1
|
Lee H, Niida H, Sung S, Lee J. Haplotype-resolved de novo assembly revealed unique characteristics of alternative lengthening of telomeres in mouse embryonic stem cells. Nucleic Acids Res 2024; 52:12456-12474. [PMID: 39351882 PMCID: PMC11551733 DOI: 10.1093/nar/gkae842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Telomeres protect chromosome ends from DNA damage responses, and their dysfunction triggers genomic alterations like chromosome fusion and rearrangement, which can lead to cellular death. Certain cells, including specific cancer cells, adopt alternative lengthening of telomere (ALT) to counteract dysfunctional telomeres and proliferate indefinitely. While telomere instability and ALT activity are likely major sources of genomic alteration, the patterns and consequences of such changes at the nucleotide level in ALT cells remain unexplored. Here we generated haplotype-resolved genome assemblies for type I ALT mouse embryonic stem cells, facilitated by highly accurate or ultra-long reads and Hi-C reads. High-quality genome revealed ALT-specific complex chromosome end structures and various genomic alterations including over 1000 structural variants (SVs). The unique sequence (mTALT) used as a template for type I ALT telomeres showed traces of being recruited into the genome, with mTALT being replicated with remarkably high accuracy. Subtelomeric regions exhibited distinct characteristics: resistance to the accumulation of SVs and small variants. We genotyped SVs at allele resolution, identifying genes (Rgs6, Dpf3 and Tacc2) crucial for maintaining ALT telomere stability. Our genome assembly-based approach elucidated the unique characteristics of ALT genome, offering insights into the genome evolution of cells surviving telomere-derived crisis.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Hiroyuki Niida
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu city, Shizuoka 431-3192, Japan
| | - Sanghyun Sung
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Hu C, Zhu XT, He MH, Shao Y, Qin Z, Wu ZJ, Zhou JQ. Elimination of subtelomeric repeat sequences exerts little effect on telomere essential functions in Saccharomyces cerevisiae. eLife 2024; 12:RP91223. [PMID: 38656297 DOI: 10.7554/elife.91223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker's yeast Saccharomyces cerevisiae, the X- and Y'-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y'-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y'-elements) in telomere maintenance. Deletion of Y'-elements (SY12YΔ), X-elements (SY12XYΔ+Y), or both X- and Y'-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12YΔ, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y'-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.
Collapse
Affiliation(s)
- Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xue-Ting Zhu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
3
|
Carvalho Borges PC, Bouabboune C, Escandell JM, Matmati S, Coulon S, Ferreira MG. Pot1 promotes telomere DNA replication via the Stn1-Ten1 complex in fission yeast. Nucleic Acids Res 2023; 51:12325-12336. [PMID: 37953281 PMCID: PMC10711446 DOI: 10.1093/nar/gkad1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Telomeres are nucleoprotein complexes that protect the chromosome-ends from eliciting DNA repair while ensuring their complete duplication. Pot1 is a subunit of telomere capping complex that binds to the G-rich overhang and inhibits the activation of DNA damage checkpoints. In this study, we explore new functions of fission yeast Pot1 by using a pot1-1 temperature sensitive mutant. We show that pot1 inactivation impairs telomere DNA replication resulting in the accumulation of ssDNA leading to the complete loss of telomeric DNA. Recruitment of Stn1 to telomeres, an auxiliary factor of DNA lagging strand synthesis, is reduced in pot1-1 mutants and overexpression of Stn1 rescues loss of telomeres and cell viability at restrictive temperature. We propose that Pot1 plays a crucial function in telomere DNA replication by recruiting Stn1-Ten1 and Polα-primase complex to telomeres via Tpz1, thus promoting lagging-strand DNA synthesis at stalled replication forks.
Collapse
Affiliation(s)
| | - Chaïnez Bouabboune
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée par la Ligue Nationale contre le Cancer, Marseille, F-13009, France
| | | | - Samah Matmati
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée par la Ligue Nationale contre le Cancer, Marseille, F-13009, France
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée par la Ligue Nationale contre le Cancer, Marseille, F-13009, France
| | - Miguel Godinho Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, 2781-901, Portugal
- Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM U1081 UMR7284 CNRS, 06107 Nice, France
| |
Collapse
|
4
|
Kanoh J. Subtelomeres: hotspots of genome variation. Genes Genet Syst 2023; 98:155-160. [PMID: 37648502 DOI: 10.1266/ggs.23-00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Eukaryotic cells contain multiple types of duplicated sequences. Typical examples are tandem repeat sequences including telomeres, centromeres, rDNA genes and transposable elements. Most of these sequences are unstable; thus, their copy numbers or sequences change rapidly in the course of evolution. In this review, I will describe roles of subtelomere regions, which are located adjacent to telomeres at chromosome ends, and recent discoveries about their sequence variation.
Collapse
Affiliation(s)
- Junko Kanoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| |
Collapse
|
5
|
Sung S, Kim E, Niida H, Kim C, Lee J. Distinct characteristics of two types of alternative lengthening of telomeres in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:9122-9143. [PMID: 37496110 PMCID: PMC10516625 DOI: 10.1093/nar/gkad617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Telomere length must be maintained in actively dividing cells to avoid cellular arrest or death. In the absence of telomerase activity, activation of alternative lengthening of telomeres (ALT) allows the maintenance of telomeric length and prolongs the cellular lifespan. Our previous studies have established two types of ALT survivors from mouse embryonic stem cells. The key differences between these ALT survivors are telomere-constituting sequences: non-telomeric sequences and canonical telomeric repeats, with each type of ALT survivors being referred to as type I and type II, respectively. We explored how the characteristics of the two types of ALT lines reflect their fates using multi-omics approaches. The most notable gene expression signatures of type I and type II ALT cell lines were chromatin remodelling and DNA repair, respectively. Compared with type II cells, type I ALT cells accumulated more mutations and demonstrated persistent telomere instability. These findings indicate that cells of the same origin have separate routes for survival, thus providing insights into the plasticity of crisis-suffering cells and cancers.
Collapse
Affiliation(s)
- Sanghyun Sung
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| | - Eunkyeong Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Daejeon 34141, Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| |
Collapse
|
6
|
Chaux F, Agier N, Garrido C, Fischer G, Eberhard S, Xu Z. Telomerase-independent survival leads to a mosaic of complex subtelomere rearrangements in Chlamydomonas reinhardtii. Genome Res 2023; 33:1582-1598. [PMID: 37580131 PMCID: PMC10620057 DOI: 10.1101/gr.278043.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Telomeres and subtelomeres, the genomic regions located at chromosome extremities, are essential for genome stability in eukaryotes. In the absence of the canonical maintenance mechanism provided by telomerase, telomere shortening induces genome instability. The landscape of the ensuing genome rearrangements is not accessible by short-read sequencing. Here, we leverage Oxford Nanopore Technologies long-read sequencing to survey the extensive repertoire of genome rearrangements in telomerase mutants of the model green microalga Chlamydomonas reinhardtii In telomerase-mutant strains grown for hundreds of generations, most chromosome extremities were capped by short telomere sequences that were either recruited de novo from other loci or maintained in a telomerase-independent manner. Other extremities did not end with telomeres but only with repeated subtelomeric sequences. The subtelomeric elements, including rDNA, were massively rearranged and involved in breakage-fusion-bridge cycles, translocations, recombinations, and chromosome circularization. These events were established progressively over time and displayed heterogeneity at the subpopulation level. New telomere-capped extremities composed of sequences originating from more internal genomic regions were associated with high DNA methylation, suggesting that de novo heterochromatin formation contributes to the restoration of chromosome end stability in C. reinhardtii The diversity of alternative strategies present in the same organism to maintain chromosome integrity and the variety of rearrangements found in telomerase mutants are remarkable, and illustrate genome plasticity at short timescales.
Collapse
Affiliation(s)
- Frédéric Chaux
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Nicolas Agier
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Clotilde Garrido
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Gilles Fischer
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Stephan Eberhard
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Zhou Xu
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France;
| |
Collapse
|
7
|
Vaurs M, Naiman K, Bouabboune C, Rai S, Ptasińska K, Rives M, Matmati S, Carr AM, Géli V, Coulon S. Stn1-Ten1 and Taz1 independently promote replication of subtelomeric fragile sequences in fission yeast. Cell Rep 2023; 42:112537. [PMID: 37243596 DOI: 10.1016/j.celrep.2023.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
Efficient replication of terminal DNA is crucial to maintain telomere stability. In fission yeast, Taz1 and the Stn1-Ten1 (ST) complex play prominent roles in DNA-ends replication. However, their function remains elusive. Here, we have analyzed genome-wide replication and show that ST does not affect genome-wide replication but is crucial for the efficient replication of a subtelomeric region called STE3-2. We further show that, when ST function is compromised, a homologous recombination (HR)-based fork restart mechanism becomes necessary for STE3-2 stability. While both Taz1 and Stn1 bind to STE3-2, we find that the STE3-2 replication function of ST is independent of Taz1 but relies on its association with the shelterin proteins Pot1-Tpz1-Poz1. Finally, we demonstrate that the firing of an origin normally inhibited by Rif1 can circumvent the replication defect of subtelomeres when ST function is compromised. Our results help illuminate why fission yeast telomeres are terminal fragile sites.
