1
|
Ahmad S, Ahmad L, Adil M, Sharma R, Khan S, Hasan N, Aqil M. Emerging nano-derived therapy for the treatment of dementia: a comprehensive review. Drug Deliv Transl Res 2025:10.1007/s13346-025-01863-3. [PMID: 40268841 DOI: 10.1007/s13346-025-01863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Dementia includes a variety of neurodegenerative diseases that affect and target the brain's fundamental cognitive functions. It is undoubtedly one of the diseases that affects people globally. The ameliorating the disease is still not known; the symptoms, however, can be prevented to an extent. Dementia encompasses Alzheimer's disease, Parkinson's disease, Huntington's disease, Lewy body dementia, mixed dementia, and various other diseases. The aggregation of β-amyloid protein plaques and the formation of neurofibrillary tangles have been concluded as the foremost cause for the onset of the disease. As the cases climb, new neuroprotective methods are being developed in the form of new drug delivery systems that provide targeted delivery. Herbal drugs like Ashwagandha, Brahmi, and Cannabis have shown satisfactory results by not only treating the symptoms but have also been shown to reduce and ameliorate the formation of amyloid plaque formation. This article explores the intricate possibilities of drug delivery and the absolute use of herbal drugs to target neurodegenerative diseases. The various possibilities of nanotechnology currently available with new emerging techniques are also discussed.
Collapse
Affiliation(s)
- Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lubna Ahmad
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ritu Sharma
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saara Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Corriveau A, Chao AF, deBettencourt MT, Rosenberg MD. Recognition memory fluctuates with sustained attention regardless of task relevance. Psychon Bull Rev 2025; 32:714-728. [PMID: 39285130 DOI: 10.3758/s13423-024-02560-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 04/17/2025]
Abstract
Sustained attention fluctuates over time, affecting task-related processing and memory. However, it is less clear how attentional state affects processing and memory when images are accompanied by irrelevant visual information. We first quantify behavioral signatures of attentional state in an online sample (N1=92) and demonstrate that images presented in high attentional states are better remembered. Next, we test how sustained attention influences memory in two online samples (N2=188, N3=185) when task-irrelevant images are present. We show that high attention leads to better memory for both task-relevant and task-irrelevant images. This suggests that sustained attentional state does selectively affect processing for task-relevant information, but rather affects processing broadly, regardless of task relevance. Finally, we show that other components of attention such as selective attention contribute to the mnemonic fate of stimuli. Our findings highlight the necessity of considering and characterizing attention's unique components and their effects on cognition.
Collapse
Affiliation(s)
- Anna Corriveau
- Department of Psychology, The University of Chicago, Chicago, IL, USA.
| | - Alfred F Chao
- Department of Psychology, The University of Chicago, Chicago, IL, USA
| | - Megan T deBettencourt
- Department of Psychology, The University of Chicago, Chicago, IL, USA
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA
| | - Monica D Rosenberg
- Department of Psychology, The University of Chicago, Chicago, IL, USA.
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Roberts BRT, Pruin J, Bainbridge WA, Rosenberg MD, deBettencourt MT. Memory augmentation with an adaptive cognitive interface. Psychon Bull Rev 2025; 32:875-886. [PMID: 39379775 DOI: 10.3758/s13423-024-02589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
What we remember reflects both what we encounter, such as the intrinsic memorability of a stimulus, and our internal attentional state when we encounter that stimulus. Our memories are better for memorable images and images encountered in an engaged attentional state. Here, in an effort to modulate long-term memory performance, we manipulated these factors in combination by selecting the memorability of presented images contingent on individuals' natural fluctuations in sustained attention. Can image memorability and attentional state be strategically combined to improve memory? Are memorable images still well remembered during lapses in sustained attention, and conversely, can attentive states rescue memory performance for forgettable images? We designed a procedure to monitor participants' sustained attention dynamics on the fly via their response time fluctuations during a continuous performance task with trial-unique scene images. When high- or low-attentional states were detected, our algorithm triggered the presentation of high- or low-memorability images. Afterwards, participants completed a surprise recognition memory test for the attention-triggered images. Results demonstrated that memory performance for memorable items is not only resistant to lapses in sustained attention but also that memory cannot be further improved by encoding memorable items in engaged attentional states. On the other hand, memory performance for low-memorability images can be rescued by attentive encoding states. In sum, we show that both memorability and sustained attention can be leveraged in real time to maximize memory performance. This approach suggests that adaptive cognitive interfaces can tailor what information appears when to best support overall memory.
Collapse
Affiliation(s)
- Brady R T Roberts
- Department of Psychology, University of Chicago, 940 East 57th Street, Chicago, IL, 60637, USA.
- Institute for Mind and Biology, University of Chicago, Chicago, IL, USA.
| | - Julia Pruin
- Department of Psychology, University of Chicago, 940 East 57th Street, Chicago, IL, 60637, USA
| | - Wilma A Bainbridge
- Department of Psychology, University of Chicago, 940 East 57th Street, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
- Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, 940 East 57th Street, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
- Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - Megan T deBettencourt
- Department of Psychology, University of Chicago, 940 East 57th Street, Chicago, IL, 60637, USA
- Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Yates TS, Fel J, Choi D, Trach JE, Behm L, Ellis CT, Turk-Browne NB. Hippocampal encoding of memories in human infants. Science 2025; 387:1316-1320. [PMID: 40112047 DOI: 10.1126/science.adt7570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/19/2025] [Indexed: 03/22/2025]
Abstract
Humans lack memories for specific events from the first few years of life. We investigated the mechanistic basis of this infantile amnesia by scanning the brains of awake infants with functional magnetic resonance imaging while they performed a subsequent memory task. Greater activity in the hippocampus during the viewing of previously unseen photographs was related to later memory-based looking behavior beginning around 1 year of age, suggesting that the capacity to encode individual memories comes online during infancy. The availability of encoding mechanisms for episodic memory during a period of human life that is later lost from our autobiographical record implies that postencoding mechanisms, whereby memories from infancy become inaccessible for retrieval, may be more responsible for infantile amnesia.
Collapse
Affiliation(s)
- Tristan S Yates
- Department of Psychology, Columbia University, New York, NY, USA
| | - Jared Fel
- Department of Psychology, The New School for Social Research, New York, NY, USA
| | - Dawoon Choi
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Juliana E Trach
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Lillian Behm
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Cameron T Ellis
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Procida F, Frisoni M, Tullo MG, Tosoni A, Perrucci MG, Chiacchiaretta P, Guidotti R, Sestieri C. Specialization for different memory dimensions in brain activity evoked by cued recollection. Neuroimage 2025; 308:121068. [PMID: 39884411 DOI: 10.1016/j.neuroimage.2025.121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Cued recollection involves the retrieval of different features of the encoded event. Previous research has shown that the recollection of complex events jointly recruits the Default Mode and the Frontoparietal Control networks, but the degree to which activity within these networks varies as a function of the particular memory dimension (e.g., the "when-what-where" information) remains largely unknown. In the present functional Magnetic Resonance Imaging (fMRI) study, human participants retrieved specific information about a previously encoded TV show to assess the veracity of detailed sentences along four memory dimensions (i.e., object and character details, spatial layouts, temporal sequences, verbal dialogues). A common activity for all dimensions was observed in a left-lateralized network of regions that largely overlaps with the Frontoparietal Control Network (FPCN), including the lateral prefrontal, lateral superior parietal, and lateral temporal cortex. Instead, a larger degree of specialization for different memory dimensions was observed within the Default Mode Network (DMN), particularly in its posterior nodes. Dimension-related specificity in both networks was associated with memory performance across subjects. Finally, a clear leftward asymmetry was observed in the DMN for all dimensions except for the temporal one, whereas the FPCN showed a bilateral activation across dimensions. The present results generally support the view that specific memory information is processed by a mosaic of regions within large portions of the associative cortex involved in higher-order mnemonic functions.
Collapse
Affiliation(s)
- Federica Procida
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy; ITAB Institute for Advanced Biomedical Technologies, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Matteo Frisoni
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Italy
| | - Maria Giulia Tullo
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Annalisa Tosoni
- ITAB Institute for Advanced Biomedical Technologies, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy; Department of Psychology (DiPSI), University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31,66100,Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy; ITAB Institute for Advanced Biomedical Technologies, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Dentistry, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy; ITAB Institute for Advanced Biomedical Technologies, University G. d'Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
6
|
Peng N, Logie RH, Della Sala S. Effect of levels-of-processing on rates of forgetting. Mem Cognit 2025; 53:692-709. [PMID: 38961049 PMCID: PMC11868305 DOI: 10.3758/s13421-024-01599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Abstract
The levels-of-processing (LOP) framework, proposing that deep processing yields superior retention, has provided an important paradigm for memory research and a practical means of improving learning. However, the available levels-of-processing literature focuses on immediate memory performance. It is assumed within the LOP framework that deep processing will lead to slower forgetting than will shallow processing. However, it is unclear whether, or how, the initial level of processing affects the forgetting slopes over longer retention intervals. The present three experiments were designed to explore whether items encoded at qualitatively different LOP are forgotten at different rates. In the first two experiments, depth of processing was manipulated within-participants at encoding under deep and shallow conditions (semantic vs. rhyme judgement in Experiment 1; semantic vs. consonant-vowel pattern decision in Experiment 2). Recognition accuracy (d prime) was measured between-participants immediately after learning and at 30-min, 2-h, and 24-h delays. The third experiment employed a between-participants design, contrasting the rates of forgetting following semantic and phonological (rhyme) processing at immediate, 30-min, 2-h, and 6-h delays. Results from the three experiments consistently demonstrated a large effect size of levels of processing on immediate performance and a medium-to-large level effect size on delayed recognition, but crucially no LOP × delay group interaction. Analysis of the retention curves revealed no significant differences between the slopes of forgetting for deep and shallow processing. These results suggest that the rates of forgetting are independent of the qualitatively distinct encoding operations manipulated by levels of processing.
