1
|
Shen Y, Cui SS, Teng XB, Han MF, Zhang YB. Clinical, Laboratory, and Imaging Characteristics of Tropheryma Whipplei Detection in Bronchoalveolar Lavage Fluid Using Next-Generation Sequencing: A Case-Control Study. Infect Drug Resist 2024; 17:3101-3112. [PMID: 39050831 PMCID: PMC11268753 DOI: 10.2147/idr.s470084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Objective The aim of this study was to assess the prevalence of Tropheryma whipplei (TW) infection in the population and to investigate the clinical symptoms, as well as the laboratory and imaging characteristics of patients testing positive for TW using next-generation sequencing (NGS). Methods A retrospective review was conducted on 1346 bronchoalveolar lavage fluid (BALF) samples collected between January 2021 and September 2023. The case group comprised patients with TW detected using NGS while the control group included 65 randomly chosen Gram-positive bacterial infection patients without TW. Comparative analyses were carried out on the basic demographics, laboratory parameters, and imaging findings between the two groups. Additionally, the case group underwent an in-depth examination of underlying diseases, pathogens, final diagnoses, treatment strategies. Results The case group comprised of 51 patients with TW, constituting 3.8% of the total. There was no significant difference in gender and age between the case and control groups (P = 0.84, P = 0.07). Symptoms such as coughing, expectoration, wheezing, fever, and hemoptysis are less commonly detected in the case group with a higher incidence of chest pain when compared to the control group (P >0.05). The case group exhibited decreased albumin levels and increased C-reactive protein and D-dimer levels compared to normal levels. Imaging findings in the case group commonly included nodules, patchy images, and interstitial changes, the most common underlying disease is cardiovascular disease, and the most frequently co-occurring pathogen is the human herpesvirus. Among the case group, 27 patients received a final diagnosis of pneumonia, and 3 patients clinically diagnosed with Whipple's disease demonstrated improvement in both symptoms and imaging after treatment. Conclusion NGS revealed a relatively low overall detection rate of TW-positive patients using BALF. TW was more prevalent in middle-aged and elderly male patients characterized by symptoms such as cough, expectoration, shortness of breath, and fever. Chest imaging in these cases typically showed nodules and interstitial changes.
Collapse
Affiliation(s)
- Ya Shen
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236000, People’s Republic of China
| | - Shun-Shun Cui
- Department of Respiratory and Critical Care Medicine, Fuyang People’s Hospital, Fuyang, 236000, People’s Republic of China
| | - Xiao-Bao Teng
- Department of Respiratory and Critical Care Medicine, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236000, People’s Republic of China
| | - Ming-Feng Han
- Department of Respiratory and Critical Care Medicine, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236000, People’s Republic of China
| | - Yan-Bei Zhang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, People’s Republic of China
| |
Collapse
|
2
|
Gao ZX, He T, Zhang P, Hu X, Ge M, Xu YQ, Wang P, Pan HF. Epigenetic regulation of immune cells in systemic lupus erythematosus: insight from chromatin accessibility. Expert Opin Ther Targets 2024; 28:637-649. [PMID: 38943564 DOI: 10.1080/14728222.2024.2375372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Systemic Lupus Erythematosus (SLE) is a multi-dimensional autoimmune disease involving numerous tissues throughout the body. The chromatin accessibility landscapes in immune cells play a pivotal role in governing their activation, function, and differentiation. Aberrant modulation of chromatin accessibility in immune cells is intimately associated with the onset and progression of SLE. AREAS COVERED In this review, we described the chromatin accessibility landscapes in immune cells, summarized the recent evidence of chromatin accessibility related to the pathogenesis of SLE, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. EXPERT OPINION Dynamic changes in chromatin accessibility are intimately related to the pathogenesis of SLE and have emerged as a new direction for exploring its epigenetic mechanisms. The differently accessible chromatin regions in immune cells often contain binding sites for transcription factors (TFs) and cis-regulatory elements such as enhancers and promoters, which may be potential therapeutic targets for SLE. Larger scale cohort studies and integrating epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.
Collapse
Affiliation(s)
- Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiao Hu
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Wang
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
3
|
Rückert T, Romagnani C. Extrinsic and intrinsic drivers of natural killer cell clonality. Immunol Rev 2024; 323:80-106. [PMID: 38506411 DOI: 10.1111/imr.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.
Collapse
Affiliation(s)
- Timo Rückert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Chiara Romagnani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| |
Collapse
|
4
|
Kyle RL, Prout M, Le Gros G, Robinson MJ. STAT6 tunes maximum T cell IL-4 production from stochastically regulated Il4 alleles. Immunol Cell Biol 2024; 102:194-211. [PMID: 38286436 DOI: 10.1111/imcb.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024]
Abstract
T helper 2 (Th2) cells stochastically express from the Il4 locus but it has not been determined whether allelic expression is linked or independent. Here, we provide evidence that alleles are independently activated and inactivated. We compared Il4 locus expression in T cells from hemizygous IL-4 reporter mice in culture and in vivo following exposure to type 2 immunogens. In culture, Il4 alleles had independent, heritable expression probabilities. Modeling showed that in co-expressors, dual allele transcription occurs for only short periods, limiting per-cell mRNA variation in individual cells within a population of Th2 cells. In vivo profiles suggested that early in the immune response, IL-4 output was derived predominantly from single alleles, but co-expression became more frequent over time and were tuned by STAT6, supporting the probabilistic regulation of Il4 alleles in vivo among committed IL-4 producers. We suggest an imprinted probability of expression from individual alleles with a short transcriptional shutoff time controls the magnitude of T cell IL-4 output, but the amount produced per allele is amplified by STAT6 signaling. This form of regulation may be a relevant general mechanism governing cytokine expression.
Collapse
Affiliation(s)
- Ryan L Kyle
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Melanie Prout
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Marcus J Robinson
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Immunology, Monash University, Prahran, VIC, Australia
| |
Collapse
|
5
|
Kravitz SN, Ferris E, Love MI, Thomas A, Quinlan AR, Gregg C. Random allelic expression in the adult human body. Cell Rep 2023; 42:111945. [PMID: 36640362 PMCID: PMC10484211 DOI: 10.1016/j.celrep.2022.111945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues. We report 2,762 autosomal genes with some RAE properties similar to randomly inactivated X-linked genes. We found that RAE is associated with rapidly evolving regions in the human genome, adaptive signaling processes, and genes linked to age-related diseases such as neurodegeneration and cancer. We define putative mechanistic subtypes of RAE distinguished by gene overlaps on sense and antisense DNA strands, aggregation in clusters near telomeres, and increased regulatory complexity and inputs compared with biallelic genes. We provide foundations to study RAE in human phenotypes, evolution, and disease.
Collapse
Affiliation(s)
- Stephanie N Kravitz
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Elliott Ferris
- Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alun Thomas
- Department of Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Rosas Mejia O, Claeys TA, Williams A, Zafar A, Robinson RT. IL12RB1 allele bias in human T H cells is regulated by functional SNPs in its 3'UTR. Cytokine 2022; 158:155993. [PMID: 36007427 DOI: 10.1016/j.cyto.2022.155993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Allele bias is an epigenetic mechanism wherein only the maternal- or paternal-derived allele of a gene is preferentially expressed. Allele bias is used by T cells to regulate expression of numerous genes, including those which govern their development and response to cytokines. Here we demonstrate that human TH cell expression of the cytokine receptor gene IL12RB1 is subject to allele bias, and the extent to which this bias occurs is influenced by cells' differentiation status and two polymorphic sites in the IL12RB1 3'UTR. The single nucleotide polymorphisms (SNPs) at these sites, rs3746190 and rs404733, function to increase expression of their encoding allele. Modeling suggests this is due to a stabilizing effect of these SNPs on the predicted mRNA secondary structure. The SNP rs3746190 is also proximal to the predicted binding site of microRNA miR-1277, raising the possibility that miR-1277 cannot exert suppression in the presence of rs3746190. Functional experiments demonstrate, however, that miR-1277 suppression of IL12RB1 3'UTR expression-which itself has not been previously reported-is nevertheless independent of rs3746190. Collectively, these data demonstrate that rs3746190 and rs404733 are functional SNPs which regulate IL12RB1 allele bias in human TH cells.
