP ubiquitin complex that signals protein destruction. Specifically, FBXW7 is responsible for binding and facilitating the destabilization of proteins involved in proliferation and migration. Losing the function of multiple tumor suppressors could activate pathways involved in neoplastic progression, malignancy, therapeutic resistance, and formation of different tumor subtypes. The study by Brown et al in this issue of EMBO Mol Med (Brown et al, 2023) provides insight into the complexity of tumor suppressor mutations in malignant endometrial cancer.
Collapse
Affiliation(s)
- Lindsey D Mayo
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of MedicineIndiana University IndianapolisIndianapolisINUSA
| |
Collapse
|
23
|
Jurca CM, Frățilă O, Iliaș T, Jurca A, Cătana A, Moisa C, Jurca AD. A New Frameshift Mutation of PTEN Gene Associated with Cowden Syndrome-Case Report and Brief Review of the Literature. Genes (Basel) 2023; 14:1909. [PMID: 37895258 PMCID: PMC10606311 DOI: 10.3390/genes14101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Cowden syndrome (CS) is a rare disease that was first described in 1963 and later included in the large group of genodermatoses. It is the most common syndrome among the PTEN-associated hamartomatous tumor syndromes (PHTS). CS has an autosomal dominant inheritance pattern, with increased penetrance and variable expressivity, making early diagnosis difficult. Mutations in the PTEN gene (phosphatase and TENsin homolog) are involved in its pathogenesis, involving many organs and systems originating in the three embryonic layers (ectodermum, endodermum, and mesodermum). The consequence is the development of hamartomatous lesions in various organs (brain, intestines, thyroid, oropharyngeal cavity, colon, rectum, etc.). Multiple intestinal polyps are common in patients with CS, being identified in over 95% of patients undergoing colonoscopy. The authors describe the case of a patient who presented the first signs of the disease at 3 ½ years (tonsil polyp) but was diagnosed only at the age of 20 following a colonoscopy that revealed hundreds of intestinal polyps, suggesting further molecular testing. A heterozygous frameshift mutation was identified in the PTEN gene, classified as a potentially pathogenic variant (c.762del.p(Val255*)). The authors present this case to highlight the path taken by the patient from the first symptoms to the diagnosis and to emphasize the clinical aspects of this mutational variant that have still not been identified in other patients with this syndrome.
Collapse
Affiliation(s)
- Claudia Maria Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (C.M.J.); (A.D.J.)
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea (Part of ERN-ITHACA), 410469 Oradea, Romania
| | - Ovidiu Frățilă
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania;
| | - Tiberia Iliaș
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania;
| | - Aurora Jurca
- Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania;
| | - Andreea Cătana
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj Napoca, Romania
| | - Corina Moisa
- Department of Pharmacy Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania;
| | - Alexandru Daniel Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (C.M.J.); (A.D.J.)
| |
Collapse
|
24
|
Skoufou-Papoutsaki N, Adler S, D'Santos P, Mannion L, Mehmed S, Kemp R, Smith A, Perrone F, Nayak K, Russell A, Zilbauer M, Winton DJ. Efficient genetic editing of human intestinal organoids using ribonucleoprotein-based CRISPR. Dis Model Mech 2023; 16:dmm050279. [PMID: 37772705 PMCID: PMC10565108 DOI: 10.1242/dmm.050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Organoids, combined with genetic editing strategies, have the potential to offer rapid and efficient investigation of gene function in many models of human disease. However, to date, the editing efficiency of organoids with the use of non-viral electroporation methods has only been up to 30%, with implications for the subsequent need for selection, including turnaround time and exhaustion or adaptation of the organoid population. Here, we describe an efficient method for intestinal organoid editing using a ribonucleoprotein-based CRISPR approach. Editing efficiencies of up to 98% in target genes were robustly achieved across different gut anatomical locations and developmental timepoints from multiple patient samples with no observed off-target editing. The method allowed us to study the effect of loss of the tumour suppressor gene PTEN in normal human intestinal cells. Analysis of PTEN-deficient organoids defined phenotypes that likely relate to its tumour suppressive function in vivo, such as a proliferative advantage and increased organoid budding. Transcriptional profiling revealed differential expression of genes in pathways commonly known to be associated with PTEN loss, including mTORC1 activation.
Collapse
Affiliation(s)
- Nefeli Skoufou-Papoutsaki
- CRUK Cambridge Institute, Cambridge CB2 0RE, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0RE, UK
| | - Sam Adler
- CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | | | - Liz Mannion
- CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | | | | | - Amy Smith
- CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | | | - Komal Nayak
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0RE, UK
| | | | | | - Douglas J. Winton
- CRUK Cambridge Institute, Cambridge CB2 0RE, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0RE, UK
| |
Collapse
|
25
|
Sinha S, Li J, Tam B, Wang SM. Classification of PTEN missense VUS through exascale simulations. Brief Bioinform 2023; 24:bbad361. [PMID: 37843401 DOI: 10.1093/bib/bbad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN), a tumor suppressor with dual phosphatase properties, is a key factor in PI3K/AKT signaling pathway. Pathogenic germline variation in PTEN can abrogate its ability to dephosphorylate, causing high cancer risk. Lack of functional evidence lets numerous PTEN variants be classified as variants of uncertain significance (VUS). Utilizing Molecular Dynamics (MD) simulations, we performed a thorough evaluation for 147 PTEN missense VUS, sorting them into 66 deleterious and 81 tolerated variants. Utilizing replica exchange molecular dynamic (REMD) simulations, we further assessed the variants situated in the catalytic core of PTEN's phosphatase domain and uncovered conformational alterations influencing the structural stability of the phosphatase domain. There was a high degree of agreement between our results and the variants classified by Variant Abundance by Massively Parallel Sequencing, saturation mutagenesis, multiplexed functional data and experimental assays. Our extensive analysis of PTEN missense VUS should benefit their clinical applications in PTEN-related cancer. SIGNIFICANCE STATEMENT Classification of PTEN variants affecting its lipid phosphatase activity is important for understanding the roles of PTEN variation in the pathogenesis of hereditary and sporadic malignancies. Of the 3000 variants identified in PTEN, 1296 (43%) were assigned as VUS. Here, we applied MD and REMD simulations to investigate the effects of PTEN missense VUS on the structural integrity of the PTEN phosphatase domain consisting the WPD, P and TI active sites. We classified a total of 147 missense VUS into 66 deleterious and 81 tolerated variants by referring to the control group comprising 54 pathogenic and 12 benign variants. The classification was largely in concordance with these classified by experimental approaches.
