1
|
Cadenas-Jiménez I, Rybtke ML, Higazy D, Martí-Martí S, Tolker-Nielsen T, Ciofu O, Høiby N. Co-culture biofilm patterns among different Pseudomonas aeruginosa clones from cystic fibrosis patients. Biofilm 2025; 9:100257. [PMID: 39968375 PMCID: PMC11834076 DOI: 10.1016/j.bioflm.2025.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
Background Pseudomonas aeruginosa chronic lung infection is the leading cause of death in the cystic fibrosis (CF) population. The high genome versatility of this microorganism allows it to adapt to the hostile CF lung where the same clone can persist for decades. Paranasal sinuses serve as a reservoir for bacterial adaptation before lung infection. Our study investigates biofilm compatibility among identical and different P. aeruginosa genotypes from sinus and lungs of CF patients. Strains were further characterized by whole genome sequencing and motility assays were performed. Methodology Motility, gentamicin susceptibility and growth rates were assessed in four strains coming from three CF patients. The strains were subjected to whole genome sequencing with the Illumina MiSeq platform.Conjugation assays using the mini Tn7 transposon were performed in order to tag bacteria with the fluorescent proteins YFP (yellow) and CFP (cyan). Biofilm experiments were carried out in a flow cell system and images were acquired using a confocal laser microscope (CLSM) on days 3 and 5. Four experiments were performed: Experiment 1 with two clonal isolates from sinus and lungs from patient P01 (CF430-142, CF430-11621); experiments 2 (CF430-11621 + 75885-B) and 3 (CF430-11621 + 80271-B) with two lung isolates belonging to two different clones from different patients (P02, P03) and experiment 4 with one lung strain (CF430-11621) and P. aeruginosa PAO1 reference strain. Results P. aeruginosa clonal isolates coming from paranasal sinuses and lungs from the same patient were able to form mixed biofilm. When different clones were employed no mixed biofilms were observed. Similar results were observed when combining the lung strain and the reference strain PAO1. Biofilms of both strains were observed in the flow-cell channels but no mixed biofilms of them were observed, with the exception of strain 75887-B which did not appear to form any biofilm when mixed with strain CF430-11621. All strains performed swarming while strains CF430-142 and 75887B lacked twitching motility. An aminoacidic change in SadB was observed in the strain 75887B. Conclusion Mixed biofilms were only observed when identical clones from the same patient were cultured together. Our experiments indicate that twitching motility does not significantly affect biofilm formation or architecture in our isolates.
Collapse
Affiliation(s)
- Irene Cadenas-Jiménez
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Morten Levin Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Doaa Higazy
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sara Martí-Martí
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Tait JR, Agyeman AA, López-Causapé C, Deveson-Lucas D, Rogers KE, Yadav R, Rees VE, Shin BS, Nation RL, Boyce JD, Oliver A, Landersdorfer CB. Multiomics informed mathematical model for meropenem and tobramycin against hypermutable Pseudomonas aeruginosa. Int J Antimicrob Agents 2025; 65:107488. [PMID: 40057138 DOI: 10.1016/j.ijantimicag.2025.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
BACKGROUND Hypermutable P. aeruginosa isolates frequently display resistance emergence during treatment. Mechanisms of such resistance emergence have not been explored using dynamic hollow-fiber studies and multiomics informed mathematical modeling. METHODS Two hypermutable and heteroresistant P. aeruginosa isolates, CW8 (MICmeropenem=8 mg/L, MICtobramycin=8 mg/L) and CW44 (MICmeropenem=4 mg/L, MICtobramycin=2 mg/L), were studied. Both isolates had genotypes resembling those of carbapenem- and aminoglycoside-resistant strains. Achievable lung fluid concentration-time profiles following meropenem at 1 or 2 g every 8 h (3-h infusion) and tobramycin at 5 or 10 mg/kg body weight every 24 h (0.5-h infusion), in monotherapy and combinations, were simulated over 8 days. Total and resistant bacterial counts were determined. Resistant colonies and whole population samples at 191 h were whole-genome sequenced, and population transcriptomics performed at 1 and 191 h. The multiomics analyses informed mechanism-based modeling of total and resistant populations. RESULTS While both isolates eventually displayed resistance emergence against all regimens, the high-dose combination synergistically suppressed resistant regrowth of only CW8 up to ∼96 h. Mutations that emerged during treatment were in pmrB, ampR, and multiple efflux pump regulators for CW8, and in pmrB and PBP2 for CW44. At 1 h, mexB, oprM and ftsZ were differentially downregulated in CW8 by the combination. These transcriptomics results informed inclusion of mechanistic synergy in the mechanism-based model for only CW8. At 191 h, norspermidine genes were upregulated (without a pmrB mutation) in CW8 by the combination, and informed the adaptive loss of synergy in the model. CONCLUSION Multiomics information enabled mechanism-based modeling to describe the bacterial response of both