Collapse
Affiliation(s)
- Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Karel Naiman
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Chaïnez Bouabboune
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Sudhir Rai
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Katarzyna Ptasińska
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Marion Rives
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Samah Matmati
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Vincent Géli
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France.
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France.
| |
Collapse
|
8
|
Kuse R, Ishii K. Flexible Attachment and Detachment of Centromeres and Telomeres to and from Chromosomes. Biomolecules 2023; 13:1016. [PMID: 37371596 DOI: 10.3390/biom13061016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Accurate transmission of genomic information across multiple cell divisions and generations, without any losses or errors, is fundamental to all living organisms. To achieve this goal, eukaryotes devised chromosomes. Eukaryotic genomes are represented by multiple linear chromosomes in the nucleus, each carrying a centromere in the middle, a telomere at both ends, and multiple origins of replication along the chromosome arms. Although all three of these DNA elements are indispensable for chromosome function, centromeres and telomeres possess the potential to detach from the original chromosome and attach to new chromosomal positions, as evident from the events of telomere fusion, centromere inactivation, telomere healing, and neocentromere formation. These events seem to occur spontaneously in nature but have not yet been elucidated clearly, because they are relatively infrequent and sometimes detrimental. To address this issue, experimental setups have been developed using model organisms such as yeast. In this article, we review some of the key experiments that provide clues as to the extent to which these paradoxical and elusive features of chromosomally indispensable elements may become valuable in the natural context.
Collapse
Affiliation(s)
- Riku Kuse
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| |
Collapse
|
9
|
Kanoh J. Roles of Specialized Chromatin and DNA Structures at Subtelomeres in Schizosaccharomyces pombe. Biomolecules 2023; 13:biom13050810. [PMID: 37238680 DOI: 10.3390/biom13050810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Eukaryotes have linear chromosomes with domains called telomeres at both ends. The telomere DNA consists of a simple tandem repeat sequence, and multiple telomere-binding proteins including the shelterin complex maintain chromosome-end structures and regulate various biological reactions, such as protection of chromosome ends and control of telomere DNA length. On the other hand, subtelomeres, which are located adjacent to telomeres, contain a complex mosaic of multiple common segmental sequences and a variety of gene sequences. This review focused on roles of the subtelomeric chromatin and DNA structures in the fission yeast Schizosaccharomyces pombe. The fission yeast subtelomeres form three distinct chromatin structures; one is the shelterin complex, which is localized not only at the telomeres but also at the telomere-proximal regions of subtelomeres to form transcriptionally repressive chromatin structures. The others are heterochromatin and knob, which have repressive effects in gene expression, but the subtelomeres are equipped with a mechanism that prevents these condensed chromatin structures from invading adjacent euchromatin regions. On the other hand, recombination reactions within or near subtelomeric sequences allow chromosomes to be circularized, enabling cells to survive in telomere shortening. Furthermore, DNA structures of the subtelomeres are more variable than other chromosomal regions, which may have contributed to biological diversity and evolution while changing gene expression and chromatin structures.
Collapse
Affiliation(s)
- Junko Kanoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Sohn EJ, Goralsky JA, Shay JW, Min J. The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT). Cancers (Basel) 2023; 15:cancers15071945. [PMID: 37046606 PMCID: PMC10093677 DOI: 10.3390/cancers15071945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
As detailed by the end replication problem, the linear ends of a cell's chromosomes, known as telomeres, shorten with each successive round of replication until a cell enters into a state of growth arrest referred to as senescence. To maintain their immortal proliferation capacity, cancer cells must employ a telomere maintenance mechanism, such as telomerase activation or the Alternative Lengthening of Telomeres pathway (ALT). With only 10-15% of cancers utilizing the ALT mechanism, progress towards understanding its molecular components and associated hallmarks has only recently been made. This review analyzes the advances towards understanding the ALT pathway by: (1) detailing the mechanisms associated with engaging the ALT pathway as well as (2) identifying potential therapeutic targets of ALT that may lead to novel cancer therapeutic treatments. Collectively, these studies indicate that the ALT molecular mechanisms involve at least two distinct pathways induced by replication stress and damage at telomeres. We suggest exploiting tumor dependency on ALT is a promising field of study because it suggests new approaches to ALT-specific therapies for cancers with poorer prognosis. While substantial progress has been made in the ALT research field, additional progress will be required to realize these advances into clinical practices to treat ALT cancers and improve patient prognoses.
Collapse
Affiliation(s)
- Eric J Sohn
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia A Goralsky
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
Xiong Y, Zhang H, Zhou S, Ma L, Xiao W, Wu Y, Yuan YJ. Structural Variations and Adaptations of Synthetic Chromosome Ends Driven by SCRaMbLE in Haploid and Diploid Yeasts. ACS Synth Biol 2023; 12:689-699. [PMID: 36821394 DOI: 10.1021/acssynbio.2c00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Variations and adaptations of chromosome ends play an important role in eukaryotic karyotype evolution. Traditional experimental studies of the adaptations of chromosome ends mainly rely on the strategy of introducing defects; thus, the adaptation methods of survivors may vary depending on the initial defects. Here, using the SCRaMbLE strategy, we obtained a library of haploid and diploid synthetic strains with variations in chromosome ends. Analysis of the SCRaMbLEd survivors revealed four routes of adaptation: homologous recombination between nonhomologous chromosome arms (haploids) or homologous chromosome arms (diploids), site-specific recombination between intra- or interchromosomal ends, circularization of chromosomes, and loss of whole chromosomes (diploids). We also found that circularization of synthetic chromosomes can be generated by SCRaMbLE. Our study of various adaptation routes of chromosome ends provides insight into eukaryotic karyotype evolution from the viewpoint of synthetic genomics.
Collapse
Affiliation(s)
- Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sijie Zhou
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Ueno M. Exploring Genetic Interactions with Telomere Protection Gene pot1 in Fission Yeast. Biomolecules 2023; 13:biom13020370. [PMID: 36830739 PMCID: PMC9953254 DOI: 10.3390/biom13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The regulation of telomere length has a significant impact on cancer risk and aging in humans. Circular chromosomes are found in humans and are often unstable during mitosis, resulting in genome instability. Some types of cancer have a high frequency of a circular chromosome. Fission yeast is a good model for studying the formation and stability of circular chromosomes as deletion of pot1 (encoding a telomere protection protein) results in rapid telomere degradation and chromosome fusion. Pot1 binds to single-stranded telomere DNA and is conserved from fission yeast to humans. Loss of pot1 leads to viable strains in which all three fission yeast chromosomes become circular. In this review, I will introduce pot1 genetic interactions as these inform on processes such as the degradation of uncapped telomeres, chromosome fusion, and maintenance of circular chromosomes. Therefore, exploring genes that genetically interact with pot1 contributes to finding new genes and/or new functions of genes related to the maintenance of telomeres and/or circular chromosomes.
Collapse
Affiliation(s)
- Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; ; Tel.: +81-82-424-7768
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
13
|
Casari E, Gnugnoli M, Rinaldi C, Pizzul P, Colombo CV, Bonetti D, Longhese MP. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks. Cells 2022; 11:cells11203224. [PMID: 36291091 PMCID: PMC9601279 DOI: 10.3390/cells11203224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 02/08/2023] Open
Abstract
Early work by Muller and McClintock discovered that the physical ends of linear chromosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then, extensive research has shown that this special feature relies on specialized proteins and structural properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human tissues, telomeres shorten as cells divide and lose this protective capacity. Telomere attrition causes the activation of the DNA damage checkpoint that leads to a cell-cycle arrest and the entering of cells into a nondividing state, called replicative senescence, that acts as a barrier against tumorigenesis. However, downregulation of the checkpoint overcomes this barrier and leads to further genomic instability that, if coupled with re-stabilization of telomeres, can drive tumorigenesis. This review focuses on the key experiments that have been performed in the model organism Saccharomyces cerevisiae to uncover the mechanisms that protect the chromosome ends from eliciting a DNA damage response, the conservation of these pathways in mammals, as well as the consequences of their loss in human cancer.
