1
|
Liu W, Wang D, Wang L, Hu S, Jiang Y, Wang Y, Cai X, Chen J. Receptor dimers and biased ligands: Novel strategies for targeting G protein-coupled receptors. Pharmacol Ther 2025; 269:108829. [PMID: 40023322 DOI: 10.1016/j.pharmthera.2025.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of membrane receptors. They regulate physiological and pathological processes such as metabolic homeostasis, cell proliferation and differentiation, and the immune response, and are one of the most important classes of drug targets, being targeted by 30-40 % of marketed drugs. A growing number of studies continue to reveal the complexity of GPCRs, especially their ability to interact with each other to form higher-order structures such as homodimers and heterodimers, which have different functions than monomers, and are involved in disease development and progression. The existence of GPCR homodimers and heterodimers is opening up new directions in drug discovery and development to harness their therapeutic potential. Particularly striking is the ability of GPCR dimers to trigger unique biased signalling pathways, which exquisitely balance the relationship between therapeutic effects and side effects. By suppressing adverse reactions and enhancing beneficial drug effects, GPCR dimers provide an unprecedented opportunity to minimise side effects, maximise therapeutic efficacy and enhance safety. This review aims to highlight the latest research advances in GPCR dimerization and GPCR-biased signalling, focusing on the development of dimer-targeting and biased ligands as innovative drugs that will likely provide new strategies for treating GPCR-related diseases as well as a better understanding of drug design for compounds that target GPCRs. GPCRs will play an increasingly important role in precision medicine and personalised therapy, leading us towards a safer, more efficient and smarter pharmaceutical future.
Collapse
Affiliation(s)
- Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Luoqi Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Shujuan Hu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yixiang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China.
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
2
|
Alexander C, Jeon J, Nickerson K, Hassler S, Vasefi M. CBD and the 5-HT1A receptor: A medicinal and pharmacological review. Biochem Pharmacol 2025; 233:116742. [PMID: 39778776 DOI: 10.1016/j.bcp.2025.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind to multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated. This review explores recent literature to elucidate these questions, highlighting the neurotherapeutic outcomes of this pharmacodynamic interaction and proposing a signaling pathway underlying the mechanism by which CBD desensitizes 5-HT1AR signaling. A comprehensive survey of the literature underscores CBD's multifaceted neurotherapeutic effects, which include antidepressant, anxiolytic, neuroprotective, antipsychotic, antiemetic, anti-allodynic, anti-epileptic, anti-degenerative, and addiction-treating properties, attributable in part to its interactions with 5-HT1AR. Furthermore, evidence suggests that the pharmacodynamic interaction between CBD and 5-HT1AR is contingent upon dosage. Moreover, we propose that CBD can induce desensitization of 5-HT1AR via both homologous and heterologous mechanisms. Homologous desensitization involves the recruitment of G protein-coupled receptor kinase 2 (GRK2) and β-arrestin, leading to receptor endocytosis. In contrast, heterologous desensitization is mediated by an elevated intracellular calcium level or activation of protein kinases, such as c-Jun N-terminal kinase (JNK), through the activity of other receptors.
Collapse
Affiliation(s)
- Claire Alexander
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Jiyoon Jeon
- Department of Biology, Lamar University, Beaumont, TX, 77710, USA
| | - Kyle Nickerson
- Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Shayne Hassler
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA
| | - Maryam Vasefi
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Zhou Y, Tang J, Weng M, Zhang H, Lai M. DRD4 Interacts with TGF-β Receptors to Drive Colorectal Cancer Metastasis Independently of Dopamine Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413953. [PMID: 39679842 PMCID: PMC11809390 DOI: 10.1002/advs.202413953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 12/17/2024]
Abstract
The functional and pharmacological significance of dopamine receptor D4 (DRD4) in psychiatric and neurological disorders is well elucidated. However, the roles of DRD4 in colorectal cancer (CRC) remain unclear. This study observes a significant upregulation of DRD4 expression in clinical samples, which is negatively correlated with patient prognosis. In vitro, overexpression of DRD4 causes a constitutive activation of β-Arrestin2/PP2A/AKT independent of dopamine. Interestingly, this classical signaling pathway is not associated with the phenotype of DRD4-promoted migration and invasion in CRC cells. Instead, DRD4 interacts with transforming growth factor beta receptors (TGFBR1 and TGFBR2) to activate Smad2 phosphorylation and promote Smad2/Smad4 complex nucleus translocation. Then, SNAI1 and JAG1 are transcriptionally activated to induce epithelial-mesenchymal transition and enhance the metastatic potential of CRC. Notably, the COOH-terminal domain is identified as the key intracellular region for the pro-metastatic roles of DRD4. Furthermore, treatment with a TGFBR1 inhibitor combined with a BMP inhibitor effectively counteracts the pro-metastatic effects induced by DRD4 both in vitro and in vivo. In conclusion, these findings uncover an unconventional role for DRD4 beyond its classic function as a neurotransmitter receptor. The intracellular signaling of DRD4 interacting with TGFBR1 can be targeted pharmacologically for CRC therapy.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Pathology and Run Run Shaw HospitalResearch Unit of Intelligence Classifification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Zhejiang University School of MedicineHangzhouZhejiang310058China
| | - Jinlong Tang
- Department of Pathologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058China
| | - Menghan Weng
- Department of Pathologythe First Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310006China
| | - Honghe Zhang
- Department of PathologyResearch Unit of Intelligence Classification of Tumor Pathology and Precision TherapyChinese Academy of Medical Sciences (2019RU042)Zhejiang University School of MedicineHangzhouZhejiang310058China
| | - Maode Lai
- Department of Pathology and Run Run Shaw HospitalResearch Unit of Intelligence Classifification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042)Zhejiang University School of MedicineHangzhouZhejiang310058China
| |
Collapse
|
5
|
Lauricella E, Vilisova S, Chaoul N, Giglio A, D'Angelo G, Porta C, Cives M. The current status of somatostatin analogs in the treatment of neuroendocrine tumors and future perspectives. Expert Rev Neurother 2025; 25:245-258. [PMID: 39415322 DOI: 10.1080/14737175.2024.2417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Somatostatin analogs (SSAs) were developed as antisecretory agents to palliate hormonal symptoms in patients with functioning neuroendocrine tumors (NETs). Their antiproliferative activity has been established in the phase 3 PROMID and CLARINET trials. SSAs currently represent the standard first-line therapy for the majority of well-differentiated G1/G2 gastroenteropancreatic NETs as well as for pulmonary NETs. AREAS COVERED An update on the clinical applications of established SSAs for the treatment of NETs is provided. Perspectives on emerging nonpeptide SSAs such as paltusotine and innovative formulations of octreotide (CAM2029) are included. EXPERT OPINION SSAs represent the cornerstone of treatment for both functioning and nonfunctioning NETs. While standard-dose SSAs have a defined place in the therapeutic algorithm of well-differentiated NETs, uncertainties remain on how to best integrate above-label doses of SSAs in the treatment sequence, particularly when tumor control is the goal. Octreotide and lanreotide appear to be clinically interchangeable, and no signs of superiority of one agent over the other has been observed so far. Whether SSAs may be exploited in the maintenance setting following more aggressive treatments, whether continuing SSAs beyond-progression after first-line therapy could be an effective treatment strategy, and whether new-generation SSAs such as pasireotide could overcome resistance to established SSAs are key areas of investigation.
Collapse
Affiliation(s)
- Eleonora Lauricella
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Sofija Vilisova
- Department of Oncology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Nada Chaoul
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Giglio
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Gabriella D'Angelo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Mauro Cives
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
6
|
Zhang B, Xue L, Wu ZB. Structure and Function of Somatostatin and Its Receptors in Endocrinology. Endocr Rev 2025; 46:26-42. [PMID: 39116368 DOI: 10.1210/endrev/bnae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Somatostatin analogs, such as octreotide, lanreotide, and pasireotide, which function as somatostatin receptor ligands (SRLs), are the main drugs used for the treatment of acromegaly. These ligands are also used as important molecules for radiation therapy and imaging of neuroendocrine tumors. Somatostatin receptors (SSTRs) are canonical G protein-coupled proteins that play a role in metabolism, growth, and pathological conditions such as hormone disorders, neurological diseases, and cancers. Cryogenic electron microscopy combined with the protein structure prediction platform AlphaFold has been used to determine the 3-dimensional structures of many proteins. Recently, several groups published a series of papers illustrating the 3-dimensional structure of SSTR2, including that of the inactive/activated SSTR2-G protein complex bound to different ligands. The results revealed the residues that contribute to the ligand binding pocket and demonstrated that Trp8-Lys9 (the W-K motif) in somatostatin analogs is the key motif in stabilizing the bottom part of the binding pocket. In this review, we discuss the recent findings related to the structural analysis of SSTRs and SRLs, the relationships between the structural data and clinical findings, and the future development of novel structure-based therapies.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325005, China
| |
Collapse
|
7
|
Pofi R, De Alcubierre D, Dong J, Tomlinson JW. New Approaches to the Treatment of Hypercortisolism. Annu Rev Med 2025; 76:431-445. [PMID: 39485832 DOI: 10.1146/annurev-med-071723-044849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This review explores the evolving landscape of treatments for hypercortisolism, highlighting both established and emerging therapies. Although surgery remains the cornerstone of management, medical therapies play a crucial and expanding role, especially in cases of persistent, recurrent, or severe hypercortisolism. We discuss the effectiveness and limitations of steroidogenesis inhibitors, pituitary-directed drugs, glucocorticoid receptor antagonists, and experimental drugs targeting novel molecular pathways that have been implicated in the pathogenesis of hypercortisolism. Despite advancements, significant unmet needs persist, underscoring the importance of personalized treatment approaches and the development of targeted therapies. Ongoing and future clinical trials are crucial for validating the safety and efficacy of these innovative treatments in Cushing disease management.