isolates simultaneously. IMPORTANCE Pseudomonas aeruginosa causes serious bacterial infections in people with cystic fibrosis (pwCF), and has numerous resistance mechanisms. Current empirical approaches to informing antibiotic regimen selection have important limitations. This study exposed two P. aeruginosa clinical isolates to concentration-time profiles of meropenem and tobramycin as would be observed in lung fluid of pwCF. The combination elicited different bacterial count profiles between the isolates, despite similar bacterial baseline characteristics. We found differences between the isolates in the expression of a key resistance mechanism against meropenem at 1 h, and expression that implied a loss of cell membrane permeability for tobramycin without the expected DNA mutation. This information enabled mathematical modeling to accurately describe all bacterial profiles over time. For the first time, this multiomics informed modeling approach using DNA and RNA data was applied to a hollow-fiber infection study. Using bacterial molecular insights with mechanism-based mathematical modeling has high potential for ultimately informing personalised antibiotic therapy.
Collapse
Affiliation(s)
- J R Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - A A Agyeman
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - C López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - D Deveson-Lucas
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia; Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - K E Rogers
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - R Yadav
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - V E Rees
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - B S Shin
- School of Pharmacy, Sungkyunkwan University, Korea
| | - R L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - J D Boyce
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - A Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - C B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Higgs MG, Greenwald MA, Roca C, Macdonald JK, Sidders AE, Conlon BP, Wolfgang MC. Flagellar motility and the mucus environment influence aggregation-mediated antibiotic tolerance of Pseudomonas aeruginosa in chronic lung infection. mBio 2025:e0083125. [PMID: 40372059 DOI: 10.1128/mbio.00831-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Pseudomonas aeruginosa routinely causes chronic lung infection in individuals with muco-obstructive airway diseases (MADs). In MADs, P. aeruginosa forms antibiotic-tolerant biofilm-like aggregates within hyperconcentrated airway mucus. While the contribution of mucin hyper-concentration to antibiotic tolerance and bacterial aggregation has been described, less is known about the bacterial factors involved. We previously found that P. aeruginosa populations isolated from people with MADs exhibited significant variability in antibiotic tolerance. This variability is not explained by antibiotic resistance or the mucus environment, suggesting bacterial-driven mechanisms play a crucial role in treatment outcomes. Here, we investigated the contribution of flagellar motility to aggregate formation and tolerance by manipulating motility behaviors. Similar to prior studies, we found that loss of flagellar motility resulted in increased aggregation and tolerance to various antibiotics. We identified novel differential roles of the MotAB and MotCD stators, which power flagellar rotation, in antimicrobial tolerance and aggregate formation. In addition, we found that control of fliC expression was important for aggregate formation and antibiotic tolerance. Constitutive expression of fliC allowed P. aeruginosa to overcome entropic forces of mucin, antagonizing aggregate formation and increasing antibiotic efficacy. Lastly, we demonstrate that neutrophil elastase, an abundant antimicrobial protease in chronic lung infection, promotes antibiotic treatment failure by impairing flagellar motility leading to antibiotic-tolerant aggregate formation. These results underscore the crucial role of flagellar motility in aggregate formation and antibiotic tolerance, enhancing our understanding of how P. aeruginosa adapts to the MADs lung environment. IMPORTANCE Antibiotic treatment failure of Pseudomonas aeruginosa infection is a key driver of mortality in muco-obstructive airway diseases (MADs). The bacterial mechanisms that contribute to antibiotic tolerance in MADS infection are poorly understood. We investigated the impact of swimming motility behaviors on P. aeruginosa antibiotic tolerance in the context of the diseased mucus environment. Loss of flagellar motility, a common adaptation in chronic lung infection, drives antibiotic tolerance by promoting aggregate formation under physiologically relevant mucin concentrations. We uncovered novel roles of the flagellar stators in motility and mucus aggregate formation. Furthermore, neutrophil elastase, an abundant host-derived antimicrobial protease, promotes antibiotic tolerance and aggregation by impairing flagellar motility. These results further our understanding of the formation of antibiotic-tolerant aggregates within the MADs airway, revealing potential new targets to improve antibiotic treatment of chronic P. aeruginosa airway infection.