Collapse
|
14
|
The methyl phosphate capping enzyme Bmc1/Bin3 is a stable component of the fission yeast telomerase holoenzyme. Nat Commun 2022; 13:1277. [PMID: 35277511 PMCID: PMC8917221 DOI: 10.1038/s41467-022-28985-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The telomerase holoenzyme is critical for maintaining eukaryotic genome integrity. In addition to a reverse transcriptase and an RNA template, telomerase contains additional proteins that protect the telomerase RNA and promote holoenzyme assembly. Here we report that the methyl phosphate capping enzyme (MePCE) Bmc1/Bin3 is a stable component of the S. pombe telomerase holoenzyme. Bmc1 associates with the telomerase holoenzyme and U6 snRNA through an interaction with the recently described LARP7 family member Pof8, and we demonstrate that these two factors are evolutionarily linked in fungi. Our data suggest that the association of Bmc1 with telomerase is independent of its methyltransferase activity, but rather that Bmc1 functions in telomerase holoenzyme assembly by promoting TER1 accumulation and Pof8 recruitment to TER1. Taken together, this work yields new insight into the composition, assembly, and regulation of the telomerase holoenzyme in fission yeast as well as the breadth of its evolutionary conservation.
Collapse
|
15
|
Páez-Moscoso DJ, Ho DV, Pan L, Hildebrand K, Jensen KL, Levy MJ, Florens L, Baumann P. A putative cap binding protein and the methyl phosphate capping enzyme Bin3/MePCE function in telomerase biogenesis. Nat Commun 2022; 13:1067. [PMID: 35217638 PMCID: PMC8881624 DOI: 10.1038/s41467-022-28545-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/13/2022] [Indexed: 01/29/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) and the noncoding telomerase RNA (TR) subunit constitute the core of telomerase. Additional subunits are required for ribonucleoprotein complex assembly and in some cases remain stably associated with the active holoenzyme. Pof8, a member of the LARP7 protein family is such a constitutive component of telomerase in fission yeast. Using affinity purification of Pof8, we have identified two previously uncharacterized proteins that form a complex with Pof8 and participate in telomerase biogenesis. Both proteins participate in ribonucleoprotein complex assembly and are required for wildtype telomerase activity and telomere length maintenance. One factor we named Thc1 (Telomerase Holoenzyme Component 1) shares structural similarity with the nuclear cap binding complex and the poly-adenosine ribonuclease (PARN), the other is the ortholog of the methyl phosphate capping enzyme (Bin3/MePCE) in metazoans and was named Bmc1 (Bin3/MePCE 1) to reflect its evolutionary roots. Thc1 and Bmc1 function together with Pof8 in recognizing correctly folded telomerase RNA and promoting the recruitment of the Lsm2-8 complex and the catalytic subunit to assemble functional telomerase.
Collapse
Affiliation(s)
- Diego J Páez-Moscoso
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Institute of Molecular Biology, Ackermannweg, 4 55128, Mainz, Germany
| | - David V Ho
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Lili Pan
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany
| | - Katie Hildebrand
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Transgenic and Gene-Targeting Institutional Facility, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Kristi L Jensen
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany
| | - Michaella J Levy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- KCAS, 12400 Shawnee Mission Parkway, Shawnee, KS, 66216, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Peter Baumann
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany.
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
16
|
Yamamoto I, Nakaoka H, Takikawa M, Tashiro S, Kanoh J, Miyoshi T, Ishikawa F. Fission yeast Stn1 maintains stability of repetitive DNA at subtelomere and ribosomal DNA regions. Nucleic Acids Res 2021; 49:10465-10476. [PMID: 34520548 PMCID: PMC8501966 DOI: 10.1093/nar/gkab767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.
Collapse
Affiliation(s)
- Io Yamamoto
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hidenori Nakaoka
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masahiro Takikawa
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sanki Tashiro
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junko Kanoh
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Tomoichiro Miyoshi
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Fuyuki Ishikawa
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Apte MS, Masuda H, Wheeler DL, Cooper JP. RNAi and Ino80 complex control rate limiting translocation step that moves rDNA to eroding telomeres. Nucleic Acids Res 2021; 49:8161-8176. [PMID: 34244792 PMCID: PMC8373062 DOI: 10.1093/nar/gkab586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
The discovery of HAATIrDNA, a telomerase-negative survival mode in which canonical telomeres are replaced with ribosomal DNA (rDNA) repeats that acquire chromosome end-protection capability, raised crucial questions as to how rDNA tracts 'jump' to eroding chromosome ends. Here, we show that HAATIrDNA formation is initiated and limited by a single translocation that juxtaposes rDNA from Chromosome (Chr) III onto subtelomeric elements (STE) on Chr I or II; this rare reaction requires RNAi and the Ino80 nucleosome remodeling complex (Ino80C), thus defining an unforeseen relationship between these two machineries. The unique STE-rDNA junction created by this initial translocation is efficiently copied to the remaining STE chromosome ends, independently of RNAi or Ino80C. Intriguingly, both RNAi and Ino80C machineries contain a component that plays dual roles in HAATI subtype choice. Dcr1 of the RNAi pathway and Iec1 of Ino80C both promote HAATIrDNA formation as part of their respective canonical machineries, but both also inhibit formation of the exceedingly rare HAATISTE (where STE sequences mobilize throughout the genome and assume chromosome end protection capacity) in non-canonical, pathway-independent manners. This work provides a glimpse into a previously unrecognized crosstalk between RNAi and Ino80C in controlling unusual translocation reactions that establish telomere-free linear chromosome ends.
Collapse
Affiliation(s)
- Manasi S Apte
- Laboratory of Biochemistry and Molecular Biology, NCI, NIH, Bethesda, MD 20892, USA
| | - Hirohisa Masuda
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Lee Wheeler
- Laboratory of Biochemistry and Molecular Biology, NCI, NIH, Bethesda, MD 20892, USA
| | - Julia Promisel Cooper
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Tsai CW, Chang WS, Xu J, Xu Y, Huang M, Pettaway C, Bau DT, Gu J. Leukocyte telomere length is associated with aggressive prostate cancer in localized African American prostate cancer patients. Carcinogenesis 2021; 41:1213-1218. [PMID: 32614411 DOI: 10.1093/carcin/bgaa070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
Telomeres play important roles in cancer initiation and progression. Leukocyte telomere length (LTL) has been associated with the risk and prognosis of several cancers, but its association with prostate cancer (PCa) prognosis in African Americans (AAs) has not been reported. In this study, we measured relative LTL from 317 AA PCa patients and assessed its associations with aggressive disease characteristics at diagnosis and biochemical recurrence (BCR) after radical prostatectomy and radiotherapy. LTL was shorter in patients with higher Gleason scores (GS) at diagnosis. Dichotomized into short and long LTL groups, patients with short LTL exhibited a 1.91-fold (95% confidence interval, CI, 1.14-3.20, P = 0.013) increased risk of being diagnosed with high-risk disease (GS =7 [4 + 3] and GS ≥8) than those with long LTL in multivariable logistic regression analysis. Moreover, shorter LTL was significantly associated with an increased risk of BCR (hazard ratio = 1.68, 95% CI, 1.18-11.44, P = 0.024) compared with longer LTL in localized patients receiving prostatectomy or radiotherapy in multivariable Cox analysis. Kaplan-Meier survival analysis showed patients with short LTL had significantly shorter BCR-free survival time than patients with long LTL (Log rank P = 0.011). In conclusion, our results showed for the first time that LTL was shorter in PCa patients with higher GS and short LTL was associated with worse prognosis in AA PCa patients receiving prostatectomy or radiotherapy.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Bonnell E, Pasquier E, Wellinger RJ. Telomere Replication: Solving Multiple End Replication Problems. Front Cell Dev Biol 2021; 9:668171. [PMID: 33869233 PMCID: PMC8047117 DOI: 10.3389/fcell.2021.668171] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes are highly complex and divided into linear chromosomes that require end protection from unwarranted fusions, recombination, and degradation in order to maintain genomic stability. This is accomplished through the conserved specialized nucleoprotein structure of telomeres. Due to the repetitive nature of telomeric DNA, and the unusual terminal structure, namely a protruding single stranded 3' DNA end, completing telomeric DNA replication in a timely and efficient manner is a challenge. For example, the end replication problem causes a progressive shortening of telomeric DNA at each round of DNA replication, thus telomeres eventually lose their protective capacity. This phenomenon is counteracted by the recruitment and the activation at telomeres of the specialized reverse transcriptase telomerase. Despite the importance of telomerase in providing a mechanism for complete replication of telomeric ends, the majority of telomere replication is in fact carried out by the conventional DNA replication machinery. There is significant evidence demonstrating that progression of replication forks is hampered at chromosomal ends due to telomeric sequences prone to form secondary structures, tightly DNA-bound proteins, and the heterochromatic nature of telomeres. The telomeric loop (t-loop) formed by invasion of the 3'-end into telomeric duplex sequences may also impede the passage of replication fork. Replication fork stalling can lead to fork collapse and DNA breaks, a major cause of genomic instability triggered notably by unwanted repair events. Moreover, at chromosomal ends, unreplicated DNA distal to a stalled fork cannot be rescued by a fork coming from the opposite direction. This highlights the importance of the multiple mechanisms involved in overcoming fork progression obstacles at telomeres. Consequently, numerous factors participate in efficient telomeric DNA duplication by preventing replication fork stalling or promoting the restart of a stalled replication fork at telomeres. In this review, we will discuss difficulties associated with the passage of the replication fork through telomeres in both fission and budding yeasts as well as mammals, highlighting conserved mechanisms implicated in maintaining telomere integrity during replication, thus preserving a stable genome.
