1
|
Wen P, Dirisala A, Guo H, Liu X, Kobayashi S, Kinoh H, Anada T, Tanaka M, Kataoka K, Li J. Engineering durable antioxidative nanoreactors as synthetic organelles for autoregulatory cellular protection against oxidative stress. J Control Release 2025; 382:113683. [PMID: 40185336 DOI: 10.1016/j.jconrel.2025.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Polymersomes, which are polymer vesicles containing an aqueous cavity enclosed in a polymer membrane, hold enormous potential for biomedical applications. In recent years, enzyme-loaded polymersomes, serving as therapeutic nanoreactors, have drawn substantial interest. A crucial requirement for effective catalytic function is to impart semipermeability to the vesicular membrane while maintaining its role as a protective barrier for encapsulated enzymes. However, achieving both long-term stability and optimal membrane permeability for sustained functionality remains a challenge in many reported examples. In this study, we introduce ROS-responsive polyion complex vesicles (PICsomes) loaded with antioxidant enzymes (catalase) as antioxidative nanoreactors. The intrinsic semipermeability and crosslinked network structure of the membrane enable long-lasting catalytic function of catalase. The nanoreactor exhibits inherent cell-protective properties against oxidative stress in fibroblasts due to the ROS-scavenging ability of polymers. Notably, triggered by ROS, the nanoreactor demonstrates autoregulatory control of redox homeostasis. This is because the cysteamine released by PICsomes not only acts as a free radical scavenger but also facilitates the transport of L-cysteine into cells, thereby enhancing glutathione (GSH) biosynthesis. The results further demonstrate significant long blood circulation of PICsomes loaded with catalase and strong protection effects against bloodstream oxidative stress, paving the way for the further development of truly effective in vivo therapeutics. These findings underscore the potential of the engineered antioxidative nanoreactor with durable functionality as synthetic organelles for cellular protection against oxidative stress.
Collapse
Affiliation(s)
- Panyue Wen
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Haochen Guo
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Xueying Liu
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroaki Kinoh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
| | - Junjie Li
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Qiu J, Chen M, Cai Z, Chen X, Pang Z, Chen H, Huang T. Cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates plant stem cell maintenance under oxidative stress. PLANT CELL REPORTS 2025; 44:121. [PMID: 40358786 DOI: 10.1007/s00299-025-03507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
KEY MESSAGE GAPDH regulates plant stem cell maintenance. WUSCHEL (WUS) and WUSCHEL-RELATED HOMEOBOX (WOX) family proteins are vital for maintaining the homeostasis of stem cells, which is necessary for the continuous growth and the development of plants. Plants frequently encounter environmental stress that can lead to an increase in reactive oxygen species, such as hydrogen peroxide (H2O2). However, the exact ways in which plant stem cells sense and respond to H2O2 signals remain unclear. This research indicates that cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) helps regulate stem cell maintenance in Arabidopsis in response to H2O2. Hydrogen peroxide causes the relocation of two cytosolic GAPDH proteins, GAPC1 and GAPC2, from the cytoplasm to the nucleus. These isoforms interact with WUS/WOX proteins and modulate the expression of the WUS/WOX gene by binding to its promoter. When the expression of GAPC1 and GAPC2 is decreased, stem cell homeostasis and overall plant growth become more sensitive to H2O2. Thus, cytosolic GAPDH may serve as a sensor for H2O2, influencing the maintenance of plant stem cells under oxidative stress.
Collapse
Affiliation(s)
- Jiaqi Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Minghuang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Zheqi Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xiaofen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Zelong Pang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Hao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Tao Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China.
| |
Collapse
|
3
|
Jwa NS, Hwang BK. Ferroptosis in plant immunity. PLANT COMMUNICATIONS 2025; 6:101299. [PMID: 40057824 DOI: 10.1016/j.xplc.2025.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/13/2025]
Abstract
Plant cell death is mediated by calcium, iron, and reactive oxygen species (ROS) signaling in plant immunity. The reconstruction of a nucleotide-binding leucine-rich-repeat receptor (NLR) supramolecular structure, called the resistosome, is intimately involved in the hypersensitive response (HR), a type of cell death involved in effector-triggered immunity (ETI). Iron is a crucial redox catalyst in various cellular reactions. Ferroptosis is a regulated, non-apoptotic form of iron- and ROS-dependent cell death in plants. Pathogen infections trigger iron accumulation and ROS bursts in plant cells, leading to lipid peroxidation via the Fenton reaction and subsequent ferroptosis in plant cells similar to that in mammalian cells. The small-molecule inducer erastin triggers iron-dependent lipid ROS accumulation and glutathione depletion, leading to HR cell death in plant immunity. Calcium (Ca2+) is another major mediator of plant immunity. Cytoplasmic Ca2+ influx through calcium-permeable channels, the resistosomes, mediates iron- and ROS-dependent ferroptotic cell death under reduced glutathione reductase (GR) expression levels in the ETI response. Acibenzolar-S-methyl (ASM), a plant defense activator, enhances Ca2+ influx, ROS and iron accumulation, and lipid peroxidation to trigger ferroptotic cell death. These breakthroughs suggest a potential role for Ca2+ signaling in ferroptosis and its coordination with iron and ROS signaling in plant immunity. In this review, we highlight the essential roles of calcium, iron, and ROS signaling in ferroptosis during plant immunity and discuss advances in the understanding of how Ca2+-mediated ferroptotic cell death orchestrates effective plant immune responses against invading pathogens.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea.
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
4
|
Brand C, Newton-Foot M, Grobbelaar M, Whitelaw A. Antibiotic-induced stress responses in Gram-negative bacteria and their role in antibiotic resistance. J Antimicrob Chemother 2025; 80:1165-1184. [PMID: 40053699 PMCID: PMC12046405 DOI: 10.1093/jac/dkaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Bacteria adapt to changes in their natural environment through a network of stress responses that enable them to alter their gene expression to survive in the presence of stressors, including antibiotics. These stress responses can be specific to the type of stress and the general stress response can be induced in parallel as a backup mechanism. In Gram-negative bacteria, various envelope stress responses are induced upon exposure to antibiotics that cause damage to the cell envelope or result in accumulation of toxic metabolic by-products, while the heat shock response is induced by antibiotics that cause misfolding or accumulation of protein aggregates. Antibiotics that result in the production of reactive oxygen species (ROS) induce the oxidative stress response and those that cause DNA damage, directly and through ROS production, induce the SOS response. These responses regulate the expression of various proteins that work to repair the damage that has been caused by antibiotic exposure. They can contribute to antibiotic resistance by refolding, degrading or removing misfolded proteins and other toxic metabolic by-products, including removal of the antibiotics themselves, or by mutagenic DNA repair. This review summarizes the stress responses induced by exposure to various antibiotics, highlighting their interconnected nature, as well the roles they play in antibiotic resistance, most commonly through the upregulation of efflux pumps. This can be useful for future investigations targeting these responses to combat antibiotic-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Chanté Brand
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Melanie Grobbelaar
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrew Whitelaw
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
5
|
Ye D, Liu Y, Li J, Zhou J, Cao J, Wu Y, Wang X, Fang Y, Ye X, Zou J, Ma Q. Competitive dynamics and balance between Streptococcus mutans and commensal streptococci in oral microecology. Crit Rev Microbiol 2025; 51:532-543. [PMID: 39132685 DOI: 10.1080/1040841x.2024.2389386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Dental caries, as a biofilm-related disease, is closely linked to dysbiosis in microbial ecology within dental biofilms. Beyond its impact on oral health, bacteria within the oral cavity pose systemic health risks by potentially entering the bloodstream, thereby increasing susceptibility to bacterial endocarditis, among other related diseases. Streptococcus mutans, a principal cariogenic bacterium, possesses virulence factors crucial to the pathogenesis of dental caries. Its ability to adhere to tooth surfaces, produce glucans for biofilm formation, and metabolize sugars into lactic acid contributes to enamel demineralization and the initiation of carious lesions. Its aciduricity and ability to produce bacteriocins enable a competitive advantage, allowing it to thrive in acidic environments and dominate in changing oral microenvironments. In contrast, commensal streptococci, such as Streptococcus sanguinis, Streptococcus gordonii, and Streptococcus salivarius, act as primary colonizers and compete with S. mutans for adherence sites and nutrients during biofilm formation. This competition involves the production of alkali, peroxides, and antibacterial substances, thereby inhibiting S. mutans growth and maintaining microbial balance. This dynamic interaction influences the balance of oral microbiota, with disruptions leading to shifts in microbial composition that are marked by rapid increases in S. mutans abundance, contributing to the onset of dental caries. Thus, understanding the dynamic interactions between commensal and pathogenic bacteria in oral microecology is important for developing effective strategies to promote oral health and prevent dental caries. This review highlights the roles and competitive interactions of commensal bacteria and S. mutans in oral microecology, emphasizing the importance of maintaining oral microbial balance for health, and discusses the pathological implications of perturbations in this balance.
Collapse
Affiliation(s)
- Dingwei Ye
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingwei Cao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yumeng Wu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwen Fang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Imlay JA. The Barrier Properties of Biological Membranes Dictate How Cells Experience Oxidative Stress. Mol Microbiol 2025; 123:454-463. [PMID: 40091849 PMCID: PMC12051229 DOI: 10.1111/mmi.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Molecular oxygen, superoxide, and hydrogen peroxide are related oxidants that can each impair the growth of microorganisms. Strikingly, these species exhibit large differences in their abilities to cross biological membranes. This Perspective explains the basis of those differences, and it describes natural situations in which the permeability of membranes to oxidants determines the amount of stress that a bacterium experiences.