Collapse
Affiliation(s)
- Siddharth Sinha
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau S.A.R, China
| |
Collapse
|
26
|
Nikolatou K, Sandilands E, Román‐Fernández A, Cumming EM, Freckmann E, Lilla S, Buetow L, McGarry L, Neilson M, Shaw R, Strachan D, Miller C, Huang DT, McNeish IA, Norman JC, Zanivan S, Bryant DM. PTEN deficiency exposes a requirement for an ARF GTPase module for integrin-dependent invasion in ovarian cancer. EMBO J 2023; 42:e113987. [PMID: 37577760 PMCID: PMC10505920 DOI: 10.15252/embj.2023113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Dysregulation of the PI3K/AKT pathway is a common occurrence in high-grade serous ovarian carcinoma (HGSOC), with the loss of the tumour suppressor PTEN in HGSOC being associated with poor prognosis. The cellular mechanisms of how PTEN loss contributes to HGSOC are largely unknown. We here utilise time-lapse imaging of HGSOC spheroids coupled to a machine learning approach to classify the phenotype of PTEN loss. PTEN deficiency induces PI(3,4,5)P3 -rich and -dependent membrane protrusions into the extracellular matrix (ECM), resulting in a collective invasion phenotype. We identify the small GTPase ARF6 as a crucial vulnerability of HGSOC cells upon PTEN loss. Through a functional proteomic CRISPR screen of ARF6 interactors, we identify the ARF GTPase-activating protein (GAP) AGAP1 and the ECM receptor β1-integrin (ITGB1) as key ARF6 interactors in HGSOC regulating PTEN loss-associated invasion. ARF6 functions to promote invasion by controlling the recycling of internalised, active β1-integrin to maintain invasive activity into the ECM. The expression of the CYTH2-ARF6-AGAP1 complex in HGSOC patients is inversely associated with outcome, allowing the identification of patient groups with improved versus poor outcome. ARF6 may represent a therapeutic vulnerability in PTEN-depleted HGSOC.
Collapse
Affiliation(s)
- Konstantina Nikolatou
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Emma Sandilands
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Alvaro Román‐Fernández
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Erin M Cumming
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Eva Freckmann
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | | | | | | | | | | | | | | | - Danny T Huang
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Iain A McNeish
- Department of Surgery and Cancer, Ovarian Cancer Action Research CentreImperial College LondonLondonUK
| | - James C Norman
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - Sara Zanivan
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| | - David M Bryant
- School of Cancer SciencesUniversity of GlasgowGlasgowUK
- The CRUK Beatson InstituteGlasgowUK
| |
Collapse
|
27
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Gutiérrez-Ruíz SC, Hernández-Parra H, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chavez SA, Cortés H, Peña-Corona SI, Kiyekbayeva L, Ateşşahin DA, Goloshvili T, Leyva-Gómez G, Sharifi-Rad J. 3,3'-Diindolylmethane and indole-3-carbinol: potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int 2023; 23:180. [PMID: 37633886 PMCID: PMC10464192 DOI: 10.1186/s12935-023-03031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023] Open
Abstract
Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | | | | | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, Ciudad de México, 14380, Mexico
| | - Sergio Alberto Bernal-Chavez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lashyn Kiyekbayeva
- Pharmaceutical School, Department of Pharmaceutical Technology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Public Health and Nursing, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, Elazıg, 23100, Turkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi, 0162, Georgia
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | | |
Collapse
|
28
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
29
|
Sun Y, Isaji T, Oyama Y, Xu X, Liu J, Hanamatsu H, Yokota I, Miura N, Furukawa JI, Fukuda T, Gu J. Focal-adhesion kinase regulates the sialylation of N-glycans via the PI4KIIα-PI4P pathway. J Biol Chem 2023; 299:105051. [PMID: 37451482 PMCID: PMC10406863 DOI: 10.1016/j.jbc.2023.105051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3β1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin β1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Yoshiyuki Oyama
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hisatoshi Hanamatsu
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ikuko Yokota
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
30
|
Zhang J, Hu W, Liu K, Liu J, Zheng Y, Sun X, Mei L, Qian Z, Sun Q, Liu Q, Wu Z, Zhang H, Li Y, Sun D, Ye M. Integrated mRNA and microRNA profiling in lung tissue and blood from human silicosis. J Gene Med 2023:e3518. [PMID: 37403412 DOI: 10.1002/jgm.3518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The overwhelming majority of subjects in the current silicosis mRNA and microRNA (miRNA) expression profile are of human blood, lung cells or a rat model, which puts limits on the understanding of silicosis pathogenesis and therapy. To address the limitations, our investigation was focused on differentially expressed mRNA and miRNA profiles in lung tissue from silicosis patients to explore potential biomarker for early detection of silicosis. METHODS A transcriptome study was conducted based on lung tissue from 15 silicosis patients and eight normal people, and blood samples from 404 silicosis patients and 177 normal people. Three early stage silicosis, five advanced silicosis and four normal lung tissues were randomly selected for microarray processing and analyze. The differentially expressed mRNAs were further used to conduct Gene Ontology and pathway analyses. Series test of cluster was performed to explore possible changes in differentially expressed mRNA and miRNA expression patterns during the process of silicosis. The blood samples and remaining lung tissues were used in a quantitative real-time PCR (RT-qPCR) (RT-qPCR). RESULTS In total, 1417 and 241 differentially expressed mRNAs and miRNAs were identified between lung tissue from silicosis patients and normal people (p < 0.05). However, there was no significant difference in most mRNA or miRNA expression between early stage and advanced stage silicosis lung tissues. RT-qPCR validation results in lung tissues showed expression of four mRNAs (HIF1A, SOCS3, GNAI3 and PTEN) and seven miRNAs was significantly down-regulated compared to those of control group. Nevertheless, PTEN and GNAI3 expression was significantly up-regulated (p < 0.001) in blood samples. The bisulfite sequencing PCR demonstrated that PTEN had significantly decreased the methylation rate in blood samples of silicosis patients. CONCLUSIONS PTEN might be a potential biomarker for silicosis as a result of low methylation in the blood.