Collapse
Affiliation(s)
| | | | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
20
|
Matmati S, Lambert S, Géli V, Coulon S. Telomerase Repairs Collapsed Replication Forks at Telomeres. Cell Rep 2021; 30:3312-3322.e3. [PMID: 32160539 DOI: 10.1016/j.celrep.2020.02.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/17/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are difficult-to-replicate sites whereby replication itself may threaten telomere integrity. We investigate, in fission yeast, telomere replication dynamics in telomerase-negative cells to unmask problems associated with telomere replication. Two-dimensional gel analysis reveals that replication of telomeres is severely impaired and correlates with an accumulation of replication intermediates that arises from stalled and collapsed forks. In the absence of telomerase, Rad51, Mre11-Rad50-Nbs1 (MRN) complex, and its co-factor CtIPCtp1 become critical to maintain telomeres, indicating that homologous recombination processes these intermediates to facilitate fork restart. We further show that a catalytically dead mutant of telomerase prevents Ku recruitment to telomeres, suggesting that telomerase and Ku both compete for the binding of telomeric-free DNA ends that are likely to originate from a reversed fork. We infer that Ku removal at collapsed telomeric forks allows telomerase to repair broken telomeres, thereby shielding telomeres from homologous recombination.
Collapse
Affiliation(s)
- Samah Matmati
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (équipe labellisée) Marseille, F-13009, France
| | - Sarah Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (équipe labellisée) Marseille, F-13009, France.
| | - Stéphane Coulon
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (équipe labellisée) Marseille, F-13009, France.
| |
Collapse
|
21
|
Spichal M, Heestand B, Billmyre KK, Frenk S, Mello CC, Ahmed S. Germ granule dysfunction is a hallmark and mirror of Piwi mutant sterility. Nat Commun 2021; 12:1420. [PMID: 33658512 PMCID: PMC7930041 DOI: 10.1038/s41467-021-21635-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
In several species, Piwi/piRNA genome silencing defects cause immediate sterility that correlates with transposon expression and transposon-induced genomic instability. In C. elegans, mutations in the Piwi-related gene (prg-1) and other piRNA deficient mutants cause a transgenerational decline in fertility over a period of several generations. Here we show that the sterility of late generation piRNA mutants correlates poorly with increases in DNA damage signaling. Instead, sterile individuals consistently exhibit altered perinuclear germ granules. We show that disruption of germ granules does not activate transposon expression but induces multiple phenotypes found in sterile prg-1 pathway mutants. Furthermore, loss of the germ granule component pgl-1 enhances prg-1 mutant infertility. Environmental restoration of germ granule function for sterile pgl-1 mutants restores their fertility. We propose that Piwi mutant sterility is a reproductive arrest phenotype that is characterized by perturbed germ granule structure and is phenocopied by germ granule dysfunction, independent of genomic instability.
Collapse
Affiliation(s)
- Maya Spichal
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA ,grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA USA
| | - Bree Heestand
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA
| | - Katherine Kretovich Billmyre
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA ,grid.250820.d0000 0000 9420 1591Present Address: Stowers Institute for Medical Research, Kansas City, MO USA
| | - Stephen Frenk
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA ,Present Address: Achilles Therapeutics Limited, London, UK
| | - Craig C. Mello
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Worcester, MA USA
| | - Shawn Ahmed
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
22
|
Oizumi Y, Kaji T, Tashiro S, Takeshita Y, Date Y, Kanoh J. Complete sequences of Schizosaccharomyces pombe subtelomeres reveal multiple patterns of genome variation. Nat Commun 2021; 12:611. [PMID: 33504776 PMCID: PMC7840980 DOI: 10.1038/s41467-020-20595-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
Genome sequences have been determined for many model organisms; however, repetitive regions such as centromeres, telomeres, and subtelomeres have not yet been sequenced completely. Here, we report the complete sequences of subtelomeric homologous (SH) regions of the fission yeast Schizosaccharomyces pombe. We overcame technical difficulties to obtain subtelomeric repetitive sequences by constructing strains that possess single SH regions of a standard laboratory strain. In addition, some natural isolates of S. pombe were analyzed using previous sequencing data. Whole sequences of SH regions revealed that each SH region consists of two distinct parts with mosaics of multiple common segments or blocks showing high variation among subtelomeres and strains. Subtelomere regions show relatively high frequency of nucleotide variations among strains compared with the other chromosomal regions. Furthermore, we identified subtelomeric RecQ-type helicase genes, tlh3 and tlh4, which add to the already known tlh1 and tlh2, and found that the tlh1-4 genes show high sequence variation with missense mutations, insertions, and deletions but no severe effects on their RNA expression. Our results indicate that SH sequences are highly polymorphic and hot spots for genome variation. These features of subtelomeres may have contributed to genome diversity and, conversely, various diseases.
Collapse
Affiliation(s)
- Yusuke Oizumi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuto Kaji
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sanki Tashiro
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR, USA
| | - Yumiko Takeshita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuko Date
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Junko Kanoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Wu ZJ, Liu JC, Man X, Gu X, Li TY, Cai C, He MH, Shao Y, Lu N, Xue X, Qin Z, Zhou JQ. Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. eLife 2020; 9:53144. [PMID: 32755541 PMCID: PMC7406354 DOI: 10.7554/elife.53144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Telomeres define the natural ends of eukaryotic chromosomes and are crucial for chromosomal stability. The budding yeast Cdc13, Stn1 and Ten1 proteins form a heterotrimeric complex, and the inactivation of any of its subunits leads to a uniformly lethal phenotype due to telomere deprotection. Although Cdc13, Stn1 and Ten1 seem to belong to an epistasis group, it remains unclear whether they function differently in telomere protection. Here, we employed the single-linear-chromosome yeast SY14, and surprisingly found that the deletion of CDC13 leads to telomere erosion and intrachromosome end-to-end fusion, which depends on Rad52 but not Yku. Interestingly, the emergence frequency of survivors in the SY14 cdc13Δ mutant was ~29 fold higher than that in either the stn1Δ or ten1Δ mutant, demonstrating a predominant role of Cdc13 in inhibiting telomere fusion. Chromosomal fusion readily occurred in the telomerase-null SY14 strain, further verifying the default role of intact telomeres in inhibiting chromosome fusion.
Collapse
Affiliation(s)
- Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Man
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Gu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ting-Yi Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chen Cai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Lu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Xue
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
24
|
Coulon S, Vaurs M. Telomeric Transcription and Telomere Rearrangements in Quiescent Cells. J Mol Biol 2020; 432:4220-4231. [PMID: 32061930 DOI: 10.1016/j.jmb.2020.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Despite the condensed nature of terminal sequences, the telomeres are transcribed into a group of noncoding RNAs, including the TElomeric Repeat-containing RNA (TERRA). Since the discovery of TERRA, its evolutionary conserved function has been confirmed, and its involvement in telomere length regulation, heterochromatin establishment, and telomere recombination has been demonstrated. We previously reported that TERRA is upregulated in quiescent fission yeast cells, although the global transcription is highly reduced. Elevated telomeric transcription was also detected when telomeres detach from the nuclear periphery. These intriguing observations unveil unexpected facets of telomeric transcription in arrested cells. In this review, we present the different aspects of TERRA transcription during quiescence and discuss their implications for telomere maintenance and cell fate.
Collapse
Affiliation(s)
- Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue contre le Cancer, Marseille, F-13009, France.
| | - Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue contre le Cancer, Marseille, F-13009, France
| |
Collapse
|
25
|
Cacchione S, Cenci G, Raffa GD. Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. J Mol Biol 2020; 432:4305-4321. [PMID: 32512004 DOI: 10.1016/j.jmb.2020.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023]
Abstract
The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Giovanni Cenci
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy; Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy.