Collapse
Affiliation(s)
- Nan Peng
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| | - Robert H Logie
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Sergio Della Sala
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
7
|
Weuthen A, Kirschner H, Ullsperger M. Error-driven upregulation of memory representations. COMMUNICATIONS PSYCHOLOGY 2025; 3:17. [PMID: 39885320 PMCID: PMC11782628 DOI: 10.1038/s44271-025-00199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Learning an association does not always succeed on the first attempt. Previous studies associated increased error signals in posterior medial frontal cortex with improved memory formation. However, the neurophysiological mechanisms that facilitate post-error learning remain poorly understood. To address this gap, participants performed a feedback-based association learning task and a 1-back localizer task. Increased hemodynamic responses in posterior medial frontal cortex were found for internal and external origins of memory error evidence, and during post-error encoding success as quantified by subsequent recall of face-associated memories. A localizer-based machine learning model displayed a network of cognitive control regions, including posterior medial frontal and dorsolateral prefrontal cortices, whose activity was related to face-processing evidence in the fusiform face area. Representation strength was higher during failed recall and increased during encoding when subsequent recall succeeded. These data enhance our understanding of the neurophysiological mechanisms of adaptive learning by linking the need for learning with increased processing of the relevant stimulus category.
Collapse
Affiliation(s)
- Alexander Weuthen
- Institute of Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, Jena University Hospital/Friedrich-Schiller-University, Jena, Germany.
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany.
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
| | - Hans Kirschner
- Institute of Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
8
|
Schacter DL. Explicit Memory, Implicit Memory, and the Hippocampus: Insights From Early Neuroimaging Studies. Hippocampus 2025; 35:e23657. [PMID: 39644280 PMCID: PMC11634042 DOI: 10.1002/hipo.23657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
During the 1980s and 1990s, much memory research focused on the differential role of the hippocampus in various forms of memory. My work on the distinction between explicit and implicit memory led me to become involved in several early neuroimaging studies that made use of cognitive paradigms to investigate the conditions in which hippocampal activity does and does not occur, and to address the theoretical implications of these findings. Here, I summarize two such projects and some of the personal backstory associated with them.
Collapse
Affiliation(s)
- Daniel L Schacter
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Roberts BRT, Meade ME, Fernandes MA. Brain regions supporting retrieval of words drawn at encoding: fMRI evidence for multimodal reactivation. Mem Cognit 2025; 53:282-298. [PMID: 38865077 DOI: 10.3758/s13421-024-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Memory for words that are drawn or sketched by the participant, rather than written, during encoding is typically superior. While this drawing benefit has been reliably demonstrated in recent years, there has yet to be an investigation of its neural basis. Here, we asked participants to either create drawings, repeatedly write, or list physical characteristics depicting each target word during encoding. Participants then completed a recognition memory test for target words while undergoing functional magnetic resonance imaging (fMRI). Behavioural results showed memory was significantly higher for words drawn than written, replicating the typical drawing effect. Memory for words whose physical characteristics were listed at encoding was also higher than for those written repeatedly, but lower than for those drawn. Voxel-wise analyses of fMRI data revealed two distributed sets of brain regions more active for items drawn relative to written, the left angular gyrus (BA 39) and bilateral frontal (BA 10) regions, suggesting integration and self-referential processing during retrieval of drawn words. Brain-behaviour correlation analyses showed that the size of one's memory benefit for words drawn relative to written at encoding was positively correlated with activation in brain regions linked to visual representation and imagery (BA 17 and cuneus) and motor planning (premotor and supplementary motor areas; BA 6). This study suggests that drawing benefits memory by coactivating multiple sensory traces. Target words drawn during encoding are subsequently remembered by re-engaging visual, motoric, and semantic representations.
Collapse
Affiliation(s)
- Brady R T Roberts
- Department of Psychology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Melissa E Meade
- Department of Psychology, Huron College at Western University, London, Ontario, Canada
| | - Myra A Fernandes
- Department of Psychology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
10
|
Buchsbaum BR, Moscovitch M, Tang K, Ziegler M, Craik FIM. The interactive effects of divided attention and semantic elaboration on associative recognition memory: an fMRI study. Cereb Cortex 2024; 34:bhae464. [PMID: 40036194 DOI: 10.1093/cercor/bhae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 03/06/2025] Open
Abstract
The present study explored the opposing effects on memory of semantic elaboration and division of attention on learning and recognition of verbal paired associates. Previous work had found that levels of recollection were reduced under divided attention conditions, even after equating expressed elaboration levels between full and divided attention. The present experiments not only confirmed this finding but also found that participants based their expressed levels of elaboration largely on normative values rather than on subjectively achieved levels of elaboration. In terms of related brain processes, experiment 2 used functional magnetic resonance to show that division of attention was associated with reduced levels of both prefrontal and hippocampal activity and with a reduction in connectivity between the anterior hippocampus and medial-orbital regions of the prefrontal cortex. Increased levels of elaboration were associated with increased activity in prefrontal regions immediately after stimulus presentation. Additionally, connectivity between the hippocampus and medial-prefrontal cortex was enhanced by increases in elaboration under full attention but reduced by increases in elaboration under conditions of divided attention. Our results therefore show that two factors influencing memory-elaboration and attention-are mediated largely by processes in the prefrontal cortex, the hippocampus, and the functional connectivity between these two structures.
Collapse
Affiliation(s)
- Bradley R Buchsbaum
- Rotman Research Institute at Baycrest, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A1, Canada
| | - Morris Moscovitch
- Rotman Research Institute at Baycrest, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A1, Canada
| | - Kevin Tang
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A1, Canada
| | - Marilyne Ziegler
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A1, Canada
| | - Fergus I M Craik
- Rotman Research Institute at Baycrest, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
11
|
Peng N, Wu W, Della Sala S, Hoffman P. Effects of left ventrolateral prefrontal stimulation on forming and maintaining deep and shallow episodic traces. Cereb Cortex 2024; 34:bhae437. [PMID: 39503243 PMCID: PMC11538959 DOI: 10.1093/cercor/bhae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 11/09/2024] Open
Abstract
The levels-of-processing framework, proposing that deep encoding enhances retention, plays a crucial role in episodic memory research. Neuroimaging evidence highlights that increased activity of the left ventrolateral prefrontal cortex during deep encoding predicts subsequent memory success. However, cognitive mechanisms underlying this region's involvement in establishing and consolidating deep and shallow traces remain unclear. In this preregistered study, we investigated whether repetitive transcranial magnetic stimulation over the left ventrolateral prefrontal cortex versus the vertex differentially modulates the formation and maintenance of deep and shallow traces. Trains of 20 Hz online repetitive transcranial magnetic stimulation were delivered over the left ventrolateral prefrontal cortex or vertex during tasks involving pleasantness (deep) and alphabetical order (shallow) judgments of words. Following encoding, two recognition tests assessed immediate and 24-h delayed recognition of words. Compared to the vertex control, ventrolateral prefrontal stimulation selectively disrupted the formation of episodic memory under deep encoding conditions, evidenced by increased response time at encoding and reduced immediate recognition in the deep but not shallow condition. Notably, forgetting rates across the 24-h delay were similar for disrupted deep, intact deep, and shallow items, implying that the rate of trace decay is independent of the strength of trace formation. The constant trace decay indicates that distinct mechanisms are involved in establishing and maintaining episodic traces.
Collapse
Affiliation(s)
- Nan Peng
- Human Cognitive Neuroscience, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, United Kingdom
| | - Wei Wu
- Human Cognitive Neuroscience, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, United Kingdom
- Department of Music, Durham University, Palace Green, Durham DH1 3RL, United Kingdom
| | - Sergio Della Sala
- Human Cognitive Neuroscience, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, United Kingdom
| | - Paul Hoffman
- Human Cognitive Neuroscience, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
12
|
Oliver KI, Stenson A, van Rooij SJH, Johnson CB, Ely TD, Powers A, Minton ST, Wiltshire C, Kim YJ, Hinrichs R, Jovanovic T, Stevens JS. Impacts of early life adversity on the neurocircuitry of emotional memory in children. Dev Psychopathol 2024:1-12. [PMID: 39469811 DOI: 10.1017/s0954579424001718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Similar to adults with posttraumatic stress disorder, children with early life adversity show bias in memory for negative emotional stimuli. However, it is not well understood how childhood adversity impacts mechanisms underlying emotional memory. N = 56 children (8-14 years, 48% female) reported on adverse experiences including potentially traumatic events and underwent fMRI while attending to emotionally pleasant, neutral, or negative images. Post-scan, participants completed a cued recall test to assess memory for these images. Emotional difference-in-memory (DM) scores were computed by subtracting negative or positive from neutral recall performance. All children showed enhancing effects of emotion on recall, with no effect of trauma load. However, children with less trauma showed a larger emotional DM for both positive and negative stimuli when amygdala or anterior hippocampal activity was higher. In contrast, highly trauma-exposed children demonstrated a lower emotional DM with greater amygdala or hippocampal activity. This suggested that alternative neural mechanisms might support emotional enhancement of encoding in children with greater trauma load. Whole-brain analyses revealed that right fusiform activity during encoding positively correlated with both trauma load and successful later recall of positive images. Therefore, highly trauma-exposed children may use alternative, potentially adaptive neural pathways via the ventral visual stream to encode positive emotional events.