Collapse
Affiliation(s)
- James A. Imlay
- Department of MicrobiologyUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
7
|
Li X, Guan R, Zhang S. Factors Contributing to the High Malignancy Level of Cholangiocarcinoma and Its Epidemiology: Literature Review and Data. BIOLOGY 2025; 14:351. [PMID: 40282217 PMCID: PMC12025278 DOI: 10.3390/biology14040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
CCA is a highly desmoplastic malignant cancer and is the second most common primary liver malignancy after hepatocellular carcinoma (HCC), accounting for approximately 15% of all primary liver tumors. CCA has a poor prognosis, with an average five-year survival rate of 9%, which is lower than that of pancreatic cancer. Although considerable efforts have been invested into the genomics, epigenetics, and risk factors, very little is known about what might have been the key causes for the high malignancy level of CCA. In this review, we analyze the incidence and mortality of CCA in different regions based on data from 1994 to 2022 obtained from the International Agency for Research on Cancer (IARC), discuss the current status of treatment of the disease, and focus on what might be the main factors contributing to the high malignancy level of CCA: alkalosis caused by the Fenton reaction, hypoxia, and the TIME. The review includes studies published from 1979 to 2024, aiming to provide an updated synthesis of basic early classical theoretical knowledge and current knowledge about CCA. By revealing the epidemiological characteristics of CCA, the potential mechanisms of high malignancy, and the current challenges of treatment, this review aims to provide new directions for future cancer research, promote the development of personalized treatment strategies, and facilitate a deeper understanding and the more effective management of CCA worldwide.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China;
| | - Renchu Guan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China;
| | - Shuangquan Zhang
- School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Ikeda K, Shiota Y. Theoretical Study of Guanine Oxidation Catalyzed by a Ruthenium Complex with an Oxygen Molecule. Inorg Chem 2025; 64:4330-4338. [PMID: 39999400 DOI: 10.1021/acs.inorgchem.4c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The oxidation of an aromatic ring in guanosine monophosphate by a RuII-aqua complex, [RuII(OH2)(η5-C5Me5)(bpy)]+ (bpy = 2,2'-bipyridine), using O2 gases in an aqueous solution has been reported (Takenaka et al. Chem. Asian J. 2018, 13, 3480-3184). However, its mechanism has not been sufficiently clarified to facilitate the design of optimal catalysts. To clarify the mechanism of aerobic oxidation catalyzed by Ru complexes, we employed density functional theory (DFT) calculations to analyze the oxidation of 9-methyl guanine, as a model of the substrate. Although the ligand-exchange reaction between the H2O and O2 molecules yielded a more stable RuIV-peroxo complex, [RuIV(η2-O2)(η5-C5Me5)(bpy)]+, subsequent reactions were initiated by a RuIII-superoxo complex, [RuIII(η1-O2•-)(η5-C5Me5)(bpy)]+. We confirmed the plausible path for the homolytic cleavage of the O-O bond in [RuIII(η1-O2•-)(η5-C5Me5)(bpy)]+ to form a RuIV-oxo complex, [RuIV(O)(η5-C5Me5)(bpy)]+, with the activation free energy (ΔGa) of 12.2 kcal/mol. The subsequent oxidation of the substrate by [RuIV(O)(η5-C5Me5)(bpy)]+ facilitated the formation of an arenium-like intermediate to form the product compounds, where the energy in the transition state corresponding to the oxidation of the substrate is 21.5 kcal/mol. An additional reaction path for the oxidation of the substrate by [RuIII(η1-O2•-)(η5-C5Me5)(bpy)]+ must exceed the high energy in the transition state (31.7 kcal/mol), indicating that [RuIV(O)(η5-C5Me5)(bpy)]+ catalyzed the oxidation of the substrate as reactive species. Conversely, the Cp*-ligand oxidation, which induced catalyst degradation, requires ΔGa of 21.4 kcal/mol to exceed the transition state. Overall, our DFT study offers insight into the reaction mechanism of aerobic oxidation involving inert chemical bonds, facilitating the design of appropriate catalysts for the reaction.
Collapse
Affiliation(s)
- Kei Ikeda
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science (IRCCS), Kyushu University, Fukuoka 819-0395, Japan
- Mitsubishi Chemical Corporation, Science & Innovation Center, Yokohama 227-8502, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science (IRCCS), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Olatunji M, Liu Y. RNA damage and its implications in genome stability. DNA Repair (Amst) 2025; 147:103821. [PMID: 40043352 DOI: 10.1016/j.dnarep.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Endogenous and environmental stressors can damage DNA and RNA to compromise genome and transcriptome stability and integrity in cells, leading to genetic instability and diseases. Recent studies have demonstrated that RNA damage can also modulate genome stability via RNA-templated DNA synthesis, suggesting that it is essential to maintain RNA integrity for the sustainment of genome stability. However, little is known about RNA damage and repair and their roles in modulating genome stability. Current efforts have mainly focused on revealing RNA surveillance pathways that detect and degrade damaged RNA, while the critical role of RNA repair is often overlooked. Due to their abundance and susceptibility to nucleobase damaging agents, it is essential for cells to evolve robust RNA repair mechanisms that can remove RNA damage, maintaining RNA integrity during gene transcription. This is supported by the discovery of the alkylated RNA nucleobase repair enzyme human AlkB homolog 3 that can directly remove the methyl group on damaged RNA nucleobases, predominantly in the nucleus of human cells, thereby restoring the integrity of the damaged RNA nucleobases. This is further supported by the fact that several DNA repair enzymes can also process RNA damage. In this review, we discuss RNA damage and its effects on cellular function, DNA repair, genome instability, and potential RNA damage repair mechanisms. Our review underscores the necessity for future research on RNA damage and repair and their essential roles in modulating genome stability.
Collapse
Affiliation(s)
- Mustapha Olatunji
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA; Department of Chemistry and Biochemistry, and Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
10
|
Walker AM, Abbondanzieri EA, Meyer AS. Live to fight another day: The bacterial nucleoid under stress. Mol Microbiol 2025; 123:168-175. [PMID: 38690745 PMCID: PMC11527795 DOI: 10.1111/mmi.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The bacterial chromosome is both highly supercoiled and bound by an ensemble of proteins and RNA, causing the DNA to form a compact structure termed the nucleoid. The nucleoid serves to condense, protect, and control access to the bacterial chromosome through a variety of mechanisms that remain incompletely understood. The nucleoid is also a dynamic structure, able to change both in size and composition. The dynamic nature of the bacterial nucleoid is particularly apparent when studying the effects of various stresses on bacteria, which require cells to protect their DNA and alter patterns of transcription. Stresses can lead to large changes in the organization and composition of the nucleoid on timescales as short as a few minutes. Here, we summarize some of the recent advances in our understanding of how stress can alter the organization of bacterial chromosomes.
Collapse
Affiliation(s)
- Azra M. Walker
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
11
|
Haldar R, Halder P, Koley H, Miyoshi SI, Das S. A newly developed oral infection mouse model of shigellosis for immunogenicity and protective efficacy studies of a candidate vaccine. Infect Immun 2025; 93:e0034624. [PMID: 39692481 PMCID: PMC11784180 DOI: 10.1128/iai.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
Shigella infection poses a significant public health challenge in the developing world. However, lack of a widely available mouse model that replicates human shigellosis creates a major bottleneck to better understanding of disease pathogenesis and development of newer drugs and vaccines. BALB/c mice pre-treated with streptomycin and iron (FeCl3) plus desferrioxamine intraperitoneally followed by oral infection with virulent Shigella flexneri 2a resulted in diarrhea, loss of body weight, bacterial colonization and progressive colitis characterized by disruption of epithelial lining, loss of crypt architecture with goblet cell depletion, increased polymorphonuclear infiltration into the mucosa, submucosal swelling (edema), and raised proinflammatory cytokines and chemokines in the large intestine. To evaluate the usefulness of the model for vaccine efficacy studies, mice were immunized intranasally with a recombinant protein vaccine containing Shigella invasion protein invasion plasmid antigen B (IpaB). Vaccinated mice conferred protection against Shigella, indicating that the model is suitable for testing of vaccine candidates. To protect both Shigella and Salmonella, a chimeric recombinant vaccine (rIpaB-T2544) was developed by fusing IpaB with Salmonella outer membrane protein T2544. Vaccinated mice developed antigen-specific serum IgG and IgA antibodies and a balanced Th1/Th2 response and were protected against oral challenge with Shigella (S. flexneri 2a, Shigella dysenteriae, and Shigella sonnei) using our present mouse model and Salmonella (Salmonella Typhi and Paratyphi) using an iron overload mouse model. We describe here the development of an oral Shigella infection model in wild-type mouse. This model was successfully used to demonstrate the immunogenicity and protective efficacy of a candidate protein subunit vaccine against Shigella.
Collapse
MESH Headings
- Animals
- Dysentery, Bacillary/prevention & control
- Dysentery, Bacillary/immunology
- Dysentery, Bacillary/microbiology
- Dysentery, Bacillary/pathology
- Disease Models, Animal
- Mice
- Shigella Vaccines/immunology
- Shigella Vaccines/administration & dosage
- Mice, Inbred BALB C
- Antibodies, Bacterial/blood
- Shigella flexneri/immunology
- Female
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Immunoglobulin G/blood
Collapse
Affiliation(s)
- Risha Haldar
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Shin-ichi Miyoshi
- Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Santasabuj Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- Division of Biological Science, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
12
|
Tang Y, Yu X, He L, Tang M, Yue W, Chen R, Zhao J, Pan Q, Li W. A high-valence bismuth(V) nanoplatform triggers cancer cell death and anti-tumor immune responses with exogenous excitation-free endogenous H 2O 2- and O 2-independent ROS generation. Nat Commun 2025; 16:860. [PMID: 39833161 PMCID: PMC11747550 DOI: 10.1038/s41467-025-56110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous H2O2 and O2. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBiVO3-PEG) can generate reactive oxygen species in an excitation-free and H2O2- and O2-independent manner. Upon exposure to the tumor microenvironment, NaBiVO3-PEG undergoes continuous H+-accelerated hydrolysis with •OH and 1O2 generation through electron transfer-mediated BiV-to-BiIII conversion and lattice oxygen transformation. The simultaneous release of sodium counterions after endocytosis triggers caspase-1-mediated pyroptosis. NaBiVO3-PEG intratumorally administered initiates robust therapeutic efficacies against both primary and distant tumors and activates systemic immune responses to combat tumor metastasis. NaBiVO3-PEG intravenously administered can efficiently accumulate at the tumor site for further real-time computed tomography monitoring, immunotherapy, or alternative synergistic immune-radiotherapy. Overall, this work offers a nanomedicine based on high-valence bismuth(V) nanoplatform and underscores its great potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Yizhang Tang
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
- Future Material Innovation Center Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University 429 Zhangheng Road, Shanghai, P. R. China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China.
- Future Material Innovation Center Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University 429 Zhangheng Road, Shanghai, P. R. China.
| | - Liangrui He
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Meng Tang
- Department of Comprehensive Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College 17 Panjiayuan South Lane, Beijing, P. R. China
| | - Wenji Yue
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Ruitong Chen
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Jie Zhao
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China
| | - Qi Pan
- Department of Urology Shanghai General Hospital Shanghai Jiao Tong University School of Medicine 85 Wujin Road, Shanghai, P. R. China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China.