Collapse
Affiliation(s)
- Matthew G Higgs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew A Greenwald
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jade K Macdonald
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashelyn E Sidders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Zein-Eddine R, Le Meur A, Skouloubris S, Jelsbak L, Refrégier G, Myllykallio H. Genome wide analyses reveal the role of mutator phenotypes in Mycobacterium tuberculosis drug resistance emergence. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:35. [PMID: 40301520 PMCID: PMC12041279 DOI: 10.1038/s44259-025-00107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Antimicrobial combination therapy is widely used to combat Mycobacterium tuberculosis (Mtb), yet resistance rates continue to rise. Mutator strains, with defects in DNA repair genes, drive resistance in other bacterial infections, but their role in Mtb remains unclear. Here, we study the contribution of single nucleotide polymorphisms (SNPs) in DNA Repair, Replication, and Recombination (3 R) genes to Mtb resistance. Through large-scale bioinformatics analysis of 53,589 whole-genomes, we identified 18 novel SNPs in lineages 2 and 4 linked to genotypic drug resistance in 3 R genes, covering 12.5% of clinical isolates with available genome sequences. Notably, a number of the detected SNPs were positively selected during Mtb evolution. Experimental tests showed that mutM, fpgg2, xthA, and nucS mutants had increased the mutation frequency compared to the wild type. Our findings highlight the role of 3 R gene mutations in resistance, emphasizing the need for surveillance to improve early detection and control strategies.
Collapse
Affiliation(s)
- R Zein-Eddine
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France.
| | - A Le Meur
- Laboratoire d'Ecologie Systématique et Evolution, CNRS UMR8079, AgroParisTech, Gif-Sur-Yvette, France
| | - S Skouloubris
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - L Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - G Refrégier
- Laboratoire d'Ecologie Systématique et Evolution, CNRS UMR8079, AgroParisTech, Gif-Sur-Yvette, France.
| | - H Myllykallio
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
5
|
Muñoz-Santa A, López-Causapé C, Bellés A, Gómez-Arbonés X, Cortés-Lara S, García-González M, Pifarré-Teixidó R, Oliver A. Pseudomonas aeruginosa chronic infections in patients with bronchiectasis: a silent reservoir of carbapenemase-producing epidemic high-risk clones. JAC Antimicrob Resist 2025; 7:dlaf053. [PMID: 40201539 PMCID: PMC11976719 DOI: 10.1093/jacamr/dlaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
Objectives Pseudomonas aeruginosa is one of the major drivers of morbidity and mortality in patients with chronic underlying diseases. Whereas cystic fibrosis (CF) P. aeruginosa strains have been well studied, non-CF bronchiectasis isolates have received less scientific attention. Methods We determined the antibiotic susceptibility profiles of a collection of 100 P. aeruginosa isolates recovered from a total of 100 non-CF bronchiectasis patients attending a Catalonian hospital. All carbapenemase-producing isolates were characterized by WGS. Results Twelve isolates were classified as MDR (12%) and six were found to be carbapenemase (VIM-2) producers (6%). Of note, two of the VIM-2-producing isolates were carbapenem susceptible due to the presence of inactivating mutations in MexAB-OprM efflux pump components. These isolates exhibited properties of chronic P. aeruginosa isolates, such as mutator or mucoid phenotypes that are associated with persistent infections despite intensive antibiotic therapies. The phylogenetic analysis evidenced that all VIM-2 isolates belonged to the high-risk clone ST235. Core-genome MLST analysis revealed 7-260 allelic differences, arguing against recent transmission but a common source of infection or an ancient interpatient transmission event could not be ruled out. Conclusions Altogether, these findings suggest that P. aeruginosa chronic respiratory infections can be an important and silent reservoir of transferable resistance determinants and P. aeruginosa high-risk clones, thus contributing to their increased resistance and worldwide dissemination.