Collapse
Affiliation(s)
- Jingbo Zhang
- Clinical Research Center of Occupational Diseases, The Affiliated Shanghai Pulmonary Hospital of Tongji University School of Medicine, Shanghai, China
| | - Weijiang Hu
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kai Liu
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Liu
- Department of Occupational Disease, Suzhou No. 5 People's Hospital, Suzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Xin Sun
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liangying Mei
- Institute of Occupational Disease Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Zushu Qian
- Department of Public Administration, Huangshi Center for Disease Control and Prevention, Huangshi, China
| | - Qiangguo Sun
- Occupation Disease Prevention and Control Center Section, Huangshi Center for Disease Control and Prevention, Huangshi, China
| | - Qiang Liu
- Department of Enviromental Health, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Zhijun Wu
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yanping Li
- Department of Respiratory Medicine, Honghe Prefecture Third People's Hospital, Honghe, China
| | - Daoyuan Sun
- Clinical Research Center of Occupational Diseases, The Affiliated Shanghai Pulmonary Hospital of Tongji University School of Medicine, Shanghai, China
| | - Meng Ye
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
31
|
Jiang Z, Su YH, Yin H. Quantifying Information of Dynamical Biochemical Reaction Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:887. [PMID: 37372231 DOI: 10.3390/e25060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
A large number of complex biochemical reaction networks are included in the gene expression, cell development, and cell differentiation of in vivo cells, among other processes. Biochemical reaction-underlying processes are the ones transmitting information from cellular internal or external signaling. However, how this information is measured remains an open question. In this paper, we apply the method of information length, based on the combination of Fisher information and information geometry, to study linear and nonlinear biochemical reaction chains, respectively. Through a lot of random simulations, we find that the amount of information does not always increase with the length of the linear reaction chain; instead, the amount of information varies significantly when this length is not very large. When the length of the linear reaction chain reaches a certain value, the amount of information hardly changes. For nonlinear reaction chains, the amount of information changes not only with the length of this chain, but also with reaction coefficients and rates, and this amount also increases with the length of the nonlinear reaction chain. Our results will help to understand the role of the biochemical reaction networks in cells.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- School of Science, Shenyang University of Technology, Shenyang 110870, China
- School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, China
| | - You-Hui Su
- School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, China
| | - Hongwei Yin
- School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, China
| |
Collapse
|
32
|
Chen G, Zeng L, Bi B, Huang X, Qiu M, Chen P, Chen ZY, He Y, Pan Y, Chen Y, Zhao J. Engineering Bifunctional Calcium Alendronate Gene-Delivery Nanoneedle for Synergistic Chemo/Immuno-Therapy Against HER2 Positive Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204654. [PMID: 36932888 DOI: 10.1002/advs.202204654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Most patients are diagnosed at an advanced stage with widespread peritoneal dissemination and ascites. Bispecific T-cell engagers (BiTEs) have demonstrated impressive antitumor efficacy in hematological malignancies, but the clinical potency is limited by their short half-life, inconvenient continuous intravenous infusion, and severe toxicity at relevant therapeutic levels in solid tumors. To address these critical issues, the design and engineering of alendronate calcium (CaALN) based gene-delivery system is reported to express therapeutic level of BiTE (HER2×CD3) for efficient ovarian cancer immunotherapy. Controllable construction of CaALN nanosphere and nanoneedle is achieved by the simple and green coordination reactions that the distinct nanoneedle-like alendronate calcium (CaALN-N) with a high aspect ratio enabled efficient gene delivery to the peritoneum without system in vivo toxicity. Especially, CaALN-N induced apoptosis of SKOV3-luc cell via down-regulation of HER2 signaling pathway and synergized with HER2×CD3 to generate high antitumor response. In vivo administration of CaALN-N/minicircle DNA encoding HER2×CD3 (MC-HER2×CD3) produces sustained therapeutic levels of BiTE and suppresses tumor growth in a human ovarian cancer xenograft model. Collectively, the engineered alendronate calcium nanoneedle represents a bifunctional gene delivery platform for the efficient and synergistic treatment of ovarian cancer.