- Future Material Innovation Center Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University 429 Zhangheng Road, Shanghai, P. R. China.
| |
Collapse
|
13
|
Majou D. Effects of carbon dioxide on germination of Clostridium botulinum spores. Int J Food Microbiol 2025; 427:110958. [PMID: 39500211 DOI: 10.1016/j.ijfoodmicro.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
Clostridium botulinum is a Gram -positive, strict anaerobic, rod -shaped, spore -forming, SOD -positive and catalase -negative bacterium. Its antioxidant defenses are not suited to chronic oxidative stress. H₂O₂ and reactive oxygen species have deleterious effects on C. botulinum. Spore germination is one of the key steps in its development. However, the mechanisms that trigger this germination have yet to be described. To manage C. botulinum growth, it is essential to understand the mechanisms that underlie the germination process. In this article, a series of complementary cascade reactions with water -dissolved CO₂ as an initiating germinant, and bicarbonate is suggested. It seems clear that ATP production is achieved through the use of various anaplerotic reactions with dissolved CO₂ as the carbon source. In addition to the production of oxaloacetate, an intermediate metabolite pyruvate would also be synthesized. Pyruvate would initiate the second phase of germination by producing hydrogen, which is a powerful reducing agent, via two enzymes (pyruvate -ferredoxin oxidoreductase and ferredoxin hydrogenase). These conditions would activate proteolytic enzymes and would reduce and would break the disulfide bridges of the proteins that make up the spore coats, thereby opening them. Thus, the phosphoenolpyruvate -pyruvate -acetyl -CoA pathway, in the presence of CO₂, would play a major role in the germination of spores of C. botulinum.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| |
Collapse
|
14
|
Fleming AM, Burrows CJ. Why the ROS matters: One-electron oxidants focus DNA damage and repair on G-quadruplexes for gene regulation. DNA Repair (Amst) 2025; 145:103789. [PMID: 39580976 PMCID: PMC11757056 DOI: 10.1016/j.dnarep.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hydrogen peroxide is a precursor to reactive oxygen species (ROS) in cells because of its high reactivity with iron(II) carbonate complexes formed in the labile iron pool due to a high concentration of intracellular bicarbonate (25-100 mM). This chemistry leads to the formation of carbonate radical anion rather than hydroxyl radical, and unlike the latter ROS, CO3•- is a milder one-electron oxidant with high specificity for guanine oxidation in DNA and RNA. In addition to metabolism, another major source of DNA oxidation is inflammation which generates peroxynitrite, another precursor to CO3•- via reaction with dissolved CO2. The identity of the ROS is important because not all radicals react with DNA in the same way. Whereas hydroxyl radical forms adducts at all four bases and reacts with multiple positions on ribose leading to base loss and strand breaks, carbonate radical anion is focused on guanosine oxidation to yield 8-oxo-7,8-dihydroguanosine in nucleic acids and the nucleotide pool, a modification that can function epigenetically in the context of a G-quadruplex. DNA sequences of multiple adjacent guanines, as found in G-quadruplex-forming sequences of gene promoters, are particularly susceptible to oxidative damage, and the focusing of CO3•- chemistry on these sites can lead to a transcriptional response during base excision repair. In this pathway, AP-endonuclease 1 plays a key role in accelerating G-quadruplex folding as well as recruiting activating transcription factors to impact gene expression.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States.
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, United States.
| |
Collapse
|
15
|
Jun M, Vijayan V, Shin S, Nam HY, Song D, Choi J, Vasvani S, Cho SK, Park IK, Seo J. A bleomycin-mimicking manganese-porphyrin-conjugated mitochondria-targeting peptoid for cancer therapy. Bioorg Med Chem 2025; 117:118023. [PMID: 39602865 DOI: 10.1016/j.bmc.2024.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Bleomycin (BLM) is a natural product with established anticancer activity, attributed to its ability to cleave intracellular DNA. BLM complexes with iron (BLM-Fe3+) exhibit peroxidase-like activity, generate reactive oxygen species (ROS), and cause DNA cleavage. Inspired by the mechanism of BLM, we synthesized a novel conjugate of manganese tetraphenylporphyrin (MnTPP) with a biomimetic peptoid (i.e., oligo-N-substituted glycines); this conjugate harnesses the oxidative capabilities of manganese porphyrins combined with the cell-penetrating ability of a previously reported mitochondria-targeting peptoid (MTP). UV-vis spectroscopy showed the formation of Mn(V)-oxo porphyrin, a potent oxidative species, in the presence of hydrogen peroxide, simulating metallobleomycin reactivity. Biological assays demonstrated that MnTPP-MTP significantly boosted ROS production and induced cytotoxicity toward cancer cells, while sparing normal fibroblasts. Tetramethylrhodamine ethyl ester (TMRE) assay revealed reversible, dose-dependent impairment of the mitochondrial membrane potential by MnTPP-MTP treatment. DNA cleavage assays showed that MnTPP-MTP, specifically in the presence of hydrogen peroxide, could elicit substantial DNA damage, in a similar way to BLM. In vivo studies using liposome-encapsulated MnTPP-MTP (lipo-peptoid) indicated superior tumor suppression, without systemic toxicity, when administered locally. Immunofluorescence staining for Ki67 and TUNEL confirmed reduced cell proliferation and increased apoptosis, respectively, validating the anticancer efficacy of lipo-peptoid. These results suggest that MnTPP-MTP, particularly in a liposomal formulation, is a promising new chemotherapeutic agent with robust oxidative mechanisms, poised for further development and application against diverse cancers.
Collapse
Affiliation(s)
- Minjae Jun
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - Seungheon Shin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dasom Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Shyam Vasvani
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - Steve K Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
16
|
Subramaniam J, Aditi A, Arumugam K, Sri S, Bharathidevi SR, Ramkumar KM. Copper Dyshomeostasis and Diabetic Complications: Chelation Strategies for Management. Mini Rev Med Chem 2025; 25:277-292. [PMID: 39328144 DOI: 10.2174/0113895575308206240911104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024]
Abstract
Cuproptosis, an emerging concept in the field of diabetes research, presents a novel and promising perspective for the effective management of diabetes mellitus and its associated complications. Diabetes, characterized by chronic hyperglycemia, poses a substantial global health burden, with an increasing prevalence worldwide. Despite significant progress in our understanding of this complex metabolic disorder, optimal therapeutic strategies still remain elusive. The advent of cuproptosis, a term coined to describe copper-induced cellular cell death and its pivotal role in diabetes pathogenesis, opens new avenues for innovative interventions. Copper, an indispensable trace element, plays a pivotal role in a myriad of vital biological processes, encompassing energy production, bolstering antioxidant defenses, and altered cellular signaling. However, in the context of diabetes, this copper homeostasis is perturbed, driven by a combination of genetic predisposition, dietary patterns, and environmental factors. Excessive copper levels act as catalysts for oxidative stress, sparking intricate intracellular signaling cascades that further exacerbate metabolic dysfunction. In this review, we aim to explore the interrelationship between copper and diabetes comprehensively, shedding light on the intricate mechanisms underpinning cuproptosis. By unraveling the roles of copper transporters, copper-dependent enzymes, and cuproptotic signaling pathways, we seek to elucidate potential therapeutic strategies that harness the power of copper modulation in diabetes management. This insight sets the stage for a targeted approach to challenge the complex hurdles posed by diabetes, potentially transforming our therapeutic strategies in the ongoing fight against this pervasive global health concern.
Collapse
Affiliation(s)
- Jahnavi Subramaniam
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Aarya Aditi
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kishore Arumugam
- RS Mehta Jain Department of Biochemistry & Cell Biology, KBIRVO Block, Vision Research Foundation, Chennai, 600006, India
| | - Sathya Sri
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | | | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
17
|
Lemos LMS, Ọlọ Ba-Whẹ Nù OA, Olasupo IA, Balogun SO, Macho A, Pavan E, de Oliveira Martins DT. Brasiliensic acid: in vitro cytotoxic and genotoxic, in vivo acute toxicity and in silico pharmacological prediction of a new promising molecule. J Biomol Struct Dyn 2025; 43:197-210. [PMID: 38054294 DOI: 10.1080/07391102.2023.2280713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Brasiliensic acid (Bras) is a chromanone isolated from Calophyllum brasiliense Cambèss. bark extracts with confirmed potential activity on gastric ulcer and Helicobacter pylori infection. This study aimed to investigate the in vitro and in vivo toxicity of Bras and molecular docking studies on its interactions with the H. pylori virulence factors and selected gastric cancer-related proteins. Cytotoxicity was evaluated by alamarBlue© assay, genotoxicity by micronucleus and comet assays, and on cell cycle by flow cytometry, using Chinese hamster epithelial ovary cells. Bras was not cytotoxic to CHO-K1 cells, and caused no chromosomal aberrations, nor altered DNA integrity. Furthermore, Bras inhibited damages to DNA by H2O2 at 1.16 µM. No cell cycle arrest was observed, but apoptosis accounted for 31.2% of the cell death observed in the CHO-K1 at 24 h incubation of the IC50. Oral acute toxicity by Hippocratic screening test in mice showed no relevant behavioral change/mortality seen up to 1,000 mg/kg. The molecular docking approach indicated potential interactions between Bras and the various targets for peptic ulcer and gastric cancer, notably CagA virulence factor of H. pylori and VEGFR-2. In conclusion, Bras is apparently safe and an optimization for Bras can be considered for gastric ulcer and cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Larissa Maria Scalon Lemos
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
- Área de Farmacologia, Faculdade de Ciências da Saúde, Universidade do Estado de Mato Grosso (Unemat), Cáceres, MT, Brazil
| | | | | | - Sikiru Olaitan Balogun
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal da Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Antonio Macho
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA). Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| |
Collapse
|
18
|
Zhu W, Chen M, Zhang X, Su J, Zhang X, Nong Y, Wang B, Guo W, Xue Y, Wang D, Liao Y, Niu J, Hong Y, Drlica K, Zhao X. Antibiotic tolerance due to restriction of cAMP-Crp regulation by mannitol, a non-glucose-family PTS carbon source. mSphere 2024; 9:e0077224. [PMID: 39565127 DOI: 10.1128/msphere.00772-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Enzyme-IIA (EIIAGlc, Crr) of the phosphotransferase system (PTS) connects the uptake of glucose-family sugars to the cAMP-Crp regulatory cascade; phosphorylated EIIAGlc enhances cAMP-Crp activity, which then contributes to the antibiotic-mediated accumulation of reactive oxygen species (ROS) and cell death. Defects in PTS cause antibiotic and disinfectant tolerance. We report that mannitol, a carbon source whose uptake does not use EIIAGlc, reduces antibiotic-mediated killing of Escherichia coli without affecting antibiotic minimal inhibitory concentration. Thus, mannitol promotes antibiotic tolerance. The tolerance pathway was defined by the loss of ciprofloxacin lethality from the deletion of ptsI (first gene in PTS), mtlA (mannitol-specific Enzyme-II), cyaA (cAMP synthase), and crp (cAMP receptor protein) but not crr (EIIAGlc). A crp* mutant, which encodes a constitutively active Crp that bypasses the need for cAMP activation, also decreased mannitol-mediated antibiotic tolerance, as did exogenous cAMP. Thus, inhibition of antibiotic lethality by mannitol involves both PTS-mediated mannitol uptake and suppression of cAMP-Crp action, independent of EIIAGlc. Mannitol suppressed the downstream antibiotic-mediated transcription of genes involved in NADH production and cellular respiration, expression of a superoxide reporter gene (soxS), and accumulation of antibiotic-mediated ROS. Similar phenomena were observed with mannose and sorbitol, demonstrating that non-glucose PTS carbon sources can cause antibiotic tolerance by a novel path that reduces the ROS-promoting activity of cAMP-Crp. The work emphasizes that antibiotic tolerance, which contributes to disease relapse and the need for prolonged antibiotic treatment, can result from commonly consumed carbohydrates. This finding, plus mutations that interfere specifically with antibiotic lethality, makes tolerance a high probability event.IMPORTANCEBacterial tolerance constitutes a significant threat to anti-infective therapy and potentially to the use of disinfectants. Deficiency mutations that reduce glucose uptake, central carbon metabolism, and cellular respiration confer antibiotic/disinfectant tolerance by reducing the accumulation of reactive metabolites, such as reactive oxygen species. We identified novel environmental generators of tolerance by showing that non-glucose carbohydrates, such as mannitol, mannose, and sorbitol, generate tolerance to multiple antibiotic classes. Finding that these sugars inhibit a universal, stress-mediated death pathway emphasizes the potential danger of compounds that block the lethal response to severe stress. Immediate practical importance derives from mannitol being a popular food sweetener, a treatment for glaucoma, and a dehydrating agent for treating cerebral edema, including cases caused by bacterial infection: antibiotic tolerance could contra-indicate the use of mannitol and related carbohydrates during antibiotic treatment. Overall, the work shows that the presence of sugars must be considered during antimicrobial and perhaps disinfectant use.