Collapse
Affiliation(s)
- Katelyn I Oliver
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Anais Stenson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Colin B Johnson
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Sean T Minton
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Charis Wiltshire
- Emory University, Rollins School of Public Health, Atlanta, GA, USA
| | - Ye Ji Kim
- Emory University, Rollins School of Public Health, Atlanta, GA, USA
| | - Rebecca Hinrichs
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Junco-Muñoz ML, Mejía-Rodríguez O, Cervantes-Alfaro JM, Téllez-Anguiano ADC, López-Vázquez MÁ, Olvera-Cortés ME. Correlates of Theta and Gamma Activity during Visuospatial Incidental/Intentional Encoding and Retrieval Indicate Differences in Processing in Young and Elderly Healthy Participants. Brain Sci 2024; 14:786. [PMID: 39199479 PMCID: PMC11352628 DOI: 10.3390/brainsci14080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Incidental visuospatial learning acquired under incidental conditions is more vulnerable to aging than in the intentional case. The theta and gamma correlates of the coding and retrieval of episodic memory change during aging. Based on the vulnerability of incidental coding to aging, different theta and gamma correlates could occur under the incidental versus intentional coding and retrieval of visuospatial information. Theta and gamma EEG was recorded from the frontotemporal regions, and incidental/intentional visuospatial learning was evaluated in young (25-60 years old) and elderly (60-85 years old) participants. The EEG recorded during encoding and retrieval was compared between incidental low-demand, incidental high-demand, and intentional conditions through an ANCOVA considering the patient's gender, IQ, and years of schooling as covariates. Older adults exhibited worse performances, especially in place-object associations. After the intentional study, older participants showed a further increase in false-positive errors. Higher power at the theta and gamma bands was observed for frontotemporal derivations in older participants for both encoding and retrieval. Under retrieval, only young participants had lower power in terms of errors compared with correct responses. In conclusion, the different patterns of power and coherence support incidental and intentional visuospatial encoding and retrieval in young and elderly individuals. The correlates of power with behavior are sensitive to age and performance.
Collapse
Affiliation(s)
- Mariana Lizeth Junco-Muñoz
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
- Facultad de Psicología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58194, Michoacán, Mexico
| | - Oliva Mejía-Rodríguez
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| | - José Miguel Cervantes-Alfaro
- Laboratorio de Neurociencias, División de Estudios de Posgrado, Facultad de Ciencias Médicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58194, Michoacán, Mexico;
| | | | - Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| |
Collapse
|
14
|
Lin Q, Li Z, Lafferty J, Yildirim I. Images with harder-to-reconstruct visual representations leave stronger memory traces. Nat Hum Behav 2024; 8:1309-1320. [PMID: 38740989 DOI: 10.1038/s41562-024-01870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Much of what we remember is not because of intentional selection, but simply a by-product of perceiving. This raises a foundational question about the architecture of the mind: how does perception interface with and influence memory? Here, inspired by a classic proposal relating perceptual processing to memory durability, the level-of-processing theory, we present a sparse coding model for compressing feature embeddings of images, and show that the reconstruction residuals from this model predict how well images are encoded into memory. In an open memorability dataset of scene images, we show that reconstruction error not only explains memory accuracy, but also response latencies during retrieval, subsuming, in the latter case, all of the variance explained by powerful vision-only models. We also confirm a prediction of this account with 'model-driven psychophysics'. This work establishes reconstruction error as an important signal interfacing perception and memory, possibly through adaptive modulation of perceptual processing.
Collapse
Affiliation(s)
- Qi Lin
- Department of Psychology, Yale University, New Haven, CT, USA.
- Center for Brain Science, RIKEN, Wako, Japan.
| | - Zifan Li
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
| | - John Lafferty
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA.
- Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| | - Ilker Yildirim
- Department of Psychology, Yale University, New Haven, CT, USA.
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA.
- Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Abukuri DN. Novel Biomarkers for Alzheimer's Disease: Plasma Neurofilament Light and Cerebrospinal Fluid. Int J Alzheimers Dis 2024; 2024:6668159. [PMID: 38779175 PMCID: PMC11111307 DOI: 10.1155/2024/6668159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) represent an increasingly significant public health concern. As clinical diagnosis faces challenges, biomarkers are becoming increasingly important in research, trials, and patient assessments. While biomarkers like amyloid-β peptide, tau proteins, CSF levels (Aβ, tau, and p-tau), and neuroimaging techniques are commonly used in AD diagnosis, they are often limited and invasive in monitoring and diagnosis. For this reason, blood-based biomarkers are the optimal choice for detecting neurodegeneration in brain diseases due to their noninvasiveness, affordability, reliability, and consistency. This literature review focuses on plasma neurofilament light (NfL) and CSF NfL as blood-based biomarkers used in recent AD diagnosis. The findings revealed that the core CSF biomarkers of neurodegeneration (T-tau, P-tau, and Aβ42), CSF NFL, and plasma T-tau were strongly associated with Alzheimer's disease, and the core biomarkers were strongly associated with mild cognitive impairment due to Alzheimer's disease. Elevated levels of plasma and cerebrospinal fluid NfL were linked to decreased [18F]FDG uptake in corresponding brain areas. In participants with Aβ positivity (Aβ+), NfL correlated with reduced metabolism in regions susceptible to Alzheimer's disease. In addition, CSF NfL levels correlate with brain atrophy and predict cognitive changes, while plasma total tau does not. Plasma P-tau, especially in combination with Aβ42/Aβ40, is promising for symptomatic AD stages. Though not AD-exclusive, blood NfL holds promise for neurodegeneration detection and assessing treatment efficacy. Given the consistent levels of T-tau, P-tau, Aβ42, and NFL in CSF, their incorporation into both clinical practice and research is highly recommended.
Collapse
|
16
|
Xu W, Li X, Parviainen T, Nokia M. Neural correlates of retrospective memory confidence during face-name associative learning. Cereb Cortex 2024; 34:bhae194. [PMID: 38801420 PMCID: PMC11411154 DOI: 10.1093/cercor/bhae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
The ability to accurately assess one's own memory performance during learning is essential for adaptive behavior, but the brain mechanisms underlying this metamemory function are not well understood. We investigated the neural correlates of memory accuracy and retrospective memory confidence in a face-name associative learning task using magnetoencephalography in healthy young adults (n = 32). We found that high retrospective confidence was associated with stronger occipital event-related fields during encoding and widespread event-related fields during retrieval compared to low confidence. On the other hand, memory accuracy was linked to medial temporal activities during both encoding and retrieval, but only in low-confidence trials. A decrease in oscillatory power at alpha/beta bands in the parietal regions during retrieval was associated with higher memory confidence. In addition, representational similarity analysis at the single-trial level revealed distributed but differentiable neural activities associated with memory accuracy and confidence during both encoding and retrieval. In summary, our study unveiled distinct neural activity patterns related to memory confidence and accuracy during associative learning and underscored the crucial role of parietal regions in metamemory.
Collapse
Affiliation(s)
- Weiyong Xu
- Department of Psychology, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
- Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
| | - Xueqiao Li
- Department of Psychology, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
- Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
- Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
| | - Miriam Nokia
- Department of Psychology, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
- Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
| |
Collapse
|
17
|
Kim H. Material-common and material-specific neural activity during encoding of words and scenes: A neuroimaging meta-analysis. Brain Res 2024; 1829:148794. [PMID: 38301950 DOI: 10.1016/j.brainres.2024.148794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
This study examined the extent to which neural activity during memory encoding demonstrates material-commonness or material-specificity. A meta-analysis of functional magnetic resonance imaging studies was conducted to compare the brain regions associated with subsequent memory effects for word and scene stimuli. The main results were as follows. First, significant subsequent memory effects for both words and scenes were primarily observed within the dorsal attention network. This finding aligns with the perspective that temporal fluctuations in attention modulate the intensity of encoding activity, influencing the success and failure of encoding. Second, multiple prefrontal cortex regions, particularly the left inferior frontal cortex, exhibited stronger subsequent memory effects for words compared to scenes. Conversely, multiple visual processing regions revealed an opposite pattern, with heightened subsequent memory effects for scenes relative to words. These findings suggest that words are more strongly encoded through semantic processing, whereas scenes are primarily encoded through visuo-perceptual processing. In conclusion, these results clarify the material specificity and commonness of encoding-related neural activity, emphasizing the significant role of attention and the distinctions between verbal and pictorial information.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do, 38453, Republic of Korea.
| |
Collapse
|
18
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
19
|
Saito Y, Yoshida S, Ueda R, Senoo A. Association of Neural Activities in Language Processing and Memory with Rapid Reading. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 70:273-282. [PMID: 39431177 PMCID: PMC11487372 DOI: 10.14789/jmj.jmj23-0022-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 10/22/2024]
Abstract
Objectives To elucidate physiological changes in the brain caused by rapid reading, we herein focused on brain areas related to language processing and reading comprehension and memory processes and evaluated changes in neural activities associated with reading speed and comprehension using functional magnetic resonance imaging (fMRI). Materials This study included 23 nonrapid and 23 rapid readers matched for age, gender, and handedness. T1 weighted image and fMRI were acquired using 3T MRI. Methods The neural activity was compared between nonrapid and rapid readers using fMRI. The correlation between neural activity and reading speed and comprehension was also determined. Results The neural activities of rapid readers were significantly lower in Wernicke's and Broca's areas, left angular and supramarginal gyri, and hippocampus. Furthermore, reading speed was negatively correlated with neural activities in these areas. Conversely, reading comprehension was negatively correlated with the neural activities in the left angular gyrus. Conclusions Rapid readers exhibited reduced language processing, including phonological transformation, analysis, inner speech, semantic and syntactic processes, and constant reading comprehension during rapid reading.
Collapse
|
20
|
Tse D, Privitera L, Norton AC, Gobbo F, Spooner P, Takeuchi T, Martin SJ, Morris RGM. Cell-type-specific optogenetic stimulation of the locus coeruleus induces slow-onset potentiation and enhances everyday memory in rats. Proc Natl Acad Sci U S A 2023; 120:e2307275120. [PMID: 37931094 PMCID: PMC10655220 DOI: 10.1073/pnas.2307275120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.