Collapse
Affiliation(s)
- Riccardo Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism and National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, United Kingdom;
| | - Dario De Alcubierre
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Jiawen Dong
- Oxford Centre for Diabetes, Endocrinology and Metabolism and National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, United Kingdom;
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism and National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, United Kingdom;
| |
Collapse
|
8
|
Abeledo-Machado A, Argerich J, Yaneff A, Vidal N, García-Roca C, Bornancini D, Peña-Zanoni M, Gironacci MM, Shayo C, Ciruela F, Díaz-Torga G. B2R-D2R Interaction in Prolactinomas and Nonfunctional Adenomas: Impact on Dopamine Resistance. Endocrinology 2024; 165:bqae144. [PMID: 39487739 DOI: 10.1210/endocr/bqae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024]
Abstract
Prolactinomas, the most common pituitary-secreting adenomas, can be effectively treated with dopamine D2 receptor (D2R) agonists. However, a subset of them (∼20%) are resistant to dopamine-based therapies and require extirpation. The molecular mechanisms underlying their escape from dopaminergic regulation are not fully elucidated and may include alterations in D2R signaling. D2R can heteromerize with other G protein-coupled receptors, resulting in modulation of dopaminergic signaling. Because the bradykinin receptor type 2 (B2R) is overexpressed in prolactinomas, we interrogated whether this dopaminergic dysregulation observed in some prolactinomas may depend on a physical and functional interaction between D2R and B2R. The formation of B2R-D2R complexes in cultured cells transiently expressing both receptors was validated using NanoBiT technology. Interestingly, although D2R stimulation did not alter B2R-induced intracellular calcium mobilization, B2R stimulation abolished D2R signaling through modulation of cAMP. The existence of B2R-D2R complexes in pituitary adenomas biopsies was evaluated using an ALPHALisa approach. Importantly, B2R-D2R complexes were detected in human prolactinomas and nonfunctioning pituitary adenomas, but not in mixed (prolactin + growth hormone)-secreting adenomas. These results suggest that overexpression of B2R in resistant prolactinomas may promote the formation of B2R-D2R complexes, with B2R precluding D2R signaling, thus generating resistance to D2R agonists.
Collapse
Affiliation(s)
| | - Josep Argerich
- Department of Pathology and Experimental Therapeutics, Pharmacology Unit, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 Barcelona, Spain
| | - Agustín Yaneff
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Noemi Vidal
- Neurohatology, Servei d´Anatomia Patològica, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Claudia García-Roca
- Neurohatology, Servei d´Anatomia Patològica, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Dana Bornancini
- Laboratorio de Fisiopatología Hormonal, IBYME-CONICET, C1428ADN Buenos Aires, Argentina
| | - Milagros Peña-Zanoni
- Laboratorio de Fisiopatología Hormonal, IBYME-CONICET, C1428ADN Buenos Aires, Argentina
| | - Mariela M Gironacci
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, IBYME-CONICET, C1428ADN Buenos Aires, Argentina
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Pharmacology Unit, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 Barcelona, Spain
| | - Graciela Díaz-Torga
- Laboratorio de Fisiopatología Hormonal, IBYME-CONICET, C1428ADN Buenos Aires, Argentina
| |
Collapse
|
9
|
Periferakis A, Tsigas G, Periferakis AT, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, Savulescu-Fiedler I, Caruntu C, Scheau AE. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr Issues Mol Biol 2024; 46:9721-9759. [PMID: 39329930 PMCID: PMC11430067 DOI: 10.3390/cimb46090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Somatostatin is a peptide that plays a variety of roles such as neurotransmitter and endocrine regulator; its actions as a cell regulator in various tissues of the human body are represented mainly by inhibitory effects, and it shows potent activity despite its physiological low concentrations. Somatostatin binds to specific receptors, called somatostatin receptors (SSTRs), which have different tissue distributions and associated signaling pathways. The expression of SSTRs can be altered in various conditions, including tumors; therefore, they can be used as biomarkers for cancer cell susceptibility to certain pharmacological agents and can provide prognostic information regarding disease evolution. Moreover, based on the affinity of somatostatin analogs for the different types of SSTRs, the therapeutic range includes conditions such as tumors, acromegaly, post-prandial hypotension, hyperinsulinism, and many more. On the other hand, a number of somatostatin antagonists may prove useful in certain medical settings, based on their differential affinity for SSTRs. The aim of this review is to present in detail the principal characteristics of all five SSTRs and to provide an overview of the associated therapeutic potential in neoplasias.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Georgios Tsigas
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Carla Mihaela Tone
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daria Alexandra Hemes
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs, 17236 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
10
|
Agrawal N, Urwyler SA, Mehta S, Karavitaki N, Feelders RA. How to manage Cushing's disease after failed primary pituitary surgery. Eur J Endocrinol 2024; 191:R37-R54. [PMID: 39276376 DOI: 10.1093/ejendo/lvae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The first-line treatment for Cushing's disease is transsphenoidal adenomectomy, which can be curative in a significant number of patients. The second-line options in cases of failed primary pituitary surgery include repeat surgery, medical therapy, and radiation. The role for medical therapy has expanded in the last decade, and options include pituitary-targeting drugs, steroid synthesis inhibitors, and glucocorticoid receptor antagonists. Bilateral adrenalectomy is a more aggressive approach, which may be necessary in cases of persistent hypercortisolism despite surgery, medical treatment, or radiation or when rapid normalization of cortisol is needed. We review the available treatment options for Cushing's disease, focusing on the second-line treatment options to consider after failed primary pituitary surgery.
Collapse
Affiliation(s)
- Nidhi Agrawal
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, NY 10016, United States
| | - Sandrine A Urwyler
- Clinic of Endocrinology, Diabetes and Metabolism, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Sonal Mehta
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, NY 10016, United States
| | - Niki Karavitaki
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 1PJ, United Kingdom
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, 3015 GD Rotterdam, Netherlands
| |
Collapse
|
11
|
Li J, Li Y, Ding Y, Song Y, Li J, Chen H, Feng G, Wang X, Ge B, Ding N, Huang F. Inverse Regulation of C-C Chemokine Receptor 3 Oligomerization by Downstream Proteins Indicates Biased Signal Transduction Pathways. J Phys Chem Lett 2024; 15:7652-7658. [PMID: 39037351 DOI: 10.1021/acs.jpclett.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Oligomerization is one of the important mechanisms for G protein-coupled receptors (GPCRs) to modulate their activity in signal transduction. However, details of how and why the oligomerization of GPCRs regulates their functions under physiological conditions remain largely unknown. Here, using single-molecule photobleaching technology, we show that chemokine ligand 5 (CCL5) and chemokine ligand 8 (CCL8) are similar to the previously reported chemokine ligand 11 (CCL11) and chemokine ligand 24 (CCL24), which can regulate the oligomerization of chemokine receptor 3 (CCR3). Our results further demonstrate that downstream proteins, β-arrestin 2 and Gi protein complex, on the CCR3 signal transduction pathway, can inversely regulate the oligomeric states of CCR3 induced by its binding ligands. This unexpected discovery suggests complex relationships between the oligomeric behaviors of CCR3 and the components of ligands-CCR3-downstream proteins, reflecting the potentially functional impact of the oligomerization on the multiple activation pathways of GPCR, such as biased activation.
Collapse
Affiliation(s)
- Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
- Qingdao Haier Biomedical Co., Ltd., Qingdao, Shandong 266000, P. R. China
| | - Yu Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Yanzhi Ding
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Junfeng Li
- Qingdao Haier Biomedical Co., Ltd., Qingdao, Shandong 266000, P. R. China
| | - Haitao Chen
- Qingdao Haier Biomedical Co., Ltd., Qingdao, Shandong 266000, P. R. China
| | - Guoqing Feng
- Qingdao Haier Biomedical Co., Ltd., Qingdao, Shandong 266000, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Ning Ding
- Qingdao Huangdao District Hospital, Qingdao, Shandong 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| |
Collapse
|
12
|
Shimon I. Real-world value of cabergoline in the treatment of acromegaly. Best Pract Res Clin Endocrinol Metab 2024; 38:101887. [PMID: 38443225 DOI: 10.1016/j.beem.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Cabergoline is an ergot derivative long-acting dopamine receptor 2 (DR2) selective agonist administered orally and widely used for the treatment of prolactin-secreting adenomas and Parkinson's disease. DR2 is expressed in most somatotroph adenomas. In acromegaly, cabergoline is used off-label and its role is limited by the relatively modest efficacy for achieving hormonal remission and thus, it is largely indicated in patients with mild elevation of GH/IGF-I postoperatively. It can be given as monotherapy, usually at a higher weekly dose than usually required to treat prolactinomas, but also as an add-on treatment in patients partially responding to the somatostatin receptor ligands octreotide or lanreotide. IGF-1 normalization with cabergoline can be achieved in about a third of the patients. Low baseline IGF-1 level (below 1.5 x ULN) before cabergoline initiation is a good predictor for remission. Combination treatment with the GH receptor antagonist pegvisomant can also be beneficial. The inexpensive, well-tolerated and convenient oral administration of cabergoline makes it an attractive medical therapy for active acromegaly.
Collapse
Affiliation(s)
- Ilan Shimon
- Institute of Endocrinology, Rabin Medical Centre, Beilinson Hospital, Petach Tikva, and School of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
13
|
Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K. Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Front Mol Neurosci 2024; 17:1376762. [PMID: 38516040 PMCID: PMC10954900 DOI: 10.3389/fnmol.2024.1376762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The unraveling of the regulatory mechanisms that govern neuronal excitability is a major challenge for neuroscientists worldwide. Neurotransmitters play a critical role in maintaining the balance between excitatory and inhibitory activity in the brain. The balance controls cognitive functions and emotional responses. Glutamate and γ-aminobutyric acid (GABA) are the primary excitatory and inhibitory neurotransmitters of the brain, respectively. Disruptions in the balance between excitatory and inhibitory transmission are implicated in several psychiatric disorders, including anxiety disorders, depression, and schizophrenia. Neuromodulators such as dopamine and acetylcholine control cognition and emotion by regulating the excitatory/inhibitory balance initiated by glutamate and GABA. Dopamine is closely associated with reward-related behaviors, while acetylcholine plays a role in aversive and attentional behaviors. Although the physiological roles of neuromodulators have been extensively studied neuroanatomically and electrophysiologically, few researchers have explored the interplay between neuronal excitability and cell signaling and the resulting impact on emotion regulation. This review provides an in-depth understanding of "cell signaling crosstalk" in the context of neuronal excitability and emotion regulation. It also anticipates that the next generation of neurochemical analyses, facilitated by integrated phosphorylation studies, will shed more light on this topic.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
14
|
Divaris E, Kostopoulos G, Efstathiadou ZA. Current and Emerging Pharmacological Therapies for Cushing's Disease. Curr Pharm Des 2024; 30:757-777. [PMID: 38424426 DOI: 10.2174/0113816128290025240216110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Cushing's Disease (CD), hypercortisolism due to pituitary ACTH secreting neuroendocrine neoplasm, is associated with increased morbidity and, if untreated, mortality in about half of the affected individuals. Consequently, the timely initiation of effective treatment is mandatory. Neurosurgery is the first line and the only potentially curative treatment; however, 30% of patients will have persistent disease post-surgery. Furthermore, a small percentage of those initially controlled will develop hypercortisolism during long-term follow- up. Therefore, patients with persistent or recurrent disease, as well as those considered non-eligible for surgery, will need a second-line therapeutic approach, i.e., pharmacotherapy. Radiation therapy is reserved as a third-line therapeutic option due to its slower onset of action and its unfavorable profile regarding complications. During the past few years, the understanding of molecular mechanisms implicated in the physiology of the hypothalamus-pituitary-adrenal axis has evolved, and new therapeutic targets for CD have emerged. In the present review, currently available treatments, compounds currently tested in ongoing clinical trials, and interesting, potentially new targets emerging from unraveling molecular mechanisms involved in the pathophysiology of Cushing's disease are discussed.