Collapse
Affiliation(s)
- Oscar Rosas Mejia
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Tiffany A Claeys
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Amanda Williams
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Ayesha Zafar
- University of the Punjab, Lahore, Pakistan; University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard T Robinson
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Kissiov DU, Ethell A, Chen S, Wolf NK, Zhang C, Dang SM, Jo Y, Madsen KN, Paranjpe I, Lee AY, Chim B, Muljo SA, Raulet DH. Binary outcomes of enhancer activity underlie stable random monoallelic expression. eLife 2022; 11:e74204. [PMID: 35617021 PMCID: PMC9135403 DOI: 10.7554/elife.74204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Mitotically stable random monoallelic gene expression (RME) is documented for a small percentage of autosomal genes. We developed an in vivo genetic model to study the role of enhancers in RME using high-resolution single-cell analysis of natural killer (NK) cell receptor gene expression and enhancer deletions in the mouse germline. Enhancers of the RME NK receptor genes were accessible and enriched in H3K27ac on silent and active alleles alike in cells sorted according to allelic expression status, suggesting enhancer activation and gene expression status can be decoupled. In genes with multiple enhancers, enhancer deletion reduced gene expression frequency, in one instance converting the universally expressed gene encoding NKG2D into an RME gene, recapitulating all aspects of natural RME including mitotic stability of both the active and silent states. The results support the binary model of enhancer action, and suggest that RME is a consequence of general properties of gene regulation by enhancers rather than an RME-specific epigenetic program. Therefore, many and perhaps all genes may be subject to some degree of RME. Surprisingly, this was borne out by analysis of several genes that define different major hematopoietic lineages, that were previously thought to be universally expressed within those lineages: the genes encoding NKG2D, CD45, CD8α, and Thy-1. We propose that intrinsically probabilistic gene allele regulation is a general property of enhancer-controlled gene expression, with previously documented RME representing an extreme on a broad continuum.
Collapse
Affiliation(s)
- Djem U Kissiov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Alexander Ethell
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Sean Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Natalie K Wolf
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chenyu Zhang
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Susanna M Dang
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Yeara Jo
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katrine N Madsen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ishan Paranjpe
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Bryan Chim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Stefan A Muljo
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - David H Raulet
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
8
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Wu H, Chang C, Lu Q. The Epigenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:185-207. [PMID: 32445096 DOI: 10.1007/978-981-15-3449-2_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a life-threatening autoimmune disease that is characterized by dysregulated dendritic cells, T and B cells, and abundant autoantibodies. The pathogenesis of lupus remains unclear. However, increasing evidence has shown that environment factors, genetic susceptibilities, and epigenetic regulation contribute to abnormalities in the immune system. In the past decades, several risk gene loci have been identified, such as MHC and C1q. However, genetics cannot explain the high discordance of lupus incidence in homozygous twins. Environmental factor-induced epigenetic modifications on immune cells may provide some insight. Epigenetics refers to inheritable changes in a chromosome without altering DNA sequence. The primary mechanisms of epigenetics include DNA methylation, histone modifications, and non-coding RNA regulations. Increasing evidence has shown the importance of dysregulated epigenetic modifications in immune cells in pathogenesis of lupus, and has identified epigenetic changes as potential biomarkers and therapeutic targets. Environmental factors, such as drugs, diet, and pollution, may also be the triggers of epigenetic changes. Therefore, this chapter will summarize the up-to-date progress on epigenetics regulation in lupus, in order to broaden our understanding of lupus and discuss the potential roles of epigenetic regulations for clinical applications.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Wu H, Chen Y, Zhu H, Zhao M, Lu Q. The Pathogenic Role of Dysregulated Epigenetic Modifications in Autoimmune Diseases. Front Immunol 2019; 10:2305. [PMID: 31611879 PMCID: PMC6776919 DOI: 10.3389/fimmu.2019.02305] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Autoimmune diseases can be chronic with relapse of inflammatory symptoms, but it can be also acute and life-threatening if immune cells destroy life-supporting organs, such as lupus nephritis. The etiopathogenesis of autoimmune diseases has been revealed as that genetics and environmental factors-mediated dysregulated immune responses contribute to the initiation and development of autoimmune disorders. However, the current understanding of pathogenesis is limited and the underlying mechanism has not been well defined, which lows the development of novel biomarkers and new therapeutic strategies for autoimmune diseases. To improve this, broadening and deepening our understanding of pathogenesis is an unmet need. As genetic susceptibility cannot explain the low accordance rate of incidence in homozygous twins, epigenetic regulations might be an additional explanation. Therefore, this review will summarize current progress of studies on epigenetic dysregulations contributing to autoimmune diseases, including SLE, rheumatoid arthritis (RA), psoriasis, type 1 diabetes (T1D), and systemic sclerosis (SSc), hopefully providing opinions on orientation of future research, as well as discussing the clinical utilization of potential biomarkers and therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Zhu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Rothenberg EV. Causal Gene Regulatory Network Modeling and Genomics: Second-Generation Challenges. J Comput Biol 2019; 26:703-718. [PMID: 31063008 DOI: 10.1089/cmb.2019.0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory network modeling has played a major role in advancing the understanding of developmental systems, by crystallizing structures of relevant extant information, by formally posing hypothetical functional relationships between network elements, and by offering clear predictive tests to improve understanding of the mechanisms driving developmental progression. Both ordinary differential equation (ODE)-based and Boolean models have also been highly successful in explaining dynamics within subcircuits of more complex processes. In a very small number of cases, gene regulatory network models of much more global scope have been proposed that successfully predict the dynamics of the processes establishing most of an embryonic body plan. Can such successes be expanded to very different developmental systems, including post-embryonic mammalian systems? This perspective discusses several problems that must be solved in more quantitative and predictive theoretical terms, to make this possible. These problems include: the effects of cellular history on chromatin state and how these affect gene accessibility; the dose dependence of activities of many transcription factors (a problem for Boolean models); stochasticity of some transcriptional outputs (a problem for simple ODE models); response timing delays due to epigenetic remodeling requirements; functionally different kinds of repression; and the regulatory syntax that governs responses of genes with multiple enhancers.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
12
|
Yeh SH, Liu CL, Chang RC, Wu CC, Lin CH, Yang KD. Aging-dependent DNA hypermethylation and gene expression of GSTM1 involved in T cell differentiation. Oncotarget 2018; 8:48591-48602. [PMID: 28596482 PMCID: PMC5564710 DOI: 10.18632/oncotarget.18109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 05/10/2017] [Indexed: 02/04/2023] Open
Abstract
This study investigated whether aging was associated with epigenetic changes of DNA hypermethylation on immune gene expression and lymphocyte differentiation. We screened CG sites of methylation in blood leukocytes from different age populations, picked up genes with age-related increase of CG methylation content more than 15%, and validated immune related genes with CG hypermethylation involved in lymphocyte differentiation in the aged population. We found that 12 genes (EXHX1、 IL-10、 TSP50、 GSTM1、SLC5A5、SPI1、F2R、LMO2、PTPN6、FGFR2、MMP9、MET) were associated with promoter or exon one DNA hypermethylation in the aged group. Two immune related genes, GSTM1 and LMO2, were chosen to validate its aging-related CG hypermethylation in different leukocytes. We are the first to validate that GSTM1_P266 and LMO2_E128 CG methylation contents in T lymphocytes but not polymorphonuclear cells (PMNs) or mononuclear cells (MNCs) were significantly increased in the aged population. The GSTM1 mRNA expression in T lymphocytes but not PMNs or MNCs was inversely associated with the GSTM1 CG hypermethylation levels in the aged population studied. Further studies showed that lower GSTM1 CG methylation content led to the higher GSTM1 mRNA expression in T cells and knockdown of GSTM1 mRNA expression decreased type 1 T helper cell (Th1) differentiation in Jurkat T cells and normal adult CD4 T cells. The GSTM1_P266 hypermethylation in the aged population associated with lower GSTM1 mRNA expression was involved in Th1 differentiation, highlighting that modulation of aging-associated GSTM1 methylation may be able to enhance T helper cell immunity in the elders.