Collapse
Affiliation(s)
- Guochuang Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, P. R. China
| | - Leli Zeng
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Bo Bi
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Xiuyu Huang
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Miaojuan Qiu
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Ping Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, P. R. China
| | - Zhi-Ying Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, P. R. China
| | - Yulong He
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yihang Pan
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Zhao
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| |
Collapse
|
33
|
Wu J, Fan S, Feinberg D, Wang X, Jabbar S, Kang Y. Inhibition of Sphingosine Kinase 2 Results in PARK2-Mediated Mitophagy and Induces Apoptosis in Multiple Myeloma. Curr Oncol 2023; 30:3047-3063. [PMID: 36975444 PMCID: PMC10047154 DOI: 10.3390/curroncol30030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Mitophagy plays an important role in maintaining mitochondrial homeostasis by clearing damaged mitochondria. Sphingosine kinase 2 (SK2), a type of sphingosine kinase, is an important metabolic enzyme involved in generating sphingosine-1-phosphate. Its expression level is elevated in many cancers and is associated with poor clinical outcomes. However, the relationship between SK2 and mitochondrial dysfunction remains unclear. We found that the genetic downregulation of SK2 or treatment with ABC294640, a specific inhibitor of SK2, induced mitophagy and apoptosis in multiple myeloma cell lines. We showed that mitophagy correlates with apoptosis induction and likely occurs through the SET/PP2AC/PARK2 pathway, where inhibiting PP2AC activity may rescue this process. Furthermore, we found that PP2AC and PARK2 form a complex, suggesting that they might regulate mitophagy through protein-protein interactions. Our study demonstrates the important role of SK2 in regulating mitophagy and provides new insights into the mechanism of mitophagy in multiple myeloma.
Collapse
Affiliation(s)
| | | | | | | | | | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
34
|
PTEN phosphatase inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6. iScience 2023; 26:106070. [PMID: 36824269 PMCID: PMC9942123 DOI: 10.1016/j.isci.2023.106070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
PTEN encodes a tumor suppressor with lipid and protein phosphatase activities whose dysfunction has been implicated in melanomagenesis; less is known about how its phosphatases regulate melanoma metastasis. We demonstrate that PTEN expression negatively correlates with metastatic progression in human melanoma samples and a PTEN-deficient mouse melanoma model. Wildtype PTEN expression inhibited melanoma cell invasiveness and metastasis in a dose-dependent manner, behaviors that specifically required PTEN protein phosphatase activity. PTEN phosphatase activity regulated metastasis through Entpd5. Entpd5 knockdown reduced metastasis and IGF1R levels while promoting ER stress. In contrast, Entpd5 overexpression promoted metastasis and enhanced IGF1R levels while reducing ER stress. Moreover, Entpd5 expression was regulated by the ER stress sensor ATF6. Altogether, our data indicate that PTEN phosphatase activity inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6, thereby identifying novel candidate therapeutic targets for the treatment of PTEN mutant melanoma.
Collapse
|
35
|
Nguyen Huu T, Park J, Zhang Y, Duong Thanh H, Park I, Choi JM, Yoon HJ, Park SC, Woo HA, Lee SR. The Role of Oxidative Inactivation of Phosphatase PTEN and TCPTP in Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12010120. [PMID: 36670982 PMCID: PMC9854873 DOI: 10.3390/antiox12010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hien Duong Thanh
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Chul Park
- The Future Life and Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2775; Fax: +82-61-379-2782
| |
Collapse
|
36
|
Targeting PTEN Regulation by Post Translational Modifications. Cancers (Basel) 2022; 14:cancers14225613. [PMID: 36428706 PMCID: PMC9688753 DOI: 10.3390/cancers14225613] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphatidylinositol-3,4,5-triphosphate (PIP3) is a lipidic second messenger present at very low concentrations in resting normal cells. PIP3 levels, though, increase quickly and transiently after growth factor addition, upon activation of phosphatidylinositol 3-kinase (PI3-kinase). PIP3 is required for the activation of intracellular signaling pathways that induce cell proliferation, cell migration, and survival. Given the critical role of this second messenger for cellular responses, PIP3 levels must be tightly regulated. The lipid phosphatase PTEN (phosphatase and tensin-homolog in chromosome 10) is the phosphatase responsible for PIP3 dephosphorylation to PIP2. PTEN tumor suppressor is frequently inactivated in endometrium and prostate carcinomas, and also in glioblastoma, illustrating the contribution of elevated PIP3 levels for cancer development. PTEN biological activity can be modulated by heterozygous gene loss, gene mutation, and epigenetic or transcriptional alterations. In addition, PTEN can also be regulated by post-translational modifications. Acetylation, oxidation, phosphorylation, sumoylation, and ubiquitination can alter PTEN stability, cellular localization, or activity, highlighting the complexity of PTEN regulation. While current strategies to treat tumors exhibiting a deregulated PI3-kinase/PTEN axis have focused on PI3-kinase inhibition, a better understanding of PTEN post-translational modifications could provide new therapeutic strategies to restore PTEN action in PIP3-dependent tumors.
Collapse
|
37
|
Riffo E, Palma M, Hepp MI, Benítez-Riquelme D, Torres VA, Castro AF, Pincheira R. The Sall2 transcription factor promotes cell migration regulating focal adhesion turnover and integrin β1 expression. Front Cell Dev Biol 2022; 10:1031262. [PMID: 36438565 PMCID: PMC9682130 DOI: 10.3389/fcell.2022.1031262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 01/02/2025] Open
Abstract
SALL2/Sall2 is a transcription factor associated with development, neuronal differentiation, and cancer. Interestingly, SALL2/Sall2 deficiency leads to failure of the optic fissure closure and neurite outgrowth, suggesting a positive role for SALL2/Sall2 in cell migration. However, in some cancer cells, SALL2 deficiency is associated with increased cell migration. To further investigate the role of Sall2 in the cell migration process, we used immortalized Sall2 knockout (Sall2 -/- ) and Sall2 wild-type (Sall2 +/+ ) mouse embryonic fibroblasts (iMEFs). Our results indicated that Sall2 positively regulates cell migration, promoting cell detachment and focal adhesions turnover. Sall2 deficiency decreased cell motility and altered focal adhesion dynamics. Accordingly, restoring Sall2 expression in the Sall2 -/- iMEFs by using a doxycycline-inducible Tet-On system recovered cell migratory capabilities and focal adhesion dynamics. In addition, Sall2 promoted the autophosphorylation of Focal Adhesion Kinase (FAK) at Y397 and increased integrin β1 mRNA and its protein expression at the cell surface. We demonstrated that SALL2 increases ITGB1 promoter activity and binds to conserved SALL2-binding sites at the proximal region of the ITGB1 promoter, validated by ChIP experiments. Furthermore, the overexpression of integrin β1 or its blockade generates a cell migration phenotype similar to that of Sall2 +/+ or Sall2 -/- cells, respectively. Altogether, our data showed that Sall2 promotes cell migration by modulating focal adhesion dynamics, and this phenotype is associated with SALL2/Sall2-transcriptional regulation of integrin β1 expression and FAK autophosphorylation. Since deregulation of cell migration promotes congenital abnormalities, tumor formation, and spread to other tissues, our findings suggest that the SALL2/Sall2-integrin β1 axis could be relevant for those processes.