Collapse
Affiliation(s)
- Weiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Miaomiao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Xue Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Jie Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Xinyang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Yuejuan Nong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Bowen Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Weihong Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Yunxin Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Yiqun Liao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Yuzhi Hong
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Life Sciences, Soochow University, Suzhou, Fujian Province, China
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, New Jersey, USA
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
19
|
Fleming AM, Dingman JC, Burrows CJ. CO 2 protects cells from iron-Fenton oxidative DNA damage in Escherichia coli and humans. Proc Natl Acad Sci U S A 2024; 121:e2419175121. [PMID: 39602264 PMCID: PMC11626140 DOI: 10.1073/pnas.2419175121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
While hydroxyl radical is commonly named as the Fenton product responsible for DNA and RNA damage in cells, here we demonstrate that the cellular reaction generates carbonate radical anion due to physiological bicarbonate levels. In human and Escherichia coli models, their transcriptomes were analyzed by RNA direct nanopore sequencing of ribosomal RNA and chromatography coupled to electrochemical detection to quantify oxidation products in order to follow the bicarbonate dependency in H2O2-induced oxidation. These transcriptomic studies identified physiologically relevant levels of bicarbonate focused oxidation on the guanine base favorably yielding 8-oxo-7,8-dihydroguanine (OG). In human cells, the bicarbonate-dependent oxidation was further analyzed in the metabolome by mass spectrometry, and a glycosylase-dependent qPCR assay to quantify oxidation sites in telomeres. These analyses further identify guanine as the site of oxidation when bicarbonate is present upon H2O2 exposure. Labile iron as the catalyst for forming carbonate radical anion was demonstrated by repeating the bicarbonate-dependent oxidations in cells experiencing ferroptosis, which had a >fivefold increase in redox-active iron, to find enhanced overall guanine-specific oxidation when bicarbonate was present. The complete profiling of nucleic acid oxidation in the genome, transcriptome, and metabolome supports the conclusion that a cellular Fe(II)-carbonate complex redirects the Fenton reaction to yield carbonate radical anion. Focusing H2O2-induced oxidative modification on one pathway is consistent with the highly evolved base excision repair suite of enzymes to locate G-oxidation sites for repair and gene regulation in response to oxidative stress.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Justin C. Dingman
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| |
Collapse
|
20
|
Klein VJ, Troøyen SH, Fernandes Brito L, Courtade G, Brautaset T, Irla M. Identification and characterization of a novel formaldehyde dehydrogenase in Bacillus subtilis. Appl Environ Microbiol 2024; 90:e0218123. [PMID: 39470218 DOI: 10.1128/aem.02181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/17/2024] [Indexed: 10/30/2024] Open
Abstract
Formaldehyde is a known toxic compound, and functional formaldehyde detoxification is crucial for the survival of all living cells. Such detoxification systems are of particular importance for methylotrophic microorganisms that rely on formaldehyde as a central metabolite in their one-carbon metabolism. Understanding formaldehyde dissimilation pathways in non-methylotrophic industrial microorganisms is necessary for ongoing research aiming at engineering methylotrophy into their metabolism (synthetic methylotrophy). There is a variety of formaldehyde dissimilation pathways across microorganisms, often based on the activity of formaldehyde dehydrogenases. In this study, we investigated the role of the yycR gene of Bacillus subtilis putatively encoding a novel, uncharacterized zinc-type alcohol dehydrogenase-like protein. We showed that the B. subtilis ΔyycR mutant displayed a reduced formaldehyde tolerance level and confirmed the enzymatic activity of recombinantly produced and purified YycR as formaldehyde dehydrogenase in vitro. Biochemical analyses demonstrated that YycR activity is optimal at 40°C, with the highest measured activity at pH 9.5, formaldehyde is the preferred substrate, and the kinetic constants are Km of 0.19 ± 0.05 mM and Vmax of 2.24 ± 0.05 nmol min-1. Altogether, we showed that YycR is a novel formaldehyde dehydrogenase with a role in formaldehyde detoxification in B. subtilis, providing valuable insights for future research on synthetic methylotrophy in this organism. IMPORTANCE Formaldehyde is a key metabolite in methanol assimilation for many methylotrophic microorganisms, and at the same time, it is toxic to all living cells, which means its intracellular concentrations must be tightly controlled. An in-depth understanding of methanol detoxification systems in industrially relevant microorganisms is a prerequisite for the introduction of methanol utilization pathways into their metabolism (synthetic methylotrophy). Bacillus subtilis, an industrial workhorse conventionally used for the production of enzymes, is known to possess two formaldehyde detoxification pathways. Here, we identify a novel formaldehyde dehydrogenase in this bacterium as a path towards creating innovative prospect strategies for strain engineering towards synthetic methylotrophy.
Collapse
Affiliation(s)
- Vivien Jessica Klein
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Susanne Hansen Troøyen
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Luciana Fernandes Brito
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Gaston Courtade
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
21
|
Boyd JM, Ryan Kaler K, Esquilín-Lebrón K, Pall A, Campbell CJ, Foley ME, Rios-Delgado G, Mustor EM, Stephens TG, Bovermann H, Greco TM, Cristea IM, Carabetta VJ, Beavers WN, Bhattacharya D, Skaar EP, Shaw LN, Stemmler TL. Fpa (YlaN) is an iron(II) binding protein that functions to relieve Fur-mediated repression of gene expression in Staphylococcus aureus. mBio 2024; 15:e0231024. [PMID: 39440976 PMCID: PMC11559061 DOI: 10.1128/mbio.02310-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Iron (Fe) is a trace nutrient required by nearly all organisms. As a result of the demand for Fe and the toxicity of non-chelated cytosolic ionic Fe, regulatory systems have evolved to tightly balance Fe acquisition and usage while limiting overload. In most bacteria, including the mammalian pathogen Staphylococcus aureus, the ferric uptake regulator (Fur) is the primary transcriptional regulator controlling the transcription of genes that code for Fe uptake and utilization proteins. Fpa (formerly YlaN) was demonstrated to be essential in Bacillus subtilis unless excess Fe is added to the growth medium, suggesting a role in Fe homeostasis. Here, we demonstrate that Fpa is essential in S. aureus upon Fe deprivation. Null fur alleles bypassed the essentiality of Fpa. The absence of Fpa abolished the derepression of Fur-regulated genes during Fe limitation. Bioinformatic analyses suggest that fpa was recruited to Gram-positive bacteria and, once acquired, was maintained in the genome as it co-evolved with Fur. Consistent with a role for Fpa in alleviating Fur-dependent repression, Fpa and Fur interacted in vivo, and Fpa decreased the DNA-binding ability of Fur in vitro. Fpa bound Fe(II) in vitro using oxygen or nitrogen ligands with an association constant that is consistent with a physiological role in Fe homeostasis. These findings have led to a model wherein Fpa is an Fe(II) binding protein that influences Fur-dependent regulation through direct interaction.IMPORTANCEIron (Fe) is an essential nutrient for nearly all organisms. If Fe homeostasis is not maintained, Fe may accumulate in the cytosol, which can be toxic. Questions remain about how cells efficiently balance Fe uptake and usage to prevent overload. Iron uptake and proper metalation of proteins are essential processes in the mammalian bacterial pathogen Staphylococcus aureus. Understanding the gene products involved in the genetic regulation of Fe uptake and usage and the physiological adaptations that S. aureus uses to survive in Fe-depleted conditions provides insight into pathogenesis. Herein, we demonstrate that the DNA-binding activity of the ferric uptake regulator transcriptional repressor is alleviated under Fe limitation, but uniquely, in S. aureus, alleviation requires the presence of Fpa.
Collapse
Affiliation(s)
- Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Kylie Ryan Kaler
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Karla Esquilín-Lebrón
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ashley Pall
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Courtney J. Campbell
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Mary E. Foley
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Gustavo Rios-Delgado
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Emilee M. Mustor
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hannah Bovermann
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey N. Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
22
|
Song D, Kim B, Kim M, Lee JK, Choi J, Lee H, Shin S, Shin D, Nam HY, Lee Y, Lee S, Kim Y, Seo J. Impact of Conjugation of the Reactive Oxygen Species (ROS)-Generating Catalytic Moiety with Membrane-Active Antimicrobial Peptoids: Promoting Multitarget Mechanism and Enhancing Selectivity. J Med Chem 2024; 67:15148-15167. [PMID: 39207209 DOI: 10.1021/acs.jmedchem.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) represent promising therapeutic modalities against multidrug-resistant bacterial infections. As a mimic of natural AMPs, peptidomimetic oligomers like peptoids (i.e., oligo-N-substituted glycines) have been utilized for antimicrobials with resistance against proteolytic degradation. Here, we explore the conjugation of catalytic metal-binding motifs─the amino terminal Cu(II) and Ni(II) binding (ATCUN) motif─with cationic amphipathic antimicrobial peptoids to enhance their efficacy. Upon complexation with Cu(II) or Ni(II), the conjugates catalyzed hydroxyl radical generation, and 22 and 22-Cu exhibited over 10-fold improved selectivity compared to the parent peptoid, likely due to reduced hydrophobicity. Cu-ATCUN-peptoids caused bacterial membrane disruption, aggregation of intracellular biomolecules, DNA oxidation, and lipid peroxidation, promoting multiple killing mechanisms. In a mouse sepsis model, 22 demonstrated antimicrobial and anti-inflammatory efficacy with low toxicity. This study suggests a strategy to improve the potency of membrane-acting antimicrobial peptoids by incorporating ROS-generating motifs, thereby adding oxidative damage as a killing mechanism.