Collapse
Affiliation(s)
- Efstathios Divaris
- Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Kostopoulos
- Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Zoe A Efstathiadou
- Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
16
|
Feelders RA, Fleseriu M, Kadioglu P, Bex M, González-Devia D, Boguszewski CL, Yavuz DG, Patino H, Pedroncelli AM, Maamari R, Chattopadhyay A, Biller BMK, Pivonello R. Long-term efficacy and safety of subcutaneous pasireotide alone or in combination with cabergoline in Cushing's disease. Front Endocrinol (Lausanne) 2023; 14:1165681. [PMID: 37876540 PMCID: PMC10593462 DOI: 10.3389/fendo.2023.1165681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/11/2023] [Indexed: 10/26/2023] Open
Abstract
Objective This study evaluated short- and long-term efficacy and safety of the second-generation somatostatin receptor ligand pasireotide alone or in combination with dopamine agonist cabergoline in patients with Cushing's disease (CD). Study design This is an open-label, multicenter, non-comparative, Phase II study comprising 35-week core phase and an optional extension phase. All patients started with pasireotide, and cabergoline was added if cortisol remained elevated. Eligible patients had active CD, with or without prior surgery, were pasireotide naïve at screening or had discontinued pasireotide for reasons other than safety. Primary endpoint was proportion of patients with a mean urinary free cortisol (mUFC) level not exceeding the upper limit of normal (ULN) at week 35 with missing data imputed using last available post-baseline assessments. Results Of 68 patients enrolled, 26 (38.2%) received pasireotide monotherapy and 42 (61.8%) received pasireotide plus cabergoline during the core phase. Thirty-four patients (50.0%; 95% CI 37.6-62.4) achieved the primary endpoint, of whom 17 (50.0%) received pasireotide monotherapy and 17 (50.0%) received combination therapy. Proportion of patients with mUFC control remained stable during the extension phase up to week 99. Treatment with either mono or combination therapy provided sustained improvements in clinical symptoms of hypercortisolism up to week 99. Hyperglycemia and nausea (51.5% each), diarrhea (44.1%) and cholelithiasis (33.8%) were the most frequent adverse events. Conclusion Addition of cabergoline in patients with persistently elevated mUFC on maximum tolerated doses of pasireotide is an effective and well-tolerated long-term strategy for enhancing control of hypercortisolism in some CD patients. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT01915303, identifier NCT01915303.
Collapse
Affiliation(s)
- Richard A. Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Maria Fleseriu
- Pituitary Center, Departments of Medicine and Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Pinar Kadioglu
- Division of Endocrinology, Metabolism and Diabetes, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Türkiye
| | - Marie Bex
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Deyanira González-Devia
- Departamento de Medicina Interna, Sección de Endocrinologia, Hospital Universitario Fundación Santa Fé de Bogotá, Bogota, Colombia
| | - Cesar Luiz Boguszewski
- Department of Internal Medicine, Endocrine Division (SEMPR), Federal University of Paraná, Curitiba, Parana, Brazil
| | - Dilek Gogas Yavuz
- Section of Endocrinology and Metabolism, Marmara University School of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul, Türkiye
| | - Heather Patino
- Global Medical Affairs, Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - Alberto M. Pedroncelli
- Recordati AG, Basel, Switzerland
- Global Medical Affairs, Novartis Pharma AG, Basel, Switzerland
| | - Ricardo Maamari
- Global Medical Affairs, Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - Arghya Chattopadhyay
- Global Medical Affairs, Novartis Healthcare Private Limited, Hyderabad, Telangana, India
| | - Beverly M. K. Biller
- Neuroendocrine & Pituitary Tumor Clinical Center, Massachusetts General Hospital, Boston, MA, United States
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| |
Collapse
|
17
|
Vamvoukaki R, Chrysoulaki M, Betsi G, Xekouki P. Pituitary Tumorigenesis-Implications for Management. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040812. [PMID: 37109772 PMCID: PMC10145673 DOI: 10.3390/medicina59040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Pituitary neuroendocrine tumors (PitNETs), the third most common intracranial tumor, are mostly benign. However, some of them may display a more aggressive behavior, invading into the surrounding structures. While they may rarely metastasize, they may resist different treatment modalities. Several major advances in molecular biology in the past few years led to the discovery of the possible mechanisms involved in pituitary tumorigenesis with a possible therapeutic implication. The mutations in the different proteins involved in the Gsa/protein kinase A/c AMP signaling pathway are well-known and are responsible for many PitNETS, such as somatotropinomas and, in the context of syndromes, as the McCune-Albright syndrome, Carney complex, familiar isolated pituitary adenoma (FIPA), and X-linked acrogigantism (XLAG). The other pathways involved are the MAPK/ERK, PI3K/Akt, Wnt, and the most recently studied HIPPO pathways. Moreover, the mutations in several other tumor suppressor genes, such as menin and CDKN1B, are responsible for the MEN1 and MEN4 syndromes and succinate dehydrogenase (SDHx) in the context of the 3PAs syndrome. Furthermore, the pituitary stem cells and miRNAs hold an essential role in pituitary tumorigenesis and may represent new molecular targets for their diagnosis and treatment. This review aims to summarize the different cell signaling pathways and genes involved in pituitary tumorigenesis in an attempt to clarify their implications for diagnosis and management.
Collapse
Affiliation(s)
- Rodanthi Vamvoukaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Maria Chrysoulaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Grigoria Betsi
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Paraskevi Xekouki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| |
Collapse
|
18
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Transcriptomic Profiles of Normal Pituitary Cells and Pituitary Neuroendocrine Tumor Cells. Cancers (Basel) 2022; 15:cancers15010110. [PMID: 36612109 PMCID: PMC9817686 DOI: 10.3390/cancers15010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The pituitary gland is one of the most cellularly diverse regions of the brain. Recent advancements in transcriptomic biology, such as single-cell RNA sequencing, bring an unprecedented glimpse into the molecular composition of the pituitary, both in its normal physiological state and in disease. Deciphering the normal pituitary transcriptomic signatures provides a better insight into the ontological origin and development of five types of endocrine cells, a process involving complex cascades of transcription factors that are still being established. In parallel with these observations about normal pituitary development, recent transcriptomic findings on pituitary neuroendocrine tumors (PitNETs) demonstrate both preservations and changes in transcription factor expression patterns compared to those seen during gland development. Furthermore, recent studies also identify differentially expressed genes that drive various tumor behaviors, including hormone hypersecretion and tumor aggression. Understanding the comprehensive multiomic profiles of PitNETs is essential in developing molecular profile-based therapies for PitNETs not curable with current treatment modalities and could eventually help align PitNETs with the breakthroughs being made in applying precision medicine to other tumors.
Collapse
|
20
|
Daniele S, Saporiti S, Capaldi S, Pietrobono D, Russo L, Guerrini U, Laurenzi T, Ataie Kachoie E, Palazzolo L, Russo V, Abbracchio MP, Eberini I, Trincavelli ML. Functional Heterodimerization between the G Protein-Coupled Receptor GPR17 and the Chemokine Receptors 2 and 4: New Evidence. Int J Mol Sci 2022; 24:261. [PMID: 36613703 PMCID: PMC9820414 DOI: 10.3390/ijms24010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
GPR17, a G protein-coupled receptor, is a pivotal regulator of myelination. Its endogenous ligands trigger receptor desensitization and downregulation allowing oligodendrocyte terminal maturation. In addition to its endogenous agonists, GPR17 could be promiscuously activated by pro-inflammatory oxysterols and chemokines released at demyelinating lesions. Herein, the chemokine receptors CXCR2 and CXCR4 were selected to perform both in silico modelling and in vitro experiments to establish their structural and functional interactions with GPR17. The relative propensity of GPR17 and CXCR2 or CXCR4 to form homo- and hetero-dimers was assessed by homology modelling and molecular dynamics (MD) simulations, and co-immunoprecipitation and immunoenzymatic assay. The interaction between chemokine receptors and GPR17 was investigated by determining receptor-mediated modulation of intracellular cyclic adenosine monophosphate (cAMP). Our data show the GPR17 association with CXCR2 or CXCR4 and the negative regulation of these interactions by CXCR agonists or antagonists. Moreover, GPR17 and CXCR2 heterodimers can functionally influence each other. In contrast, CXCR4 can influence GPR17 functionality, but not vice versa. According to MD simulations, all the dimers reached conformational stability and negative formation energy, confirming the experimental observations. The cross-talk between these receptors could play a role in the development of the neuroinflammatory milieu associated with demyelinating events.
Collapse
Affiliation(s)
- Simona Daniele
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Saporiti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Stefano Capaldi
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Deborah Pietrobono
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Lara Russo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Elham Ataie Kachoie
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Vincenzo Russo
- Cancer Gene Therapy Unit, Program of Immunology and Bio Immuno Gene Therapy of Cancer, Division of Molecular Oncology Scientific, Institute San Raffaele, 20132 Milan, Italy
| | - Maria Pia Abbracchio
- Laboratorio di Farmacologia Molecolare e Cellulare Della Trasmissione Purinergica, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & Data Science Research Center (DSRC), Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | | |
Collapse
|
21
|
Gaziano I, Corneliussen S, Biglari N, Neuhaus R, Shen L, Sotelo-Hitschfeld T, Klemm P, Steuernagel L, De Solis AJ, Chen W, Wunderlich FT, Kloppenburg P, Brüning JC. Dopamine-inhibited POMCDrd2+ neurons in the ARC acutely regulate feeding and body temperature. JCI Insight 2022; 7:162753. [PMID: 36345942 PMCID: PMC9675440 DOI: 10.1172/jci.insight.162753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine acts on neurons in the arcuate nucleus (ARC) of the hypothalamus, which controls homeostatic feeding responses. Here we demonstrate a differential enrichment of dopamine receptor 1 (Drd1) expression in food intake-promoting agouti related peptide (AgRP)/neuropeptide Y (NPY) neurons and a large proportion of Drd2-expressing anorexigenic proopiomelanocortin (POMC) neurons. Owing to the nature of these receptors, this translates into a predominant activation of AgRP/NPY neurons upon dopamine stimulation and a larger proportion of dopamine-inhibited POMC neurons. Employing intersectional targeting of Drd2-expressing POMC neurons, we reveal that dopamine-mediated POMC neuron inhibition is Drd2 dependent and that POMCDrd2+ neurons exhibit differential expression of neuropeptide signaling mediators compared with the global POMC neuron population, which manifests in enhanced somatostatin responsiveness of POMCDrd2+ neurons. Selective chemogenetic activation of POMCDrd2+ neurons uncovered their ability to acutely suppress feeding and to preserve body temperature in fasted mice. Collectively, the present study provides the molecular and functional characterization of POMCDrd2+ neurons and aids our understanding of dopamine-dependent control of homeostatic energy-regulatory neurocircuits.