Collapse
Affiliation(s)
- Elizabeth Riffo
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Mario Palma
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Matías I. Hepp
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Diego Benítez-Riquelme
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Vicente A. Torres
- Millennium Institute on Immunology and Immunotherapy, ICOD, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Ariel F. Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
38
|
Zhu K, Cai Y, Si X, Ye Z, Gao Y, Liu C, Wang R, Ma Z, Zhu H, Zhang L, Li S, Zhang H, Yue J. The phosphorylation and dephosphorylation switch of VCP/p97 regulates the architecture of centrosome and spindle. Cell Death Differ 2022; 29:2070-2088. [PMID: 35430615 PMCID: PMC9525716 DOI: 10.1038/s41418-022-01000-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The proper orientation of centrosome and spindle is essential for genome stability; however, the mechanism that governs these processes remains elusive. Here, we demonstrated that polo-like kinase 1 (Plk1), a key mitotic kinase, phosphorylates residue Thr76 in VCP/p97 (an AAA-ATPase), at the centrosome from prophase to anaphase. This phosphorylation process recruits VCP to the centrosome and in this way, it regulates centrosome orientation. VCP exhibits strong co-localization with Eg5 (a mitotic kinesin motor), at the mitotic spindle, and the dephosphorylation of Thr76 in VCP is required for the enrichment of both VCP and Eg5 at the spindle, thus ensuring proper spindle architecture and chromosome segregation. We also showed that the phosphatase, PTEN, is responsible for the dephosphorylation of Thr76 in VCP; when PTEN was knocked down, the normal spread of VCP from the centrosome to the spindle was abolished. Cryo-EM structures of VCPT76A and VCPT76E, which represent dephosphorylated and phosphorylated states of VCP, respectively, revealed that the Thr76 phosphorylation modulates VCP by altering the inter-domain and inter-subunit interactions, and ultimately the nucleotide-binding pocket conformation. Interestingly, the tumor growth in nude mice implanted with VCPT76A-reconstituted cancer cells was significantly slower when compared with those implanted with VCPWT-reconstituted cancer cells. Collectively, our findings demonstrate that the phosphorylation and dephosphorylation switch of VCP regulates the architecture of centrosome and spindle for faithful chromosome segregation.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yang Cai
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaotong Si
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yuanzhu Gao
- Department of Biology, SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuang Liu
- Department of Biology, SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhibin Ma
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Huazhang Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Shengjin Li
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongmin Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
39
|
Guo Y, He J, Zhang H, Chen R, Li L, Liu X, Huang C, Qiang Z, Zhou Z, Wang Y, Huang J, Zhao X, Zheng J, Chen GQ, Yu J. Linear ubiquitination of PTEN impairs its function to promote prostate cancer progression. Oncogene 2022; 41:4877-4892. [PMID: 36192478 DOI: 10.1038/s41388-022-02485-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
PTEN is frequently mutated in human cancers, which leads to the excessive activation of PI3K/AKT signaling and thus promotes tumorigenesis and drug resistance. Met1-linked ubiquitination (M1-Ubi) is also involved in cancer progression, but the mechanism is poorly defined. Here we find that HOIP, one important component of linear ubiquitin chain assembly complex (LUBAC), promotes prostate cancer (PCa) progression by enhancing AKT signaling in a PTEN-dependent manner. Mechanistically, PTEN is modified by M1-Ubi at two sites K144 and K197, which significantly inhibits PTEN phosphatase activity and thus accelerates PCa progression. More importantly, we identify that the high-frequency mutants PTENR173H and PTENR173C in PCa patients showed the enhanced level of M1-Ubi, which impairs PTEN function in inhibition of AKT phosphorylation and cell growth. We also find that HOIP depletion sensitizes PCa cells to therapeutic agents BKM120 and Enzalutamide. Furthermore, the clinical data analyses confirm that HOIP is upregulated and positively correlated with AKT activation in PCa patient specimen, which may promote PCa progression and increase the risk of PCa biochemical relapse. Together, our study reveals a key role of PTEN M1-Ubi in regulation of AKT activation and PCa progression, which may propose a new strategy for PCa therapy.