Collapse
Affiliation(s)
- Dasom Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minsang Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Kyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dongmin Shin
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
23
|
Fleming AM, Dingman JC, Burrows CJ. CO 2 protects cells from iron-Fenton oxidative DNA damage in E. coli and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609766. [PMID: 39253463 PMCID: PMC11383276 DOI: 10.1101/2024.08.26.609766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Whereas hydroxyl radical is commonly named as the Fenton product responsible for DNA and RNA damage in cells, here we demonstrate that the cellular reaction generates carbonate radical anion due to physiological levels of bicarbonate. Analysis of the metabolome, transcriptome and, in human cells, the nuclear genome shows a consistent buffering of H2O2-induced oxidative stress leading to one common pathway, namely guanine oxidation. Particularly revealing are nanopore-based studies of direct RNA sequencing of cytosolic and mitochondrial ribosomal RNA along with glycosylase-dependent qPCR studies of oxidative DNA damage in telomeres. The focusing of oxidative modification on one pathway is consistent with the highly evolved base excision repair suite of enzymes and their involvement in gene regulation in response to oxidative stress.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| | - Justin C Dingman
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
24
|
Spartali C, Psarra AMG, Marras SI, Tsioptsias C, Georgantopoulos A, Kalousi FD, Tsakalof A, Tsivintzelis I. Silybin-Functionalized PCL Electrospun Fibrous Membranes for Potential Pharmaceutical and Biomedical Applications. Polymers (Basel) 2024; 16:2346. [PMID: 39204566 PMCID: PMC11359364 DOI: 10.3390/polym16162346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Silybin is a natural flavonolignan with potential anticancer, antioxidant, and hepatoprotective properties. In the present study, various loadings of silybin (1, 3, and 5 wt%) were encapsulated in poly-ε-caprolactone (PCL) fibers by electrospinning, in order to produce new pharmaceutical composites with improved bioactive and drug delivery properties. The morphological characteristics of the composite fibrous structures were evaluated by scanning electron microscopy (SEM), and the encapsulation efficiency and the release rate of silybin were quantified using a UV-Vis spectrophotometer. The analysis of the membranes' thermal behavior by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed the existence of interaction between PCL and silybin. An investigation of the cytocompatibility of the composite membranes revealed that normal cells displayed an unimpeded proliferation in the respective silybin concentrations; however, tumor cell growth demonstrated a dose-dependent inhibition. Furthermore, an effective antioxidant activity against hydrogen peroxide-induced oxidative stress in HEK-293 cells was observed for the prepared electrospun fibrous mats.
Collapse
Affiliation(s)
- Christina Spartali
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Anna-Maria G. Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Sotirios I. Marras
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Costas Tsioptsias
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Foteini D. Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andreas Tsakalof
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Ioannis Tsivintzelis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Li B, Luo H, Zhou Y, Xu B, Li P. Enhancement of colour formation of fermented sausages by overexpression of nitric oxide synthase in Staphylococcus vitulinus under hydrogen peroxide stress. Int J Food Microbiol 2024; 421:110781. [PMID: 38852217 DOI: 10.1016/j.ijfoodmicro.2024.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This study used hydrogen peroxide (H2O2) treatment to overexpress the gene of nitric oxide synthase (nos) in Staphylococcus vitulinus, which was then inoculated into fermented sausages to observe its effect on colour development. The results showed that a low concentration of H2O2 (50 mM) could up-regulate the expression of nos by increasing the oxidative stress level of S. vitulinus. At 2 h after treatment, the expression of nos in S. vitulinus was the highest (P < 0.05), and the relative enzyme activity was increased to about 1.5 times that of the untreated. The growth of S. vitulinus was not substantially affected by 50-mM H2O2 treatment (P > 0.05). When H2O2-treated S. vitulinus was inoculated into fermented sausages, the content of nitrosomyoglobin was increased, and the a*-value (indicating redness) was not significantly different from that in the group treated with nitrite (P > 0.05). This study provides a potential method to enhance the ability of S. vitulinus for colourising fermented sausage by inducing the overexpression of nos.
Collapse
Affiliation(s)
- Bingyu Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huiting Luo
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yali Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Peijun Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
26
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional responses of Neisseria gonorrhoeae to glucose and lactate: implications for resistance to oxidative damage and biofilm formation. mBio 2024; 15:e0176124. [PMID: 39012148 PMCID: PMC11323468 DOI: 10.1128/mbio.01761-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding how bacteria adapt to different environmental conditions is crucial for advancing knowledge regarding pathogenic mechanisms that operate during infection as well as efforts to develop new therapeutic strategies to cure or prevent infections. Here, we investigated the transcriptional response of Neisseria gonorrhoeae, the causative agent of gonorrhea, to L-lactate and glucose, two important carbon sources found in the host environment. Our study revealed extensive transcriptional changes that gonococci make in response to L-lactate, with 37% of the gonococcal transcriptome being regulated, compared to only 9% by glucose. We found that L-lactate induces a transcriptional program that would negatively impact iron transport, potentially limiting the availability of labile iron, which would be important in the face of the multiple hydrogen peroxide attacks encountered by gonococci during its lifecycle. Furthermore, we found that L-lactate-mediated transcriptional response promoted aerobic respiration and dispersal of biofilms, contrasting with an anaerobic condition previously reported to favor biofilm formation. Our findings suggest an intricate interplay between carbon metabolism, iron homeostasis, biofilm formation, and stress response in N. gonorrhoeae, providing insights into its pathogenesis and identifying potential therapeutic targets.IMPORTANCEGonorrhea is a prevalent sexually transmitted infection caused by the human pathogen Neisseria gonorrhoeae, with ca. 82 million cases reported worldwide annually. The rise of antibiotic resistance in N. gonorrhoeae poses a significant public health threat, highlighting the urgent need for alternative treatment strategies. By elucidating how N. gonorrhoeae responds to host-derived carbon sources such as L-lactate and glucose, this study offers insights into the metabolic adaptations crucial for bacterial survival and virulence during infection. Understanding these adaptations provides a foundation for developing novel therapeutic approaches targeting bacterial metabolism, iron homeostasis, and virulence gene expression. Moreover, the findings reported herein regarding biofilm formation and L-lactate transport and metabolism contribute to our understanding of N. gonorrhoeae pathogenesis, offering potential avenues for preventing and treating gonorrhea infections.
Collapse
Affiliation(s)
- Julio C. Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jacqueline T. Balthazar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
27
|
Haimovici A, Rupp V, Amer T, Moeed A, Weber A, Häcker G. The caspase-activated DNase promotes cellular senescence. EMBO J 2024; 43:3523-3544. [PMID: 38977850 PMCID: PMC11329656 DOI: 10.1038/s44318-024-00163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Cellular senescence is a response to many stressful insults. DNA damage is a consistent feature of senescent cells, but in many cases its source remains unknown. Here, we identify the cellular endonuclease caspase-activated DNase (CAD) as a critical factor in the initiation of senescence. During apoptosis, CAD is activated by caspases and cleaves the genomic DNA of the dying cell. The CAD DNase is also activated by sub-lethal signals in the apoptotic pathway, causing DNA damage in the absence of cell death. We show that sub-lethal signals in the mitochondrial apoptotic pathway induce CAD-dependent senescence. Inducers of cellular senescence, such as oncogenic RAS, type-I interferon, and doxorubicin treatment, also depend on CAD presence for senescence induction. By directly activating CAD experimentally, we demonstrate that its activity is sufficient to induce senescence in human cells. We further investigate the contribution of CAD to senescence in vivo and find substantially reduced signs of senescence in organs of ageing CAD-deficient mice. Our results show that CAD-induced DNA damage in response to various stimuli is an essential contributor to cellular senescence.
Collapse
Affiliation(s)
- Aladin Haimovici
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | - Valentin Rupp
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Tarek Amer
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Abdul Moeed
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Arnim Weber
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
28
|
Zhang Y, Jiang Y, Dong X, Luo S, Jiao G, Weng K, Bao Q, Zhang Y, Vongsangnak W, Chen G, Xu Q. Follicular fluid-derived exosomal HMOX1 promotes granulosa cell ferroptosis involved in follicular atresia in geese (Anser cygnoides). Poult Sci 2024; 103:103912. [PMID: 38943808 PMCID: PMC11261456 DOI: 10.1016/j.psj.2024.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 07/01/2024] Open
Abstract
The proliferation and death of granulosa cells (GCs) in poultry play a decisive role in follicular fate and egg production. The follicular fluid (FF) contains a variety of nutrients and genetic substances to ensure the communication between follicular cells. Exosomes, as a new intercellular communication, could carry and transport the proteins, RNA, and lipids to react on GCs, which had been found in FF of various domestic animals. Whether exosomes of FF in poultry play a similar role is unclear. In this study, geese, a poultry with low egg production, were chosen, and the effect of FF exosomes on the proliferation and death of GCs was investigated. Firstly, there were not only a large number of healthy small yellow follicles (HSYFs) but also some atresia small yellow follicles (ASYFs) in the egg-laying stage. Also, the GC layers of ASYFs became loose interconnections, inward detachment, and diminished survival rate than that of HSYFs. Besides, compared to HSYFs, the contents of E2, P4, and the mRNA expression levels of ferroptosis-related genes GPX4, FPN1, and FTH1 were significantly decreased, while COX2, NCOA4, VDAC3 mRNA were significantly increased, and the structure of mitochondrial cristae disappeared and the outer membrane broke in the GC layers of ASYFs. Moreover, the ROS, MDA, and oxidation levels in the GC layers of ASYFs were significantly higher than those of HSYFs. All these hinted that ferroptosis might result in a large number of GCs death and involvement in follicle atresia. Secondly, FF exosomes were isolated from HSYFs and ASYFs, respectively, and identified by TEM, NTA, and detection of exosome marker proteins. Also, we found the exosomes were phagocytic by GCs by tracking CM-Dil. Moreover, the addition of ASYF-FF exosomes significantly elevated the MDA content, Fe2+ levels, and the mitochondrial membrane potential (MMP) in GCs, thus significantly inhibiting the proliferation of GCs, which was restored by the ferroptosis inhibitor ferrostatin-1. Thirdly, the proteomic sequencing was performed between FF-derived exosomes of HSYFs and ASYFs. We obtained 1615 differentially expressed proteins, which were mainly enriched in the protein transport and ferroptosis pathways. Among them, HMOX1 was enriched in the ferroptosis pathway based on differential protein-protein interaction network analysis. Finally, the role of HMOX1 in regulating ferroptosis in GCs was further explored. The highly expressed HMOX1 was observed in the exosomes of ASYF-FF than that in HSYF-FF. Overexpression of HMOX1 increased ATG5, LC3II, and NCOA4 expression and reduced the expression of FTH1, GPX4, PCBP2, FPN1 in the ferroptosis pathway, also promoted intracellular Fe2+ accumulation and MDA surge, which drove ferroptosis in GCs. The effects of HMOX1 on ferroptosis could be blocked by its inhibitor Znpp. Taken together, the important protein HMOX1 was identified in FF, which could be delivered to GCs via exosomes, triggering ferroptosis and thus determining the fate of follicles.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Youluan Jiang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoqian Dong
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuwen Luo
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guoyu Jiao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kaiqi Weng
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
29
|
Green R, Wang H, Botchey C, Zhang SNN, Wadsworth C, Tyrrell F, Letton J, McBain AJ, Paszek P, Krašovec R, Knight CG. Collective peroxide detoxification determines microbial mutation rate plasticity in E. coli. PLoS Biol 2024; 22:e3002711. [PMID: 39008532 PMCID: PMC11272383 DOI: 10.1371/journal.pbio.3002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.