Collapse
Affiliation(s)
- Alba Muñoz-Santa
- Servicio de Análisis Clínicos, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Universitat de Lleida, Lleida, Spain
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Univeristario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | - Alba Bellés
- Servicio de Análisis Clínicos, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Universitat de Lleida, Lleida, Spain
| | - Xavier Gómez-Arbonés
- Departamento de Medicina y Cirugía, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Universitat de Lleida, Lleida, Spain
| | - Sara Cortés-Lara
- Servicio de Microbiología, Hospital Univeristario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | - Mercè García-González
- Servicio de Análisis Clínicos, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Universitat de Lleida, Lleida, Spain
| | | | - Antonio Oliver
- Servicio de Microbiología, Hospital Univeristario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| |
Collapse
|
6
|
Uemura K, Sato T, Yamamoto S, Ogasawara N, Toyting J, Aoki K, Takasawa A, Koyama M, Saito A, Wada T, Okada K, Yoshida Y, Kuronuma K, Nakajima C, Suzuki Y, Horiuchi M, Takano K, Takahashi S, Chiba H, Yokota SI. Rapid and Integrated Bacterial Evolution Analysis unveils gene mutations and clinical risk of Klebsiella pneumoniae. Nat Commun 2025; 16:2917. [PMID: 40133255 PMCID: PMC11937256 DOI: 10.1038/s41467-025-58049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Bacteria continually evolve. Previous studies have evaluated bacterial evolution in retrospect, but this approach is based on only speculation. Cohort studies are reliable but require a long duration. Additionally, identifying which genetic mutations that have emerged during bacterial evolution possess functions of interest to researchers is an exceptionally challenging task. Here, we establish a Rapid and Integrated Bacterial Evolution Analysis (RIBEA) based on serial passaging experiments using hypermutable strains, whole-genome and transposon-directed sequencing, and in vivo evaluations to monitor bacterial evolution in a cohort for one month. RIBEA reveals bacterial factors contributing to serum and antimicrobial resistance by identifying gene mutations that occurred during evolution in the major respiratory pathogen Klebsiella pneumoniae. RIBEA also enables the evaluation of the risk for the progression and the development of invasive ability from the lung to blood and antimicrobial resistance. Our results demonstrate that RIBEA enables the observation of bacterial evolution and the prediction and identification of clinically relevant high-risk bacterial strains, clarifying the associated pathogenicity and the development of antimicrobial resistance at genetic mutation level.
Collapse
Affiliation(s)
- Kojiro Uemura
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Department of Respiratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan.
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan.
- Graduate School of Infectious Diseases, Hokkaido University, Kita-Ku, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Kita-Ku, Sapporo, Japan.
- Veterinary Research Unit, International Institute for Zoonosis Control, Sapporo, University, Kita-Ku, Sapporo, Japan.