Collapse
Affiliation(s)
- Yanmin Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfeng He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojia Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhe Qiang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
40
|
Tian K, Ma J, Wang K, Li D, Zhang J, Wang L, Wu Z. PTEN is recognized as a prognostic-related biomarker and inhibits proliferation and invasiveness of skull base chordoma cells. Front Surg 2022; 9:1011845. [PMID: 36211273 PMCID: PMC9537766 DOI: 10.3389/fsurg.2022.1011845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Objective This work aimed to examine the function of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in skull base chordoma (SBC) at the clinical and cellular levels. Methods Totally 65 paraffin-embedded and 86 frozen specimens from 96 patients administered surgery were analyzed. Immunohistochemical staining and quantitative real-time polymerase chain reaction were performed, and the associations of PTEN expression with clinical features were assessed. At the cellular level, PTEN was knocked down by the siRNA approach in the UCH-1 cell line, and cell proliferation and invasion were detected by the CCK-8 and migration assays, respectively. Results At the protein level, PTEN expression was increased in non-bone-invasive tumor samples in comparison with bone-invasive specimens (p = 0.025), and elevated in soft SBCs in comparison with hard tumors (p = 0.017). Increased PTEN protein expression was associated with decreased risk of tumor progression (p = 0.002; hazard ratio = 0.981, 95% confidence interval: 0.969–0.993). At the gene expression level, the cut-off value was set at 10.5 after ROC curve analysis, and SBC specimens were divided into two groups: PTEN high group, ΔCt value below 10.5; PTEN low group, ΔCt value above 10.5. In multivariate regression analysis of PFS, the risk of tumor progression was increased in PTEN low group tumors in comparison with PTEN high group SBCs (p = 0.006). In the CCK-8 assay, in comparison with control cells, PTEN knockdown cells had increased absorbance, suggesting elevated cell proliferation rate. In the invasion assay, the number of tumor cells penetrating into the lower chamber was significantly increased in the PTEN knockdown group compared with control cells. Conclusions Decreased PTEN expression in SBC, at the protein and gene levels, is associated with reduced PFS. PTEN knockdown in chordoma cells led to enhanced proliferation and invasiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen Wu
- Correspondence: Liang Wang Zhen Wu
| |
Collapse
|
41
|
Abstract
Pten is one of the most frequently mutated tumour suppressor gene in cancer. PTEN is generally altered in invasive cancers such as glioblastomas, but its function in collective cell migration and invasion is not fully characterised. Herein, we report that the loss of PTEN increases cell speed during collective migration of non-tumourous cells both in vitro and in vivo. We further show that loss of PTEN promotes LKB1-dependent phosphorylation and activation of the major metabolic regulator AMPK. In turn AMPK increases VASP phosphorylation, reduces VASP localisation at cell-cell junctions and decreases the interjunctional transverse actin arcs at the leading front, provoking a weakening of cell-cell contacts and increasing migration speed. Targeting AMPK activity not only slows down PTEN-depleted cells, it also limits PTEN-null glioblastoma cell invasion, opening new opportunities to treat glioblastoma lethal invasiveness. Pten is a tumour suppressor gene that is associated with highly invasive cancers such as glioblastoma. Here the authors show that PTEN loss results in increased migratory behaviour, which can be countered by targeting AMPK activity.
Collapse
|
42
|
Fedorova O, Parfenyev S, Daks A, Shuvalov O, Barlev NA. The Role of PTEN in Epithelial–Mesenchymal Transition. Cancers (Basel) 2022; 14:cancers14153786. [PMID: 35954450 PMCID: PMC9367281 DOI: 10.3390/cancers14153786] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The PTEN phosphatase is a ubiquitously expressed tumor suppressor, which inhibits the PI3K/AKT pathway in the cell. The PI3K/AKT pathway is considered to be one of the main signaling pathways that drives the proliferation of cancer cells. Furthermore, the same pathway controls the epithelial–mesenchymal transition (EMT). EMT is an evolutionarily conserved developmental program, which, upon aberrant reactivation, is also involved in the formation of cancer metastases. Importantly, metastasis is the leading cause of cancer-associated deaths. In this review, we discuss the literature data that highlight the role of PTEN in EMT. Based on this knowledge, we speculate about new possible strategies for cancer treatment. Abstract Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is one of the critical tumor suppressor genes and the main negative regulator of the PI3K pathway. PTEN is frequently found to be inactivated, either partially or fully, in various malignancies. The PI3K/AKT pathway is considered to be one of the main signaling cues that drives the proliferation of cells. Perhaps it is not surprising, then, that this pathway is hyperactivated in highly proliferative tumors. Importantly, the PI3K/AKT pathway also coordinates the epithelial–mesenchymal transition (EMT), which is pivotal for the initiation of metastases and hence is regarded as an attractive target for the treatment of metastatic cancer. It was shown that PTEN suppresses EMT, although the exact mechanism of this effect is still not fully understood. This review is an attempt to systematize the published information on the role of PTEN in the development of malignant tumors, with a main focus on the regulation of the PI3K/AKT pathway in EMT.
Collapse
|
43
|
PTEN Dual Lipid- and Protein-Phosphatase Function in Tumor Progression. Cancers (Basel) 2022; 14:cancers14153666. [PMID: 35954330 PMCID: PMC9367293 DOI: 10.3390/cancers14153666] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a multifunctional tumor suppressor with protein- and lipid-phosphatase activities. The inactivation of PTEN is commonly found in all human cancers and is correlated with tumor progression. PTEN-lipid-phosphatase activity has been well documented to dephosphorylate phosphatidylinositol-3, 4, 5-phosphate (PIP3), which hinders cell growth and survival by dampening the PI3K and AKT signaling activity. PTEN-protein-phosphatase activity is less well studied and understood. Recent studies have reported that PTEN-protein-phosphatase activity dephosphorylates the different proteins and acts in various cell functions. We here review the PTEN mutations and protein-phosphatase substrates in tumor progression. We aim to address the gap in our understanding as to how PTEN protein phosphatase contributes to its tumor-suppression functions. Abstract PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.