Collapse
Affiliation(s)
- Rowan Green
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| | - Hejie Wang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Carol Botchey
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Siu Nam Nancy Zhang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Charles Wadsworth
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Francesca Tyrrell
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - James Letton
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, United Kingdom
| | - Pawel Paszek
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Rok Krašovec
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| |
Collapse
|
30
|
Korshunov S, Imlay JA. Antioxidants are ineffective at quenching reactive oxygen species inside bacteria and should not be used to diagnose oxidative stress. Mol Microbiol 2024; 122:113-128. [PMID: 38889382 DOI: 10.1111/mmi.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
A wide variety of stresses have been proposed to exert killing effects upon bacteria by stimulating the intracellular formation of reactive oxygen species (ROS). A key part of the supporting evidence has often been the ability of antioxidant compounds to protect the cells. In this study, some of the most-used antioxidants-thiourea, glutathione, N-acetylcysteine, and ascorbate-have been examined. Their ability to quench superoxide and hydrogen peroxide was verified in vitro, but the rate constants were orders of magnitude too slow for them to have an impact upon superoxide and peroxide concentrations in vivo, where these species are already scavenged by highly active enzymes. Indeed, the antioxidants were unable to protect the growth and ROS-sensitive enzymes of E. coli strains experiencing authentic oxidative stress. Similar logic posits that antioxidants cannot substantially quench hydroxyl radicals inside cells, which contain abundant biomolecules that react with them at diffusion-limited rates. Indeed, antioxidants were able to protect cells from DNA damage only if they were applied at concentrations that slow metabolism and growth. This protective effect was apparent even under anoxic conditions, when ROS could not possibly be involved, and it was replicated when growth was similarly slowed by other means. Experimenters should discard the use of antioxidants as a way of detecting intracellular oxidative stress and should revisit conclusions that have been based upon such experiments. The notable exception is that these compounds can effectively degrade hydrogen peroxide from environmental sources before it enters cells.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
31
|
Dangabar Shadrack A, Garba A, Samuel Ndidi U, Aminu S, Muhammad A. Isometamidium chloride alters redox status, down-regulates p53 and PARP1 genes while modulating at proteomic level in Drosophila melanogaster. Drug Chem Toxicol 2024; 47:416-426. [PMID: 36883353 DOI: 10.1080/01480545.2023.2186314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
As trypanocide, several side effects have been reported in the use of Isometamidium chloride. This study was therefore, designed to evaluate its ability to induce oxidative stress and DNA damage using D. melanogaster as a model organism. The LC50 of the drug was determined by exposing the flies (1-3 days old of both genders) to six different concentrations (1 mg, 10 mg, 20 mg, 40 mg, 50 mg and 100 mg per 10 g of diet) of the drug for a period of seven days. The effect of the drug on survival (28 days), climbing behavior, redox status, oxidative DNA lesion, expression of p53 and PARP1 (Poly-ADP-Ribose Polymerase-1) genes after five days exposure of flies to 4.49 mg, 8.97 mg, 17.94 mg and 35.88 mg per 10 g diet was evaluated. The interaction of the drug in silico with p53 and PARP1 proteins was also evaluated. The result showed the LC50 of isometamidium chloride to be 35.88 mg per 10 g diet for seven days. Twenty-eight (28) days of exposure to isometamidium chloride showed a decreased percentage survival in a time and concentration-dependent manner. Isometamidium chloride significantly (p < 0.05) reduced climbing ability, total thiol level, Glutathione-S-transferase, and Catalase activity. The level of H2O2 was significantly (p < 0.05) increased. The result also showed significant (p < 0.05) reduction in the relative mRNA levels of p53 and PARP1 genes. The in silico molecular docking of isometamidium with p53 and PARP1 proteins showed high binding energy of -9.4 Kcal/mol and -9.2 Kcal/mol respectively. The results suggest that isometamidium chloride could be cytotoxic and a potential inhibitor of p53 and PARP1 proteins.
Collapse
Affiliation(s)
- Apollos Dangabar Shadrack
- Department of Food Technology and Home Economics, National Agricultural Extension Research and Liaison Services, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Auwalu Garba
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Uche Samuel Ndidi
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
- Center for Biomedical Research, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
32
|
Gibson AC, Coleman M, Wilkins HB, Edala T, Nowroozizadeh S, Vandewalle R, Strub GM. Massive Subcutaneous Emphysema after Hydrogen Peroxide Irrigation of a Penetrating Facial Injury. Laryngoscope 2024; 134:2954-2957. [PMID: 38149667 DOI: 10.1002/lary.31237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
We present the case of a child impaled in the face by a meat thermometer who subsequently suffered a significant complication due to the administration of hydrogen peroxide to the wound. The soft tissues of the face rapidly expanded and blanched, the child experienced mental status changes, and imaging revealed massive subcutaneous emphysema, pneumomediastinum, and pneumo-orbit. Herein we review the literature on this rare complication and provide photodocumentation in the hopes that other practitioners, patients, and parents avoid administering hydrogen peroxide into or near any penetrating injury. Laryngoscope, 134:2954-2957, 2024.
Collapse
Affiliation(s)
- A Celeste Gibson
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, U.S.A
| | - Madison Coleman
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, U.S.A
- Division of Pediatric Otolaryngology, Arkansas Children's Hospital, Little Rock, Arkansas, U.S.A
| | - Hannah B Wilkins
- Department of Pediatrics, Section of Pediatric Emergency Medicine, Pharmacology, and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, U.S.A
| | - Thejovathi Edala
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, U.S.A
| | - Sara Nowroozizadeh
- Department of Ophthalmology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, U.S.A
| | - Robert Vandewalle
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, U.S.A
| | - Graham M Strub
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, U.S.A
- Division of Pediatric Otolaryngology, Arkansas Children's Hospital, Little Rock, Arkansas, U.S.A
| |
Collapse
|
33
|
Wang BX, Leshchiner D, Luo L, Tuncel M, Hokamp K, Hinton JCD, Monack DM. High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection. Nat Genet 2024; 56:1288-1299. [PMID: 38831009 PMCID: PMC11176087 DOI: 10.1038/s41588-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijuan Luo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Tuncel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Zhang L, Yang J, Huang J, Yu Y, Ding J, Karges J, Xiao H. Development of tumor-evolution-targeted anticancer therapeutic nanomedicineEVT. Chem 2024; 10:1337-1356. [DOI: 10.1016/j.chempr.2023.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
35
|
Adolph C, Cheung CY, McNeil MB, Jowsey WJ, Williams ZC, Hards K, Harold LK, Aboelela A, Bujaroski RS, Buckley BJ, Tyndall JDA, Li Z, Langer JD, Preiss L, Meier T, Steyn AJC, Rhee KY, Berney M, Kelso MJ, Cook GM. A dual-targeting succinate dehydrogenase and F 1F o-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chem Biol 2024; 31:683-698.e7. [PMID: 38151019 DOI: 10.1016/j.chembiol.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Liam K Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ashraf Aboelela
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Richard S Bujaroski
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban, KwaZulu, Natal, South Africa; Department of Microbiology, Centers for AIDs Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael J Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand.
| |
Collapse
|
36
|
Abdullah K, Kaushal JB, Takkar S, Sharma G, Alsafwani ZW, Pothuraju R, Batra SK, Siddiqui JA. Copper metabolism and cuproptosis in human malignancies: Unraveling the complex interplay for therapeutic insights. Heliyon 2024; 10:e27496. [PMID: 38486750 PMCID: PMC10938126 DOI: 10.1016/j.heliyon.2024.e27496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Copper, a vital trace element, orchestrates diverse cellular processes ranging from energy production to antioxidant defense and angiogenesis. Copper metabolism and cuproptosis are closely linked in the context of human diseases, with a particular focus on cancer. Cuproptosis refers to a specific type of copper-mediated cell death or copper toxicity triggered by disruptions in copper metabolism within the cells. This phenomenon encompasses a spectrum of mechanisms, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and perturbations in metal ion equilibrium. Mechanistically, cuproptosis is driven by copper binding to the lipoylated enzymes within the tricarboxylic acid (TCA) cycle. This interaction participates in protein aggregation and proteotoxic stress, ultimately culminating in cell death. Targeting copper metabolism and its associated pathways in cancer cells hold therapeutic potential by selectively targeting and eliminating cancerous cells. Strategies to modulate copper levels, enhance copper excretion, or interfere with cuproptotic pathways are being explored to identify novel therapeutic targets for cancer therapy and improve patient outcomes. Understanding the relationship between cuproptosis and copper metabolism in human malignancies remains an active area of research. This review provides a comprehensive overview of the association among copper metabolism, copper homeostasis, and carcinogenesis, explicitly emphasizing the cuproptosis mechanism and its implications for cancer pathogenesis. Additionally, we emphasize the therapeutic aspects of targeting copper and cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- K.M. Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jyoti B. Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zahraa W. Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
37
|
Hancock TL, Dahedl EK, Kratz MA, Urakawa H. Bacterial community shifts induced by high concentration hydrogen peroxide treatment of Microcystis bloom in a mesocosm study. HARMFUL ALGAE 2024; 133:102587. [PMID: 38485437 DOI: 10.1016/j.hal.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Hydrogen peroxide has gained popularity as an environmentally friendly treatment for cyanobacterial harmful algal blooms (cHABs) that takes advantage of oxidative stress sensitivity in cyanobacteria at controlled concentrations. Higher concentrations of hydrogen peroxide treatments may seem appealing for more severe cHABs but there is currently little understanding of the environmental impacts of this approach. Of specific concern is the associated microbial community, which may play key roles in the succession/recovery process post-treatment. To better understand impacts of a high concentration treatment on non-target microbial communities, we applied a hydrogen peroxide spray equating to a total volume concentration of 14 mM (473 mg/L, 0.04%) to 250 L mesocosms containing Microcystis bloom biomass, monitoring treatment and control mesocosms for 4 days. Cyanobacteria dominated control mesocosms throughout the experiment while treatment mesocosms experienced a 99% reduction, as determined by bacterial amplicon sequencing, and a 92% reduction in bacterial cell density within 1 day post-treatment. Only the bacterial community exhibited signs of regrowth, with a fold change of 9.2 bacterial cell density from day 1 to day 2. Recovery consisted of succession by Planctomycetota (47%) and Gammaproteobacteria (17%), which were likely resilient due to passive cell component compartmentalization and rapid upregulation of dnaK and groEL oxidative stress genes, respectively. The altered microbiome retained beneficial functionality of microcystin degradation through a currently recognized but unidentified pathway in Gammaproteobacteria, resulting in a 70% reduction coinciding with bacterial regrowth. There was also an 81% reduction of both total nitrogen and phosphorus, as compared to 91 and 93% in the control, respectively, due to high expressions of genes related to nitrogen (argH, carB, glts, glnA) and phosphorus (pntAB, phoB, pstSCB) cycling. Overall, we found a portion of the bacterial community was resilient to the high-concentration hydrogen peroxide treatment, resulting in Planctomycetota and Gammaproteobacteria dominance. This high-concentration treatment may be suitable to rapidly end cHABs which have already negatively impacted the aquatic environment rather than allow them to persist.