Collapse
Affiliation(s)
- Isabella Gaziano
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Svenja Corneliussen
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and,Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| | - Nasim Biglari
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - René Neuhaus
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Linyan Shen
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Tamara Sotelo-Hitschfeld
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Paul Klemm
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Lukas Steuernagel
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Alain J. De Solis
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - Weiyi Chen
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and
| | - F. Thomas Wunderlich
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and,Obesity and Cancer group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and,Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| | - Jens C. Brüning
- Neuronal Control of Metabolism group, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC) and,National Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
22
|
Hacisahinogullari H, Yalin GY, Selcukbiricik OS, Gul N, Bilgic B, Uzum AK, Tanakol R, Aral F. Effect of Cabergoline Treatment on Disease Control in Acromegaly Patients. Horm Metab Res 2022; 54:664-670. [PMID: 36206759 DOI: 10.1055/a-1930-6585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The aim of this study was to evaluate the efficacy of cabergoline in normalizing plasma IGF-I levels in acromegaly patients with elevated IGF-I levels after surgery and/or SRL therapy. Acromegaly patients (n: 143) were evaluated retrospectively. Patients with elevated IGF-I levels after surgery and/or SRLs therapy and a fixed dose of SRLs treatment for the last six months with no history of radiotherapy in the last three years were included in the study (n: 12). Previous treatment regimens, baseline PRL and IGF-I levels (ULNR), sella MRI, and immunohistochemical findings were evaluated. Cabergoline was used as an add on (n: 11) or single medical treatment (n: 1). The median duration of treatment with SRL alone was 12 months (range 6-48 months). The mean IGF-I value before cabergoline therapy was 1.45±0.4 ULNR. The mean cabergoline dose and duration of treatment were 1.55±0.75 mg/week and 9±6.3 months, respectively. IGF-I normalization was only achieved in patients with serum IGF-I concentration<1.5×ULNR before the onset of cabergoline treatment (n: 9). In some of the patients with IGF-I normalization, baseline prolactin levels were normal (n: 3). Immunopositivity for prolactin in adenoma tissue was found in three patients with IGF-I normalization. Cabergoline therapy is effective in the normalization of IGF-I levels even in normoprolactinemic acromegaly patients when IGF-I levels are mildly or moderately elevated during SRL therapy.
Collapse
Affiliation(s)
- Hulya Hacisahinogullari
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Gulsah Yenidunya Yalin
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ozlem Soyluk Selcukbiricik
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Nurdan Gul
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Bilge Bilgic
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ayse Kubat Uzum
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Refik Tanakol
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ferihan Aral
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
23
|
Kizilgul M, Duger H, Nasiroglu NI, Sencar E, Hepsen S, Akhanli P, Berker D, Cakal E, Bostan H, Ucan B. Efficacy of cabergoline add-on therapy in patients with acromegaly resistance to somatostatin analogs treatment and the review of literature. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:278-285. [PMID: 35612842 PMCID: PMC9832853 DOI: 10.20945/2359-3997000000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
Objective It is reported that adding cabergoline to somatostatin analog (SSA) normalizes IGF-1 levels approximately in one-third of patients with acromegaly. We investigated the effect of combination therapy and potential predictors of response in patients with acromegaly who do not respond to SSA therapy alone. Methods Fifty acromegaly patients (M/F 23/27, mean age 50.88 ± 12.34 years) were divided into two groups as the active and control groups in this connection. Before and after treatment, we not only evaluated serum GH and IGF-1 levels and tumor size but also analyzed the factors relevant to the effect of the combined therapy. Results Adding cabergoline to SSA treatment led to IGF-1 normalization in 42% (21/50) of patients. Mean GH levels decreased from 2.64 ± 1.79 to 1.34 ± 0.99 ng/mL (p < .0001) and IGF-1 levels decreased from 432.92 ± 155.61 to 292.52 ± 126.15 ng/mL (p < .0001). GH and IGF-1 reduction in percent (%) were significantly higher in the controlled group (63% to 40%, p = 0.023 and 45% to 19%, p = 0.0001). Moreover, tumor size decrease was significantly higher in controlled group (-3.6 cm to -1.66 cm, p = 0.005). Conclusion According to the results of our study, the addition of cabergoline to SSA normalized IGF-1 levels in a considerable amount of acromegaly patients with a moderately elevated IGF-1 level, regardless of serum PRL levels. Besides, cabergoline treatment was also influential in patients with higher IGF-1 levels despite a lower remission rate.
Collapse
Affiliation(s)
- Muhammed Kizilgul
- University of Health Sciences, Diskapi Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey, ;
| | - Hakan Duger
- University of Health Sciences, Diskapi Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Narin Imga Nasiroglu
- University of Health Sciences, Numune Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Erkam Sencar
- University of Health Sciences, Diskapi Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Sema Hepsen
- University of Health Sciences, Diskapi Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Pinar Akhanli
- University of Health Sciences, Diskapi Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Dilek Berker
- University of Health Sciences, Numune Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Erman Cakal
- University of Health Sciences, Diskapi Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Hayri Bostan
- University of Health Sciences, Diskapi Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Bekir Ucan
- University of Health Sciences, Diskapi Training and Research Hospital, Department of Endocrinology and Metabolism, Ankara, Turkey
| |
Collapse
|
24
|
Zhang R, Li D, Mao H, Wei X, Xu M, Zhang S, Jiang Y, Wang C, Xin Q, Chen X, Li G, Ji B, Yan M, Cai X, Dong B, Randeva HS, Liu C, Chen J. Disruption of 5-hydroxytryptamine 1A receptor and orexin receptor 1 heterodimer formation affects novel G protein-dependent signaling pathways and has antidepressant effects in vivo. Transl Psychiatry 2022; 12:122. [PMID: 35338110 PMCID: PMC8956632 DOI: 10.1038/s41398-022-01886-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/28/2023] Open
Abstract
G protein-coupled receptor (GPCR) heterodimers are new targets for the treatment of depression. Increasing evidence supports the importance of serotonergic and orexin-producing neurons in numerous physiological processes, possibly via a crucial interaction between 5-hydroxytryptamine 1A receptor (5-HT1AR) and orexin receptor 1 (OX1R). However, little is known about the function of 5-HT1AR/OX1R heterodimers. It is unclear how the transmembrane domains (TMs) of the dimer affect its function and whether its modulation mediates antidepressant-like effects. Here, we examined the mechanism of 5-HT1AR/OX1R dimerization and downstream G protein-dependent signaling. We found that 5-HT1AR and OX1R form constitutive heterodimers that induce novel G protein-dependent signaling, and that this heterodimerization does not affect recruitment of β-arrestins to the complex. In addition, we found that the structural interface of the active 5-HT1AR/OX1R dimer transforms from TM4/TM5 in the basal state to TM6 in the active conformation. We also used mutation analyses to identify key residues at the interface (5-HT1AR R1514.40, 5-HT1AR Y1985.41, and OX1R L2305.54). Injection of chronic unpredictable mild stress (CUMS) rats with TM4/TM5 peptides improved their depression-like emotional status and decreased the number of endogenous 5-HT1AR/OX1R heterodimers in the rat brain. These antidepressant effects may be mediated by upregulation of BDNF levels and enhanced phosphorylation and activation of CREB in the hippocampus and medial prefrontal cortex. This study provides evidence that 5-HT1AR/OX1R heterodimers are involved in the pathological process of depression. Peptides including TMs of the 5-HT1AR/OX1R heterodimer interface are candidates for the development of compounds with fast-acting antidepressant-like effects.
Collapse
Affiliation(s)
- Rumin Zhang
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Dandan Li
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Huiling Mao
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Xiaonan Wei
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - MingDong Xu
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Shengnan Zhang
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Yunlu Jiang
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Chunmei Wang
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Qing Xin
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University, Taian, China
| | - Guorong Li
- grid.410585.d0000 0001 0495 1805School of Life Sciences, Shandong Normal University, Jinan, China
| | - Bingyuan Ji
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Maocai Yan
- grid.449428.70000 0004 1797 7280School of Pharmacy, Jining Medical University, Shandong, China
| | - Xin Cai
- grid.268079.20000 0004 1790 6079Department of Physiology, Weifang Medical University, Weifang, China
| | - Bo Dong
- grid.460018.b0000 0004 1769 9639Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Harpal S. Randeva
- grid.7372.10000 0000 8809 1613Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Chuanxin Liu
- grid.449428.70000 0004 1797 7280Neurobiology Institute, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, China. .,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
25
|
Eiger DS, Pham U, Gardner J, Hicks C, Rajagopal S. GPCR Systems Pharmacology: A Different Perspective on the Development of Biased Therapeutics. Am J Physiol Cell Physiol 2022; 322:C887-C895. [PMID: 35196164 PMCID: PMC9037395 DOI: 10.1152/ajpcell.00449.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and are the target of approximately one-third of all Food and Drug Administration (FDA)-approved pharmaceutical drugs. GPCRs interact with many transducers, such as heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. Recent experiments have demonstrated that some ligands can activate distinct effector proteins over others, a phenomenon termed biased agonism. These discoveries have raised the potential of developing drugs which preferentially activate therapeutic signaling pathways over those that lead to deleterious side effects. However, to date, only one biased GPCR therapeutic has received FDA approval and many others have either failed to meet their specified primary endpoints and or demonstrate superiority over currently available treatments. Additionally, there is a lack of understanding regarding how biased agonism measured at a GPCR leads to specific downstream physiologic responses. Here, we briefly summarize the history and current status of biased agonism at GPCRs and suggest adoption of a systems pharmacology approach upon which to develop GPCR-targeted drugs that demonstrate heightened therapeutic efficacy with improved side effect profiles.