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
26
|
Henninger E, Teixeira MT. Telomere-driven mutational processes in yeast. Curr Opin Genet Dev 2020; 60:99-106. [DOI: 10.1016/j.gde.2020.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
|
27
|
Xu J, Chang WS, Tsai CW, Bau DT, Xu Y, Davis JW, Thompson TC, Logothetis CJ, Gu J. Leukocyte telomere length is associated with aggressive prostate cancer in localized prostate cancer patients. EBioMedicine 2020; 52:102616. [PMID: 31981976 PMCID: PMC6992931 DOI: 10.1016/j.ebiom.2019.102616] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Telomeres play important roles in cancer initiation and progression. The aim of this study is to investigate whether leukocyte telomere length (LTL) is associated with aggressive prostate cancer (PCa). METHODS We measured relative LTL in a cohort of 1,889 white PCa patients who were treated and followed up at the University of Texas MD Anderson Cancer Center and assessed its associations with aggressive disease characteristics at diagnosis and biochemical recurrence (BCR) after active treatments (radical prostatectomy and radiotherapy). We further used a Mendelian randomization (MR) approach to compute a weighted genetic risk score (GRS) predictive of LTL using 10 established LTL-associated genetic variants and determined whether this GRS is associated with aggressive PCa. FINDINGS LTL was significantly shorter in patients with higher Gleason scores at diagnosis. Dichotomized at the median value of LTL, patients with short LTL exhibited a 2.74-fold (95% confidence interval, 1.79-4.18, P = 3.11 × 10-6) increased risk of presenting with GS≥8 disease than those with long LTL in multivariate logistic regression analysis. Moreover, shorter LTL was significantly associated with an increased risk of BCR (hazard ratio = 1.53, 95% confidence interval, 1.01-2.34) compared to longer LTL in localized patients receiving prostatectomy or radiotherapy with a significant dose-response association (P for trend = 0.017) in multivariate Cox proportional hazards regression analysis. In MR analysis, genetically predicted short LTL was also associated with an increased risk of BCR (HR=1.73, 95% CI, 1.08-2.78). INTERPRETATION Our results showed for the first time that LTL was shorter in PCa patients with high Gleason scores and that short LTL and genetically predicted short LTL are associated with worse prognosis in PCa patients receiving prostatectomy or radiotherapy. FUNDING Cancer Prevention and Research Institute of Texas (CPRIT) grant (RP140556), National Cancer Institute Specialized Program of Research Excellence (SPORE) grant (CA140388), and MD Anderson Cancer Center start-up fund.
Collapse
Affiliation(s)
- Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - John W Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
28
|
Xu Z, Teixeira MT. The many types of heterogeneity in replicative senescence. Yeast 2019; 36:637-648. [PMID: 31306505 PMCID: PMC6900063 DOI: 10.1002/yea.3433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/10/2022] Open
Abstract
Replicative senescence, which is induced by telomere shortening, underlies the loss of regeneration capacity of organs and is ultimately detrimental to the organism. At the same time, it is required to protect organisms from unlimited cell proliferation that may arise from numerous stimuli or deregulations. One important feature of replicative senescence is its high level of heterogeneity and asynchrony, which promote genome instability and senescence escape. Characterizing this heterogeneity and investigating its sources are thus critical to understanding the robustness of replicative senescence. Here we review the different aspects of senescence driven by telomere attrition that are subject to variation in Saccharomyces cerevisiae, the current understanding of the molecular processes at play, and the consequences of heterogeneity in replicative senescence.
Collapse
Affiliation(s)
- Zhou Xu
- CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative BiologySorbonne UniversitéParisFrance
| | - Maria Teresa Teixeira
- CNRS, UMR8226, Institut de Biologie Physico‐Chimique, Laboratory of Molecular and Cell Biology of EukaryotesSorbonne Université, PSL Research UniversityParisFrance
| |
Collapse
|
29
|
Alternative Lengthening of Telomeres in the Budding Yeast Naumovozyma castellii. G3-GENES GENOMES GENETICS 2019; 9:3345-3358. [PMID: 31427453 PMCID: PMC6778800 DOI: 10.1534/g3.119.400428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enzyme telomerase ensures the integrity of linear chromosomes by maintaining telomere length. As a hallmark of cancer, cell immortalization and unlimited proliferation is gained by reactivation of telomerase. However, a significant fraction of cancer cells instead uses alternative telomere lengthening mechanisms to ensure telomere function, collectively known as Alternative Lengthening of Telomeres (ALT). Although the budding yeast Naumovozyma castellii (Saccharomyces castellii) has a proficient telomerase activity, we demonstrate here that telomeres in N. castellii are efficiently maintained by a novel ALT mechanism after telomerase knockout. Remarkably, telomerase-negative cells proliferate indefinitely without any major growth crisis and display wild-type colony morphology. Moreover, ALT cells maintain linear chromosomes and preserve a wild-type DNA organization at the chromosome termini, including a short stretch of terminal telomeric sequence. Notably, ALT telomeres are elongated by the addition of ∼275 bp repeats containing a short telomeric sequence and the subtelomeric DNA located just internally (TelKO element). Although telomeres may be elongated by several TelKO repeats, no dramatic genome-wide amplification occurs, thus indicating that the repeat addition may be regulated. Intriguingly, a short interstitial telomeric sequence (ITS) functions as the initiation point for the addition of the TelKO element. This implies that N. castellii telomeres are structurally predisposed to efficiently switch to the ALT mechanism as a response to telomerase dysfunction.
Collapse
|
30
|
Hu Y, Bennett HW, Liu N, Moravec M, Williams JF, Azzalin CM, King MC. RNA-DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast. Genetics 2019; 213:431-447. [PMID: 31405990 PMCID: PMC6781888 DOI: 10.1534/genetics.119.302606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
A subset of cancers rely on telomerase-independent mechanisms to maintain their chromosome ends. The predominant "alternative lengthening of telomeres" pathway appears dependent on homology-directed repair (HDR) to maintain telomeric DNA. However, the molecular changes needed for cells to productively engage in telomeric HDR are poorly understood. To gain new insights into this transition, we monitored the state of telomeres during serial culture of fission yeast (Schizosaccharomyces pombe) lacking the telomerase recruitment factor Ccq1. Rad52 is loaded onto critically short telomeres shortly after germination despite continued telomere erosion, suggesting that recruitment of recombination factors is not sufficient to maintain telomeres in the absence of telomerase function. Instead, survivor formation coincides with the derepression of telomeric repeat-containing RNA (TERRA). In this context, degradation of TERRA associated with the telomere in the form of R-loops drives a severe growth crisis, ultimately leading to a novel type of survivor with linear chromosomes and altered cytological telomere characteristics, including the loss of the shelterin component Rap1 (but not the TRF1/TRF2 ortholog, Taz1) from the telomere. We demonstrate that deletion of Rap1 is protective in this context, preventing the growth crisis that is otherwise triggered by degradation of telomeric R-loops in survivors with linear chromosomes. These findings suggest that upregulation of telomere-engaged TERRA, or altered recruitment of shelterin components, can support telomerase-independent telomere maintenance.
Collapse
Affiliation(s)
- Yan Hu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Henrietta W Bennett
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Na Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Martin Moravec
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), 8093, Switzerland
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, 1649-028, Portugal
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| |
Collapse
|
31
|
Irie H, Yamamoto I, Tarumoto Y, Tashiro S, Runge KW, Ishikawa F. Telomere-binding proteins Taz1 and Rap1 regulate DSB repair and suppress gross chromosomal rearrangements in fission yeast. PLoS Genet 2019; 15:e1008335. [PMID: 31454352 PMCID: PMC6733473 DOI: 10.1371/journal.pgen.1008335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/09/2019] [Accepted: 07/28/2019] [Indexed: 11/19/2022] Open
Abstract
Genomic rearrangements (gross chromosomal rearrangements, GCRs) threatens genome integrity and cause cell death or tumor formation. At the terminus of linear chromosomes, a telomere-binding protein complex, called shelterin, ensures chromosome stability by preventing chromosome end-to-end fusions and regulating telomere length homeostasis. As such, shelterin-mediated telomere functions play a pivotal role in suppressing GCR formation. However, it remains unclear whether the shelterin proteins play any direct role in inhibiting GCR at non-telomeric regions. Here, we have established a GCR assay for the first time in fission yeast and measured GCR rates in various mutants. We found that fission yeast cells lacking shelterin components Taz1 or Rap1 (mammalian TRF1/2 or RAP1 homologues, respectively) showed higher GCR rates compared to wild-type, accumulating large chromosome deletions. Genetic dissection of Rap1 revealed that Rap1 contributes to inhibiting GCRs via two independent pathways. The N-terminal BRCT-domain promotes faithful DSB repair, as determined by I-SceI-mediated DSB-induction experiments; moreover, association with Poz1 mediated by the central Poz1-binding domain regulates telomerase accessibility to DSBs, leading to suppression of de novo telomere additions. Our data highlight unappreciated functions of the shelterin components Taz1 and Rap1 in maintaining genome stability, specifically by preventing non-telomeric GCRs.