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Jirachaya Toyting
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, Japan
| | - Akira Takasawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masayuki Koyama
- Department of Public Health, Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Atsushi Saito
- Department of Respiratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Takayuki Wada
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-2-7-601, Asahimachi, Abeno-ku, Osaka, Japan
| | - Kaho Okada
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Yurie Yoshida
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, N20, Kita-Ku, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, International Institute for Zoonosis Control, Kita-Ku, Sapporo, Japan
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Kita-Ku, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, N20, Kita-Ku, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, International Institute for Zoonosis Control, Kita-Ku, Sapporo, Japan
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Kita-Ku, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-Ku, Sapporo, Japan
- One Health Research Center, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Kenichi Takano
- Veterinary Research Unit, International Institute for Zoonosis Control, Sapporo, University, Kita-Ku, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Chuo-Ku, Sapporo, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| |
Collapse
|
7
|
Gonçalves C, Steenwyk JL, Rinker DC, Opulente DA, LaBella AL, Harrison MC, Wolters JF, Zhou X, Shen XX, Covo S, Groenewald M, Hittinger CT, Rokas A. Stable hypermutators revealed by the genomic landscape of DNA repair genes among yeast species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643480. [PMID: 40166188 PMCID: PMC11957042 DOI: 10.1101/2025.03.15.643480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mutator phenotypes are short-lived due to the rapid accumulation of deleterious mutations. Yet, recent observations reveal that certain fungi can undergo prolonged accelerated evolution after losing DNA repair genes. Here, we surveyed 1,154 yeast genomes representing nearly all known yeast species of the subphylum Saccharomycotina to examine the relationship between reduced DNA repair repertoires and elevated evolutionary rates. We identified three distantly related lineages-encompassing 12% of species-with substantially reduced sets of DNA repair genes and the highest evolutionary rates in the entire subphylum. Two of these "faster-evolving lineages" (FELs)-a subclade within the order Pichiales and the Wickerhamiella/Starmerella (W/S) clade (order Dipodascales)-are described here for the first time, while the third corresponds to a previously documented Hanseniaspora FEL. Examination of DNA repair gene repertoires revealed a set of genes predominantly absent in these three FELs, suggesting a potential role in the observed acceleration of evolutionary rates. Genomic signatures in the W/S clade are consistent with a substantial mutational burden, including pronounced A|T bias and signatures of endogenous DNA damage. The W/S clade appears to mitigate UV-induced damage through horizontal acquisition of a bacterial photolyase gene, underscoring how gene loss may be offset by nonvertical evolution. These findings highlight how the loss of DNA repair genes gave rise to hypermutators that persist across macroevolutionary timescales, with horizontal gene transfer as an avenue for partial functional compensation.
Collapse
Affiliation(s)
- Carla Gonçalves
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David C. Rinker
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Abigail L. LaBella
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, North Carolina Research Center, University of North Carolina at Charlotte, Kannapolis NC 28223
| | - Marie-Claire Harrison
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xiaofan Zhou
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
8
|
Ghosh S, Wu CJ, Moller AG, Launay A, Hall LN, Hansen BT, Fischer ER, Youn JH, Khil PP, Dekker JP. Transcriptional diversification in a human-adapting zoonotic pathogen drives niche-specific evolution. Nat Commun 2025; 16:2067. [PMID: 40021638 PMCID: PMC11871327 DOI: 10.1038/s41467-025-57331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Bacterial pathogens can undergo striking adaptive evolutionary change in the context of infection, driven by selection forces associated with host defenses and antibiotic treatment. In this work, we analyze the transcriptional landscape associated with adaptation in an emerging zoonotic pathogen, Bordetella hinzii, as it evolved during a 45-month infection in an IL12Rβ1-deficient immunocompromised host. We find evidence of multiple niche-specific modifications in the intravascular and gastrointestinal compartments, involving the superoxide dismutase system, glutamate and ectoine metabolism, chaperone-mediated protein folding, pilus organization, and peptide transport. Individual blood lineages displayed modifications in glutathione, phenylacetate, and 3-phenylpropionate metabolism, iron cluster assembly, and electron transport, whereas individual gastrointestinal lineages demonstrated changes relating to gluconeogenesis, de novo pyrimidine synthesis, and transport of peptides and phosphate ions. Down regulation of the flagellar operon with corresponding loss of flagellar structures occurred in multiple lineages, suggesting an evolutionary tradeoff between motility and host immune evasion. Finally, methylome analysis demonstrates alteration of global genome methylation associated with loss of a Type III methyltransferase. Our findings reveal striking plasticity in how pathogen transcriptomes explore functional space as they evolve in the context of host infection, and demonstrate that such analysis may uncover phenotypic adaptations not apparent from genomic analysis alone.