Collapse
Affiliation(s)
- Taylor L Hancock
- School of Geosciences, University of South Florida, Tampa, FL 33620, United States; Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Elizabeth K Dahedl
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Michael A Kratz
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Hidetoshi Urakawa
- School of Geosciences, University of South Florida, Tampa, FL 33620, United States; Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, United States.
| |
Collapse
|
38
|
Sugiyama T, Sanyal MR. Biochemical analysis of H 2O 2-induced mutation spectra revealed that multiple damages were involved in the mutational process. DNA Repair (Amst) 2024; 134:103617. [PMID: 38154332 PMCID: PMC10842480 DOI: 10.1016/j.dnarep.2023.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Reactive oxygen species (ROS) are a major threat to genomic integrity and believed to be one of the etiologies of cancers. Here we developed a cell-free system to analyze ROS-induced mutagenesis, in which DNA was exposed to H2O2 and then subjected to translesion DNA synthesis by various DNA polymerases. Then, frequencies of mutations on the DNA products were determined by using next-generation sequencing technology. The majority of observed mutations were either C>A or G>A, caused by dAMP insertion at G and C residues, respectively. These mutations showed similar spectra to COSMIC cancer mutational signature 18 and 36, which are proposed to be caused by ROS. The in vitro mutations can be produced by replicative DNA polymerases (yeast DNA polymerase δ and ε), suggesting that ordinary DNA replication is sufficient to produce them. Very little G>A mutation was observed immediately after exposure to H2O2, but the frequency was increased during the 24 h after the ROS was removed, indicating that the initial oxidation product of cytosine needs to be maturated into a mutagenic lesion. Glycosylase-sensitivities of these mutations suggest that the C>A were made on 8-oxoguanine or Fapy-guanine, and that G>A were most likely made on 5-hydroxycytosine modification.
Collapse
Affiliation(s)
- Tomohiko Sugiyama
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA.
| | - Mahima R Sanyal
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
39
|
Shen J, Liu J, Fan X, Liu H, Bao Y, Hui A, Munir HA. Unveiling the antibacterial strategies and mechanisms of MoS 2: a comprehensive analysis and future directions. Biomater Sci 2024; 12:596-620. [PMID: 38054499 DOI: 10.1039/d3bm01030a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Antibiotic resistance is a growing problem that requires alternative antibacterial agents. MoS2, a two-dimensional transition metal sulfide, has gained significant attention in recent years due to its exceptional photocatalytic performance, excellent infrared photothermal effect, and impressive antibacterial properties. This review presents a detailed analysis of the antibacterial strategies and mechanism of MoS2, starting with its morphology and synthesis methods and focusing on the different interaction stages between MoS2 and bacteria. The paper summarizes the main antibacterial mechanisms of MoS2, such as photocatalytic antibacterial, enzyme-like catalytic antibacterial, physical antibacterial, and photothermal-assisted antibacterial. It offers a comprehensive discussion focus on recent research studies of photocatalytic antibacterial mechanisms and categorizes them, guiding the application of MoS2 in the antibacterial field. Overall, the review provides an in-depth understanding of the antibacterial mechanisms of MoS2 and presents the challenges and future directions for the improvement of MoS2 in the field of high-efficiency antibacterial materials.
Collapse
Affiliation(s)
- Jiahao Shen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Junli Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuyi Fan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - AiPing Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Hafiz Akif Munir
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
40
|
Wang Y, Fu H, Shi XJ, Zhao GP, Lyu LD. Genome-wide screen reveals cellular functions that counteract rifampicin lethality in Escherichia coli. Microbiol Spectr 2024; 12:e0289523. [PMID: 38054714 PMCID: PMC10782999 DOI: 10.1128/spectrum.02895-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Rifamycins are a group of antibiotics with a wide antibacterial spectrum. Although the binding target of rifamycin has been well characterized, the mechanisms underlying the discrepant killing efficacy between gram-negative and gram-positive bacteria remain poorly understood. Using a high-throughput screen combined with targeted gene knockouts in the gram-negative model organism Escherichia coli, we established that rifampicin efficacy is strongly dependent on several cellular pathways, including iron acquisition, DNA repair, aerobic respiration, and carbon metabolism. In addition, we provide evidence that these pathways modulate rifampicin efficacy in a manner distinct from redox-related killing. Our findings provide insights into the mechanism of rifamycin efficacy and may aid in the development of new antimicrobial adjuvants.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Fu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jie Shi
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Guo-Ping Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
41
|
Scasny A, Alibayov B, Khan F, Rao SJ, Murin L, Jop Vidal AG, Smith P, Li W, Edwards K, Warncke K, Vidal JE. Oxidation of hemoproteins by Streptococcus pneumoniae collapses the cell cytoskeleton and disrupts mitochondrial respiration leading to the cytotoxicity of human lung cells. Microbiol Spectr 2024; 12:e0291223. [PMID: 38084982 PMCID: PMC10783075 DOI: 10.1128/spectrum.02912-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Streptococcus pneumoniae (Spn) colonizes the lungs, killing millions every year. During its metabolism, Spn produces abundant amounts of hydrogen peroxide. When produced in the lung parenchyma, Spn-hydrogen peroxide (H2O2) causes the death of lung cells, and details of the mechanism are studied here. We found that Spn-H2O2 targets intracellular proteins, resulting in the contraction of the cell cytoskeleton and disruption of mitochondrial function, ultimately contributing to cell death. Intracellular proteins targeted by Spn-H2O2 included cytochrome c and, surprisingly, a protein of the cell cytoskeleton, beta-tubulin. To study the details of oxidative reactions, we used, as a surrogate model, the oxidation of another hemoprotein, hemoglobin. Using the surrogate model, we specifically identified a highly reactive radical whose creation was catalyzed by Spn-H2O2. In sum, we demonstrated that the oxidation of intracellular targets by Spn-H2O2 plays an important role in the cytotoxicity caused by Spn, thus providing new targets for interventions.
Collapse
Affiliation(s)
- Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Shambavi J. Rao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State School of Medicine, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Landon Murin
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Mississippi INBRE Research Scholar, University of Southern Mississippi, Jackson, Mississippi, USA
| | - Wei Li
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Kristin Edwards
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
42
|
Yang Y, Zhou B, Yu L, Song G, Ge J, Du R. Biosynthesis and characterization of antibacterial bacterial cellulose composite membrane composed of montmorillonite and exopolysaccharides. Int J Biol Macromol 2023; 253:127477. [PMID: 37863143 DOI: 10.1016/j.ijbiomac.2023.127477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Bacterial cellulose (BC), as a natural renewable polymer material, has the advantages of porous nanonetwork structure, high degree of polymerization, high purity, high crystallinity, excellent mechanical properties and biocompatibility. However, BC lacks antibacterial properties, which leads to the limitation of BC material in food packaging and medical materials. In this study, a new antibacterial material using the combination of montmorillonite (MMT), BC and exopolysaccharides (EPS) produced by Weissella confusa H2 was synthesized. Fourier infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis showed that BC-EPS, BC-MMT and BC-EPS-MMT composite membranes conformed to the typical type I cellulose structure. Compared to BC membrane, scanning electron microscopy (SEM) showed that the porosity of BC-EPS, BC-MMT and BC-EPS-MMT composite membranes was low and compact. The physical properties of BC-EPS, BC-MTT and BC-EPS-MTT composite membranes showed lower water vapor transmittance. The BC-MTT and BC-EPS-MTT composite membranes exhibit a lower swelling ratio in 120 min. The thermal properties show that BC-EPS, BC-MTT and BC-EPS-MTT composite membranes have higher thermal stability (352 °C, 310 °C, 314 °C). Additionally, both BC-MMT and BC-EPS-MMT demonstrated strong inhibitory effects against various bacterial strains, including Staphylococcus aureus, Escherichia coli, Salmonella paratyphi A, and Bacillus subtilis. The exceptional properties exhibited by composite membranes establishes them as a highly promising option in the field of food packaging and medical material applications.
Collapse
Affiliation(s)
- Yi Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Liansheng Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
43
|
Gupta A, Imlay JA. How a natural antibiotic uses oxidative stress to kill oxidant-resistant bacteria. Proc Natl Acad Sci U S A 2023; 120:e2312110120. [PMID: 38109539 PMCID: PMC10756299 DOI: 10.1073/pnas.2312110120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Natural products that possess antibiotic and antitumor qualities are often suspected of working through oxidative mechanisms. In this study, two quinone-based small molecules were compared. Menadione, a classic redox-cycling compound, was confirmed to generate high levels of reactive oxygen species inside Escherichia coli. It inactivated iron-cofactored enzymes and blocked growth. However, despite the substantial levels of oxidants that it produced, it was unable to generate significant DNA damage and was not lethal. Streptonigrin, in contrast, was poorer at redox cycling and did not inactivate enzymes or block growth; however, even in low doses, it damaged DNA and killed cells. Its activity required iron and oxygen, and in vitro experiments indicated that its quinone moiety transferred electrons through the adjacent iron atom to oxygen. Additionally, in vitro experiments revealed that streptonigrin was able to damage DNA without inhibition by catalase, indicating that hydrogen peroxide was not involved. We infer that streptonigrin can reduce bound oxygen directly to a ferryl species, which then oxidizes the adjacent DNA, without release of superoxide or hydrogen peroxide intermediates. This scheme allows streptonigrin to kill a bacterial cell without interference by scavenging enzymes. Moreover, its minimal redox-cycling behavior avoids alerting either the OxyR or the SoxRS systems, which otherwise would block killing. This example highlights qualities that may be important in the design of oxidative drugs. These results also cast doubt on proposals that bacteria can be killed by stressors that merely stimulate intracellular O2- and H2O2 formation.