Collapse
Affiliation(s)
- Dorothy Tse
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
- Department of Psychology, Edge Hill University, OmskirkL39 4QP, United Kingdom
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
- School of Systems Medicine, University of Dundee, DundeeDD1 4HN, United Kingdom
- Barts and the London School of Medicine, Institute of Health Sciences Education, Queen Mary University of London Malta Campus, VictoriaVCT 2570, Malta
| | - Anna C. Norton
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| | - Patrick Spooner
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| | - Tomonori Takeuchi
- Danish Research Institute of Translational Neuroscience, Nordic-European Molecular Biology Laboratory Partnership for Molecular Medicine, Aarhus University, Aarhus8000, Denmark
- Center for Proteins in Memory, Danish National Research Foundation, Department of Biomedicine, Aarhus University, Aarhus8000, Denmark
| | - Stephen J. Martin
- School of Systems Medicine, University of Dundee, DundeeDD1 4HN, United Kingdom
| | - Richard G. M. Morris
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| |
Collapse
|
21
|
Vijayarajah S, Schlichting ML. Anterior Hippocampal Engagement during Memory Formation Predicts Subsequent False Recognition of Similar Experiences. J Cogn Neurosci 2023; 35:1716-1740. [PMID: 37677052 DOI: 10.1162/jocn_a_02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
People better remember experiences when they orient to meaning over surface-level perceptual features. Such an orientation-related memory boost has been associated with engagement of both hippocampus (HPC) and neocortex during encoding. However, less is known about the neural mechanisms by which a cognitive orientation toward meaning might also promote memory errors, with one open question being whether the HPC-a region traditionally implicated in precise memory formation-also contributes to behavioral imprecision. We used fMRI to characterize encoding-phase signatures as people oriented toward the meaning (story) versus perceptual style (artist) of storybook-style illustrations and then linked them to subsequent true and false memories. We found that story and artist orientation tasks were each associated with both unique univariate profiles and consistent neural states defined using multivoxel patterns. Linking these neural signatures to behavior, we found that greater medial pFC activation and alignment of neural patterns to the story (but not artist) state was related to subsequent memory success on a trial-by-trial basis. Moreover, among successfully remembered experiences, greater anterior HPC engagement at encoding was associated with a higher likelihood of related false recognitions, consistent with the encoding of broad traces in this region. Interestingly, these effects did not reliably vary by cued orientation. These results suggest that, irrespective of the cued encoding orientation, neocortical and hippocampal mechanisms associated with orienting to meaning (story) over perceptual (artist) features may support memory, with the formation of generalizable memories being a specialty of anterior HPC.
Collapse
|
22
|
Schott BH, Soch J, Kizilirmak JM, Schütze H, Assmann A, Maass A, Ziegler G, Sauvage M, Richter A. Inhibitory temporo-parietal effective connectivity is associated with explicit memory performance in older adults. iScience 2023; 26:107765. [PMID: 37744028 PMCID: PMC10514462 DOI: 10.1016/j.isci.2023.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/30/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Successful explicit memory encoding is associated with inferior temporal activations and medial parietal deactivations, which are attenuated in aging. Here we used dynamic causal modeling (DCM) of functional magnetic resonance imaging data to elucidate effective connectivity patterns between hippocampus, parahippocampal place area (PPA), and precuneus during encoding of novel visual scenes. In 117 young adults, DCM revealed pronounced activating input from the PPA to the hippocampus and inhibitory connectivity from the PPA to the precuneus during novelty processing, with both being enhanced during successful encoding. This pattern could be replicated in two cohorts (N = 141 and 148) of young and older adults. In both cohorts, older adults selectively exhibited attenuated inhibitory PPA-precuneus connectivity, which correlated negatively with memory performance. Our results provide insight into the network dynamics underlying explicit memory encoding and suggest that age-related differences in memory-related network activity are, at least partly, attributable to altered temporo-parietal neocortical connectivity.
Collapse
Affiliation(s)
- Björn H. Schott
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Berlin, Germany
| | - Jasmin M. Kizilirmak
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurodidactics and NeuroLab, Institute for Psychology, University of Hildesheim, Hildesheim, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Anne Assmann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | | | - Anni Richter
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- German Center for Mental Health (DZPG), Magdeburg, Germany
- Center for Intervention and Research on adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C) Jena-Magdeburg-Halle, Magdeburg, Germany
| |
Collapse
|
23
|
Mecklinger A, Kamp SM. Observing memory encoding while it unfolds: Functional interpretation and current debates regarding ERP subsequent memory effects. Neurosci Biobehav Rev 2023; 153:105347. [PMID: 37543177 DOI: 10.1016/j.neubiorev.2023.105347] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Our ability to remember the past depends on neural processes set in train in the moment an event is experienced. These processes can be studied by segregating brain activity according to whether an event is later remembered or forgotten. The present review integrates a large number of studies examining this differential brain activity, labeled subsequent memory effect (SME), with the ERP technique, into a functional organization and discusses routes for further research. Based on the reviewed literature, we suggest that memory encoding is implemented by multiple processes, typically reflected in three functionally different subcomponents of the ERP SME elicited by study stimuli, which presumably interact with preparatory SME activity preceding the to be encoded event. We argue that ERPs are a valuable method in the SME paradigm because they have a sufficiently high temporal resolution to disclose the subcomponents of encoding-related brain activity. Implications of the proposed functional organization for future studies using the SME procedure in basic and applied settings will be discussed.
Collapse
Affiliation(s)
- Axel Mecklinger
- Experimental Neuropsychology Unit, Saarland University, Campus A 2-4, 66123 Saarbrücken, Germany.
| | - Siri-Maria Kamp
- Neurocognitive Psychology Unit, Universität Trier, Johanniterufer 15, 54290 Trier, Germany
| |
Collapse
|
24
|
Chen YC, Hsieh PI, Chen JK, Kuo E, Yu HL, Chiou JM, Chen JH. Effect of indoor air quality on the association of long-term exposure to low-level air pollutants with cognition in older adults. ENVIRONMENTAL RESEARCH 2023; 233:115483. [PMID: 36791838 DOI: 10.1016/j.envres.2023.115483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND How indoor air quality affects the temporal associations of long-term exposure to low-level air pollutants with cognition remains unclear. METHODS This cohort study (2011-2019) included 517 non-demented older adults at baseline with four repeated cognitive assessments. The time-varying exposure to PM2.5, PM10, NO2, SO2, CO, and O3 was estimated for each participant from 1994 to 2019. Indoor air quality was determined by ventilation status and daily indoor time. Generalized linear mixed models were used to analyze the association of air pollutants, indoor air quality, and cognition adjusting for important covariates. RESULTS Over time, per 2.97 μg/m3 (i.e., an interquartile range) increment of PM2.5 was associated with the poor performance of memory (Z score of a cognitive test, βˆ:-0.14), attention (βˆ:-0.13), and executive function (βˆ:-0.20). Similarly, per 2.05 μg/m3 increase in PM2.5-10 was associated with poor global cognition [adjusted odds ratio (aOR): 1.48, βˆ:-0.28], attention (βˆ:-0.07), and verbal fluency (βˆ:-0.09); per 4.94 μg/m3 increase in PM10 was associated with poor global cognition (aOR: 1.78; βˆ:-0.37). In contrast, per 2.74 ppb increase in O3 was associated with better global cognition (βˆ:0.36 to 0.47). These associations became more evident in participants with poor ventilation or short daily indoor time (<12.5 h/day). For global cognition, the exposure to a 10-μg/m3 increment in PM2.5, PM2.5-10, and PM10 corresponded to 1.4, 5.8, and 2.8 years of aging, respectively. CONCLUSION This study demonstrated how indoor air quality in areas using clean fuels differentially affected the associations of long-term exposure to low-level air pollutants with cognition. Tightening air quality standards may help prevent dementia.
Collapse
Affiliation(s)
- Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Pei-Iun Hsieh
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Jia-Kun Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Emily Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Hwa-Lung Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Jeng-Min Chiou
- Institute of Statistics and Data Science, National Taiwan University, No. 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan; Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Jen-Hau Chen
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, No. 1, Changde Street, Taipei, 10048, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, No.1 Jen Ai Road Section 1, Taipei, 10051, Taiwan.
| |
Collapse
|
25
|
Zhang Y, Rennig J, Magnotti JF, Beauchamp MS. Multivariate fMRI responses in superior temporal cortex predict visual contributions to, and individual differences in, the intelligibility of noisy speech. Neuroimage 2023; 278:120271. [PMID: 37442310 PMCID: PMC10460966 DOI: 10.1016/j.neuroimage.2023.120271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Humans have the unique ability to decode the rapid stream of language elements that constitute speech, even when it is contaminated by noise. Two reliable observations about noisy speech perception are that seeing the face of the talker improves intelligibility and the existence of individual differences in the ability to perceive noisy speech. We introduce a multivariate BOLD fMRI measure that explains both observations. In two independent fMRI studies, clear and noisy speech was presented in visual, auditory and audiovisual formats to thirty-seven participants who rated intelligibility. An event-related design was used to sort noisy speech trials by their intelligibility. Individual-differences multidimensional scaling was applied to fMRI response patterns in superior temporal cortex and the dissimilarity between responses to clear speech and noisy (but intelligible) speech was measured. Neural dissimilarity was less for audiovisual speech than auditory-only speech, corresponding to the greater intelligibility of noisy audiovisual speech. Dissimilarity was less in participants with better noisy speech perception, corresponding to individual differences. These relationships held for both single word and entire sentence stimuli, suggesting that they were driven by intelligibility rather than the specific stimuli tested. A neural measure of perceptual intelligibility may aid in the development of strategies for helping those with impaired speech perception.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Johannes Rennig
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - John F Magnotti
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael S Beauchamp
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Peelen MV, Downing PE. Testing cognitive theories with multivariate pattern analysis of neuroimaging data. Nat Hum Behav 2023; 7:1430-1441. [PMID: 37591984 PMCID: PMC7616245 DOI: 10.1038/s41562-023-01680-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Multivariate pattern analysis (MVPA) has emerged as a powerful method for the analysis of functional magnetic resonance imaging, electroencephalography and magnetoencephalography data. The new approaches to experimental design and hypothesis testing afforded by MVPA have made it possible to address theories that describe cognition at the functional level. Here we review a selection of studies that have used MVPA to test cognitive theories from a range of domains, including perception, attention, memory, navigation, emotion, social cognition and motor control. This broad view reveals properties of MVPA that make it suitable for understanding the 'how' of human cognition, such as the ability to test predictions expressed at the item or event level. It also reveals limitations and points to future directions.