Collapse
Affiliation(s)
- Dylan Scott Eiger
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Julia Gardner
- Trinty College, Duke University, Durham, NC, United States
| | - Chloe Hicks
- Trinty College, Duke University, Durham, NC, United States
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
26
|
Current and Emerging Medical Therapies in Pituitary Tumors. J Clin Med 2022; 11:jcm11040955. [PMID: 35207228 PMCID: PMC8877616 DOI: 10.3390/jcm11040955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
Pituitary tumors (PT) represent in, the majority of cases, benign tumors for which surgical treatment still remains, except for prolactin-secreting PT, the first-line therapeutic option. Nonetheless, the role played by medical therapies for the management of such tumors, before or after surgery, has evolved considerably, due in part to the recent development of well-tolerated and highly efficient molecules. In this review, our aim was to present a state-of-the-art of the current medical therapies used in the field of PT and the benefits and caveats for each of them, and further specify their positioning in the therapeutic algorithm of each phenotype. Finally, we discuss the future of PT medical therapies, based on the most recent studies published in this field.
Collapse
|
27
|
Gallo M, Defaus S, Andreu D. Disrupting GPCR Complexes with Smart Drug-like Peptides. Pharmaceutics 2022; 14:pharmaceutics14010161. [PMID: 35057055 PMCID: PMC8779866 DOI: 10.3390/pharmaceutics14010161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a superfamily of proteins classically described as monomeric transmembrane (TM) receptors. However, increasing evidence indicates that many GPCRs form higher-order assemblies made up of monomers pertaining to identical (homo) or to various (hetero) receptors. The formation and structure of these oligomers, their physiological role and possible therapeutic applications raise a variety of issues that are currently being actively explored. In this context, synthetic peptides derived from TM domains stand out as powerful tools that can be predictably targeted to disrupt GPCR oligomers, especially at the interface level, eventually impairing their action. However, despite such potential, TM-derived, GPCR-disrupting peptides often suffer from inadequate pharmacokinetic properties, such as low bioavailability, a short half-life or rapid clearance, which put into question their therapeutic relevance and promise. In this review, we provide a comprehensive overview of GPCR complexes, with an emphasis on current studies using GPCR-disrupting peptides mimicking TM domains involved in multimerization, and we also highlight recent strategies used to achieve drug-like versions of such TM peptide candidates for therapeutic application.
Collapse
Affiliation(s)
| | - Sira Defaus
- Correspondence: (S.D.); (D.A.); Tel.: +34-933160868 (S.D. & D.A.)
| | - David Andreu
- Correspondence: (S.D.); (D.A.); Tel.: +34-933160868 (S.D. & D.A.)
| |
Collapse
|
28
|
Treppiedi D, Marra G, Di Muro G, Catalano R, Mangili F, Esposito E, Calebiro D, Arosio M, Peverelli E, Mantovani G. Dimerization of GPCRs: Novel insight into the role of FLNA and SSAs regulating SST 2 and SST 5 homo- and hetero-dimer formation. Front Endocrinol (Lausanne) 2022; 13:892668. [PMID: 35992099 PMCID: PMC9389162 DOI: 10.3389/fendo.2022.892668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The process of GPCR dimerization can have profound effects on GPCR activation, signaling, and intracellular trafficking. Somatostatin receptors (SSTs) are class A GPCRs abundantly expressed in pituitary tumors where they represent the main pharmacological targets of somatostatin analogs (SSAs), thanks to their antisecretory and antiproliferative actions. The cytoskeletal protein filamin A (FLNA) directly interacts with both somatostatin receptor type 2 (SST2) and 5 (SST5) and regulates their expression and signaling in pituitary tumoral cells. So far, the existence and physiological relevance of SSTs homo- and hetero-dimerization in the pituitary have not been explored. Moreover, whether octreotide or pasireotide may play modulatory effects and whether FLNA may participate to this level of receptor organization have remained elusive. Here, we used a proximity ligation assay (PLA)-based approach for the in situ visualization and quantification of SST2/SST5 dimerization in rat GH3 as well as in human melanoma cells either expressing (A7) or lacking (M2) FLNA. First, we observed the formation of endogenous SST5 homo-dimers in GH3, A7, and M2 cells. Using the PLA approach combined with epitope tagging, we detected homo-dimers of human SST2 in GH3, A7, and M2 cells transiently co-expressing HA- and SNAP-tagged SST2. SST2 and SST5 can also form endogenous hetero-dimers in these cells. Interestingly, FLNA absence reduced the basal number of hetero-dimers (-36.8 ± 6.3% reduction of PLA events in M2, P < 0.05 vs. A7), and octreotide but not pasireotide promoted hetero-dimerization in both A7 and M2 (+20.0 ± 11.8% and +44.1 ± 16.3% increase of PLA events in A7 and M2, respectively, P < 0.05 vs. basal). Finally, immunofluorescence data showed that SST2 and SST5 recruitment at the plasma membrane and internalization are similarly induced by octreotide and pasireotide in GH3 and A7 cells. On the contrary, in M2 cells, octreotide failed to internalize both receptors whereas pasireotide promoted robust receptor internalization at shorter times than in A7 cells. In conclusion, we demonstrated that in GH3 cells SST2 and SST5 can form both homo- and hetero-dimers and that FLNA plays a role in the formation of SST2/SST5 hetero-dimers. Moreover, we showed that FLNA regulates SST2 and SST5 intracellular trafficking induced by octreotide and pasireotide.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- University Sapienza of Rome, Rome, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Erika Peverelli,
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
29
|
Somatostatin analogue pasireotide (SOM230) inhibits catecholamine secretion in human pheochromocytoma cells. Cancer Lett 2022; 524:232-244. [PMID: 34637845 DOI: 10.1016/j.canlet.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
Increasingly common, neuroendocrine tumors (NETs) are regarded nowadays as neoplasms potentially causing debilitating symptoms and life-threatening medical conditions. Pheochromocytoma is a NET that develops from chromaffin cells of the adrenal medulla, and is responsible for an excessive secretion of catecholamines. Consequently, patients have an increased risk for clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Somatostatin analogues are among the main anti-secretory medical drugs used in current clinical practice in patients with NETs. However, their impact on pheochromocytoma-associated catecholamine hypersecretion remains incompletely explored. This study investigated the potential efficacy of octreotide and pasireotide (SOM230) on human tumor cells directly cultured from freshly resected pheochromocytomas using an implemented catecholamine secretion measurement by carbon fiber amperometry. SOM230 treatment efficiently inhibited nicotine-induced catecholamine secretion both in bovine chromaffin cells and in human tumor cells whereas octreotide had no effect. Moreover, SOM230 specifically decreased the number of exocytic events by impairing the stimulation-evoked calcium influx as well as the nicotinic receptor-activated inward current in human pheochromocytoma cells. Altogether, our findings indicate that SOM230 acts as an inhibitor of catecholamine secretion through a mechanism involving the nicotinic receptor and might be considered as a potential anti-secretory treatment for patients with pheochromocytoma.
Collapse
|
30
|
Yang Q, Shang J, Chen Y, Tang D, Ouyang Y, Xiong B, Zhang X. Plasmonic Imaging of Dynamic Interactions between Membrane Receptor Clusters beyond the Diffraction Limit in Live Cells. Anal Chem 2021; 93:16571-16580. [PMID: 34847664 DOI: 10.1021/acs.analchem.1c03843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a general mechanism, ligand-induced receptor clustering on cell membrane plays determinative roles in pattern recognition and transmembrane signaling. Nevertheless, probing the dynamic characteristics for the complicated interactions between receptor clusters remains difficult because of the lack of strategy for receptor cluster labeling and long-term monitoring in live cells. Herein, we proposed a data-mining-integrated plasmon coupling microscopy to study the dynamic cluster-cluster interactions on cell surface. The receptor clusters were activated and labeled with multivalent plasmonic nanoprobes, which enables the real-time monitoring of individual receptor clusters and the measurement of cluster-cluster interactions from the analysis of plasmonic coupling for the nanoprobe pairs beyond the diffraction limit. Using this method, we found that the protease-activated receptor 1 (PAR1) clusters would experience an initial contact and then form a weakly bound cluster-cluster complex, followed by cluster fusion to generate large-sized signaling complexes. The underlying state transitions for the cluster-cluster fusion process were uncovered using a data-mining technique named the K-means-based hidden Markov model with the scattering intensity of coupled nanoprobe pairs as observations. All of the findings from single-particle analysis and bulk measurements suggested that the allosteric inhibitors could suppress the dynamic transitions from the weakly bound cluster-cluster complexes to fused signaling complexes, leading to the subsequent downregulation of intracellular calcium signaling pathways. We believe that this strategy is promising for imaging and monitoring receptor clustering as well as protein phase separation on the cell surface in various biological and physiological processes.
Collapse
Affiliation(s)
- Qian Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Jinhui Shang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Yancao Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Yuzhi Ouyang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Bin Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| |
Collapse
|
31
|
Root-Bernstein R, Churchill B. Co-Evolution of Opioid and Adrenergic Ligands and Receptors: Shared, Complementary Modules Explain Evolution of Functional Interactions and Suggest Novel Engineering Possibilities. Life (Basel) 2021; 11:life11111217. [PMID: 34833093 PMCID: PMC8623292 DOI: 10.3390/life11111217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between opioid and adrenergic receptors is well-characterized and involves second messenger systems, the formation of receptor heterodimers, and the presence of extracellular allosteric binding regions for the complementary ligand; however, the evolutionary origins of these interactions have not been investigated. We propose that opioid and adrenergic ligands and receptors co-evolved from a common set of modular precursors so that they share binding functions. We demonstrate the plausibility of this hypothesis through a review of experimental evidence for molecularly complementary modules and report unexpected homologies between the two receptor types. Briefly, opioids form homodimers also bind adrenergic compounds; opioids bind to conserved extracellular regions of adrenergic receptors while adrenergic compounds bind to conserved extracellular regions of opioid receptors; opioid-like modules appear in both sets of receptors within key ligand-binding regions. Transmembrane regions associated with homodimerization of each class of receptors are also highly conserved across receptor types and implicated in heterodimerization. This conservation of multiple functional modules suggests opioid–adrenergic ligand and receptor co-evolution and provides mechanisms for explaining the evolution of their crosstalk. These modules also suggest the structure of a primordial receptor, providing clues for engineering receptor functions.