Collapse
Affiliation(s)
- Shu-Hui Yeh
- Graduate Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan
| | - Cheng-Ling Liu
- Department of Medical Research and Development, Show Chwan Memorial Hospital at Chang Bing, Changhua, Taiwan
| | - Ren-Chieh Chang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Chiang Wu
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chia-Hsueh Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Kuender D Yang
- Graduate Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan.,Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Reeme AE, Claeys TA, Aggarwal P, Turner AJ, Routes JM, Broeckel U, Robinson RT. Human IL12RB1 expression is allele-biased and produces a novel IL12 response regulator. Genes Immun 2018; 20:181-197. [PMID: 29599514 PMCID: PMC6165718 DOI: 10.1038/s41435-018-0023-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Abstract
Human IL12RB1 is an autosomal gene that is essential for mycobacterial disease resistance and T cell differentiation. Using primary human tissue and PBMCs, we demonstrate that lung and T cell IL12RB1 expression is allele-biased, and the extent to which cells express one IL12RB1 allele is unaffected by activation. Furthermore, following its expression the IL12RB1 pre-mRNA is processed into either IL12RB1 Isoform 1 (IL12Rβ1, a positive regulator of IL12-responsiveness) or IL12RB1 Isoform 2 (a protein of heretofore unknown function). T cells’ choice to process pre-mRNA into Isoform 1 or Isoform 2 is controlled by intragenic competition of IL12RB1 exon 9-10 splicing with IL12RB1 exon 9b splicing, as well as an IL12RB1 exon 9b-associated polyadenylation site. Heterogeneous nuclear ribonucleoprotein H (hnRNP H) binds near the regulated polyadenylation site, but is not required for exon 9b polyadenylation. Finally, microRNA-mediated knockdown experiments demonstrated that IL12RB1 Isoform 2 promotes T cell IL12 responses. Collectively, our data support a model wherein tissue expression of human IL12RB1 is allele-biased and produces an hnRNP H bound pre-mRNA, the processing of which generates a novel IL12 response regulator.
Collapse
Affiliation(s)
- Allison E Reeme
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tiffany A Claeys
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Praful Aggarwal
- Department of Pediatrics, Section of Genomic Pediatrics and Children's Research Institute, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amy J Turner
- Department of Pediatrics, Section of Genomic Pediatrics and Children's Research Institute, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John M Routes
- Department of Pediatrics, Section of Asthma, Allergy and Clinical Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ulrich Broeckel
- Department of Pediatrics, Section of Genomic Pediatrics and Children's Research Institute, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
14
|
Gui B, Slone J, Huang T. Perspective: Is Random Monoallelic Expression a Contributor to Phenotypic Variability of Autosomal Dominant Disorders? Front Genet 2017; 8:191. [PMID: 29250101 PMCID: PMC5718016 DOI: 10.3389/fgene.2017.00191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 11/13/2022] Open
Abstract
Several factors have been proposed as contributors to interfamilial and intrafamilial phenotypic variability in autosomal dominant disorders, including allelic variation, modifier genes, environmental factors and complex genetic and environmental interactions. However, regardless of the similarity of genetic background and environmental factors, asymmetric limb or trunk anomalies in a single individual and variable manifestation between monozygotic twins have been observed, indicating other mechanisms possibly involved in expressivity of autosomal dominant diseases. One such example is Holt-Oram syndrome (HOS), which is characterized by congenital cardiac defects and forelimb anomalies, mainly attributed to mutations in the TBX5 gene. We hypothesize that monoallelic expression of the TBX5 gene occurs during embryo development, and, in the context of a mutation, random monoallelic expression (RME) can create discrepant functions in a proportion of cells and thus contribute to variable phenotypes. A hybrid mouse model was used to investigate the occurrence of RME with the Tbx5 gene, and single-cell reverse transcription PCR and restriction digestion were performed for limb bud cells from developing embryos (E11.5) of the hybrid mice. RME of Tbx5 was observed in approximately two-thirds of limb bud cells. These results indicate that RME of the Tbx5 gene occurs frequently during embryo development, resulting in a mosaic expression signature (monoallelic, biallelic, or null) that may provide a potential explanation for the widespread phenotypic variability in HOS. This model will further provide novel insights into the variability of autosomal dominant traits and a better understanding of the complex expressivity of disease conditions.
Collapse
Affiliation(s)
- Baoheng Gui
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
15
|
Clinical Manifestations, Treatment, and Diagnosis of Tropheryma whipplei Infections. Clin Microbiol Rev 2017; 30:529-555. [PMID: 28298472 DOI: 10.1128/cmr.00033-16] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Whipple's disease is a rare infectious disease that can be fatal if left untreated. The disease is caused by infection with Tropheryma whipplei, a bacterium that may be more common than was initially assumed. Most patients present with nonspecific symptoms, and as routine cultivation of the bacterium is not feasible, it is difficult to diagnose this infection. On the other hand, due to the generic symptoms, infection with this bacterium is actually quite often in the differential diagnosis. The gold standard for diagnosis used to be periodic acid-Schiff (PAS) staining of duodenal biopsy specimens, but PAS staining has a poor specificity and sensitivity. The development of molecular techniques has resulted in more convenient methods for detecting T. whipplei infections, and this has greatly improved the diagnosis of this often missed infection. In addition, the molecular detection of T. whipplei has resulted in an increase in knowledge about its pathogenicity, and this review gives an overview of the new insights in epidemiology, pathogenesis, clinical manifestations, diagnosis, and treatment of Tropheryma whipplei infections.
Collapse
|
16
|
Abstract
Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.
Collapse
Affiliation(s)
- Andrew Chess
- Department of Genetics and Genomic Sciences, Department of Developmental and Regenerative Biology, Fishberg Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574;
| |
Collapse
|
17
|
Jiang Y, Zhang NR, Li M. SCALE: modeling allele-specific gene expression by single-cell RNA sequencing. Genome Biol 2017; 18:74. [PMID: 28446220 PMCID: PMC5407026 DOI: 10.1186/s13059-017-1200-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
Allele-specific expression is traditionally studied by bulk RNA sequencing, which measures average expression across cells. Single-cell RNA sequencing allows the comparison of expression distribution between the two alleles of a diploid organism and the characterization of allele-specific bursting. Here, we propose SCALE to analyze genome-wide allele-specific bursting, with adjustment of technical variability. SCALE detects genes exhibiting allelic differences in bursting parameters and genes whose alleles burst non-independently. We apply SCALE to mouse blastocyst and human fibroblast cells and find that cis control in gene expression overwhelmingly manifests as differences in burst frequency.
Collapse
Affiliation(s)
- Yuchao Jiang
- Genomics and Computational Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy R Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Robinson MJ, Prout M, Mearns H, Kyle R, Camberis M, Forbes-Blom EE, Paul WE, Allen CDC, Le Gros G. IL-4 Haploinsufficiency Specifically Impairs IgE Responses against Allergens in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:1815-1822. [PMID: 28115531 DOI: 10.4049/jimmunol.1601434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/28/2016] [Indexed: 01/26/2023]
Abstract
Polymorphisms in genes involved in IL-4 responses segregate with allergic disease risk and correlate with IgE levels in humans, and IL-4 promotes IgE and IgG1 Ab production against allergens in mice. We report that mice with only one intact Il4 gene copy are significantly impaired in their ability to make specific IgE responses against allergens, whereas IgG1 responses to allergens remain unaffected. Il4-hemizygosity also resulted in a modest but detectable drop in IL-4 production by CD4+ T cells isolated from lymph nodes and prevented IgE-dependent oral allergen-induced diarrhea. We conclude that a state of haploinsufficiency for the Il4 gene locus is specifically relevant for IL-4-dependent IgE responses to allergens with the amount of IL-4 produced in the hemizygous condition falling close to the threshold required for switching to IgE production. These results may be relevant for how polymorphisms in genes affecting IL-4 responses influence the risk of IgE-mediated allergic disease in humans.
Collapse
Affiliation(s)
- Marcus J Robinson
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143
| | - Melanie Prout
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Helen Mearns
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Ryan Kyle
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | | | - William E Paul
- Laboratories of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143.,Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand;
| |
Collapse
|
19
|
Reinius B, Mold JE, Ramsköld D, Deng Q, Johnsson P, Michaëlsson J, Frisén J, Sandberg R. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat Genet 2016; 48:1430-1435. [PMID: 27668657 PMCID: PMC5117254 DOI: 10.1038/ng.3678] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8+ T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (<1% of genes) and mainly affected the most weakly expressed genes. Consequently, the overwhelming majority of aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.