Collapse
Affiliation(s)
- Hiroyuki Irie
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Io Yamamoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yusuke Tarumoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Sanki Tashiro
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kurt W. Runge
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
32
|
Mennie AK, Moser BA, Hoyle A, Low RS, Tanaka K, Nakamura TM. Tpz1 TPP1 prevents telomerase activation and protects telomeres by modulating the Stn1-Ten1 complex in fission yeast. Commun Biol 2019; 2:297. [PMID: 31396577 PMCID: PMC6686008 DOI: 10.1038/s42003-019-0546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/15/2019] [Indexed: 12/24/2022] Open
Abstract
In both mammalian and fission yeast cells, conserved shelterin and CST (CTC1-STN1-TEN1) complexes play critical roles in protection of telomeres and regulation of telomerase, an enzyme required to overcome the end replication problem. However, molecular details that govern proper coordination among shelterin, CST, and telomerase have not yet been fully understood. Here, we establish a conserved SWSSS motif, located adjacent to the Lys242 SUMOylation site in the fission yeast shelterin subunit Tpz1, as a new functional regulatory element for telomere protection and telomere length homeostasis. The SWSSS motif works redundantly with Lys242 SUMOylation to promote binding of Stn1-Ten1 at telomere and sub-telomere regions to protect against single-strand annealing (SSA)-dependent telomere fusions, and to prevent telomerase accumulation at telomeres. In addition, we provide evidence that the SWSSS motif defines an unanticipated role of Tpz1 in limiting telomerase activation at telomeres to prevent uncontrolled telomere elongation.
Collapse
Affiliation(s)
- Amanda K. Mennie
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Bettina A. Moser
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Alice Hoyle
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Ross S. Low
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
- Present Address: Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ United Kingdom
| | - Katsunori Tanaka
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, 669-1337 Japan
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
33
|
Telomere DNA length-dependent regulation of DNA replication timing at internal late replication origins. Sci Rep 2019; 9:9946. [PMID: 31289327 PMCID: PMC6617677 DOI: 10.1038/s41598-019-46229-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
DNA replication is initiated at replication origins on chromosomes at their scheduled time during S phase of the cell cycle. Replication timing control is highly conserved among eukaryotes but the underlying mechanisms are not fully understood. Recent studies have revealed that some telomere-binding proteins regulate replication timing at late-replicating origins throughout the genome. To investigate the molecular basis of this process, we analyzed the effects of excessive elongation of telomere DNA on replication timing by deleting telomere-associated shelterin proteins in Schizosaccharomyces pombe. We found that rap1∆ and poz1∆ cells showed abnormally accelerated replication at internal late origins but not at subtelomere regions. These defects were suppressed by removal of telomere DNA and by deletion of the telomere-binding protein Taz1. Furthermore, Sds21—a counter protein phosphatase against Dbf4-dependent kinase (DDK)—accumulated at elongated telomeres in a Taz1-dependent manner but was depleted at internal late origins, indicating that highly elongated telomeres sequester Sds21 at telomeres and perturb replication timing at internal regions. These results demonstrate that telomere DNA length is an important determinant of replication timing at internal regions of chromosomes in eukaryotes.
Collapse
|
34
|
Kim C, Kim J, Kim S, Cook DE, Evans KS, Andersen EC, Lee J. Long-read sequencing reveals intra-species tolerance of substantial structural variations and new subtelomere formation in C. elegans. Genome Res 2019; 29:1023-1035. [PMID: 31123081 PMCID: PMC6581047 DOI: 10.1101/gr.246082.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/22/2019] [Indexed: 12/05/2022]
Abstract
Long-read sequencing technologies have contributed greatly to comparative genomics among species and can also be applied to study genomics within a species. In this study, to determine how substantial genomic changes are generated and tolerated within a species, we sequenced a C. elegans strain, CB4856, which is one of the most genetically divergent strains compared to the N2 reference strain. For this comparison, we used the Pacific Biosciences (PacBio) RSII platform (80×, N50 read length 11.8 kb) and generated de novo genome assembly to the level of pseudochromosomes containing 76 contigs (N50 contig = 2.8 Mb). We identified structural variations that affected as many as 2694 genes, most of which are at chromosome arms. Subtelomeric regions contained the most extensive genomic rearrangements, which even created new subtelomeres in some cases. The subtelomere structure of Chromosome VR implies that ancestral telomere damage was repaired by alternative lengthening of telomeres even in the presence of a functional telomerase gene and that a new subtelomere was formed by break-induced replication. Our study demonstrates that substantial genomic changes including structural variations and new subtelomeres can be tolerated within a species, and that these changes may accumulate genetic diversity within a species.
Collapse
Affiliation(s)
- Chuna Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea 08826
- Department of Biological Sciences, Seoul National University, Seoul, Korea 08826
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Seoul, Korea 08826
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea 08826
| | - Sunghyun Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea 08826
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Junho Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea 08826
- Department of Biological Sciences, Seoul National University, Seoul, Korea 08826
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea 08826
| |
Collapse
|
35
|
Goffová I, Vágnerová R, Peška V, Franek M, Havlová K, Holá M, Zachová D, Fojtová M, Cuming A, Kamisugi Y, Angelis KJ, Fajkus J. Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1090-1105. [PMID: 30834585 DOI: 10.1111/tpj.14304] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 05/11/2023]
Abstract
Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Radka Vágnerová
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Vratislav Peška
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Michal Franek
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Kateřina Havlová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Marcela Holá
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Dagmar Zachová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Miloslava Fojtová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Andrew Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Karel J Angelis
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
36
|
TASks for subtelomeres: when nucleosome loss and genome instability are favored. Curr Genet 2019; 65:1153-1160. [DOI: 10.1007/s00294-019-00986-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
|
37
|
Moldovan MA. Prokaryotic and Mitochondrial Linear Genomes: Their Genesis, Evolutionary Significance, and the Problem of Replicating Chromosome Ends. Mol Biol 2019. [DOI: 10.1134/s0026893319020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Shao Y, Lu N, Cai C, Zhou F, Wang S, Zhao Z, Zhao G, Zhou JQ, Xue X, Qin Z. A single circular chromosome yeast. Cell Res 2019; 29:87-89. [PMID: 30559437 PMCID: PMC6318310 DOI: 10.1038/s41422-018-0110-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ning Lu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chen Cai
- University of Chinese Academy of Sciences, 100049, Beijing, China
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Fan Zhou
- Wuhan Frasergen Bioinformatics Co, 430075, Wuhan, China
| | - Shanshan Wang
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, 100071, Beijing, China.
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 201203, Shanghai, China.
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Xiaoli Xue
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
39
|
van Emden TS, Forn M, Forné I, Sarkadi Z, Capella M, Martín Caballero L, Fischer-Burkart S, Brönner C, Simonetta M, Toczyski D, Halic M, Imhof A, Braun S. Shelterin and subtelomeric DNA sequences control nucleosome maintenance and genome stability. EMBO Rep 2018; 20:embr.201847181. [PMID: 30420521 DOI: 10.15252/embr.201847181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 11/09/2022] Open
Abstract
Telomeres and the shelterin complex cap and protect the ends of chromosomes. Telomeres are flanked by the subtelomeric sequences that have also been implicated in telomere regulation, although their role is not well defined. Here, we show that, in Schizosaccharomyces pombe, the telomere-associated sequences (TAS) present on most subtelomeres are hyper-recombinogenic, have metastable nucleosomes, and unusual low levels of H3K9 methylation. Ccq1, a subunit of shelterin, protects TAS from nucleosome loss by recruiting the heterochromatic repressor complexes CLRC and SHREC, thereby linking nucleosome stability to gene silencing. Nucleosome instability at TAS is independent of telomeric repeats and can be transmitted to an intrachromosomal locus containing an ectopic TAS fragment, indicating that this is an intrinsic property of the underlying DNA sequence. When telomerase recruitment is compromised in cells lacking Ccq1, DNA sequences present in the TAS promote recombination between chromosomal ends, independent of nucleosome abundance, implying an active function of these sequences in telomere maintenance. We propose that Ccq1 and fragile subtelomeres co-evolved to regulate telomere plasticity by controlling nucleosome occupancy and genome stability.