Collapse
Affiliation(s)
- Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Paul E Downing
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Bangor, UK.
| |
Collapse
|
27
|
Almeida J, Martins AR, Amaral L, Valério D, Bukhari Q, Schu G, Nogueira J, Spínola M, Soleimani G, Fernandes F, Silva AR, Fregni F, Simis M, Simões M, Peres A. The cerebellum is causally involved in episodic memory under aging. GeroScience 2023; 45:2267-2287. [PMID: 36749471 PMCID: PMC10651631 DOI: 10.1007/s11357-023-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Episodic memory decline is a major signature of both normal and pathological aging. Many neural regions have been implicated in the processes subserving both episodic memory and typical aging decline. Here, we demonstrate that the cerebellum is causally involved episodic memory under aging. We show that a 12-day neurostimulation program delivered to the right cerebellum led to improvements in episodic memory performance under healthy aging that long outlast the stimulation period - healthy elderly individuals show episodic memory improvement both immediately after the intervention program and in a 4-month follow-up. These results demonstrate the causal relevance of the cerebellum in processes associated with long-term episodic memory, potentially highlighting its role in regulating and maintaining cognitive processing. Moreover, they point to the importance of non-pharmacological interventions that prevent or diminish cognitive decline in healthy aging.
Collapse
Affiliation(s)
- Jorge Almeida
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal.
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal.
| | - Ana R Martins
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Lénia Amaral
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Department of Neuroscience, Georgetown University Medical Center, Washington, USA
| | - Daniela Valério
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Qasim Bukhari
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Guilherme Schu
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Joana Nogueira
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Mónica Spínola
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- NOVA LINCS, University of Madeira, Caminho da Penteada, 9020-105, Funchal, Portugal
| | - Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
- Department of Psychiatry, University of Minnesota, Minneapolis, USA
| | | | - Ana R Silva
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcel Simis
- Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Mário Simões
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - André Peres
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Rubinstein DY, Weidemann CT, Sperling MR, Kahana MJ. Direct brain recordings suggest a causal subsequent-memory effect. Cereb Cortex 2023; 33:6891-6901. [PMID: 36702495 PMCID: PMC10233277 DOI: 10.1093/cercor/bhad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Endogenous variation in brain state and stimulus-specific evoked activity can both contribute to successful encoding. Previous studies, however, have not clearly distinguished among these components. We address this question by analysing intracranial EEG recorded from epilepsy patients as they studied and subsequently recalled lists of words. We first trained classifiers to predict recall of either single items or entire lists and found that both classifiers exhibited similar performance. We found that list-level classifier output-a biomarker of successful encoding-tracked item presentation and recall events, despite having no information about the trial structure. Across widespread brain regions, decreased low- and increased high-frequency activity (HFA) marked successful encoding of both items and lists. We found regional differences in the hippocampus and prefrontal cortex, where in the hippocampus HFA correlated more strongly with item recall, whereas, in the prefrontal cortex, HFA correlated more strongly with list performance. Despite subtle differences in item- and list-level features, the similarity in overall classification performance, spectral signatures of successful recall and fluctuations of spectral activity across the encoding period argue for a shared endogenous process that causally impacts the brain's ability to learn new information.
Collapse
Affiliation(s)
- Daniel Y Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christoph T Weidemann
- Department of Psychology, Swansea University, Swansea SA2 8PP, UK
- Department of Bioengineering, Columbia University, New York, NY 10027, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Kljajevic V, Evensmoen HR, Sokołowski D, Pani J, Hansen TI, Håberg AK. Female advantage in verbal learning revisited: a HUNT study. Memory 2023:1-19. [PMID: 37114402 DOI: 10.1080/09658211.2023.2203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The argument for a female advantage in word list learning is often based on partial observations that focus on a single component of the task. Using a large sample (N = 4403) of individuals 13-97 years of age from the general population, we investigated whether this advantage is consistently reflected in learning, recall, and recognition and how other cognitive abilities differentially support word list learning. A robust female advantage was found in all subcomponents of the task. Semantic clustering mediated the effects of short-term and working memory on long-delayed recall and recognition, and serial clustering on short-delayed recall. These indirect effects were moderated by sex, with men benefiting more from reliance on each clustering strategy than women. Auditory attention span mediated the effect of pattern separation on true positives in word recognition, and this effect was stronger in men than in women. Men had better short-term and working memory scores, but lower auditory attention span and were more vulnerable to interference both in delayed recall and recognition. Thus, our data suggest that auditory attention span and interference control (inhibition), rather than short-term or working memory scores, semantic and/or serial clustering on their own, underlie better performance on word list learning in women.
Collapse
Affiliation(s)
- V Kljajevic
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - H R Evensmoen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - D Sokołowski
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - J Pani
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - T I Hansen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - A K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
30
|
Halpern DJ, Tubridy S, Davachi L, Gureckis TM. Identifying causal subsequent memory effects. Proc Natl Acad Sci U S A 2023; 120:e2120288120. [PMID: 36952384 PMCID: PMC10068819 DOI: 10.1073/pnas.2120288120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/12/2022] [Indexed: 03/24/2023] Open
Abstract
Over 40 y of accumulated research has detailed associations between neuroimaging signals measured during a memory encoding task and later memory performance, across a variety of brain regions, measurement tools, statistical approaches, and behavioral tasks. But the interpretation of these subsequent memory effects (SMEs) remains unclear: if the identified signals reflect cognitive and neural mechanisms of memory encoding, then the underlying neural activity must be causally related to future memory. However, almost all previous SME analyses do not control for potential confounders of this causal interpretation, such as serial position and item effects. We collect a large fMRI dataset and use an experimental design and analysis approach that allows us to statistically adjust for nearly all known exogenous confounding variables. We find that, using standard approaches without adjustment, we replicate several univariate and multivariate subsequent memory effects and are able to predict memory performance across people. However, we are unable to identify any signal that reliably predicts subsequent memory after adjusting for confounding variables, bringing into doubt the causal status of these effects. We apply the same approach to subjects' judgments of learning collected following an encoding period and show that these behavioral measures of mnemonic status do predict memory after adjustments, suggesting that it is possible to measure signals near the time of encoding that reflect causal mechanisms but that existing neuroimaging measures, at least in our data, may not have the precision and specificity to do so.
Collapse
Affiliation(s)
- David J. Halpern
- Department of Psychology, New York University, New York, NY10003
| | - Shannon Tubridy
- Department of Psychology, New York University, New York, NY10003
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY10027
| | - Todd M. Gureckis
- Department of Psychology, New York University, New York, NY10003
| |
Collapse
|
31
|
Wang L, Yang J. Learning from errors: Distinct neural networks for monitoring errors and maintaining corrects through repeated practice and feedback. Neuroimage 2023; 271:120001. [PMID: 36878457 DOI: 10.1016/j.neuroimage.2023.120001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
How memory representations are eventually established and maintained in the brain is one of central issues in memory research. Although the hippocampus and various brain regions have been shown to be involved in learning and memory, how they coordinate to support successful memory through errors is unclear. In this study, a retrieval practice (RP) - feedback (FB) paradigm was adopted to address this issue. Fifty-six participants (27 in the behavioral group, and 29 in the fMRI group) learned 120 Swahili-Chinese words associations and underwent two RP-answer FB cycles (i.e., RP1, FB1, RP2, FB2). The responses of the fMRI group were recorded in the fMRI scanner. The trials were divided based on participant's performance (correct or incorrect, C or I) during the two RPs and the final test (i.e., trial type, CCC, ICC, IIC III). The results showed that the regions in the salience and executive control networks (S-ECN) during RP, but not during FB, was strongly predictive of final successful memory. Their activation was just before the errors were corrected (i.e., RP1 in ICC trials and RP2 in IIC trials). The anterior insula (AI) is a core region in monitoring repeated errors, and it had differential connectivity with the default mode network (DMN) regions and the hippocampus during the RP and FB phases to inhibit incorrect answers and update memory. In contrast, maintaining corrected memory representation requires repeated RP and FB, which was associated with the DMN activation. Our study clarified how different brain regions support error monitoring and memory maintenance through repeated RP and FB, and emphasized the role of the insula in learning from errors.
Collapse
Affiliation(s)
- Lingwei Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China.
| |
Collapse
|
32
|
Yeh N, Koen JD. Informative and uninformative prestimulus cues at encoding benefit familiarity and source memory. Memory 2023; 31:367-379. [PMID: 36546483 PMCID: PMC10085852 DOI: 10.1080/09658211.2022.2156546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Previous research has shown that neural activity elicited by informative prestimulus cues during encoding differ with respect to subsequent memory outcomes. These findings indicate prestimulus cues create a "brain state" associated with subsequent memory that, potentially, also has downstream effects benefitting processes associated with successful encoding and subsequent memory performance. However, previous studies have not included the conditions necessary to appropriately test this latter assumption. The present study examines how informative and uninformative prestimulus encoding cues affect memory accuracy for upcoming stimuli compared to a no cue condition. At encoding, participants made one of two semantic judgments on words preceded by an informative prestimulus cue that identified the upcoming semantic judgment, an uninformative prestimulus cue that signalled an upcoming trial but no information about the semantic judgment, or no cue. Dual process estimates of familiarity, but not recollection, demonstrated a graded pattern with the informativeness of the prestimulus cues (i.e., informative > uninformative > no cues). Moreover, both informative and uninformative prestimulus cues enhanced subsequent source memory accuracy for the encoding task compared to the no cue condition. These findings suggest that prestimulus cues can strengthen the processes that support successful memory encoding and benefit subsequent familiarity and source memory.