Collapse
Affiliation(s)
- Björn Reinius
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Daniel Ramsköld
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Qiaolin Deng
- Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Per Johnsson
- Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| |
Collapse
|
20
|
The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun Rev 2016; 15:684-9. [DOI: 10.1016/j.autrev.2016.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 01/21/2023]
|
21
|
Savova V, Patsenker J, Vigneau S, Gimelbrant AA. dbMAE: the database of autosomal monoallelic expression. Nucleic Acids Res 2015; 44:D753-6. [PMID: 26503248 PMCID: PMC4702807 DOI: 10.1093/nar/gkv1106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/11/2015] [Indexed: 11/26/2022] Open
Abstract
Recently, data on ‘random’ autosomal monoallelic expression has become available for the entire genome in multiple human and mouse tissues and cell types, creating a need for better access and dissemination. The database of autosomal monoallelic expression (dbMAE; https://mae.hms.harvard.edu) incorporates data from multiple recent reports of genome-wide analyses. These include transcriptome-wide analyses of allelic imbalance in clonal cell populations based on sequence polymorphisms, as well as indirect identification, based on a specific chromatin signature present in MAE gene bodies. Currently, dbMAE contains transcriptome-wide chromatin identification calls for 8 human and 21 mouse tissues, and describes over 16 000 murine and ∼700 human cases of directly measured biased expression, compiled from allele-specific RNA-seq and genotyping array data. All data are manually curated. To ensure cross-publication uniformity, we performed re-analysis of transcriptome-wide RNA-seq data using the same pipeline. Data are accessed through an interface that allows for basic and advanced searches; all source references, including raw data, are clearly described and hyperlinked. This ensures the utility of the resource as an initial screening tool for those interested in investigating the role of monoallelic expression in their specific genes and tissues of interest.
Collapse
Affiliation(s)
- Virginia Savova
- Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215, USA Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02215, USA
| | - Jon Patsenker
- Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215, USA
| | - Sébastien Vigneau
- Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215, USA
| | - Alexander A Gimelbrant
- Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215, USA
| |
Collapse
|
22
|
Reinius B, Sandberg R. Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet 2015; 16:653-64. [PMID: 26442639 DOI: 10.1038/nrg3888] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Random monoallelic expression (RME) of genes represents a striking example of how stochastic molecular processes can result in cellular heterogeneity. Recent transcriptome-wide studies have revealed both mitotically stable and cell-to-cell dynamic forms of autosomal RME, with the latter presumably resulting from burst-like stochastic transcription. Here, we discuss the distinguishing features of these two forms of RME and revisit literature on their nature, pervasiveness and regulation. Finally, we explore how RME may contribute to phenotypic variation, including the incomplete penetrance and variable expressivity often seen in genetic disease.
Collapse
Affiliation(s)
- Björn Reinius
- Ludwig Institute for Cancer Research, Box 240, and the Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Ludwig Institute for Cancer Research, Box 240, and the Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
23
|
Wu H, Zhao M, Chang C, Lu Q. The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation. Int J Mol Sci 2015; 16:11013-33. [PMID: 25988383 PMCID: PMC4463688 DOI: 10.3390/ijms160511013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 02/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| |
Collapse
|
24
|
Abstract
The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.
Collapse
|
25
|
Rebhahn JA, Deng N, Sharma G, Livingstone AM, Huang S, Mosmann TR. An animated landscape representation of CD4+ T-cell differentiation, variability, and plasticity: insights into the behavior of populations versus cells. Eur J Immunol 2014; 44:2216-29. [PMID: 24945794 PMCID: PMC4209377 DOI: 10.1002/eji.201444645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 12/12/2022]
Abstract
Recent advances in understanding CD4(+) T-cell differentiation suggest that previous models of a few distinct, stable effector phenotypes were too simplistic. Although several well-characterized phenotypes are still recognized, some states display plasticity, and intermediate phenotypes exist. As a framework for reexamining these concepts, we use Waddington's landscape paradigm, augmented with explicit consideration of stochastic variations. Our animation program "LAVA" visualizes T-cell differentiation as cells moving across a landscape of hills and valleys, leading to attractor basins representing stable or semistable differentiation states. The model illustrates several principles, including: (i) cell populations may behave more predictably than individual cells; (ii) analogous to reticulate evolution, differentiation may proceed through a network of interconnected states, rather than a single well-defined pathway; (iii) relatively minor changes in the barriers between attractor basins can change the stability or plasticity of a population; (iv) intrapopulation variability of gene expression may be an important regulator of differentiation, rather than inconsequential noise; (v) the behavior of some populations may be defined mainly by the behavior of outlier cells. While not a quantitative representation of actual differentiation, our model is intended to provoke discussion of T-cell differentiation pathways, particularly highlighting a probabilistic view of transitions between states.
Collapse
Affiliation(s)
- Jonathan A Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical SchoolRochester, NY, USA
| | - Nan Deng
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical SchoolRochester, NY, USA
| | - Gaurav Sharma
- Department of Electrical and Computer Engineering, University of RochesterRochester, NY, USA
| | - Alexandra M Livingstone
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical SchoolRochester, NY, USA
| | - Sui Huang
- Institute for Systems BiologySeattle, WA, USA
| | - Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical SchoolRochester, NY, USA
| |
Collapse
|
26
|
Eckersley-Maslin MA, Spector DL. Random monoallelic expression: regulating gene expression one allele at a time. Trends Genet 2014; 30:237-244. [PMID: 24780084 PMCID: PMC4037383 DOI: 10.1016/j.tig.2014.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
Monoallelic gene expression is a remarkable process in which transcription occurs from only one of two homologous alleles in a diploid cell. Interestingly, between 0.5% and 15% of autosomal genes exhibit random monoallelic gene expression, in which different cells express only one allele independently of the underlying genomic sequence, in a cell type-specific manner. Recently, genome-wide studies have increased our understanding of the cell type-specific incidence of random monoallelic gene expression, and how the imbalance in allelic expression is distinguished within the cell and potentially maintained across cell generations. Monoallelic gene expression is likely generated through stochastic independent regulation of the two alleles upon differentiation, and has varied implications for the cell and organism, in particular with respect to disease.
Collapse
Affiliation(s)
- Mélanie A Eckersley-Maslin
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
27
|
Chandel HS, Pandey SP, Roy S, Doyen N, Saha B. TLR-CD40 Cross-Talk in Anti-Leishmanial Immune Response. Front Immunol 2014; 5:220. [PMID: 24904575 PMCID: PMC4032977 DOI: 10.3389/fimmu.2014.00220] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/30/2014] [Indexed: 01/16/2023] Open
Affiliation(s)
| | | | - Sayoni Roy
- National Centre for Cell Science , Pune , India
| | | | | |
Collapse
|
28
|
Satija R, Shalek AK. Heterogeneity in immune responses: from populations to single cells. Trends Immunol 2014; 35:219-29. [PMID: 24746883 DOI: 10.1016/j.it.2014.03.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 12/18/2022]
Abstract
The mammalian immune system is tasked with protecting the host against a broad range of threats. Understanding how immune populations leverage cellular diversity to achieve this breadth and flexibility, particularly during dynamic processes such as differentiation and antigenic response, is a core challenge that is well suited for single cell analysis. Recent years have witnessed transformative and intersecting advances in nanofabrication and genomics that enable deep profiling of individual cells, affording exciting opportunities to study heterogeneity in the immune response at an unprecedented scope. In light of these advances, here we review recent work exploring how immune populations generate and leverage cellular heterogeneity at multiple molecular and phenotypic levels. Additionally, we highlight opportunities for single cell technologies to shed light on the causes and consequences of heterogeneity in the immune system.
Collapse
Affiliation(s)
- Rahul Satija
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | - Alex K Shalek
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014; 343:193-6. [PMID: 24408435 DOI: 10.1126/science.1245316] [Citation(s) in RCA: 901] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression from both alleles is generally observed in analyses of diploid cell populations, but studies addressing allelic expression patterns genome-wide in single cells are lacking. Here, we present global analyses of allelic expression across individual cells of mouse preimplantation embryos of mixed background (CAST/EiJ × C57BL/6J). We discovered abundant (12 to 24%) monoallelic expression of autosomal genes and that expression of the two alleles occurs independently. The monoallelic expression appeared random and dynamic because there was considerable variation among closely related embryonic cells. Similar patterns of monoallelic expression were observed in mature cells. Our allelic expression analysis also demonstrates the de novo inactivation of the paternal X chromosome. We conclude that independent and stochastic allelic transcription generates abundant random monoallelic expression in the mammalian cell.