Collapse
Affiliation(s)
- Anshika Gupta
- Department of Microbiology, University of Illinois, Urbana, IL61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL61801
| |
Collapse
|
44
|
Doagooyan M, Alavizadeh SH, Sahebkar A, Houshangi K, Khoddamipour Z, Gheybi F. Anti-tumor activity of silymarin nanoliposomes in combination with iron: In vitro and in vivo study. Int J Pharm X 2023; 6:100214. [PMID: 38024450 PMCID: PMC10660084 DOI: 10.1016/j.ijpx.2023.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Combination therapy represents a promising strategy in cancer management by reducing chemotherapy resistance and associated side effects. Silymarin (SLM) has been extensively investigated due to its potent antioxidant properties and demonstrated efficacy against cancer cells. Under certain conditions however, polyphenolic compounds may also exhibit prooxidant activity by elevating intracellular reactive oxygen species (ROS), which can harm the target cells. In this study, we hypothesized that the simultaneous administration of iron (Fe) could alter the antioxidant characteristic of SLM nanoliposomes (SLM Lip) to a prooxidant state. Hence, we first developed a SLM Lip preparation using lipid film method, and then investigated the anti-oxidant properties as well as the cytotoxicity of the liposomal preparation. We also explored the efficacy of concomitant administration of iron sucrose and SML Lip on the tumor growth and survival of mice bearing tumors. We observed that exposing cells to iron, and consecutive treatment with SLM Lip (Fe + SLM Lip) could induce greater toxicity to 4 T1 breast cancer cells compared to SLM Lip. Further, Fe + SLM Lip combination demonstrated a time-dependent effect on reducing the catalase activity compared to SLM Lip, while iron treatment did not alter cell toxicity and catalase activity. In a mouse breast cancer model, the therapeutic efficacy of Fe + SLM Lip was superior compared to SLM Lip, and the treated animals survived longer. The histopathological findings did not reveal a significant damage to the major organs, whereas the most significant tumor necrosis was evident with Fe + SLM Lip treatment. The outcomes of the present investigation unequivocally underscored the prospective use of Fe + SLM combination in the context of cancer therapy, which warrants further scrutiny.
Collapse
Affiliation(s)
- Maham Doagooyan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kebria Houshangi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoddamipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Zhang B, Wan H, Liu X, Yu T, Yang Y, Dai Y, Han Y, Xu K, Yang L, Wang Y, Zhang X. Engineering Immunomodulatory Stents Using Zinc Ion-Lysozyme Nanoparticle Platform for Vascular Remodeling. ACS NANO 2023; 17:23498-23511. [PMID: 37971533 DOI: 10.1021/acsnano.3c06103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Rapid endothelialization of cardiovascular materials can enhance the vascular remodeling performance. In this work, we developed a strategy for amyloid-like protein-assembly-mediated interfacial engineering to functionalize a biomimetic nanoparticle coating (BMC). Various groups (e.g., hydroxyl and carboxyl) on the BMC are responsible for chelating Zn2+ ions at the stent interface, similar to the glutathione peroxidase-like enzymes found in vivo. This design could reproduce the release of therapeutic nitric oxide gas (NO) and an aligned microenvironment nearly identical with that of natural vessels. In a rabbit abdominal aorta model, BMC-coated stents promoted vascular healing through rapid endothelialization and the inhibition of intimal hyperplasia in the placement sites at 4, 12, and 24 weeks. Additionally, better anticoagulant activity and immunomodulation in the BMC stents were also confirmed, and vascular healing was mainly dependent on cell signaling through the cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) cascade. Overall, a metal-polypeptide-coated stent was developed on the basis of its detailed molecular mechanism of action in vascular remodeling.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Tao Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yuan Yang
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan 610045, China
| | - Yan Dai
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan 610045, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang 110016, China
| | - Kai Xu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang 110016, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
46
|
Sharma G, Banerjee R, Srivastava S. Molecular Mechanisms and the Interplay of Important Chronic Obstructive Pulmonary Disease Biomarkers Reveals Novel Therapeutic Targets. ACS OMEGA 2023; 8:46376-46389. [PMID: 38107961 PMCID: PMC10719921 DOI: 10.1021/acsomega.3c07480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive, age-dependent, and unmet chronic inflammatory disease of the peripheral airways, leading to difficulty in exhalation. Several biomarkers have been tested in general towards the resolution for a long time, but no apparent success was achieved. Ongoing therapies of COPD have only symptomatic relief but no cure. Reactive oxygen species (ROS) are highly reactive species which include oxygen radicals and nonradical derivatives, and are the prominent players in COPD. They are produced as natural byproducts of cellular metabolism, but their levels can vary due to exposure to indoor air pollution, occupational pollution, and environmental pollutants such as cigarette smoke. In COPD, the lungs are continuously exposed to high levels of ROS thus leading to oxidative stress. ROS can cause damage to cells, proteins, lipids, and DNA which further contributes to the chronic inflammation in COPD and exacerbates the disease condition. Excessive ROS production can overwhelm cellular antioxidant systems and act as signaling molecules that regulate cellular processes, including antioxidant defense mechanisms involving glutathione and sirtuins which further leads to cellular apoptosis, cellular senescence, inflammation, and sarcopenia. In this review paper, we focused on COPD from different perspectives including potential markers and different cellular processes such as apoptosis, cellular senescence, inflammation, sirtuins, and sarcopenia, and tried to connect the dots between them so that novel therapeutic strategies to evaluate and target the possible underlying mechanisms in COPD could be explored.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
47
|
Clarke A, Llabona IM, Khalid N, Hulvey D, Irvin A, Adams N, Heine HS, Eshraghi A. Tolfenpyrad displays Francisella-targeted antibiotic activity that requires an oxidative stress response regulator for sensitivity. Microbiol Spectr 2023; 11:e0271323. [PMID: 37800934 PMCID: PMC10848828 DOI: 10.1128/spectrum.02713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Francisella species are highly pathogenic bacteria that pose a threat to global health security. These bacteria can be made resistant to antibiotics through facile methods, and we lack a safe and protective vaccine. Given their history of development as bioweapons, new treatment options must be developed to bolster public health preparedness. Here, we report that tolfenpyrad, a pesticide that is currently in use worldwide, effectively inhibits the growth of Francisella. This drug has an extensive history of use and a plethora of safety and toxicity data, making it a good candidate for development as an antibiotic. We identified mutations in Francisella novicida that confer resistance to tolfenpyrad and characterized a transcriptional regulator that is required for sensitivity to both tolfenpyrad and reactive oxygen species.
Collapse
Affiliation(s)
- Ashley Clarke
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Isabelle M. Llabona
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Nimra Khalid
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Danielle Hulvey
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Alexis Irvin
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Nicole Adams
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Henry S. Heine
- Institute for Therapeutic Innovation, University of Florida, Orlando, Florida, USA
| | - Aria Eshraghi
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
48
|
Wang NE, Courcelle EJ, Coltman SM, Spolek RL, Courcelle J, Courcelle CT. Manganese transporters regulate the resumption of replication in hydrogen peroxide-stressed Escherichia coli. Biometals 2023; 36:1361-1376. [PMID: 37493920 DOI: 10.1007/s10534-023-00523-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Following hydrogen peroxide treatment, ferrous iron (Fe2+) is oxidized to its ferric form (Fe3+), stripping it from and inactivating iron-containing proteins. Many mononuclear iron enzymes can be remetallated by manganese to restore function, while other enzymes specifically utilize manganese as a cofactor, having redundant activities that compensate for iron-depleted counterparts. DNA replication relies on one or more iron-dependent protein(s) as synthesis abates in the presence of hydrogen peroxide and requires manganese in the medium to resume. Here, we show that manganese transporters regulate the ability to resume replication following oxidative challenge in Escherichia coli. The absence of the primary manganese importer, MntH, impairs the ability to resume replication; whereas deleting the manganese exporter, MntP, or transporter regulator, MntR, dramatically increases the rate of recovery. Unregulated manganese import promoted recovery even in the absence of Fur, which maintains iron homeostasis. Similarly, replication was not restored in oxyR mutants, which cannot upregulate manganese import following hydrogen peroxide stress. Taken together, the results define a central role for manganese transport in restoring replication following oxidative stress.
Collapse
Affiliation(s)
- Natalie E Wang
- Department of Biology, Portland State University, Portland, OR, 97201, USA
| | | | - Samantha M Coltman
- Department of Biology, Portland State University, Portland, OR, 97201, USA
| | - Raymond L Spolek
- Department of Biology, Portland State University, Portland, OR, 97201, USA
| | - Justin Courcelle
- Department of Biology, Portland State University, Portland, OR, 97201, USA.
| | | |
Collapse
|
49
|
Neuer AL, Herrmann IK, Gogos A. Biochemical transformations of inorganic nanomedicines in buffers, cell cultures and organisms. NANOSCALE 2023; 15:18139-18155. [PMID: 37946534 PMCID: PMC10667590 DOI: 10.1039/d3nr03415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
The field of nanomedicine is rapidly evolving, with new materials and formulations being reported almost daily. In this respect, inorganic and inorganic-organic composite nanomaterials have gained significant attention. However, the use of new materials in clinical trials and their final approval as drugs has been hampered by several challenges, one of which is the complex and difficult to control nanomaterial chemistry that takes place within the body. Several reviews have summarized investigations on inorganic nanomaterial stability in model body fluids, cell cultures, and organisms, focusing on their degradation as well as the influence of corona formation. However, in addition to these aspects, various chemical reactions of nanomaterials, including phase transformation and/or the formation of new/secondary nanomaterials, have been reported. In this review, we discuss recent advances in our understanding of biochemical transformations of medically relevant inorganic (composite) nanomaterials in environments related to their applications. We provide a refined terminology for the primary reaction mechanisms involved to bridge the gaps between different disciplines involved in this research. Furthermore, we highlight suitable analytical techniques that can be harnessed to explore the described reactions. Finally, we highlight opportunities to utilize them for diagnostic and therapeutic purposes and discuss current challenges and research priorities.
Collapse
Affiliation(s)
- Anna L Neuer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
50
|
Alarcón-Correa M, Kilwing L, Peter F, Liedl T, Fischer P. Platinum-DNA Origami Hybrid Structures in Concentrated Hydrogen Peroxide. Chemphyschem 2023; 24:e202300294. [PMID: 37640688 DOI: 10.1002/cphc.202300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The DNA origami technique allows fast and large-scale production of DNA nanostructures that stand out with an accurate addressability of their anchor points. This enables the precise organization of guest molecules on the surfaces and results in diverse functionalities. However, the compatibility of DNA origami structures with catalytically active matter, a promising pathway to realize autonomous DNA machines, has so far been tested only in the context of bio-enzymatic activity, but not in chemically harsh reaction conditions. The latter are often required for catalytic processes involving high-energy fuels. Here, we provide proof-of-concept data showing that DNA origami structures are stable in 5 % hydrogen peroxide solutions over the course of at least three days. We report a protocol to couple these to platinum nanoparticles and show catalytic activity of the hybrid structures. We suggest that the presented hybrid structures are suitable to realize catalytic nanomachines combined with precisely engineered DNA nanostructures.
Collapse
Affiliation(s)
- Mariana Alarcón-Correa
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120, Heidelberg, Germany
| | - Luzia Kilwing
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Florian Peter
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120, Heidelberg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Peer Fischer
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120, Heidelberg, Germany
| |
Collapse
|