Collapse
|
33
|
Judgments of learning reveal conscious access to stimulus memorability. Psychon Bull Rev 2023; 30:317-330. [PMID: 36002718 DOI: 10.3758/s13423-022-02166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Despite the massive capacity of visual long-term memory, individuals do not successfully encode all visual information they wish to remember. This variability in encoding success has been traditionally ascribed to fluctuations in individuals' cognitive states (e.g., sustained attention) and differences in memory encoding processes (e.g., depth of encoding). However, recent work has shown that a considerable amount of variability in encoding success stems from intrinsic stimulus properties that determine the ease of encoding across individuals. While researchers have identified several perceptual and semantic properties that contribute to stimulus memorability, much remains unknown, including whether individuals are aware of the memorability of stimuli they encounter. In the present study, we investigated whether individuals have conscious access to the memorability of real-world stimuli while forming self-referential judgments of learning (JOL) during explicit memory encoding (Experiments 1A-B) and when asked about the perceived memorability of a stimulus in the absence of attempted encoding (Experiments 2A-B). We found that JOLs and perceived memorability estimates (PME) were consistent across individuals and predictive of memorability, confirming that individuals can access memorability with or without stimulus encoding. At the same time, access to memorability was not comprehensive. We found that individuals unexpectedly remembered and forgot consistent sets of stimuli as well. When we compared access to memorability between JOLs and PMEs, we found that individuals had more access during JOLs. Thus, our findings demonstrate that individuals have partial access to stimulus memorability and that explicit encoding increases the amount of access that is available.
Collapse
|
34
|
Vijayarajah S, McAlister E, Schlichting ML. Encoding-phase orientation toward thematic content over perceptual style benefits picture memory. Memory 2023; 31:259-269. [PMID: 36413035 DOI: 10.1080/09658211.2022.2147954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Orienting toward the meaning versus perceptual features of an experience benefits subsequent memory. Yet given that past work encouraged these orientations with different tasks, it is not clear if this memory benefit is solely due to internal processing factors versus external task-related ones. Moreover, it remains unclear how this benefit generalises from verbal to detailed picture memory. Here, we developed a novel paradigm that cued participants' attention to thematic (story) or stylistic (artist style) dimensions of storybook-style illustrations during a repeat-detection task. Afterwards, participants completed a recognition memory test with studied illustrations and lures along thematic and stylistic dimensions. In contrast to past work, both orienting tasks were identical except for the dimension participants were cued to attend to. Furthermore, our thematic and stylistic dimensions enabled us to separately examine memory quality along each dimension. We found that thematic attention yielded superior memory for studied illustrations over stylistic orientations. False alarms to lures varied by dimension and attention: errors were greater to thematic than stylistic lures overall and stylistic attention elevated false alarms to stylistic lures. Our results show that semantic encoding orientations enhance detailed picture memory, without a cost to memory quality along semantic or perceptual dimensions of experience.
Collapse
Affiliation(s)
| | - Eilidh McAlister
- Department of Psychology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
35
|
Jun S, Kim JS, Chung CK. Hippocampal Neuronal Activity Preceding Stimulus Predicts Later Memory Success. eNeuro 2023; 10:ENEURO.0252-22.2023. [PMID: 36720645 PMCID: PMC9933931 DOI: 10.1523/eneuro.0252-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
Hippocampal neuronal activity at a time preceding stimulus onset affects episodic memory performance. We hypothesized that neuronal activity preceding an event supports successful memory formation; therefore, we explored whether a characterized encoding-associated brain activity, viz. the neuronal activity preceding a stimulus, predicts subsequent memory formation. To address this issue, we assessed the activity of single neurons recorded from the hippocampus in humans, while participants performed word memory tasks. Human hippocampal single-unit activity elicited by a fixation cue preceding words increased the firing rates (FRs) and predicted whether the words are recalled in a subsequent memory test; this indicated that successful memory formation in humans can be predicted by a preceding stimulus activity during encoding. However, the predictive effect of preceding stimulus activity did not occur during retrieval. These findings suggest that the preparative arrangement of brain activity before stimulus encoding improves subsequent memory performance.
Collapse
Affiliation(s)
- Soyeon Jun
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea, 03080
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea, 03080
| | - June Sic Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea, 03080
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea, 08826
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea, 03080
| |
Collapse
|
36
|
Roes MM, Chinchani AM, Woodward TS. Reduced Functional Connectivity in Brain Networks Underlying Paired Associates Memory Encoding in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:61-70. [PMID: 34303847 DOI: 10.1016/j.bpsc.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Deficits in relational episodic memory encoding are characteristic of schizophrenia (SZ), but whole-brain multivariate analyses of these deficits have been lacking. Open science has provided task-based functional magnetic resonance imaging (fMRI) data investigating paired associate encoding in SZ, but it has not yet been mobilized to address this gap in the literature. Therefore, in this study, we use previously unpublished task fMRI data to conduct the first network-level investigation of impaired relational episodic encoding in SZ. METHODS Using fMRI data acquired from 40 healthy control participants and 40 age- and sex-matched persons with SZ, we examined the networks involved in successful versus unsuccessful encoding of verbal paired associates using an associative semantic strategy. RESULTS Constrained principal component analysis for fMRI revealed 3 distinct functional networks recruited during encoding: a responding network, a linguistic processing/attention network, and the default mode network. Relative to the healthy control group, the SZ group exhibited aberrant activity in all 3 networks during successful encoding; namely, hypoactivation in the linguistic processing/attention network, lower peak activation in the responding network, and weaker suppression in the default mode network. Independent of group effects, a pattern of stronger anticorrelating linguistic processing/attention-default mode network activity during successful encoding significantly predicted subsequent retrieval of paired associates. CONCLUSIONS Together with previous observations of language network hypoactivation during controlled semantic processes, these results suggest that abnormalities in networks representing language and meaning may contribute to difficulties employing deep semantic strategies during relational episodic encoding in SZ.
Collapse
Affiliation(s)
- Meighen M Roes
- Department of Psychology, Vancouver, British Columbia, Canada; BC Mental Health and Substance Use Research Institute, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Abhijit M Chinchani
- Department of Psychology, Vancouver, British Columbia, Canada; Department of Bioinformatics, Vancouver, British Columbia, Canada
| | - Todd S Woodward
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; BC Mental Health and Substance Use Research Institute, Provincial Health Services Authority, Vancouver, British Columbia, Canada.
| |
Collapse
|
37
|
Ventura-Campos N, Ferrando-Esteve L, Epifanio I. The underlying neural bases of the reversal error while solving algebraic word problems. Sci Rep 2022; 12:21654. [PMID: 36522380 PMCID: PMC9755259 DOI: 10.1038/s41598-022-25442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Problem solving is a core element in mathematical learning. The reversal error in problem solving occurs when students are able to recognize the information in the statement of comparison word problems, but they reverse the relationship between two variables when building the equations. Functional magnetic resonance images were acquired to identify for the first time the neural bases associated with the reversal error. The neuronal bases linked to this error have been used as inputs in 13 classifiers to discriminate between reversal error and non-reversal error groups. We found brain activation in bilateral fronto-parietal areas in the participants who committed reversal errors, and only left fronto-parietal activation in those who did not, suggesting that the reversal error group needed a greater cognitive demand. Instead, the non-reversal error group seems to show that they have developed solid algebraic knowledge. Additionally, the results showed brain activation in the right middle temporal gyrus when comparing the reversal error vs non-reversal error groups. This activation would be associated with the semantic processing which is required to understand the statement and build the equation. Finally, the classifier results show that the brain areas activated could be considered good biomarkers to help us identify competent solvers.
Collapse
Affiliation(s)
- Noelia Ventura-Campos
- Department of Education and Specific Didactics, Universitat Jaume I, Castellón de La Plana, Spain
- Neuropsychology and Functional Neuroimaging Group, Universitat Jaume I, Castellón de La Plana, Spain
| | - Lara Ferrando-Esteve
- Department of Education and Specific Didactics, Universitat Jaume I, Castellón de La Plana, Spain.
- Neuropsychology and Functional Neuroimaging Group, Universitat Jaume I, Castellón de La Plana, Spain.
| | - Irene Epifanio
- Department of Mathematics, Universitat Jaume I, Castellón de La Plana, Spain
| |
Collapse
|
38
|
Divjak D, Milin P, Medimorec S, Borowski M. Behavioral Signatures of Memory Resources for Language: Looking beyond the Lexicon/Grammar Divide. Cogn Sci 2022; 46:e13206. [PMID: 36353955 PMCID: PMC9787600 DOI: 10.1111/cogs.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 07/27/2022] [Accepted: 08/27/2022] [Indexed: 11/11/2022]
Abstract
Although there is a broad consensus that both the procedural and declarative memory systems play a crucial role in language learning, use, and knowledge, the mapping between linguistic types and memory structures remains underspecified: by default, a dual-route mapping of language systems to memory systems is assumed, with declarative memory handling idiosyncratic lexical knowledge and procedural memory handling rule-governed knowledge of grammar. We experimentally contrast the processing of morphology (case and aspect), syntax (subordination), and lexical semantics (collocations) in a healthy L1 population of Polish, a language rich in form distinctions. We study the processing of these four types under two conditions: a single task condition in which the grammaticality of stimuli was judged and a concurrent task condition in which grammaticality judgments were combined with a digit span task. Dividing attention impedes access to declarative memory while leaving procedural memory unaffected and hence constitutes a test that dissociates which types of linguistic information each long-term memory construct subserves. Our findings confirm the existence of a distinction between lexicon and grammar as a generative, dual-route model would predict, but the distinction is graded, as usage-based models assume: the hypothesized grammar-lexicon opposition appears as a continuum on which grammatical phenomena can be placed as being more or less "ruly" or "idiosyncratic." However, usage-based models, too, need adjusting as not all types of linguistic knowledge are proceduralized to the same extent. This move away from a simple dichotomy fundamentally changes how we think about memory for language, and hence how we design and interpret behavioral and neuroimaging studies that probe into the nature of language cognition.