Collapse
Affiliation(s)
- Qiaolin Deng
- Ludwig Institute for Cancer Research, Box 240, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
30
|
Nag A, Savova V, Fung HL, Miron A, Yuan GC, Zhang K, Gimelbrant AA. Chromatin signature of widespread monoallelic expression. eLife 2013; 2:e01256. [PMID: 24381246 PMCID: PMC3873816 DOI: 10.7554/elife.01256] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammals, numerous autosomal genes are subject to mitotically stable monoallelic expression (MAE), including genes that play critical roles in a variety of human diseases. Due to challenges posed by the clonal nature of MAE, very little is known about its regulation; in particular, no molecular features have been specifically linked to MAE. In this study, we report an approach that distinguishes MAE genes in human cells with great accuracy: a chromatin signature consisting of chromatin marks associated with active transcription (H3K36me3) and silencing (H3K27me3) simultaneously occurring in the gene body. The MAE signature is present in ∼20% of ubiquitously expressed genes and over 30% of tissue-specific genes across cell types. Notably, it is enriched among key developmental genes that have bivalent chromatin structure in pluripotent cells. Our results open a new approach to the study of MAE that is independent of polymorphisms, and suggest that MAE is linked to cell differentiation. DOI:http://dx.doi.org/10.7554/eLife.01256.001 Understanding how genes are activated and silenced is one of the central challenges in modern biology. These processes underpin the development of a fertilized egg into a complex organism, and they can also lead to life-threatening diseases when they go wrong. There are two copies of each gene in a human cell, a maternal copy and a paternal copy, and it is thought that both copies are usually regulated together. However, there are exceptions to this rule: for certain genes only the maternal copy is expressed as a protein in some cells, whereas the paternal copy is expressed in other cells. This form of gene regulation, which is called monoallelic expression, can result in neighboring cells heading down very different paths. In extreme cases, depending on the differences between the two copies of the gene, cells that express one copy may function normally, while cells where the other copy is activated will start forming tumors. However, despite these potentially grave consequences, and early results which suggested that monoallelic expression affected a large number of human and mouse genes, it has proved to be a major technical challenge to identify these genes in most cell types. Now, Nag, Savova et al. have discovered a molecular signature that can be used to detect monoallelic expression. The signature was found in chromatin, the densely packed structure formed by DNA and proteins inside the cell nucleus. Nag, Savova et al. discovered that the genes that are subject to monoallelic expression are bound with proteins that are modified in two contrasting ways. One modification, which is usually a sign of gene silencing, is prevalent on the inactive copy of the gene, and the other, which often marks active genes, is chiefly present on the active copy. Nag, Savova et al. report that these modifications are found in different sets of genes in different cell types, indicating distinct genome-wide patterns of monoallelic expression. The chromatin signature approach lets them estimate the fraction of human genes that are subject to monoallelic expression. This number is surprisingly high: about 20% of commonly expressed genes and more than one-third of tissue-specific genes. In a particularly intriguing finding, almost all bivalent genes—a subset of genes that are involved in determining the fate of cell during development—are estimated to become monoallelic when they are activated. In addition to these unexpected findings, the chromatin signature approach opens the door to exploring monoallelic expression as a form of gene regulation in all types of cells and, ultimately, to understanding how it is involved in both normal development and in disease. DOI:http://dx.doi.org/10.7554/eLife.01256.002
Collapse
Affiliation(s)
- Anwesha Nag
- Department of Cancer Biology and Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Song G, Guo Z, Liu Z, Cheng Q, Qu X, Chen R, Jiang D, Liu C, Wang W, Sun Y, Zhang L, Zhu Y, Yang D. Global RNA sequencing reveals that genotype-dependent allele-specific expression contributes to differential expression in rice F1 hybrids. BMC PLANT BIOLOGY 2013; 13:221. [PMID: 24358981 PMCID: PMC3878109 DOI: 10.1186/1471-2229-13-221] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/09/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND Extensive studies on heterosis in plants using transcriptome analysis have identified differentially expressed genes (DEGs) in F1 hybrids. However, it is not clear why yield in heterozygotes is superior to that of the homozygous parents or how DEGs are produced. Global allele-specific expression analysis in hybrid rice has the potential to answer these questions. RESULTS We report a genome-wide allele-specific expression analysis using RNA-sequencing technology of 3,637-3,824 genes from three rice F1 hybrids. Of the expressed genes, 3.7% exhibited an unexpected type of monoallelic expression and 23.8% showed preferential allelic expression that was genotype-dependent in reciprocal crosses. Those genes exhibiting allele-specific expression comprised 42.4% of the genes differentially expressed between F1 hybrids and their parents. Allele-specific expression accounted for 79.8% of the genes displaying more than a 10-fold expression level difference between an F1 and its parents, and almost all (97.3%) of the genes expressed in F1, but non-expressed in one parent. Significant allelic complementary effects were detected in the F1 hybrids of rice. CONCLUSIONS Analysis of the allelic expression profiles of genes at the critical stage for highest biomass production from the leaves of three different rice F1 hybrids identified genotype-dependent allele-specific expression genes. A cis-regulatory mechanism was identified that contributes to allele-specific expression, leading to differential gene expression and allelic complementary effects in F1 hybrids.
Collapse
Affiliation(s)
- Gaoyuan Song
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Zhibin Guo
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Zhenwei Liu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Qin Cheng
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Xuefeng Qu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Rong Chen
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Daiming Jiang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Chuan Liu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Yunfang Sun
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Liping Zhang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| |
Collapse
|
32
|
Geginat J, Paroni M, Facciotti F, Gruarin P, Kastirr I, Caprioli F, Pagani M, Abrignani. S. The CD4-centered universe of human T cell subsets. Semin Immunol 2013; 25:252-62. [DOI: 10.1016/j.smim.2013.10.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Livernois AM, Waters SA, Deakin JE, Marshall Graves JA, Waters PD. Independent evolution of transcriptional inactivation on sex chromosomes in birds and mammals. PLoS Genet 2013; 9:e1003635. [PMID: 23874231 PMCID: PMC3715422 DOI: 10.1371/journal.pgen.1003635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023] Open
Abstract
X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes. Dosage compensation is a mechanism that restores the expression of X chromosome genes back to their original level when Y homologues lose function. In placental and marsupial mammals this is achieved by upregulating the single X in males. The carry-through of overexpression to females would result in functional tetraploidy, so there is subsequent inactivation of one X chromosome in the somatic cells of females, leaving males (XY) and females (XX) with a single upregulated X. In contrast, genes on the five platypus (a monotreme mammal) X chromosomes and the chicken Z chromosome (which are orthologous but independently evolved) are expressed globally at a higher level in female platypus and male chicken respectively, indicating partial dosage compensation. Here, for the first time, we provide evidence for inactivation of genes on the chicken Z chromosome in ZZ males, and on all five Xs in female platypus. Our results suggest that the silencing of genes on sex chromosomes has evolved independently in birds and mammals, and is, therefore, a critical step in the pathway to dosage compensate independently evolved amniote sex chromosomes systems.
Collapse
Affiliation(s)
- Alexandra M. Livernois
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (AML); (PDW)
| | - Shafagh A. Waters
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Janine E. Deakin
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jennifer A. Marshall Graves
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Paul D. Waters
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (AML); (PDW)
| |
Collapse
|
34
|
Williams CL, Schilling MM, Cho SH, Lee K, Wei M, Aditi, Boothby M. STAT4 and T-bet are required for the plasticity of IFN-γ expression across Th2 ontogeny and influence changes in Ifng promoter DNA methylation. THE JOURNAL OF IMMUNOLOGY 2013; 191:678-87. [PMID: 23761633 DOI: 10.4049/jimmunol.1203360] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CD4(+) T cells developing toward a Th2 fate express IL-4, IL-5, and IL-13 while inhibiting production of cytokines associated with other Th types, such as the Th1 cytokine IFN- γ. IL-4-producing Th2 effector cells give rise to a long-lived memory population committed to reactivation of the Th2 cytokine gene expression program. However, reactivation of these effector-derived cells under Th1-skewing conditions leads to production of IFN-γ along with IL-4 in the same cell. We now show that this flexibility ("plasticity") of cytokine expression is preceded by a loss of the repressive DNA methylation of the Ifng promoter acquired during Th2 polarization yet requires STAT4 along with T-box expressed in T cells. Surprisingly, loss of either STAT4 or T-box expressed in T cells increased Ifng promoter CpG methylation in both effector and memory Th2 cells. Taken together, our data suggest a model in which the expression of IFN-γ by Th2-derived memory cells involves attenuation of epigenetic repression in memory Th2 cells, combined with Th1-polarizing signals after their recall activation.