Collapse
Affiliation(s)
- Soma Ghosh
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chao-Jung Wu
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
| | - Abraham G Moller
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrien Launay
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Endogenomiks, Zapopan, Jalisco, Mexico
| | - Laina N Hall
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- University of California Berkeley, Berkeley, CA, USA
| | - Bryan T Hansen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jung-Ho Youn
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Bouzada FM, Mestre B, Vaquer A, Tejada S, de la Rica R. Detecting Respiratory Pathogens for Diagnosing Lower Respiratory Tract Infections at the Point of Care: Challenges and Opportunities. BIOSENSORS 2025; 15:129. [PMID: 40136926 PMCID: PMC11940763 DOI: 10.3390/bios15030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Lower respiratory tract infections (LRTIs) are a leading cause of mortality worldwide, claiming millions of lives each year and imposing significant healthcare costs. Accurate detection of respiratory pathogens is essential for the effective management of LRTIs. However, this process often relies on sputum analysis, which requires extensive pretreatment steps. The viscous nature and complex composition of sputum present additional challenges, especially in settings where a rapid diagnosis at the point of care is essential. In this review, we describe the main types of LRTI, highlighting different patient care pathway and points of care. We review current methods for liquefying sputum samples and provide an overview of current commercially available diagnostic tools used in hospitals for LRTI detection. Furthermore, we critically review recent advancements in the literature focused on detecting respiratory pathogens and mechanisms of antimicrobial resistance in sputum, including nucleic acid amplification tests, immunoassays and other innovative approaches. Throughout the paper, we highlight challenges and opportunities associated with developing new biosensor technologies tailored for detecting respiratory pathogens in lower respiratory specimens. By shedding light on these pressing issues, we aim to inspire scientific community to create innovative diagnostic tools to address the urgent healthcare burden of lung diseases.
Collapse
Affiliation(s)
- Francisco M. Bouzada
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
| | - Bartomeu Mestre
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Sofía Tejada
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
- (CIBERINFEC)—Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Kostoulias X, Fu Y, Morris FC, Yu C, Qu Y, Chang CC, Blakeway L, Landersdorfer CB, Abbott IJ, Wang L, Wisniewski J, Yu Y, Li J, Peleg AY. Ceftolozane/tazobactam disrupts Pseudomonas aeruginosa biofilms under static and dynamic conditions. J Antimicrob Chemother 2025; 80:372-380. [PMID: 39657684 PMCID: PMC11787898 DOI: 10.1093/jac/dkae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa biofilms limit the efficacy of currently available antibacterial therapies and pose significant clinical challenges. Pseudomonal biofilms are complicated further when other markers of persistence such as mucoid and hypermutable phenotypes are present. There is currently a paucity of data regarding the activity of the newer β-lactam/β-lactamase inhibitor combination ceftolozane/tazobactam against P. aeruginosa biofilms. METHODS We evaluated the efficacy of ceftolozane/tazobactam against clinical P. aeruginosa isolates, the laboratory isolate PAO1 and its isogenic mutS-deficient hypermutator derivative (PAOMS) grown under static and dynamic biofilm conditions. The clinical isolate collection included strains with mucoid and hypermutable phenotypes. RESULTS Ceftolozane/tazobactam exposure led to a bactericidal (≥3 log cfu/cm2) biofilm reduction in 15/18 (83%) clinical isolates grown under static conditions, irrespective of carbapenem susceptibility or mucoid phenotype, with greater activity compared with colistin (P < 0.05). Dynamically grown biofilms were less susceptible to ceftolozane/tazobactam with active biofilm reduction (≥1 log cfu/cm2) observed in 2/3 isolates. Hypermutability did not affect the antibiofilm efficacy of ceftolozane/tazobactam in either static or dynamic conditions when comparing PAO1 and PAOMS. Consistent with the activity of ceftolozane/tazobactam as a potent inhibitor of PBP3, dramatic impacts on P. aeruginosa morphology were observed. CONCLUSIONS Our data demonstrate that ceftolozane/tazobactam has encouraging properties in the treatment of P. aeruginosa biofilm infections, and its activity is not diminished against mucoid or hypermutable variants at the timepoints examined.