Collapse
Affiliation(s)
- Dagmar Divjak
- Department of Modern LanguagesUniversity of BirminghamBirminghamUnited Kingdom,Department of English Language & LinguisticsUniversity of BirminghamBirminghamUnited Kingdom
| | - Petar Milin
- Department of Modern LanguagesUniversity of BirminghamBirminghamUnited Kingdom
| | - Srdan Medimorec
- Department of Modern LanguagesUniversity of BirminghamBirminghamUnited Kingdom,Department of Psychology, Centre for Applied Psychological ScienceTeesside UniversityMiddlesbroughUnited Kingdom
| | - Maciej Borowski
- Department of Modern LanguagesUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
39
|
Köster M, Gruber T. Rhythms of human attention and memory: An embedded process perspective. Front Hum Neurosci 2022; 16:905837. [PMID: 36277046 PMCID: PMC9579292 DOI: 10.3389/fnhum.2022.905837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
It remains a dogma in cognitive neuroscience to separate human attention and memory into distinct modules and processes. Here we propose that brain rhythms reflect the embedded nature of these processes in the human brain, as evident from their shared neural signatures: gamma oscillations (30-90 Hz) reflect sensory information processing and activated neural representations (memory items). The theta rhythm (3-8 Hz) is a pacemaker of explicit control processes (central executive), structuring neural information processing, bit by bit, as reflected in the theta-gamma code. By representing memory items in a sequential and time-compressed manner the theta-gamma code is hypothesized to solve key problems of neural computation: (1) attentional sampling (integrating and segregating information processing), (2) mnemonic updating (implementing Hebbian learning), and (3) predictive coding (advancing information processing ahead of the real time to guide behavior). In this framework, reduced alpha oscillations (8-14 Hz) reflect activated semantic networks, involved in both explicit and implicit mnemonic processes. Linking recent theoretical accounts and empirical insights on neural rhythms to the embedded-process model advances our understanding of the integrated nature of attention and memory - as the bedrock of human cognition.
Collapse
Affiliation(s)
- Moritz Köster
- Faculty of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
40
|
Wakeland-Hart CD, Cao SA, deBettencourt MT, Bainbridge WA, Rosenberg MD. Predicting visual memory across images and within individuals. Cognition 2022; 227:105201. [PMID: 35868240 DOI: 10.1016/j.cognition.2022.105201] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
We only remember a fraction of what we see-including images that are highly memorable and those that we encounter during highly attentive states. However, most models of human memory disregard both an image's memorability and an individual's fluctuating attentional states. Here, we build the first model of memory synthesizing these two disparate factors to predict subsequent image recognition. We combine memorability scores of 1100 images (Experiment 1, n = 706) and attentional state indexed by response time on a continuous performance task (Experiments 2 and 3, n = 57 total). Image memorability and sustained attentional state explained significant variance in image memory, and a joint model of memory including both factors outperformed models including either factor alone. Furthermore, models including both factors successfully predicted memory in an out-of-sample group. Thus, building models based on individual- and image-specific factors allows for directed forecasting of our memories. SIGNIFICANCE STATEMENT: Although memory is a fundamental cognitive process, much of the time memory failures cannot be predicted until it is too late. However, in this study, we show that much of memory is surprisingly pre-determined ahead of time, by factors shared across the population and highly specific to each individual. Specifically, we build a new multidimensional model that predicts memory based just on the images a person sees and when they see them. This research synthesizes findings from disparate domains ranging from computer vision, attention, and memory into a predictive model. These findings have resounding implications for domains such as education, business, and marketing, where it is a top priority to predict (and even manipulate) what information people will remember.
Collapse
Affiliation(s)
- Cheyenne D Wakeland-Hart
- Department of Psychology, University of Chicago, Chicago, IL, USA; Department of Psychology, Columbia University, New York, NY, USA
| | - Steven A Cao
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | | | - Wilma A Bainbridge
- Department of Psychology, University of Chicago, Chicago, IL, USA; Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, USA; Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
Elmer S, Besson M, Rodríguez-Fornells A. The electrophysiological correlates of word pre-activation during associative word learning. Int J Psychophysiol 2022; 182:12-22. [PMID: 36167179 DOI: 10.1016/j.ijpsycho.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Human beings continuously make use of learned associations to generate predictions about future occurrences in the environment. Such memory-related predictive processes provide a scaffold for learning in that mental representations of foreseeable events can be adjusted or strengthened based on a specific outcome. Learning the meaning of novel words through picture-word associations constitutes a prime example of associative learning because pictures preceding words can trigger word prediction through the pre-activation of the related mnemonic representations. In the present electroencephalography (EEG) study, we used event-related potentials (ERPs) to compare neural indices of word pre-activation between a word learning condition with maximal prediction likelihood and a non-learning control condition with low prediction. Results revealed that prediction-related N400 amplitudes in response to pictures decreased over time at central electrodes as a function of word learning, whereas late positive component (LPC) amplitudes increased. Notably, N400 but not LPC changes were also predictive of word learning performance, suggesting that the N400 component constitutes a sensitive marker of word pre-activation during associative word learning.
Collapse
Affiliation(s)
- Stefan Elmer
- Computational Neuroscience of Speech & Hearing, Department of Computational Linguistics, University of Zurich, Switzerland; Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08097 Barcelona, Spain.
| | - Mireille Besson
- Université Publique de France, CNRS & Aix-Marseille University, Laboratoire de Neurosciences Cognitives (LNC, UMR 7291) & Institute for Language and Communication in the Brain (ILCB), Marseille, France.
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08097 Barcelona, Spain; Department of Cognition, Development and Educational Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, 08097 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010 Barcelona, Spain.
| |
Collapse
|
42
|
Endemann R, Kamp SM. An examination of task factors that influence the associative memory deficit in aging. Front Psychol 2022; 13:991371. [PMID: 36211863 PMCID: PMC9539925 DOI: 10.3389/fpsyg.2022.991371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is accompanied by a decline in associative memory, whereas item memory remains relatively stable compared to young adults. This age-related associative deficit is well replicated, but its mechanisms and influencing factors during learning are still largely unclear. In the present study, we examined mediators of the age-related associative deficit, including encoding intentionality, strategy instructions, the timing of the memory test (immediate vs. 24 h delayed) and the material being learned (words vs. pictures) in a within-subject design. Older and younger adults performed seven encoding tasks on word pairs and picture pairs on two consecutive days, followed by item and associative recognition tests. The associative deficit was evident after all encoding tasks. We found no evidence for a difference in the magnitude of the associative deficit between incidental vs. intentional learning conditions. However, there was some evidence for a larger associative memory deficit with pictures versus words when the encoding task was held equal. Sentence generation and interactive imagery instructions in which participants generated their own mediators reduced the magnitude of the associative deficit. However, increased encoding guidance through the provision of mediators did not lead to an alleviation of the deficit, potentially because the specified mediators were implausible or difficult for the older adults to reconcile with prior knowledge. Finally, we found some evidence for a reduced age-related associative deficit with a test delay of 24 h. These results contribute to a better understanding of the factors affecting the relative difficulty of older adults with encoding and retrieving novel associations.
Collapse
|
43
|
Yadav N, Noble C, Niemeyer JE, Terceros A, Victor J, Liston C, Rajasethupathy P. Prefrontal feature representations drive memory recall. Nature 2022; 608:153-160. [PMID: 35831504 PMCID: PMC9577479 DOI: 10.1038/s41586-022-04936-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/06/2022] [Indexed: 02/03/2023]
Abstract
Memory formation involves binding of contextual features into a unitary representation1-4, whereas memory recall can occur using partial combinations of these contextual features. The neural basis underlying the relationship between a contextual memory and its constituent features is not well understood; in particular, where features are represented in the brain and how they drive recall. Here, to gain insight into this question, we developed a behavioural task in which mice use features to recall an associated contextual memory. We performed longitudinal imaging in hippocampus as mice performed this task and identified robust representations of global context but not of individual features. To identify putative brain regions that provide feature inputs to hippocampus, we inhibited cortical afferents while imaging hippocampus during behaviour. We found that whereas inhibition of entorhinal cortex led to broad silencing of hippocampus, inhibition of prefrontal anterior cingulate led to a highly specific silencing of context neurons and deficits in feature-based recall. We next developed a preparation for simultaneous imaging of anterior cingulate and hippocampus during behaviour, which revealed robust population-level representation of features in anterior cingulate, that lag hippocampus context representations during training but dynamically reorganize to lead and target recruitment of context ensembles in hippocampus during recall. Together, we provide the first mechanistic insights into where contextual features are represented in the brain, how they emerge, and how they access long-range episodic representations to drive memory recall.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics and Cognition, The Rockefeller University, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chelsea Noble
- Laboratory of Neural Dynamics and Cognition, The Rockefeller University, New York, NY, USA
| | - James E Niemeyer
- Laboratory of Neural Dynamics and Cognition, The Rockefeller University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Terceros
- Laboratory of Neural Dynamics and Cognition, The Rockefeller University, New York, NY, USA
| | - Jonathan Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
44
|
Topçu Ç, Marks VS, Saboo KV, Lech M, Nejedly P, Kremen V, Worrell GA, Kucewicz MT. Hotspot of human verbal memory encoding in the left anterior prefrontal cortex. EBioMedicine 2022; 82:104135. [PMID: 35785617 PMCID: PMC9254338 DOI: 10.1016/j.ebiom.2022.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Treating memory and cognitive deficits requires knowledge about anatomical sites and neural activities to be targeted with particular therapies. Emerging technologies for local brain stimulation offer attractive therapeutic options but need to be applied to target specific neural activities, at distinct times, and in specific brain regions that are critical for memory formation. Methods The areas that are critical for successful encoding of verbal memory as well as the underlying neural activities were determined directly in the human brain with intracranial electrophysiological recordings in epilepsy patients. We recorded a broad range of spectral activities across the cortex of 135 patients as they memorised word lists for subsequent free recall. Findings The greatest differences in the spectral power between encoding subsequently recalled and forgotten words were found in low theta frequency (3–5 Hz) activities of the left anterior prefrontal cortex. This subsequent memory effect was proportionally greater in the lower frequency bands and in the more anterior cortical regions. We found the peak of this memory signal in a distinct part of the prefrontal cortex at the junction between the Broca's area and the frontal pole. The memory effect in this confined area was significantly higher (Tukey–Kramer test, p<0.05) than in other anatomically distinct areas. Interpretation Our results suggest a focal hotspot of human verbal memory encoding located in the higher-order processing region of the prefrontal cortex, which presents a prospective target for modulating cognitive functions in the human patients. The memory effect provides an electrophysiological biomarker of low frequency neural activities, at distinct times of memory encoding, and in one hotspot location in the human brain. Funding Open-access datasets were originally collected as part of a BRAIN Initiative project called Restoring Active Memory (RAM) funded by the Defence Advanced Research Project Agency (DARPA). CT, ML, MTK and this research were supported from the First Team grant of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.