Collapse
Affiliation(s)
- Christopher L Williams
- Department of Microbiology and Immunology, Vanderbilt University, Nashville TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Miller CN, Hartigan-O'Connor DJ, Lee MS, Laidlaw G, Cornelissen IP, Matloubian M, Coughlin SR, McDonald DM, McCune JM. IL-7 production in murine lymphatic endothelial cells and induction in the setting of peripheral lymphopenia. Int Immunol 2013; 25:471-83. [PMID: 23657000 DOI: 10.1093/intimm/dxt012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IL-7 is a required factor for T-cell homeostasis. Because of low expression levels and poor reagent availability, the cellular sources of IL-7 have proven challenging to characterize. In this study, we describe a reporter mouse in which enhanced GFP is expressed from the endogenous Il7 locus. We show that IL-7 is produced by lymphatic endothelial cells (LECs) distributed throughout the systemic lymphatic vasculature as well as by fibroblastic reticular cells, and that phosphorylation of STAT5 in lymphocytes is higher in lymphatics than in blood. Furthermore, in nodes depleted of lymphocytes, Il7 transcription is increased in stromal but not in myeloid subsets. These data support recent findings that lymphocyte homeostasis is influenced by access to secondary lymphoid organs and point to LECs as an important in vivo source of IL-7, bathing trafficking immune cells under both resting and lymphopenic conditions.
Collapse
Affiliation(s)
- Corey N Miller
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Polonsky M, Zaretsky I, Friedman N. Dynamic single-cell measurements of gene expression in primary lymphocytes: challenges, tools and prospects. Brief Funct Genomics 2013; 12:99-108. [DOI: 10.1093/bfgp/els061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
37
|
Abstract
Monoallelic expression poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and which can have absolutely identical sequences. This review will consider different known types of monoallelic expression. For all monoallelically expressed genes, their respective allele-specific patterns of expression have the potential to affect brain function and dysfunction.
Collapse
Affiliation(s)
- Andrew Chess
- Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
38
|
Li H, Su X, Gallegos J, Lu Y, Ji Y, Molldrem JJ, Liang S. dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes. BMC Bioinformatics 2012; 13:271. [PMID: 23083219 PMCID: PMC3497615 DOI: 10.1186/1471-2105-13-271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/28/2012] [Indexed: 12/01/2022] Open
Abstract
Background Dysregulation of imprinted genes, which are expressed in a parent-of-origin-specific manner, plays an important role in various human diseases, such as cancer and behavioral disorder. To date, however, fewer than 100 imprinted genes have been identified in the human genome. The recent availability of high-throughput technology makes it possible to have large-scale prediction of imprinted genes. Here we propose a Bayesian model (dsPIG) to predict imprinted genes on the basis of allelic expression observed in mRNA-Seq data of independent human tissues. Results Our model (dsPIG) was capable of identifying imprinted genes with high sensitivity and specificity and a low false discovery rate when the number of sequenced tissue samples was fairly large, according to simulations. By applying dsPIG to the mRNA-Seq data, we predicted 94 imprinted genes in 20 cerebellum samples and 57 imprinted genes in 9 diverse tissue samples with expected low false discovery rates. We also assessed dsPIG using previously validated imprinted and non-imprinted genes. With simulations, we further analyzed how imbalanced allelic expression of non-imprinted genes or different minor allele frequencies affected the predictions of dsPIG. Interestingly, we found that, among biallelically expressed genes, at least 18 genes expressed significantly more transcripts from one allele than the other among different individuals and tissues. Conclusion With the prevalence of the mRNA-Seq technology, dsPIG has become a useful tool for analysis of allelic expression and large-scale prediction of imprinted genes. For ease of use, we have set up a web service and also provided an R package for dsPIG at http://www.shoudanliang.com/dsPIG/.
Collapse
Affiliation(s)
- Hua Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
40
|
Abstract
IL-10 is one of the key cytokines preventing inflammation-mediated tissue damage. In an attempt to identify IL-10-producing cells in vivo, several groups have recently developed IL-10 reporter mouse strains. Up until now, in total, eight IL-10 reporter strains have been published. This incomparable interest in IL-10 reporter mice emphasizes the importance and difficulties in tracking and subsequently investigating the role of IL-10-producing cells in infectious, inflammatory, autoimmune and cancer diseases. In this review, I summarize and compare the properties of those published IL-10 reporter mouse models. I also discuss the necessity to develop new strategies to generate 'multi-cytokine' reporter mouse models enabling highly sensitive in/ex vivo detection of many cytokines in the same single cell. Such 'multi-cytokine' reporter mice will enable to reconsider the dichotomy 'T-effector versus T-regulatory' paradigm and to provide an accurate revised model for cellular sources of cytokines. Finally, I propose to launch cooperative, international initiatives to promote and coordinate the generation of accurate, combinatorial, reporter mice for every individual murine cytokine.
Collapse
Affiliation(s)
- H Bouabe
- Department of Bacteriology, Max von Pettenkofer Institute, Munich, Germany.
| |
Collapse
|
41
|
Li Y, Chen G, Ma L, Ohms SJ, Sun C, Shannon MF, Fan JY. Plasticity of DNA methylation in mouse T cell activation and differentiation. BMC Mol Biol 2012; 13:16. [PMID: 22642378 PMCID: PMC3386888 DOI: 10.1186/1471-2199-13-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/29/2012] [Indexed: 01/09/2023] Open
Abstract
Background Circulating CD4+ T helper cells are activated through interactions with antigen presenting cells and undergo differentiation into specific T helper cell subsets depending on the type of antigen encountered. In addition, the relative composition of the circulating CD4+ T cell population changes as animals mature with an increased percentage of the population being memory/effector type cells. Results Here, we report on the highly plastic nature of DNA methylation at the genome-wide level as T cells undergo activation, differentiation and aging. Of particular note were the findings that DNA demethylation occurred rapidly following T cell activation and that all differentiated T cell populations displayed lower levels of global methylation than the non-differentiated population. In addition, T cells from older mice had a reduced level of DNA methylation, most likely explained by the increase in the memory/effector cell fraction. Although significant genome-wide changes were observed, changes in DNA methylation at individual genes were restricted to specific cell types. Changes in the expression of enzymes involved in DNA methylation and demethylation reflect in most cases the changes observed in the genome-wide DNA methylation status. Conclusion We have demonstrated that DNA methylation is dynamic and flexible in CD4+ T cells and changes rapidly both in a genome-wide and in a targeted manner during T cell activation, differentiation. These changes are accompanied by parallel changes in the enzymatic complexes that have been implicated in DNA methylation and demethylation implying that the balance between these opposing activities may play a role in the maintaining the methylation profile of a given cell type but also allow flexibility in a cell population that needs to respond rapidly to environmental signals.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science & Technology, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | | | | | | | | | | | | |
Collapse
|
42
|
Mechanisms and consequences of widespread random monoallelic expression. Nat Rev Genet 2012; 13:421-8. [PMID: 22585065 DOI: 10.1038/nrg3239] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although random monoallelic expression has been known for decades to affect genes on the X chromosome in female placental mammals, until a few years ago it was thought that there were few autosomal genes that were regulated in this manner. New tools for assaying gene expression genome-wide are now revealing that there are perhaps more genes that are subject to random monoallelic expression on mammalian autosomes than there are on the X chromosome and that these expression properties are achieved by diverse molecular mechanisms. This mode of expression has the potential to have an impact on natural selection and on the evolution of gene families.
Collapse
|
43
|
Thomas RM, Gamper CJ, Ladle BH, Powell JD, Wells AD. De novo DNA methylation is required to restrict T helper lineage plasticity. J Biol Chem 2012; 287:22900-9. [PMID: 22584578 DOI: 10.1074/jbc.m111.312785] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naïve CD4+ T cells are highly plastic and can differentiate into discrete lineages with unique functions during an immune response. Once differentiated, helper T cells maintain a stable transcriptional memory of their initial lineage choice and resist redifferentiation. During embryogenesis, de novo DNA methylation operates on the hypomethylated genome of the blastocyst to achieve tissue-specific patterns of gene expression. Similarly, the ifnγ promoter is hypomethylated in naïve T cells, but Th2, Th17, and iTreg differentiation is accompanied by substantial de novo DNA methylation at this locus. To determine whether de novo DNA methylation is required to restrict T helper lineage plasticity, we used mice with T cell-specific deletion of the methyltransferase DNMT3a. Induction of lineage-specific cytokines occurred normally in the absence of DNMT3a, however, DNMT3a-deficient Th2, Th17, and iTreg completely failed to methylate the ifnγ promoter. This was accompanied by an increase in the transcriptionally permissive trimethyl H3K4 mark, and a reduction in inhibitory H3K27 methylation at the ifnγ locus. Failed de novo methylation resulted in failed silencing of the ifnγ gene, as DNMT3a-deficient Th2, Th17, and iTreg cells produced significant levels of IFNγ following restimulation in the presence of IL-12. Therefore, DNMT3a-mediated DNA methylation restricts T helper plasticity by establishing an epigenetically silent chromatin structure at regulatory regions of the ifnγ gene.