Collapse
Affiliation(s)
- Xenia Kostoulias
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| | - Ying Fu
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Faye C Morris
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| | - Crystal Yu
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Yue Qu
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| | - Christina C Chang
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Luke Blakeway
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Cornelia B Landersdorfer
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Iain J Abbott
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Microbiology Unit, The Alfred Hospital, Prahran, Melbourne, VIC 3004, Australia
| | - Lynn Wang
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Jessica Wisniewski
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yunsong Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Li
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anton Y Peleg
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
11
|
Nomura N, Matsumoto H, Asano K, Hayashi Y, Yokoyama A, Nishimura Y, Hashimoto N, Sakagami T, Fukunaga K, Hizawa N, Yamasaki A, Nagase H, Hattori N, Kondo M, Harada N, Sugiura H, Miki M, Kimura T, Toyoshima M, Matsuno O, Koh H, Kita T, Tomioka H, Tomii K, Ohnishi H, Takata S, Tobino K, Imokawa S, Sunadome H, Nagasaki T, Oguma T, Tanabe N, Hirai T. Refractory phenotype of Aspergillus-sensitized asthma with bronchiectasis and allergic bronchopulmonary aspergillosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100364. [PMID: 39659740 PMCID: PMC11629325 DOI: 10.1016/j.jacig.2024.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 12/12/2024]
Abstract
Background Sensitization to Aspergillus, mucus plugs, and bacterial colonization may coexist and relate to a refractory phenotype during follow-up in asthma with bronchiectasis and allergic bronchopulmonary aspergillosis (ABPA). Objective This study aimed to clarify the features of Aspergillus-sensitized refractory asthma with bronchiectasis and determine the refractory phenotype in this population and ABPA. Methods This study included cases of the oldest available Aspergillus fumigatus-specific IgE data and chest computed tomography images from a nationwide survey of refractory asthma with bronchiectasis. The characteristics of the A fumigatus-IgE positive (Af sIgE+) group were investigated and compared with its nonsensitized counterpart (Af sIgE-) and ABPA group. Cluster analysis was conducted to determine the refractory phenotype. Results The Af sIgE+ group (n = 35) demonstrated type 2 inflammation levels intermediate between the ABPA (n = 42) and Af sIgE- (n = 38) groups while exhibiting higher blood monocyte counts than the Af sIgE- group. Cluster analysis conducted in patients with ABPA and Af sIgE+ newly determined 2 clusters: one was characterized by a younger age of asthma onset with fungal detection in sputum, and the other was characterized by mucus plugs and inflammation with eosinophils and monocytes, which was significantly related to mucus plugs, airflow limitation, and trend to show exacerbation. In the latter cluster, mucus plugs persisted, and 30% yielded Pseudomonas aeruginosa in the sputum <5 years later. Conclusion The refractory phenotype with persistent mucus plugs was identified in Aspergillus-sensitized refractory asthma with bronchiectasis and ABPA. Mucus plug prevention is warranted.