Collapse
Affiliation(s)
- Thomas S van Emden
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| | - Marta Forn
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Ignasi Forné
- Protein Analysis Unit (ZfP), BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Zsuzsa Sarkadi
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Matías Capella
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Lucía Martín Caballero
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| | - Sabine Fischer-Burkart
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Cornelia Brönner
- Department of Biochemistry, Gene Center, Ludwig Maximilians University of Munich, Munich, Germany
| | - Marco Simonetta
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - David Toczyski
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Mario Halic
- Department of Biochemistry, Gene Center, Ludwig Maximilians University of Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit (ZfP), BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany .,International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| |
Collapse
|
40
|
Matmati S, Vaurs M, Escandell JM, Maestroni L, Nakamura TM, Ferreira MG, Géli V, Coulon S. The fission yeast Stn1-Ten1 complex limits telomerase activity via its SUMO-interacting motif and promotes telomeres replication. SCIENCE ADVANCES 2018; 4:eaar2740. [PMID: 29774234 PMCID: PMC5955624 DOI: 10.1126/sciadv.aar2740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/29/2018] [Indexed: 06/01/2023]
Abstract
Mammalian CST (CTC1-STN1-TEN1) complex fulfills numerous functions including rescue of the stalled replication forks and termination of telomerase action. In fission yeast lacking the CTC1 ortholog, the Stn1-Ten1 complex restricts telomerase action via its sumoylation-mediated interaction with Tpz1TPP1. We identify a small ubiquitin-like modifier (SUMO)-interacting motif (SIM) in the carboxyl-terminal part of Stn1 and show that this domain is crucial for SUMO and Tpz1-SUMO interactions. Point mutations in the SIM (Stn1-226) lead to telomere elongation, impair Stn1-Ten1 recruitment to telomeres, and enhance telomerase binding, revealing that Stn1 SIM domain contributes to the inhibition of telomerase activity at chromosome ends. Our results suggest that Stn1-Ten1 promotes DNA synthesis at telomeres to limit single-strand DNA accumulation. We further demonstrate that Stn1 functions in the replication of telomeric and subtelomeric regions in a Taz1-independent manner. Genetic analysis reveals that misregulation of origin firing and/or telomerase inhibition circumvents the replication defects of the stn1-226 mutant. Together, our results show that the Stn1-Ten1 complex has a dual function at telomeres by limiting telomerase action and promoting chromosome end replication.
Collapse
Affiliation(s)
- Samah Matmati
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| | - Mélina Vaurs
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| | - José M. Escandell
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Laetitia Maestroni
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Miguel G. Ferreira
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institute for Research on Cancer and Aging, Nice, Faculty of Medicine, CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, Nice, France
| | - Vincent Géli
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| | - Stéphane Coulon
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| |
Collapse
|
41
|
Begnis M, Apte MS, Masuda H, Jain D, Wheeler DL, Cooper JP. RNAi drives nonreciprocal translocations at eroding chromosome ends to establish telomere-free linear chromosomes. Genes Dev 2018; 32:537-554. [PMID: 29654060 PMCID: PMC5959237 DOI: 10.1101/gad.311712.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
Abstract
In this study, Begnis et al. show that HAATI, which is a mode of telomerase-minus survival in which canonical telomeres are superseded by blocks of nontelomeric rDNA heterochromatin that have spread to all chromosome ends, is formed and maintained. Their findings demonstrate that HAATI arises when telomere loss triggers a newly recognized illegitimate recombination pathway that requires RNAi factors, uncovering novel roles for ncRNAs in assembling a telomere-free chromosome end protection device. The identification of telomerase-negative HAATI (heterochromatin amplification-mediated and telomerase-independent) cells, in which telomeres are superseded by nontelomeric heterochromatin tracts, challenged the idea that canonical telomeres are essential for chromosome linearity and raised crucial questions as to how such tracts translocate to eroding chromosome ends and confer end protection. Here we show that HAATI arises when telomere loss triggers a newly recognized illegitimate translocation pathway that requires RNAi factors. While RNAi is necessary for the translocation events that mobilize ribosomal DNA (rDNA) tracts to all chromosome ends (forming “HAATIrDNA” chromosomes), it is dispensable for HAATIrDNA maintenance. Surprisingly, Dicer (Dcr1) plays a separate, RNAi-independent role in preventing formation of the rare HAATI subtype in which a different repetitive element (the subtelomeric element) replaces telomeres. Using genetics and fusions between shelterin components and rDNA-binding proteins, we mapped the mechanism by which rDNA loci engage crucial end protection factors—despite the absence of telomere repeats—and secure end protection. Sequence analysis of HAATIrDNA genomes allowed us to propose RNA and DNA polymerase template-switching models for the mechanism of RNAi-triggered rDNA translocations. Collectively, our results reveal unforeseen roles for noncoding RNAs (ncRNAs) in assembling a telomere-free chromosome end protection device.
Collapse
Affiliation(s)
- Martina Begnis
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, United Kingdom
| | - Manasi S Apte
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hirohisa Masuda
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Devanshi Jain
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - David Lee Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
42
|
Limbo O, Yamada Y, Russell P. Mre11-Rad50-dependent activity of ATM/Tel1 at DNA breaks and telomeres in the absence of Nbs1. Mol Biol Cell 2018; 29:1389-1399. [PMID: 29851556 PMCID: PMC5994899 DOI: 10.1091/mbc.e17-07-0470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) protein complex and ATM/Tel1 kinase protect genome integrity through their functions in DNA double-strand break (DSB) repair, checkpoint signaling, and telomere maintenance. Nbs1 has a conserved C-terminal motif that binds ATM/Tel1, but the full extent and significance of ATM/Tel1 interactions with MRN are unknown. Here, we show that Tel1 overexpression bypasses the requirement for Nbs1 in DNA damage signaling and telomere maintenance. These activities require Mre11-Rad50, which localizes to DSBs and bind Tel1 in the absence of Nbs1. Fusion of the Tel1-binding motif of Nbs1 to Mre11 is sufficient to restore Tel1 signaling in nbs1Δ cells. Tel1 overexpression does not restore Tel1 signaling in cells carrying the rad50-I1192W mutation, which impairs the ability of Mre11-Rad50 to form the ATP-bound closed conformation. From these findings, we propose that Tel1 has a high-affinity interaction with the C-terminus of Nbs1 and a low-affinity association with Mre11-Rad50, which together accomplish efficient localization and activation of Tel1 at DSBs and telomeres.
Collapse
Affiliation(s)
- Oliver Limbo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Yoshiki Yamada
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Paul Russell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
43
|
LARP7-like protein Pof8 regulates telomerase assembly and poly(A)+TERRA expression in fission yeast. Nat Commun 2018; 9:586. [PMID: 29422503 PMCID: PMC5805695 DOI: 10.1038/s41467-018-02874-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Telomerase is a reverse transcriptase complex that ensures stable maintenance of linear eukaryotic chromosome ends by overcoming the end replication problem, posed by the inability of replicative DNA polymerases to fully replicate linear DNA. The catalytic subunit TERT must be assembled properly with its telomerase RNA for telomerase to function, and studies in Tetrahymena have established that p65, a La-related protein 7 (LARP7) family protein, utilizes its C-terminal xRRM domain to promote assembly of the telomerase ribonucleoprotein (RNP) complex. However, LARP7-dependent telomerase complex assembly has been considered as unique to ciliates that utilize RNA polymerase III to transcribe telomerase RNA. Here we show evidence that fission yeast Schizosaccharomyces pombe utilizes the p65-related protein Pof8 and its xRRM domain to promote assembly of RNA polymerase II-encoded telomerase RNA with TERT. Furthermore, we show that Pof8 contributes to repression of the transcription of noncoding RNAs at telomeres. A functional telomerase complex requires that the catalytic TERT subunit be assembled with the template RNA TER1. Here the authors show that Pof8, a possible LARP7 family protein, is required for assembly of the telomerase complex, and repression of lncRNA transcripts at telomeres in S. pombe.
Collapse
|
44
|
Sugihara A, Nguyen LC, Shamim HM, Iida T, Nakase M, Takegawa K, Senda M, Jida S, Ueno M. Mutation in fission yeast phosphatidylinositol 4-kinase Pik1 is synthetically lethal with defect in telomere protection protein Pot1. Biochem Biophys Res Commun 2018; 496:1284-1290. [DOI: 10.1016/j.bbrc.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/01/2018] [Indexed: 01/22/2023]
|
45
|
Hou H, Cooper JP. Stretching, scrambling, piercing and entangling: Challenges for telomeres in mitotic and meiotic chromosome segregation. Differentiation 2018; 100:12-20. [PMID: 29413748 DOI: 10.1016/j.diff.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/24/2022]
Abstract
The consequences of telomere loss or dysfunction become most prominent when cells enter the nuclear division stage of the cell cycle. At this climactic stage when chromosome segregation occurs, telomere fusions or entanglements can lead to chromosome breakage, wreaking havoc on genome stability. Here we review recent progress in understanding the mechanisms of detangling and breaking telomere associations at mitosis, as well as the unique ways in which telomeres are processed to allow regulated sister telomere separation. Moreover, we discuss unexpected roles for telomeres in orchestrating nuclear envelope breakdown and spindle formation, crucial processes for nuclear division. Finally, we discuss the discovery that telomeres create microdomains in the nucleus that are conducive to centromere assembly, cementing the unexpectedly influential role of telomeres in mitosis.