Collapse
|
44
|
Cai B, Yang L, Do Jung Y, Zhang Y, Liu X, Zhao P, Li J. PTEN: An Emerging Potential Target for Therapeutic Intervention in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4512503. [PMID: 35814272 PMCID: PMC9262564 DOI: 10.1155/2022/4512503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a potent tumor suppressor that regulates several key cellular processes, including proliferation, survival, genomic integrity, migration, and invasion, via PI3K-dependent and independent mechanisms. A subtle decrease in PTEN levels or catalytic activity is implicated not only in cancer but also in a wide spectrum of other diseases, including various respiratory diseases. A systemic overview of the advances in the molecular and cellular mechanisms of PTEN involved in the initiation and progression of respiratory diseases may offer novel targets for the development of effective therapeutics for the treatment of respiratory diseases. In the present review, we highlight the novel findings emerging from current research on the role of PTEN expression and regulation in airway pathological conditions such as asthma/allergic airway inflammation, pulmonary hypertension (PAH), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and other acute lung injuries (ALI). Moreover, we discuss the clinical implications of PTEN alteration and recently suggested therapeutic possibilities for restoration of PTEN expression and function in respiratory diseases.
Collapse
Affiliation(s)
- Bangrong Cai
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liu Yang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinguang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| | - Peng Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
- Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
45
|
Wittes J, Greenwald I. Genetic analysis of DAF-18/PTEN missense mutants for the ability to maintain quiescence of the somatic gonad and germ line in Caenorhabditis elegans dauer larvae. G3 (BETHESDA, MD.) 2022; 12:jkac093. [PMID: 35451467 PMCID: PMC9157151 DOI: 10.1093/g3journal/jkac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022]
Abstract
The mammalian tumor suppressor PTEN has well-established lipid phosphatase and protein phosphatase activities. DAF-18, the Caenorhabditis elegans ortholog of PTEN, has a high degree of conservation in the catalytic domain, and human PTEN complements a null allele of daf-18, suggesting conserved protein function. Insights gleaned from studies of mammalian PTEN have been applied to studies of DAF-18 in C. elegans, including predicted enzymatic properties of mutants. Here, we characterize DAF-18 missense mutants previously treated as selectively disrupting either protein or lipid phosphatase activity in genetic assays to connect distinct phenotypes to specific enzymatic activities of DAF-18/PTEN. We analyze the ability of these mutants to maintain quiescence of the somatic gonad and germ line in dauer larvae, a state of diapause during which development is suspended. We show that transgenes expressing either the putative lipid phosphatase-deficient or putative protein phosphatase-deficient form fail to complement a daf-18 null allele, and that the corresponding homozygous endogenous missense mutant alleles fail to maintain developmental quiescence. We also show that the endogenous daf-18 missense alleles fail to complement each other, suggesting that one or both of the missense forms are not activity-selective. Furthermore, homozygous daf-18 missense mutants have a more severe phenotype than a daf-18 null mutant, suggesting the presence of functionally compromised mutant DAF-18 is more deleterious than the absence of DAF-18. We discuss how these genetic properties complicate the interpretation of genetic assays to associate specific enzymatic activities with specific phenotypes.
Collapse
Affiliation(s)
- Julia Wittes
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
46
|
Chen J, Tang LY, Powell ME, Jordan JM, Baugh LR. Genetic analysis of daf-18/PTEN missense mutants for starvation resistance and developmental regulation during Caenorhabditis elegans L1 arrest. G3 (BETHESDA, MD.) 2022; 12:jkac092. [PMID: 35451480 PMCID: PMC9157142 DOI: 10.1093/g3journal/jkac092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Mutations in the well-known tumor suppressor PTEN are observed in many cancers. PTEN is a dual-specificity phosphatase that harbors lipid and protein-phosphatase activities. The Caenorhabditis elegans PTEN ortholog is daf-18, which has pleiotropic effects on dauer formation, aging, starvation resistance, and development. Function of 3 daf-18 point-mutants, G174E, D137A, and C169S, had previously been investigated using high-copy transgenes in a daf-18 null background. These alleles were generated based on their mammalian counterparts and were treated as though they specifically disrupt lipid or protein-phosphatase activity, or both, respectively. Here, we investigated these alleles using genome editing of endogenous daf-18. We assayed 3 traits relevant to L1 starvation resistance, and we show that each point mutant is essentially as starvation-sensitive as a daf-18 null mutant. Furthermore, we show that G174E and D137A do not complement each other, suggesting overlapping effects on lipid and protein-phosphatase activity. We also show that each allele has strong effects on nucleocytoplasmic localization of DAF-16/FoxO and dauer formation, both of which are regulated by PI3K signaling, similar to a daf-18 null allele. In addition, each allele also disrupts M-cell quiescence during L1 starvation, though D137A has a weaker effect than the other alleles, including the null. Our results confirm that daf-18/PTEN is important for promoting starvation resistance and developmental arrest and that it is a potent regulator of PI3K signaling, and they highlight challenges of using genetic analysis to link specific DAF-18/PTEN enzymatic activities to particular phenotypes.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Linda Y Tang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maya E Powell
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - James M Jordan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
47
|
Mijanović L, Weber I. Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments. Front Cell Dev Biol 2022; 10:910736. [PMID: 35721508 PMCID: PMC9197732 DOI: 10.3389/fcell.2022.910736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dictyostelium amoebae adhere to extracellular material using similar mechanisms to metazoan cells. Notably, the cellular anchorage loci in Amoebozoa and Metazoa are both arranged in the form of discrete spots and incorporate a similar repertoire of intracellular proteins assembled into multicomponent complexes located on the inner side of the plasma membrane. Surprisingly, however, Dictyostelium lacks integrins, the canonical transmembrane heterodimeric receptors that dominantly mediate adhesion of cells to the extracellular matrix in multicellular animals. In this review article, we summarize the current knowledge about the cell-substratum adhesion in Dictyostelium, present an inventory of the involved proteins, and draw parallels with the situation in animal cells. The emerging picture indicates that, while retaining the basic molecular architecture common to their animal relatives, the adhesion complexes in free-living amoeboid cells have evolved to enable less specific interactions with diverse materials encountered in their natural habitat in the deciduous forest soil. Dissection of molecular mechanisms that underlay short lifetime of the cell-substratum attachments and high turnover rate of the adhesion complexes in Dictyostelium should provide insight into a similarly modified adhesion phenotype that accompanies the mesenchymal-amoeboid transition in tumor metastasis.