Collapse
|
32
|
Peverelli E, Treppiedi D, Mangili F, Catalano R, Spada A, Mantovani G. Drug resistance in pituitary tumours: from cell membrane to intracellular signalling. Nat Rev Endocrinol 2021; 17:560-571. [PMID: 34194011 DOI: 10.1038/s41574-021-00514-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The pharmacological treatment of pituitary tumours is based on the use of stable analogues of somatostatin and dopamine. The analogues bind to somatostatin receptor types 2 and 5 (SST2 and SST5) and dopamine receptor type 2 (DRD2), respectively, and generate signal transduction cascades in cancerous pituitary cells that culminate in the inhibition of hormone secretion, cell growth and invasion. Drug resistance occurs in a subset of patients and can involve different steps at different stages, such as following receptor activation by the agonist or during the final biological responses. Although the expression of somatostatin and dopamine receptors in cancer cells is a prerequisite for these drugs to reach a biological effect, their presence does not guarantee the success of the therapy. Successful therapy also requires the proper functioning of the machinery of signal transduction and the finely tuned regulation of receptor desensitization, internalization and intracellular trafficking. The present Review provides an updated overview of the molecular factors underlying the pharmacological resistance of pituitary tumours. The Review discusses the experimental evidence that supports a role for receptors and intracellular proteins in the function of SSTs and DRD2 and their clinical importance.
Collapse
Affiliation(s)
- Erika Peverelli
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy.
| | - Donatella Treppiedi
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Federica Mangili
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Rosa Catalano
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Spada
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Giovanna Mantovani
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
33
|
Environment-Sensitive Fluorescence of 7-Nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-Labeled Ligands for Serotonin Receptors. Molecules 2021; 26:molecules26133848. [PMID: 34202630 PMCID: PMC8270269 DOI: 10.3390/molecules26133848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Serotonin is a neurotransmitter that plays a crucial role in the regulation of several behavioral and cognitive functions by binding to a number of different serotonin receptors present on the cell surface. We report here the synthesis and characterization of several novel fluorescent analogs of serotonin in which the fluorescent NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group is covalently attached to serotonin. The fluorescent ligands compete with the serotonin1A receptor specific radiolabeled agonist for binding to the receptor. Interestingly, these fluorescent ligands display a high environmental sensitivity of their fluorescence. Importantly, the human serotonin1A receptor stably expressed in CHO-K1 cells could be specifically labeled with one of the fluorescent ligands with minimal nonspecific labeling. Interestingly, we show by spectral imaging that the NBD-labeled ligand exhibits a red edge excitation shift (REES) of 29 nm when bound to the receptor, implying that it is localized in a restricted microenvironment. Taken together, our results show that NBD-labeled serotonin analogs offer an attractive fluorescent approach for elucidating the molecular environment of the serotonin binding site in serotonin receptors. In view of the multiple roles played by the serotonergic systems in the central and peripheral nervous systems, these fluorescent ligands would be useful in future studies involving serotonin receptors.
Collapse
|
34
|
Somatostatin, a Presynaptic Modulator of Glutamatergic Signal in the Central Nervous System. Int J Mol Sci 2021; 22:ijms22115864. [PMID: 34070785 PMCID: PMC8198526 DOI: 10.3390/ijms22115864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.
Collapse
|
35
|
Misganaw D. Heteromerization of dopaminergic receptors in the brain: Pharmacological implications. Pharmacol Res 2021; 170:105600. [PMID: 33836279 DOI: 10.1016/j.phrs.2021.105600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
Dopamine exerts its physiological effects through two subtypes of receptors, i.e. the receptors of the D1 family (D1R and D5R) and the D2 family (D2R, D3R, and D4R), which differ in their pattern of distribution, affinity, and signaling. The D1-like subfamily (D1R and D5R) are coupled to Gαs/olf proteins to activate adenylyl cyclase whereas the D2-like receptors are coupled to Gαi/o subunits and suppress the activity of adenylyl cyclase. Dopamine receptors are capable of forming homodimers, heterodimers, and higher-order oligomeric complexes, resulting in a change in the individual protomers' recognition, signaling, and pharmacology. Heteromerization has the potential to modify the canonical pharmacological features of individual monomeric units such as ligand affinity, activation, signaling, and cellular trafficking through allosteric interactions, reviving the field and introducing a new pharmacological target. Since heteromers are expressed and formed in a tissue-specific manner, they could provide the framework to design selective and effective drug candidates, such as brain-penetrant heterobivalent drugs and interfering peptides, with limited side effects. Therefore, heteromerization could be a promising area of pharmacology research, as it could contribute to the development of novel pharmacological interventions for dopamine dysregulated brain disorders such as addiction, schizophrenia, cognition, Parkinson's disease, and other motor-related disorders. This review is articulated based on the three criteria established by the International Union of Basic and Clinical Pharmacology for GPCR heterodimers (IUPHAR): evidence of co-localization and physical interactions in native or primary tissue, presence of a new physiological and functional property than the individual protomers, and loss of interaction and functional fingerprints upon heterodimer disruption.
Collapse
Affiliation(s)
- Desye Misganaw
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Medicine and Health Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
36
|
Sefah E, Mertz B. Bacterial Analogs to Cholesterol Affect Dimerization of Proteorhodopsin and Modulates Preferred Dimer Interface. J Chem Theory Comput 2021; 17:2502-2512. [PMID: 33788568 DOI: 10.1021/acs.jctc.0c01174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hopanoids, the bacterial analogues of sterols, are ubiquitous in bacteria and play a significant role in organismal survival under stressful environments. Unlike sterols, hopanoids have a high degree of variation in the size and chemical nature of the substituent attached to the ring moiety, leading to different effects on the structure and dynamics of biological membranes. While it is understood that hopanoids can indirectly tune membrane physical properties, little is known on the role that hopanoids may play in affecting the organization and behavior of bacterial membrane proteins. In this work we used coarse-grained molecular dynamics simulations to characterize the effects of two hopanoids, diploptene (DPT) and bacteriohopanetetrol (BHT), on the oligomerization of proteorhodopsin (PR) in a model membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phophoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-3-phosphoglycerol (POPG). PR is a bacterial membrane protein that functions as a light-activated proton pump. We chose PR based on its ability to adopt a distribution of oligomeric states in different membrane environments. Furthermore, the efficiency of proton pumping in PR is intimately linked to its organization into oligomers. Our results reveal that both BHT and DPT indirectly affect dimerization by tuning membrane properties in a fashion that is concentration-dependent. Variation in their interaction with PR in the membrane-embedded and the cytoplasmic regions leads to distinctly different effects on the plasticity of the dimer interface. BHT has the ability to intercalate between monomers in the dimeric interface, whereas DPT shifts dimerization interactions via packing of the interleaflet region of the membrane. Our results show a direct relationship between hopanoid structure and lateral organization of PR, providing a first glimpse at how these bacterial analogues to eukaryotic sterols produce very similar biophysical effects within the cell membrane.
Collapse
Affiliation(s)
- Eric Sefah
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
37
|
Somatostatin-Dopamine Chimeric Molecules in Neuroendocrine Neoplasms. J Clin Med 2021; 10:jcm10030501. [PMID: 33535394 PMCID: PMC7867079 DOI: 10.3390/jcm10030501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are a widely heterogeneous family of neoplasms arising from neuroendocrine cells, which are interspersed throughout the body. Despite NENs are relatively rare, their incidence and prevalence are constantly increasing probably due to the improvement in earlier diagnosis and patients’ management. When surgery is not curative, particularly for patients with metastatic disease, several medical options are available. Somatostatin analogues (SSA) are the first-line medical therapy for well-differentiated NENs. Interestingly, the heterodimerization of somatostatin receptors (SSTs) with dopamine receptors (DRs) has been discovered in NENs. This phenomenon results in hybrid receptors with enhanced functional activity. On these bases, chimeric molecules embracing somatostatin and dopamine features have been recently developed. The aim of this review is to provide a comprehensive overview of the available preclinical and clinical data regarding chimeric somatostatin-dopamine agonists as a new class of “magic bullet” in the therapy of NENs.
Collapse
|
38
|
Conformer selective monohydrated clusters of 1,2,3,4 –tetrahydroisoquinoline in S0: I-Potential energy surface studies, vibrational signatures and NBO analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Soukup J, Hornychova H, Manethova M, Michalova K, Michnova L, Popovska L, Skarkova V, Cesak T, Netuka D, Ryska A, Cap J, Hána V, Hána V, Kršek M, Dvořáková E, Krčma M, Lazurova I, Olšovská V, Starý K, Vaňuga P, Gabalec F. Predictive and prognostic significance of tumour subtype, SSTR1-5 and e-cadherin expression in a well-defined cohort of patients with acromegaly. J Cell Mol Med 2021; 25:2484-2492. [PMID: 33491286 PMCID: PMC7933931 DOI: 10.1111/jcmm.16173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
In somatotroph pituitary tumours, somatostatin analogue (SSA) therapy outcomes vary throughout the studies. We performed an analysis of cohort of patients with acromegaly from the Czech registry to identify new prognostic and predictive factors. Clinical data of patients were collected, and complex immunohistochemical assessment of tumour samples was performed (SSTR1‐5, dopamine D2 receptor, E‐cadherin, AIP). The study included 110 patients. In 31, SSA treatment outcome was evaluated. Sparsely granulated tumours (SGST) differed from the other subtypes in expression of SSTR2A, SSTR3, SSTR5 and E‐cadherin and occurred more often in young. No other clinical differences were observed. Trouillas grading system showed association with age, tumour size and SSTR2A expression. Factors significantly associated with SSA treatment outcome included age, IGF1 levels, tumour size and expression of E‐cadherin and SSTR2A. In the group of SGST, poor SSA response was observed in younger patients with larger tumours, lower levels of SSTR2A and higher Ki67. We observed no relationship with expression of other proteins including AIP. No predictive value of E‐cadherin was observed when tumour subtype was considered. Multiple additional factors apart from SSTR2A expression can predict treatment outcome in patients with acromegaly.