Collapse
Affiliation(s)
- Haitong Hou
- Telomere Biology Section, LBMB, NCI, NIH, Building 37, Room 6050, Bethesda MD 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, LBMB, NCI, NIH, Building 37, Room 6050, Bethesda MD 20892, USA.
| |
Collapse
|
46
|
Habib AGK, Sugiura K, Ueno M. Chromosome passenger complex is required for the survival of cells with ring chromosomes in fission yeast. PLoS One 2018; 13:e0190523. [PMID: 29298360 PMCID: PMC5752009 DOI: 10.1371/journal.pone.0190523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Ring chromosomes are circular chromosomal abnormalities that have been reported in association with some genetic disorders and cancers. In Schizosaccharomyces pombe, lack of function of protection of telomere 1 (Pot1) or telomerase catalytic subunit (Trt1) results in survivors with circular chromosomes. Hitherto, it is poorly understood how cells with circular chromosomes survive and how circular chromosomes are maintained. Fission yeast Cut17/Bir1, Ark1, Pic1, and Nbl1 is a conserved chromosome passenger complex (CPC) functioning mainly throughout mitosis. Here, using a temperature-sensitive mutant of CPC subunits, we determined that CPC is synthetically lethal in combination with either Pot1 or Trt1. The pot1Δ pic1-T269 double mutant, which has circular chromosomes, showed a high percentage of chromosome mis-segregation and DNA damage foci at 33°C. We furthermore found that neither Shugoshin Sgo2 nor heterochromatin protein Swi6, which contribute to the centromeric localization of CPC, were required for the survival in the absence of Pot1. Both the pot1Δ sgo2Δ and pot1Δ swi6Δ double mutants displayed a high percentage of DNA damage foci, but a low percentage of chromosome mis-segregation, suggesting the link between the high percentage of chromosome mis-segregation and the lethality of the CPC pot1Δ double mutant. Our results suggest that CPC is required for the survival of cells with circular chromosomes and sheds light on the possible roles of CPC in the maintenance of circular chromosomes.
Collapse
Affiliation(s)
- Ahmed G. K. Habib
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Kanako Sugiura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
47
|
Jamieson K, McNaught KJ, Ormsby T, Leggett NA, Honda S, Selker EU. Telomere repeats induce domains of H3K27 methylation in Neurospora. eLife 2018; 7:31216. [PMID: 29297465 PMCID: PMC5752202 DOI: 10.7554/elife.31216] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Development in higher organisms requires selective gene silencing, directed in part by di-/trimethylation of lysine 27 on histone H3 (H3K27me2/3). Knowledge of the cues that control formation of such repressive Polycomb domains is extremely limited. We exploited natural and engineered chromosomal rearrangements in the fungus Neurospora crassa to elucidate the control of H3K27me2/3. Analyses of H3K27me2/3 in strains bearing chromosomal rearrangements revealed both position-dependent and position-independent facultative heterochromatin. We found that proximity to chromosome ends is necessary to maintain, and sufficient to induce, transcriptionally repressive, subtelomeric H3K27me2/3. We ascertained that such telomere-proximal facultative heterochromatin requires native telomere repeats and found that a short array of ectopic telomere repeats, (TTAGGG)17, can induce a large domain (~225 kb) of H3K27me2/3. This provides an example of a cis-acting sequence that directs H3K27 methylation. Our findings provide new insight into the relationship between genome organization and control of heterochromatin formation.
Collapse
Affiliation(s)
- Kirsty Jamieson
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Kevin J McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Tereza Ormsby
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Neena A Leggett
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Shinji Honda
- Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| |
Collapse
|
48
|
Maestroni L, Audry J, Matmati S, Arcangioli B, Géli V, Coulon S. Eroded telomeres are rearranged in quiescent fission yeast cells through duplications of subtelomeric sequences. Nat Commun 2017; 8:1684. [PMID: 29167439 PMCID: PMC5700057 DOI: 10.1038/s41467-017-01894-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
While the mechanisms of telomere maintenance has been investigated in dividing cells, little is known about the stability of telomeres in quiescent cells and how dysfunctional telomeres are processed in non-proliferating cells. Here we examine the stability of telomeres in quiescent cells using fission yeast. While wild type telomeres are stable in quiescence, we observe that eroded telomeres were highly rearranged during quiescence in telomerase minus cells. These rearrangements depend on homologous recombination (HR) and correspond to duplications of subtelomeric regions. HR is initiated at newly identified subtelomeric homologous repeated sequences (HRS). We further show that TERRA (Telomeric Repeat-containing RNA) is increased in post-mitotic cells with short telomeres and correlates with telomere rearrangements. Finally, we demonstrate that rearranged telomeres prevent cells to exit properly from quiescence. Taken together, we describe in fission yeast a mode of telomere repair mechanism specific to post-mitotic cells that is likely promoted by transcription. How both telomere stability is regulated and dysfunctional telomeres processed in quiescent cells is poorly understood. Here, the authors provide evidence that eroded telomeres in quiescent fission yeast are rearranged by homologous recombination through duplications of subtelomeric sequences.
Collapse
Affiliation(s)
- Laetitia Maestroni
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France
| | - Julien Audry
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France
| | - Samah Matmati
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France
| | - Benoit Arcangioli
- Dynamics of the Genome, UMR 3225 Genomes & Genetics; Institut Pasteur, 75015, Paris, France
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France.
| | - Stéphane Coulon
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, Equipe labélisée Ligue contre le cancer, 13273, Marseille, France.
| |
Collapse
|
49
|
Shamim HM, Minami Y, Tanaka D, Ukimori S, Murray JM, Ueno M. Fission yeast strains with circular chromosomes require the 9-1-1 checkpoint complex for the viability in response to the anti-cancer drug 5-fluorodeoxyuridine. PLoS One 2017; 12:e0187775. [PMID: 29121084 PMCID: PMC5679574 DOI: 10.1371/journal.pone.0187775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Thymidine kinase converts 5-fluorodeoxyuridine to 5-fluorodeoxyuridine monophosphate, which causes disruption of deoxynucleotide triphosphate ratios. The fission yeast Schizosaccharomyces pombe does not express endogenous thymidine kinase but 5-fluorodeoxyuridine inhibits growth when exogenous thymidine kinase is expressed. Unexpectedly, we found that 5-fluorodeoxyuridine causes S phase arrest even without thymidine kinase expression. DNA damage checkpoint proteins such as the 9-1-1 complex were required for viability in the presence of 5-fluorodeoxyuridine. We also found that strains with circular chromosomes, due to loss of pot1+, which have higher levels of replication stress, were more sensitive to loss of the 9-1-1 complex in the presence of 5-fluorodeoxyuridine. Thus, our results suggest that strains carrying circular chromosomes exhibit a greater dependence on DNA damage checkpoints to ensure viability in the presence of 5-fluorodeoxyuridine compared to stains that have linear chromosomes.
Collapse
Affiliation(s)
- Hossain Mohammad Shamim
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukako Minami
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Daiki Tanaka
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinobu Ukimori
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Johanne M. Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
50
|
Tashiro S, Nishihara Y, Kugou K, Ohta K, Kanoh J. Subtelomeres constitute a safeguard for gene expression and chromosome homeostasis. Nucleic Acids Res 2017; 45:10333-10349. [PMID: 28981863 PMCID: PMC5737222 DOI: 10.1093/nar/gkx780] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
The subtelomere, a telomere-adjacent chromosomal domain, contains species-specific homologous DNA sequences, in addition to various genes. However, the functions of subtelomeres, particularly subtelomeric homologous (SH) sequences, remain elusive. Here, we report the first comprehensive analyses of the cellular functions of SH sequences in the fission yeast, Schizosaccharomyces pombe. Complete removal of SH sequences from the genome revealed that they are dispensable for mitosis, meiosis and telomere length control. However, when telomeres are lost, SH sequences prevent deleterious inter-chromosomal end fusion by facilitating intra-chromosomal circularization. Surprisingly, SH-deleted cells sometimes survive telomere loss through inter-chromosomal end fusions via homologous loci such as LTRs, accompanied by centromere inactivation of either chromosome. Moreover, SH sequences function as a buffer region against the spreading of subtelomeric heterochromatin into the neighboring gene-rich regions. Furthermore, we found a nucleosome-free region at the subtelomeric border, which may be a second barrier that blocks heterochromatin spreading into the subtelomere-adjacent euchromatin. Thus, our results demonstrate multiple defense functions of subtelomeres in chromosome homeostasis and gene expression.
Collapse
Affiliation(s)
- Sanki Tashiro
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Nishihara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuto Kugou
- Department of Life Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Junko Kanoh
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|