Collapse
|
45
|
Kim H. Attention- versus significance-driven memory formation: Taxonomy, neural substrates, and meta-analyses. Neurosci Biobehav Rev 2022; 138:104685. [PMID: 35526692 DOI: 10.1016/j.neubiorev.2022.104685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022]
Abstract
Functional neuroimaging data on episodic memory formation have expanded rapidly over the last 30 years, which raises the need for an integrative framework. This study proposes a taxonomy of episodic memory formation to address this need. At the broadest level, the taxonomy distinguishes between attention-driven vs. significance-driven memory formation. The three subtypes of attention-driven memory formation are selection-, fluctuation-, and level-related. The three subtypes of significance-driven memory formation are novelty-, emotion-, and reward-related. Meta-analytic data indicated that attention-driven memory formation affects the functioning of the extra-medial temporal lobe more strongly than the medial temporal lobe (MTL) regions. In contrast, significance-driven memory formation affects the functioning of the MTL more strongly than the extra-MTL regions. This study proposed a model in which attention has a stronger impact on the formation of neocortical traces than hippocampus/MTL traces, whereas significance has a stronger impact on the formation of hippocampus/MTL traces than neocortical traces. Overall, the taxonomy and model provide an integrative framework in which to place diverse encoding-related findings into a proper perspective.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, Republic of Korea.
| |
Collapse
|
46
|
Obliviate! Reviewing Neural Fundamentals of Intentional Forgetting from a Meta-Analytic Perspective. Biomedicines 2022; 10:biomedicines10071555. [PMID: 35884860 PMCID: PMC9313188 DOI: 10.3390/biomedicines10071555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Intentional forgetting (IF) is an important adaptive mechanism necessary for correct memory functioning, optimal psychological wellbeing, and appropriate daily performance. Due to its complexity, the neuropsychological processes that give birth to successful intentional forgetting are not yet clearly known. In this study, we used two different meta-analytic algorithms, Activation Likelihood Estimation (ALE) & Latent Dirichlet Allocation (LDA) to quantitatively assess the neural correlates of IF and to evaluate the degree of compatibility between the proposed neurobiological models and the existing brain imaging data. We found that IF involves the interaction of two networks, the main “core regions” consisting of a primarily right-lateralized frontal-parietal circuit that is activated irrespective of the paradigm used and sample characteristics and a second less constrained “supportive network” that involves frontal-hippocampal interactions when IF takes place. Additionally, our results support the validity of the inhibitory or thought suppression hypothesis. The presence of a neural signature of IF that is stable regardless of experimental paradigms is a promising finding that may open new venues for the development of effective clinical interventions.
Collapse
|
47
|
Ryan JD, Wynn JS, Shen K, Liu ZX. Aging changes the interactions between the oculomotor and memory systems. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:418-442. [PMID: 34856890 DOI: 10.1080/13825585.2021.2007841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The use of multi-modal approaches, particularly in conjunction with multivariate analytic techniques, can enrich models of cognition, brain function, and how they change with age. Recently, multivariate approaches have been applied to the study of eye movements in a manner akin to that of neural activity (i.e., pattern similarity). Here, we review the literature regarding multi-modal and/or multivariate approaches, with specific reference to the use of eyetracking to characterize age-related changes in memory. By applying multi-modal and multivariate approaches to the study of aging, research has shown that aging is characterized by moment-to-moment alterations in the amount and pattern of visual exploration, and by extension, alterations in the activity and function of the hippocampus and broader medial temporal lobe (MTL). These methodological advances suggest that age-related declines in the integrity of the memory system has consequences for oculomotor behavior in the moment, in a reciprocal fashion. Age-related changes in hippocampal and MTL structure and function may lead to an increase in, and change in the patterns of, visual exploration in an effort to upregulate the encoding of information. However, such visual exploration patterns may be non-optimal and actually reduce the amount and/or type of incoming information that is bound into a lasting memory representation. This research indicates that age-related cognitive impairments are considerably broader in scope than previously realized.
Collapse
Affiliation(s)
- Jennifer D Ryan
- Rotman Research Institute at Baycrest Health Sciences, Toronto, ON, Canada
- Departments of Psychology, Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jordana S Wynn
- Department of Psychology, Harvard University, Cambridge MA, USA
| | - Kelly Shen
- Rotman Research Institute at Baycrest Health Sciences, Toronto, ON, Canada
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn MI, USA
| |
Collapse
|
48
|
Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, Donohue MR, Foran W, Miller RL, Hendrickson TJ, Malone SM, Kandala S, Feczko E, Miranda-Dominguez O, Graham AM, Earl EA, Perrone AJ, Cordova M, Doyle O, Moore LA, Conan GM, Uriarte J, Snider K, Lynch BJ, Wilgenbusch JC, Pengo T, Tam A, Chen J, Newbold DJ, Zheng A, Seider NA, Van AN, Metoki A, Chauvin RJ, Laumann TO, Greene DJ, Petersen SE, Garavan H, Thompson WK, Nichols TE, Yeo BTT, Barch DM, Luna B, Fair DA, Dosenbach NUF. Reproducible brain-wide association studies require thousands of individuals. Nature 2022; 603:654-660. [PMID: 35296861 PMCID: PMC8991999 DOI: 10.1038/s41586-022-04492-9] [Citation(s) in RCA: 1006] [Impact Index Per Article: 335.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.
Collapse
Affiliation(s)
- Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Meghan Rose Donohue
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryland L Miller
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy J Hendrickson
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Eric A Earl
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Anders J Perrone
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Michaela Cordova
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Olivia Doyle
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Lucille A Moore
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Gregory M Conan
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Johnny Uriarte
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Kathy Snider
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Benjamin J Lynch
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - James C Wilgenbusch
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Angela Tam
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhong Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Wesley K Thompson
- Division of Biostatistics, University of California San Diego, La Jolla, CA, USA
| | - Thomas E Nichols
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.
- Institute of Child Development, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA.
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA.
- Program in Occupational Therapy, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
49
|
Kim J, Cha B, Lee D, Kim JM, Kim M. Effect of Cognition by Repetitive Transcranial Magnetic Stimulation on Ipsilesional Dorsolateral Prefrontal Cortex in Subacute Stroke Patients. Front Neurol 2022; 13:823108. [PMID: 35185773 PMCID: PMC8848770 DOI: 10.3389/fneur.2022.823108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Objective To demonstrate the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) over the ipsilesional dorsolateral prefrontal cortex (DLPFC) on neurological recovery in patients with subacute phase stroke. Methods Patients with supratentorial hemispheric stroke who were hospitalized for intensive rehabilitation in the subacute phase were enrolled for this retrospective analysis. Two groups of patients were selected: the rTMS group who received high-frequency (20 Hz) rTMS ≥ 5 times over the ipsilesional DLPFC, and a control group who did not receive any rTMS. The patients were further divided into groups with right- or left-side brain lesions. Functional measurements for cognitive ability, mood, speech, and activities of daily living, which were assessed at baseline and at the 1-month follow-up as a routine clinical practice, were used for analyses. Results Among 270 patients with available clinical data, 133 (women, 51; age, 61.0 ± 13.8 years) met the inclusion criteria and were enrolled for analysis. There were no differences in demographic data and functional scores at baseline between the rTMS (n = 49) and control (n = 84) groups. The rTMS group showed a higher gain in the mini-mental status examination (MMSE) total score and subscores of all domains, forward digit span, and FIM-cognition than the control group (P < 0.05). Among the patients with left hemispheric lesions (n = 57), the rTMS group showed better outcomes in cognition and depression through scores of total and “attention and concentration” subscores of MMSE, FIM-cognition, and the geriatric depression scale (P < 0.05). Among the patients with right hemispheric lesions (n = 76), the rTMS group showed better outcomes in cognition through the MMSE total score and subscores of “attention and concentration,” “registration,” and “recall,” and scores of both forward and backward digit spans (P < 0.05). Conclusion High-frequency rTMS over the ipsilesional DLPFC has beneficial effects on the recovery of cognition on both sides as well as mood in patients with left-sided hemispheric lesions.
Collapse
Affiliation(s)
- Jongwook Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Byoungwoo Cha
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Doyoung Lee
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jong Moon Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, South Korea
| | - MinYoung Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, South Korea
- *Correspondence: MinYoung Kim
| |
Collapse
|
50
|
Behpour S, Field DJ, Albert MV. On the Role of LGN/V1 Spontaneous Activity as an Innate Learning Pattern for Visual Development. Front Physiol 2021; 12:695431. [PMID: 34776991 PMCID: PMC8589027 DOI: 10.3389/fphys.2021.695431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Correlated, spontaneous neural activity is known to play a necessary role in visual development, but the higher-order statistical structure of these coherent, amorphous patterns has only begun to emerge in the past decade. Several computational studies have demonstrated how this endogenous activity can be used to train a developing visual system. Models that generate spontaneous activity analogous to retinal waves have shown that these waves can serve as stimuli for efficient coding models of V1. This general strategy in development has one clear advantage: The same learning algorithm can be used both before and after eye-opening. This same insight can be applied to understanding LGN/V1 spontaneous activity. Although lateral geniculate nucleus (LGN) activity has been less discussed in the literature than retinal waves, here we argue that the waves found in the LGN have a number of properties that fill the role of a training pattern. We make the case that the role of “innate learning” with spontaneous activity is not only possible, but likely in later stages of visual development, and worth pursuing further using an efficient coding paradigm.
Collapse
Affiliation(s)
- Sahar Behpour
- Department of Information Science, University of North Texas, Denton, TX, United States
| | - David J Field
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Mark V Albert
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States.,Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| |
Collapse
|