Collapse
Affiliation(s)
- Jiri Soukup
- The Fingerland Department of Pathology, Faculty of Medicine, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Helena Hornychova
- The Fingerland Department of Pathology, Faculty of Medicine, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Monika Manethova
- The Fingerland Department of Pathology, Faculty of Medicine, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Kvetoslava Michalova
- Department of Pathology, Faculty of Medicine, Charles University, Plzen, Czech Republic.,Bioptical Laboratory, Ltd., Plzen, Czech Republic
| | - Ludmila Michnova
- Department of Pathology, Military University Hospital Prague, Prague, Czech Republic
| | - Lenka Popovska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Kralove, Czech Republic
| | - Veronika Skarkova
- Department of Medical Biology and Genetics, Faculty of Medicine Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Tomas Cesak
- Department of Neurosurgery, Faculty of Medicine, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - David Netuka
- Department of Neurosurgery and Neurooncology, 1st Medical Faculty, Charles University, Military University Hospital Prague, Prague, Czech Republic
| | - Ales Ryska
- The Fingerland Department of Pathology, Faculty of Medicine, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Jan Cap
- 4th Department of Internal medicine, Faculty of Medicine, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Václav Hána
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Václav Hána
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michal Kršek
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eva Dvořáková
- 1st Department of Internal Medicine, Faculty of Medicine in Pilsen, University Hospital Pilsen, Charles University, Pilsen, Czech Republic
| | - Michal Krčma
- 1st Department of Internal Medicine, Faculty of Medicine in Pilsen, University Hospital Pilsen, Charles University, Pilsen, Czech Republic
| | - Ivica Lazurova
- 1st Internal Clinic, Louis Pasteur University Hospital, Kosice, Slovakia
| | - Věra Olšovská
- 2nd Department of Internal Medicine, Faculty of Medicine, St. Ann University Hospital Brno, Masaryk University Brno, Brno, Czech Republic
| | - Karel Starý
- Department of Internal Medicine and Gastroenterology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Vaňuga
- National Institute of Endocrinology and Diabetology, Lubochňa, Slovakia
| | - Filip Gabalec
- 4th Department of Internal medicine, Faculty of Medicine, University Hospital, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
40
|
Qian M, Ricarte A, Wouters E, Dalton JAR, Risseeuw MDP, Giraldo J, Van Calenbergh S. Discovery of a true bivalent dopamine D 2 receptor agonist. Eur J Med Chem 2021; 212:113151. [PMID: 33450620 DOI: 10.1016/j.ejmech.2020.113151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Employing two different alkyne-modified dopamine agonists to construct bivalent compounds via click chemistry resulted in the identification of a bivalent ligand (11c) for dopamine D2 receptor homodimer, which, compared to its parent monomeric alkyne, showed a 16-fold higher binding affinity for the dopamine D2 receptor and a 5-fold higher potency in a cAMP assay in HEK 293T cells stably expressing D2R. Molecular modeling revealed that 11c can indeed bridge the orthosteric binding sites of a D2R homodimer in a relaxed conformation via the TM5-TM6 interface and allows to largely rationalize the results of the receptor assays.
Collapse
Affiliation(s)
- Mingcheng Qian
- Department of Medicinal Chemistry, School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China; Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Adrián Ricarte
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Elise Wouters
- Laboratory of Toxicology, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigaciói InnovacióParc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| |
Collapse
|
41
|
Dicitore A, Cantone MC, Gaudenzi G, Saronni D, Carra S, Borghi MO, Albertelli M, Ferone D, Hofland LJ, Persani L, Vitale G. Efficacy of a Novel Second-Generation Somatostatin-Dopamine Chimera (TBR-065) in Human Medullary Thyroid Cancer: A Preclinical Study. Neuroendocrinology 2021; 111:937-950. [PMID: 33075795 DOI: 10.1159/000512366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Somatostatin and dopamine (DA) receptors have a pivotal role in controlling hormone secretion and cell proliferation in different neuroendocrine neoplasms, including medullary thyroid cancer (MTC). In the present preclinical study, we evaluated the anti-tumor activity of TBR-065 (formerly BIM-23B065), a second-generation somatostatin-DA chimera, in 2 human MTC cell lines. METHODS The effects of lanreotide (LAN) and TBR-065 on cell growth and proliferation, calcitonin (CT) secretion, cell cycle, apoptosis, cell migration, and tumor-induced angiogenesis have been evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, DNA flow cytometry with propidium iodide (PI), Annexin V-FITC/PI staining, electrochemiluminescence immuno assay, wound-healing assay, and zebrafish platform, respectively. RESULTS TBR-065 exerted a more prominent anti-tumor activity than LAN in both MTC cell lines, as shown by inhibition of cell proliferation (maximal inhibition in TT: -50.3 and -37.6%, respectively; in MZ-CRC-1: -58.8 and -27%, respectively) and migration (in TT: -42.7 and -22.9%, respectively; in MZ-CRC-1: -75.5 and -58.2%, respectively). Only the new chimera decreased significantly the fraction of cells in S phase (TT: -33.8%; MZ-CRC-1: -18.8%) and increased cells in G2/M phase (TT: +13%; MZ-CRC-1: +30.5%). In addition, TBR-065 exerted a more prominent pro-apoptotic effect than LAN in TT cells. A concomitant decrease in CT secretion was observed after 2 days of incubation with both drugs, with a more relevant effect of TBR-065. However, neither LAN nor TBR-065 showed any effect on tumor-induced angiogenesis, as evaluated using a zebrafish/tumor xenograft model. DISCUSSION/CONCLUSION In MTC cell lines, a second-generation somatostatin-DA analog, TBR-065, exerts a more relevant anti-tumor activity than LAN, through modulation of cell cycle, induction of apoptosis, and reduction in migration. Further studies are required to establish whether TBR-065 has comparable potent inhibitory effects on tumor growth in vivo.
Collapse
Affiliation(s)
- Alessandra Dicitore
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Maria Celeste Cantone
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, Italy
| | - Davide Saronni
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Silvia Carra
- Istituto Auxologico Italiano, IRCCS, Laboratory of Endocrine and Metabolic Research, Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory of Immuno-Rheumatology, Cusano Milanino, Italy
| | - Manuela Albertelli
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Laboratory of Endocrine and Metabolic Research, Milan, Italy
| | - Giovanni Vitale
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy,
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, Italy,
| |
Collapse
|
42
|
Pivonello C, Patalano R, Negri M, Pirchio R, Colao A, Pivonello R, Auriemma RS. Resistance to Dopamine Agonists in Pituitary Tumors: Molecular Mechanisms. Front Endocrinol (Lausanne) 2021; 12:791633. [PMID: 35095761 PMCID: PMC8789681 DOI: 10.3389/fendo.2021.791633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Pituitary neuroendocrine tumors (PitNET) are commonly benign tumors accounting for 10-25% of intracranial tumors. Prolactin-secreting adenomas represent the most predominant type of all PitNET and for this subtype of tumors, the medical therapy relies on the use of dopamine agonists (DAs). DAs yield an excellent therapeutic response in reducing tumor size and hormonal secretion targeting the dopamine receptor type 2 (D2DR) whose higher expression in prolactin-secreting adenomas compared to other PitNET is now well established. Moreover, although DAs therapy does not represent the first-line therapy for other PitNET, off-label use of DAs is considered in PitNET expressing D2DR. Nevertheless, DAs primary or secondary resistance, occurring in a subset of patients, may involve several molecular mechanisms, presently not fully elucidated. Dopamine receptors (DRs) expression is a prerequisite for a proper DA function in PitNET and several molecular events may negatively modify DR membrane expression, through the DRs down-regulation and intracellular trafficking, and DR signal transduction pathway. The current mini-review will summarise the presently known molecular events that underpin the unsuccessful therapy with DAs.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
- *Correspondence: Claudia Pivonello, ;
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
- Dipartimento di Sanità Pubblica, Università di Napoli (Federico II), Naples, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
| | - Rosa Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
| |
Collapse
|
43
|
Gatto F, Arvigo M, Ferone D. Somatostatin receptor expression and patients' response to targeted medical treatment in pituitary tumors: evidences and controversies. J Endocrinol Invest 2020; 43:1543-1553. [PMID: 32557353 DOI: 10.1007/s40618-020-01335-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Somatostatin receptors (SSTs) are widely co-expressed in pituitary tumors. SST2 and SST5 are the most represented SST subtypes. First-generation somatostatin receptor ligands (SRLs) mainly target SST2, while pasireotide, a multi-receptor ligand, shows high binding affinity for both SST5 and SST2. Therefore, SRLs are routinely used as medical treatment for GH-, TSH-, and ACTH-secreting pituitary tumors. METHODS Critical revision of literature data correlating SST expression with patients' response to SRLs. RESULTS SST2 expression in somatroph tumors directly correlates with GH and IGF-1 decrease after first-generation SRL treatment. SST2 immunohistochemistry represents a valuable tool to predict biochemical response to first-generation SRLs in acromegalic patients. Pasireotide seems to exert its biological effects via SST2 in unselected patients. However, in those subjects resistant to first-generation SRLs, harbouring tumors with negligible SST2 expression, pasireotide can act throughout SST5. More than somatotroph tumors, TSH-omas represent the paradigm of tumors showing a satisfactory response to SRLs. This is probably due to the high SST2 expression observed in nearly 100% of cases, as well as to the balanced amount of SST5. In corticotroph tumors, pasireotide mainly act via SST5, although there is a need for translational studies correlating its efficacy with SST expression in this peculiar tumor histotype. CONCLUSIONS The assumption "more target receptor, more drug efficacy" is not straightforward for SRLs. The complex pathophysiology of SSTs, and the technical challenges faced to translate research findings into clinical practice, still need our full commitment to make receptor evaluation a worthwhile procedure for individualizing treatment decisions.
Collapse
Affiliation(s)
- F Gatto
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 10, 16132, Genoa, Italy.
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | - M Arvigo
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - D Ferone
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 10, 16132, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
44
|
Effectiveness of Cabergoline Treatment in Patients with Acromegaly Uncontrolled with SSAs: Experience of a Single Tertiary Center. Exp Clin Endocrinol Diabetes 2020; 129:644-650. [PMID: 33096579 DOI: 10.1055/a-1274-1276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the effectiveness of cabergoline and the parameters affecting cabergoline response as add-on treatment to somatostatin analaogues (SSA) in patients with acromegaly uncontrolled with SSAs. MATERIAL AND METHOD One hundred and twenty-nine acromegalic patients uncontrolled with SSA who had cabergoline added to their treatment were included in this retrospective study. Patients were divided into the SSAs + cabergoline-responsive (group 1) and non-responsive groups (group 2), and biochemical, pathologic, and radiologic parameters were assessed. RESULTS IGF-1 normalization was achieved in 75 of 129 patients (58%) when cabergoline was added to the SSA treatment. Female patients were significantly higher in group 1 compared to group 2 (p=0.006). Group 1 had significantly smaller pre- and post-cabergoline tumor size (p=0.011, p=0.007 respectively), lower levels of IGF-1 in pre-and post-operative period (p=0.040, p=0.001), and lower levels of IGF-1 in pre- and post-cabergoline treatment (p<0.001). Cavernous invasion on sellar magnetic resonance imaging, dural invasion in pathologic examination were not significantly different between the groups. Sellar invasion in pathologic examination was significantly higher in group 1 (p=0.011). No significant difference was found in proliferation indices between two groups. The presence of fibrous bodies was significantly lower in group 1 (p=0.010). CONCLUSION Cabergoline can be added to the treatment of acromegalic patients uncontrolled with SSAs due to its ease of use and low economic cost, especially in patients with acromegaly who have small adenomas and no fibrous bodies.