Collapse
Affiliation(s)
- Rajan M Thomas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
44
|
Sun J, Xu X, Liu J, Liu H, Fu L, Gu L. Epigenetic regulation of retinoic acid receptor β2 gene in the initiation of breast cancer. Med Oncol 2012; 28:1311-8. [PMID: 20865461 DOI: 10.1007/s12032-010-9685-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In order to investigate the methylation status of the retinoic acid receptor beta 2 gene (RAR-β2) in breast carcinoma in relation to gene expression and clinicopathological parameters of patients with breast cancer, expression of RAR-β2 gene and methylation status were analyzed in invasive carcinoma, atypical ductal hyperplasia, fibroadenoma specimens, and normal tissues. Our findings showed that RAR-β2 expression was lower in the breast cancer compared to normal tissue and fibroadenoma. The methylation rate of RAR-β2 in breast cancer and precancerous lesions of breast cancer were higher than that of normal tissues. Hypermethylation may be an initial step in breast carcinogenesis.
Collapse
Affiliation(s)
- Jingyan Sun
- Department of Breast Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Zwemer LM, Zak A, Thompson BR, Kirby A, Daly MJ, Chess A, Gimelbrant AA. Autosomal monoallelic expression in the mouse. Genome Biol 2012; 13:R10. [PMID: 22348269 PMCID: PMC3334567 DOI: 10.1186/gb-2012-13-2-r10] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/10/2012] [Accepted: 02/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Random monoallelic expression defines an unusual class of genes displaying random choice for expression between the maternal and paternal alleles. Once established, the allele-specific expression pattern is stably maintained and mitotically inherited. Examples of random monoallelic genes include those found on the X-chromosome and a subset of autosomal genes, which have been most extensively studied in humans. Here, we report a genome-wide analysis of random monoallelic expression in the mouse. We used high density mouse genome polymorphism mapping arrays to assess allele-specific expression in clonal cell lines derived from heterozygous mouse strains. RESULTS Over 1,300 autosomal genes were assessed for allele-specific expression, and greater than 10% of them showed random monoallelic expression. When comparing mouse and human, the number of autosomal orthologs demonstrating random monoallelic expression in both organisms was greater than would be expected by chance. Random monoallelic expression on the mouse autosomes is broadly similar to that in human cells: it is widespread throughout the genome, lacks chromosome-wide coordination, and varies between cell types. However, for some mouse genes, there appears to be skewing, in some ways resembling skewed X-inactivation, wherein one allele is more frequently active. CONCLUSIONS These data suggest that autosomal random monoallelic expression was present at least as far back as the last common ancestor of rodents and primates. Random monoallelic expression can lead to phenotypic variation beyond the phenotypic variation dictated by genotypic variation. Thus, it is important to take into account random monoallelic expression when examining genotype-phenotype correlation.
Collapse
Affiliation(s)
- Lillian M Zwemer
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Thomas BJ, Rubio ED, Krumm N, Broin PO, Bomsztyk K, Welcsh P, Greally JM, Golden AA, Krumm A. Allele-specific transcriptional elongation regulates monoallelic expression of the IGF2BP1 gene. Epigenetics Chromatin 2011; 4:14. [PMID: 21812971 PMCID: PMC3174113 DOI: 10.1186/1756-8935-4-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 08/03/2011] [Indexed: 11/13/2022] Open
Abstract
Background Random monoallelic expression contributes to phenotypic variation of cells and organisms. However, the epigenetic mechanisms by which individual alleles are randomly selected for expression are not known. Taking cues from chromatin signatures at imprinted gene loci such as the insulin-like growth factor 2 gene 2 (IGF2), we evaluated the contribution of CTCF, a zinc finger protein required for parent-of-origin-specific expression of the IGF2 gene, as well as a role for allele-specific association with DNA methylation, histone modification and RNA polymerase II. Results Using array-based chromatin immunoprecipitation, we identified 293 genomic loci that are associated with both CTCF and histone H3 trimethylated at lysine 9 (H3K9me3). A comparison of their genomic positions with those of previously published monoallelically expressed genes revealed no significant overlap between allele-specifically expressed genes and colocalized CTCF/H3K9me3. To analyze the contributions of CTCF and H3K9me3 to gene regulation in more detail, we focused on the monoallelically expressed IGF2BP1 gene. In vitro binding assays using the CTCF target motif at the IGF2BP1 gene, as well as allele-specific analysis of cytosine methylation and CTCF binding, revealed that CTCF does not regulate mono- or biallelic IGF2BP1 expression. Surprisingly, we found that RNA polymerase II is detected on both the maternal and paternal alleles in B lymphoblasts that express IGF2BP1 primarily from one allele. Thus, allele-specific control of RNA polymerase II elongation regulates the allelic bias of IGF2BP1 gene expression. Conclusions Colocalization of CTCF and H3K9me3 does not represent a reliable chromatin signature indicative of monoallelic expression. Moreover, association of individual alleles with both active (H3K4me3) and silent (H3K27me3) chromatin modifications (allelic bivalent chromatin) or with RNA polymerase II also fails to identify monoallelically expressed gene loci. The selection of individual alleles for expression occurs in part during transcription elongation.
Collapse
Affiliation(s)
- Brandon J Thomas
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, 815 Mercer St,, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang J, Valo Z, Bowers CW, Smith DD, Liu Z, Singer-Sam J. Dual DNA methylation patterns in the CNS reveal developmentally poised chromatin and monoallelic expression of critical genes. PLoS One 2010; 5:e13843. [PMID: 21079792 PMCID: PMC2973945 DOI: 10.1371/journal.pone.0013843] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/15/2010] [Indexed: 11/30/2022] Open
Abstract
As a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay). We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.e., poised, chromatin during development, consistent with a link between differential DNA methylation and lineage-specific differentiation within the CNS. Sixty-five of the MAUD hits and 57 other genes whose function is of relevance to CNS development and/or disorders were tested for allele-specific expression in F1 hybrid clonal neural stem cell (NSC) lines. Eight MAUD hits and one additional gene showed such expression. They include Lgi1, which causes a subtype of inherited epilepsy that displays autosomal dominance with incomplete penetrance; Gfra2, a receptor for glial cell line-derived neurotrophic factor GDNF that has been linked to kindling epilepsy; Unc5a, a netrin-1 receptor important in neurodevelopment; and Cspg4, a membrane chondroitin sulfate proteoglycan associated with malignant melanoma and astrocytoma in human. Three of the genes, Camk2a, Kcnc4, and Unc5a, show preferential expression of the same allele in all clonal NSC lines tested. The other six genes show a stochastic pattern of monoallelic expression in some NSC lines and bi-allelic expression in others. These results support the estimate that 1–2% of genes expressed in the CNS may be subject to allelic exclusion, and demonstrate that the group includes genes implicated in major disorders of the CNS as well as neurodevelopment.
Collapse
Affiliation(s)
- Jinhui Wang
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Zuzana Valo
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Chauncey W. Bowers
- Division of Computational Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - David D. Smith
- Division of Biostatistics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Zheng Liu
- Bioinformatics Core Facility, Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Judith Singer-Sam
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Abstract
As more states of CD4 T cell differentiation are uncovered, their flexibility is also beginning to be recognized. Components that control the plasticity of CD4 T cell populations include cellular conditions, clonality, transcriptional circuitry and chromatin modifications. Appearance of cellular flexibility may arise from truly flexible genetic programs or, alternatively, from heterogeneous populations. New tools will be needed to define the rules that allow or prohibit cellular transitions.