Collapse
Affiliation(s)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
48
|
Ji L, Li X, He S, Chen S. Regulation of osteoclast-mediated bone resorption by microRNA. Cell Mol Life Sci 2022; 79:287. [PMID: 35536437 PMCID: PMC11071904 DOI: 10.1007/s00018-022-04298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 02/08/2023]
Abstract
Osteoclast-mediated bone resorption is responsible for bone metabolic diseases, negatively impacting people's health and life. It has been demonstrated that microRNA influences the differentiation of osteoclasts by regulating the signaling pathways during osteoclast-mediated bone resorption. So far, the involved mechanisms have not been fully elucidated. This review introduced the pathways involved in osteoclastogenesis and summarized the related microRNAs binding to their specific targets to mediate the downstream pathways in osteoclast-mediated bone resorption. We also discuss the clinical potential of targeting microRNAs to treat osteoclast-mediated bone resorption as well as the challenges of avoiding potential side effects and producing efficient delivery methods.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
49
|
Dall GV, Hamilton A, Ratnayake G, Scott C, Barker H. Interrogating the Genomic Landscape of Uterine Leiomyosarcoma: A Potential for Patient Benefit. Cancers (Basel) 2022; 14:cancers14061561. [PMID: 35326717 PMCID: PMC8946513 DOI: 10.3390/cancers14061561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy. Surgical removal and chemotherapy are commonly used to treat uLMS, but recurrence rates are high. Over the last few decades, clarification of the genomic landscape of uLMS has revealed a number of recurring mutations, including TP53, RB1, ATRX, PTEN, and MED12. Such genomic aberrations are difficult to target therapeutically or are actively targeted in other malignancies, and their potential as targets for the treatment of uLMS remains largely unexplored. Recent identification of deficiencies in homologous recombination in a minority of these tumours, however, has provided a rationale for investigation of PARP inhibitors in this sub-set. Here, we review these mutations and the evidence for therapeutic avenues that may be applied in uLMS. We also provide a comprehensive background on diagnosis and current therapeutic strategies as well as reviewing preclinical models of uLMS, which may be employed not only in testing emerging therapies but also in understanding this challenging and deadly disease.
Collapse
Affiliation(s)
- Genevieve V. Dall
- Walter and Eliza Hall, Institute of Medical Research, Parkville, VIC 3052, Australia; (C.S.); (H.B.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
- Correspondence:
| | - Anne Hamilton
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | | | - Clare Scott
- Walter and Eliza Hall, Institute of Medical Research, Parkville, VIC 3052, Australia; (C.S.); (H.B.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | - Holly Barker
- Walter and Eliza Hall, Institute of Medical Research, Parkville, VIC 3052, Australia; (C.S.); (H.B.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
50
|
Capeloa T, Krzystyniak J, d’Hose D, Canas Rodriguez A, Payen VL, Zampieri LX, Van de Velde JA, Benyahia Z, Pranzini E, Vazeille T, Fransolet M, Bouzin C, Brusa D, Michiels C, Gallez B, Murphy MP, Porporato PE, Sonveaux P. MitoQ Inhibits Human Breast Cancer Cell Migration, Invasion and Clonogenicity. Cancers (Basel) 2022; 14:cancers14061516. [PMID: 35326667 PMCID: PMC8946220 DOI: 10.3390/cancers14061516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/31/2023] Open
Abstract
To successfully generate distant metastases, metastatic progenitor cells must simultaneously possess mesenchymal characteristics, resist to anoïkis, migrate and invade directionally, resist to redox and shear stresses in the systemic circulation, and possess stem cell characteristics. These cells primarily originate from metabolically hostile areas of the primary tumor, where oxygen and nutrient deprivation, together with metabolic waste accumulation, exert a strong selection pressure promoting evasion. Here, we followed the hypothesis according to which metastasis as a whole implies the existence of metabolic sensors. Among others, mitochondria are singled out as a major source of superoxide that supports the metastatic phenotype. Molecularly, stressed cancer cells increase mitochondrial superoxide production, which activates the transforming growth factor-β pathway through src directly within mitochondria, ultimately activating focal adhesion kinase Pyk2. The existence of mitochondria-targeted antioxidants constitutes an opportunity to interfere with the metastatic process. Here, using aggressive triple-negative and HER2-positive human breast cancer cell lines as models, we report that MitoQ inhibits all the metastatic traits that we tested in vitro. Compared to other mitochondria-targeted antioxidants, MitoQ already successfully passed Phase I safety clinical trials, which provides an important incentive for future preclinical and clinical evaluations of this drug for the prevention of breast cancer metastasis.
Collapse
Affiliation(s)
- Tania Capeloa
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Joanna Krzystyniak
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Donatienne d’Hose
- Biomedical Magnetic Resonance Unit, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (B.G.)
| | - Amanda Canas Rodriguez
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Valery L. Payen
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Luca X. Zampieri
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Justine A. Van de Velde
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Zohra Benyahia
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Erica Pranzini
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Via le Morgagni 50, 50134 Firenze, Italy
| | - Thibaut Vazeille
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Maude Fransolet
- Faculty of Sciences, Bology, Laboratoire de Biochimie et Biologie Cellulaire, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium; (M.F.); (C.M.)
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Davide Brusa
- IREC Flow Cytometry and Cell Sorting Platform, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Carine Michiels
- Faculty of Sciences, Bology, Laboratoire de Biochimie et Biologie Cellulaire, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium; (M.F.); (C.M.)
| | - Bernard Gallez
- Biomedical Magnetic Resonance Unit, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (B.G.)
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK;
| | - Paolo E. Porporato
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
- Correspondence:
| |
Collapse
|