Collapse
|
45
|
Rindi G, Wiedenmann B. Neuroendocrine neoplasia of the gastrointestinal tract revisited: towards precision medicine. Nat Rev Endocrinol 2020; 16:590-607. [PMID: 32839579 DOI: 10.1038/s41574-020-0391-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Over the past 5 years, a number of notable research advances have been made in the field of neuroendocrine cancer, specifically with regard to neuroendocrine cancer of the gastrointestinal tract. The aim of this Review is to provide an update on current knowledge that has proven effective for the clinical management of patients with these tumours. For example, for the first time in the tubular gastrointestinal tract, well-differentiated high-grade (grade 3) tumours and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) are defined in the WHO classification. This novel classification enables efficient identification of the most aggressive well-differentiated neuroendocrine tumours and helps in defining the degree of aggressiveness of MiNENs. The Review also discusses updates to epidemiology, cell biology (including vesicle-specific components) and the as-yet-unresolved complex genetic background that varies according to site and differentiation status. The Review summarizes novel diagnostic instruments, including molecules associated with the secretory machinery, novel radiological approaches (including pattern recognition techniques), novel PET tracers and liquid biopsy combined with DNA or RNA assays. Surgery remains the treatment mainstay; however, peptide receptor radionuclide therapy with novel radioligands and new emerging medical therapies (including vaccination and immunotherapy) are evolving and being tested in clinical trials, which are summarized and critically reviewed here.
Collapse
Affiliation(s)
- Guido Rindi
- Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Bertram Wiedenmann
- Charité, Campus Virchow Klinikum and Charité Mitte, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
46
|
Campana C, Corica G, Nista F, Cocchiara F, Graziani G, Khorrami K, Franco M, Boschetti M, Ferone D, Gatto F. Emerging drugs for the treatment of acromegaly. Expert Opin Emerg Drugs 2020; 25:409-417. [PMID: 32938258 DOI: 10.1080/14728214.2020.1819983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Acromegaly is a disease characterized by elevated growth hormone (GH) and insulin-like growth factor 1 (IGF-1) levels. Surgery is the only curative treatment, while medical therapies are administered life-long. To date, almost 30% of patients treated with the currently available medical therapies do not achieve biochemical control. AREAS COVERED This review focuses on new drugs in development for acromegaly. In detail, we provide an overview of the new molecules designed to improve disease control rate (such as novel somotostatin receptor ligands and antisense oligonucleotides), as well as the new formulations of existing medications aiming to improve patients' compliance (e.g. oral or long-acting subcutaneous octreotide). EXPERT OPINION The constant progresses in the medical treatment of acromegaly could lead to an individualized therapy based on tumor, as well as patient's characteristics. Besides disease control, patient's need represents a major target of medical treatment in chronic diseases such as acromegaly, in order to improve compliance to therapy and patients' quality of life.
Collapse
Affiliation(s)
- Claudia Campana
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Giuliana Corica
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Federica Nista
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Francesco Cocchiara
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Giulia Graziani
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Keyvan Khorrami
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Marta Franco
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Mara Boschetti
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Federico Gatto
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genoa , Genoa, Italy.,Endocrinology Unit, Department of Specialist Medicine, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| |
Collapse
|
47
|
Halem HA, Hochgeschwender U, Rih JK, Nelson R, Johnson GA, Thiagalingam A, Culler MD. TBR-760, a Dopamine-Somatostatin Compound, Arrests Growth of Aggressive Nonfunctioning Pituitary Adenomas in Mice. Endocrinology 2020; 161:5863621. [PMID: 32591776 PMCID: PMC7375803 DOI: 10.1210/endocr/bqaa101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022]
Abstract
TBR-760 (formerly BIM-23A760) is a chimeric dopamine (DA)-somatostatin (SST) compound with potent agonist activity at both DA type 2 (D2R) and SST type 2 (SSTR2) receptors. Studies have shown that chimeric DA-SST compounds are more efficacious than individual DA and/or SST analogues, either alone or combined, in inhibiting secretion from primary cultures of human somatotroph and lactotroph tumor cells. Nonfunctioning pituitary adenomas (NFPAs) express both D2R and SSTR2 and, consequently, may respond to TBR-760. We used a mouse model with the pro-opiomelanocortin (POMC) gene knocked out that spontaneously develops aggressive NFPAs. Genomic microarray and DA and SST receptor messenger RNA expression analysis indicate that POMC KO mouse tumors and human NFPAs have similar expression profiles, despite arising from different cell lineages, establishing POMC KO mice as a model for study of NFPAs. Treatment with TBR-760 for 8 weeks resulted in nearly complete inhibition of established tumor growth, whereas tumors from vehicle-treated mice increased in size by 890 ± 0.7%. Comparing TBR-760 with its individual DA and SST components, TBR-760 arrested tumor growth. Treatment with equimolar or 10×-higher doses of the individual SST or DA agonists, either alone or in combination, had no significant effect. One exception was the lower dose of DA agonist that induced modest suppression of tumor growth. Only the chimeric compound TBR-760 arrested tumor growth in this mouse model of NFPA. Further, significant tumor shrinkage was observed in 20% of the mice treated with TBR-760. These results support the development of TBR-760 as a therapy for patients with NFPA.
Collapse
Affiliation(s)
- Heather A Halem
- Tiburio Therapeutics, Cambridge, Massachusetts
- Correspondence: Heather A. Halem, PhD, Research, Tiburio Therapeutics, 700 Technology Square, 2nd Floor, Cambridge, MA 02139. E-mail:
| | | | - Jeong Keun Rih
- Scientific Intelligence Analytics & Modelling, Biometry R&D, Ipsen Bioscience, Cambridge, Massachusetts
| | | | | | - Arunthi Thiagalingam
- Translational Sciences, Oncology and Biomarkers, Ipsen Bioscience, Cambridge, Massachusetts
| | | |
Collapse
|
48
|
Manoochehri M, Wu Y, Giese NA, Strobel O, Kutschmann S, Haller F, Hoheisel JD, Moskalev EA, Hackert T, Bauer AS. SST gene hypermethylation acts as a pan-cancer marker for pancreatic ductal adenocarcinoma and multiple other tumors: toward its use for blood-based diagnosis. Mol Oncol 2020; 14:1252-1267. [PMID: 32243066 PMCID: PMC7266283 DOI: 10.1002/1878-0261.12684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Aberrant DNA methylation is often involved in carcinogenesis. Our initial goal was to identify DNA methylation biomarkers associated with pancreatic cancer. A genomewide methylation study was performed on DNA from pancreatic ductal adenocarcinoma (PDAC) and endocrine pancreas tumors. Validation of DNA methylation patterns and concomitant alterations in expression of gene candidates was performed on patient samples and pancreatic cancer cell lines. Furthermore, validation was done on independent data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Finally, droplet digital PCR was employed to detect DNA methylation marks in cell-free (cf) DNA isolated from plasma samples of PDAC patients and cancer-free blood donors. Hypermethylation of the SST gene (encoding somatostatin) and concomitant downregulation of its expression were discovered in PDAC and endocrine tumor tissues while not being present in chronic pancreatitis (inflamed) tissues and normal pancreas. Fittingly, treatment with a somatostatin agonist (octreotide) reduced cell proliferation and migration of pancreatic cancer cells. Diagnostic performance of SST methylation in a receiver operating characteristic curve analysis was 100% and 89% for tissue and plasma samples, respectively. A large body of TCGA and GEO data confirmed SST hypermethylation and downregulation in PDAC and showed a similar effect in a broad spectrum of other tumor entities. SST promoter methylation represents a sensitive and promising molecular, pan-cancer biomarker detectable in tumor tissue, and liquid biopsy samples.
Collapse
Affiliation(s)
- Mehdi Manoochehri
- Division of Functional Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Molecular Genetics of Breast CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Yenan Wu
- Division of Functional Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Oliver Strobel
- Department of General SurgeryUniversity Hospital HeidelbergGermany
| | - Stefanie Kutschmann
- Division of Functional Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Florian Haller
- Diagnostic Molecular PathologyInstitute of PathologyFriedrich‐Alexander UniversityErlangenGermany
| | - Jörg D. Hoheisel
- Division of Functional Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Evgeny A. Moskalev
- Diagnostic Molecular PathologyInstitute of PathologyFriedrich‐Alexander UniversityErlangenGermany
| | - Thilo Hackert
- Department of General SurgeryUniversity Hospital HeidelbergGermany
| | - Andrea S. Bauer
- Division of Functional Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
49
|
Conformers of 1,2,3,4 –tetrahydroisoquinoline in S0 and S1: An analysis through potential energy surface, hardness principles and vibrational spectroscopy. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Abstract
Overt Cushing's syndrome is a severe condition responsible for multiple comorbidities and increased mortality. Effective treatment is essential to reduce mortality, improve comorbidities and long-term quality of life. Surgical resection of the causal lesion(s) is generally the first-line and most effective treatment to normalize cortisol secretion. Adjunctive symptomatic treatments of co-morbidities are often necessary both during the active phase of the disease and for persisting co-morbidities after cessation of hypercortisolism. Second-line treatments include various pharmacological treatments, bilateral adrenalectomy, and radiotherapy of corticotroph tumors. The choice of these treatments is complex, must be performed in a multidisciplinary expert team to be individualized for each patient, and use a shared decision-making approach.
Collapse
Affiliation(s)
- Amandine Ferriere
- Service d'endocrinologie, Diabétologie et maladies métaboliques, CHU de bordeaux, Avenue Magellan 33600, Pessac, France.
| | - Antoine Tabarin
- Service d'endocrinologie, Diabétologie et maladies métaboliques, CHU de bordeaux, Avenue Magellan 33600, Pessac, France; INSERM and University of Bordeaux, Neurocentre Magendie, U1215, France.
| |
Collapse
|