Collapse
Affiliation(s)
- Kenneth M Murphy
- Howard Hughes Medical Institute, Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | |
Collapse
|
49
|
Short-term memory in gene induction reveals the regulatory principle behind stochastic IL-4 expression. Mol Syst Biol 2010; 6:359. [PMID: 20393579 PMCID: PMC2872609 DOI: 10.1038/msb.2010.13] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/09/2010] [Indexed: 01/07/2023] Open
Abstract
Combining experiments on primary T cells and mathematical modeling, we characterized the stochastic expression of the interleukin-4 cytokine gene in its physiologic context, showing that a two-step model of transcriptional regulation acting on chromatin rearrangement and RNA polymerase recruitment accounts for the level, kinetics, and population variability of expression. A rate-limiting step upstream of transcription initiation, but occurring at the level of an individual allele, controls whether the interleukin-4 gene is expressed during antigenic stimulation, suggesting that the observed stochasticity of expression is linked to the dynamics of chromatin rearrangement. The computational analysis predicts that the probability to re-express an interleukin-4 gene that has been expressed once is transiently increased. In support, we experimentally demonstrate a short-term memory for interleukin-4 expression at the predicted time scale of several days. The model provides a unifying framework that accounts for both graded and binary modes of gene regulation. Graded changes in expression level can be achieved by controlling transcription initiation, whereas binary regulation acts at the level of chromatin rearrangement and is targeted during the differentiation of T cells that specialize in interleukin-4 production.
Cell populations are typically heterogeneous with respect to protein expression even when clonally derived from a single progenitor. In bacteria and yeast, such heterogeneity has been shown to be due to intrinsically stochastic dynamics of gene expression (Raj and van Oudenaarden, 2008). Thus, cross-population heterogeneity may be an unavoidable by-product of random fluctuations in molecular interactions (Raser and O'Shea, 2004; Pedraza and van Oudenaarden, 2005). The phenotypic variability deriving from it may also be beneficial for cell function, differentiation, or adaptation to changing environments (Chang et al, 2008; Feinerman et al, 2008; Losick and Desplan, 2008). However, little is known about how gene-expression variability is caused in mammalian cells. Two principal modes of gene regulation have been identified: graded and binary. In the graded mode, transcriptional regulators can tune the level of a gene product in a continuous manner (Hazzalin and Mahadevan, 2002). In the binary mode, the gene is expressed at an invariant level, whereas its probability of being expressed in a given cell is regulated, so that the gene has discrete ‘on' and ‘off' states (Walters et al, 1995; Hume, 2000; Biggar and Crabtree, 2001). In humans and mice, cytokine genes are expressed in a binary manner (Bix and Locksley, 1998; Riviere et al, 1998; Hu-Li et al, 2001; Apostolou and Thanos, 2008). A particularly well-studied case is the interleukin-4 (il4) gene that is critical for antibody-based immune responses. This gene is expressed by antigen-stimulated T cells initially with low probability, so that in most IL-4-positive cells only one allele is active (Bix and Locksley, 1998; Riviere et al, 1998). The expressed allele is not imprinted but chosen stochastically during each cell stimulation (Hu-Li et al, 2001). Here, we have studied the dynamics of IL-4 expression quantitatively. Primary murine CD4+ T cells have been differentiated uniformly into type-2 T-helper (Th2) cells that express the lineage-specifying transcription factor (TF) Gata-3 and are competent to activate the il4 gene upon challenge with antigen. Using T cells heterozygous for an il4 wild-type allele and an il4 allele with GFP knock-in after the promoter, the alleles are found to be expressed stochastically and in an uncorrelated manner (Figure 2A; Hu-Li et al, 2001). To account for the observed stochastic dynamics of IL-4 expression, we considered a basic model of gene transcription, mRNA translation, turnover, and protein secretion (Figure 2B). However, our experimental estimates of the intracellular life times of IL-4 mRNA and protein (∼1 h) and their absolute numbers (mRNA∼103, protein∼105) rule out random fluctuations in transcription, translation as well as mRNA and protein turnover as an explanation for the observed stochastic properties of IL-4 expression (Thattai and van Oudenaarden, 2001; Paulsson, 2004). As il4 is known to be strongly regulated at the chromatin level (Ansel et al, 2006), we included in the model a reversible step of chromatin opening that is permissive for transcription (Figure 2C and D). Both chromatin opening and transcription initiation are driven by TFs that are transiently activated during the antigen stimulus, with NFAT1 playing a prominent role (Agarwal et al, 2000; Avni et al, 2002; Guo et al, 2004). The model accounts for the kinetics of NFAT1 TF activity (Figure 2E) (Loh et al, 1996). Using a best-fit procedure for estimating the kinetics of the chromatin transition and TF activity from experimental data, we found that the model accurately reproduces the distribution of IL-4 expression within the cell population over the entire time course of a stimulation (Figure 3A). At the same time, it accounts for the measured kinetics of IL-4 mRNA, intracellular and secreted protein (Figure 3B). Additional data show that the model can also explain IL-4 expression at different stages of Th2 differentiation and upon pharmacological inhibition of NFAT1 activity. In each case, the model predicts a slow and stochastic chromatin opening (Step 1 in Figure 2C) that is the limiting step for the activation of the gene. The slowness of chromatin opening inferred by the model implies an extended lifetime of the open chromatin state (several days), which lasts longer than TF activity during antigenic stimulation (several hours). This indicates that acute IL-4 expression is terminated by the cessation of TF activity (Step 2 in Figure 2C), rather than by the closing of the chromatin (Step 1). In support of this prediction, we observed an elevated fraction of IL-4-producing cells after secondary stimulations administered within a few days of the primary stimulus. Consistent with the model, this elevation disappeared with a half-life of ∼3 days (Figure 4B). To test whether this ‘short-term memory' for activation of the il4 gene is indeed due to the IL-4 producers in the primary stimulation, we sorted stimulated Th2 cells into viable IL-4-producing and non-producing fractions using the cytokine secretion assay (Ouyang et al, 2000) and cultured them separately for different resting periods. The probability of IL-4 re-expression in the positive-sorted cells was consistently larger than in negative-sorted cells and decreased progressively over several days (Figure 4C). By contrast, the sorted IL-4 negative cells exhibited a constant induction probability indistinguishable from the unsorted population. This behavior was not due to differential cell proliferation in the sorted populations or different success of Th2 differentiation. Moreover, using heterozygous il4-wild-type/il4-gfp cells, and sorting for expression of the wild-type allele, we observed that expression of the il4-gfp allele was similar in IL-4-positive and negative sorted fractions. Taken together, these findings imply that stochastic, slow chromatin changes at individual il4 genes govern the binary expression pattern of this cytokine. In conclusion, we propose an experimentally based model of inducible gene expression where strong stochasticity arises from slow (hours to days) chromatin opening and closing transitions, rather than being due to small numbers of mRNA or protein molecules or transcriptional bursting (Raj et al, 2006). This rate-limiting step upstream of transcription initiation (which may entail several interacting epigenetic processes) naturally gives rise to a binary expression pattern of the gene. By contrast, regulation at the level of transcription initiation can have a graded effect on the expression level. We provide evidence that both binary and graded regulation can occur for the il4 gene. Physiological regulation of il4 seems to be mainly binary, thus enabling a dose–response within a population while producing an unequivocal all-or-none signal at the single-cell level. Although cell-to-cell variability has been recognized as an unavoidable consequence of stochasticity in gene expression, it may also serve a functional role for tuning physiological responses within a cell population. In the immune system, remarkably large variability in the expression of cytokine genes has been observed in homogeneous populations of lymphocytes, but the underlying molecular mechanisms are incompletely understood. Here, we study the interleukin-4 gene (il4) in T-helper lymphocytes, combining mathematical modeling with the experimental quantification of expression variability and critical parameters. We show that a stochastic rate-limiting step upstream of transcription initiation, but acting at the level of an individual allele, controls il4 expression. Only a fraction of cells reaches an active, transcription-competent state in the transient time window determined by antigen stimulation. We support this finding by experimental evidence of a previously unknown short-term memory that was predicted by the model to arise from the long lifetime of the active state. Our analysis shows how a stochastic mechanism acting at the chromatin level can be integrated with transcriptional regulation to quantitatively control cell-to-cell variability.
Collapse
|
50
|
Asynchronous replication and autosome-pair non-equivalence in human embryonic stem cells. PLoS One 2009; 4:e4970. [PMID: 19325893 PMCID: PMC2657208 DOI: 10.1371/journal.pone.0004970] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/26/2009] [Indexed: 12/02/2022] Open
Abstract
A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s) that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells.
Collapse
|