Collapse
Affiliation(s)
- Natsuko Nomura
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yusuke Hayashi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihito Yokoyama
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University, Nagoya, Japan
- Department of Respiratory Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Hiroyuki Nagase
- Department of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuko Kondo
- Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Miki
- Department of Respiratory Medicine, NHO Toneyama Medical Center, Osaka, Japan
- Department of Internal Medicine, Tokushima Prefecture Naruto Hospital, Tokushima, Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Aichi, Japan
| | - Mikio Toyoshima
- Department of Respiratory Medicine, Hamamatsu Rosai Hospital, Hamamatsu, Japan
| | - Osamu Matsuno
- Department of Respiratory Medicine, Osaka Habikino Medical Center, Osaka, Japan
| | - Hidefumi Koh
- Division of Pulmonary Medicine, Department of Internal Medicine, Tachikawa Hospital, Tokyo, Japan
| | - Toshiyuki Kita
- Department of Respiratory Medicine, NHO Kanazawa Medical Center, Kanazawa, Japan
| | - Hiromi Tomioka
- Department of Respiratory Medicine, Kobe City Medical Center West Hospital, Kobe, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hisashi Ohnishi
- Department of Respiratory Medicine, Akashi Medical Center, Hyogo, Japan
| | - Shohei Takata
- Department of Respiratory Medicine, NHO Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Kazunori Tobino
- Department of Respiratory Medicine, Iizuka Hospital, Fukuoka, Japan
| | - Shiro Imokawa
- Department of Respiratory Medicine, Iwata City Hospital, Shizuoka, Japan
| | - Hironobu Sunadome
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadao Nagasaki
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine and Allergology, Kindai University Nara Hospital, Ikoma, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Wu D, Carter L, Kay P, Holden J, Yin Y, Guo H. Female zebrafish are more affected than males under polystyrene microplastics exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136616. [PMID: 39581033 DOI: 10.1016/j.jhazmat.2024.136616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Microplastics are ubiquitous in freshwater and can be absorbed into fish skin and gills, accumulate in the gut, and be transported to other tissues, thus posing a risk to fish health. Further studies are needed, however, to investigate effects such as endocrine disruption and multi-tissue toxicity. In this study, zebrafish were exposed to polystyrene (PS) microplastics and health-related indicators were measured, including skin mucus, gut damage, oxidative stress, stable isotope composition and reproduction as well as an assessment of changes to metabolites using a metabolomics approach. Results showed that concentrations of PS microplastics were higher in gills than those in the gut. Minimal impact to immunoglobulin M level and lysozyme activity in mucus indicated, however, that microplastic toxicity primarily stemmed from ingestion rather than disruption of skin mucus immunity. Female zebrafish were more affected by PS microplastics. Gut microbiota dysbiosis was induced, especially in females. Significant alterations in pathways associated with lipid and energy metabolism were observed in the liver of female fish. PS microplastics also induced sex steroid hormone disorder and reduced female egg production, possibly linked to the alteration of gut microbiota and hepatic metabolism. Combined, these results highlight the gender-specific toxicity of PS microplastics to zebrafish health, potentially harming their population.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Laura Carter
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Paul Kay
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Joseph Holden
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Tobares RA, Martino RA, Colque CA, Castillo Moro GL, Moyano AJ, Albarracín Orio AG, Smania AM. Hypermutability bypasses genetic constraints in SCV phenotypic switching in Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 2025; 11:14. [PMID: 39805827 PMCID: PMC11730322 DOI: 10.1038/s41522-024-00644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Biofilms are critical in the persistence of Pseudomonas aeruginosa infections, particularly in cystic fibrosis patients. This study explores the adaptive mechanisms behind the phenotypic switching between Small Colony Variants (SCVs) and revertant states in P. aeruginosa biofilms, emphasizing hypermutability due to Mismatch Repair System (MRS) deficiencies. Through experimental evolution and whole-genome sequencing, we show that both wild-type and mutator strains undergo parallel evolution by accumulating compensatory mutations in factors regulating intracellular c-di-GMP levels, particularly in the Wsp and Yfi systems. While wild-type strains face genetic constraints, mutator strains bypass these by accessing alternative genetic pathways regulating c-di-GMP and biofilm formation. This increased genetic accessibility, driven by higher mutation rates and specific mutational biases, supports sustained cycles of SCV conversion and reversion. Our findings underscore the crucial role of hypermutability in P. aeruginosa adaptation, with significant implications for managing persistent infections in clinical settings.
Collapse
Affiliation(s)
- Romina A Tobares
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Román A Martino
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Claudia A Colque
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Gaston L Castillo Moro
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Alejandro J Moyano
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Andrea G Albarracín Orio
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina
| | - Andrea M Smania
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina.
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
| |
Collapse
|
14
|
Hall KM, Williams LG, Smith RD, Kuang EA, Ernst RK, Bojanowski CM, Wimley WC, Morici LA, Pursell ZF. Mutational signature analysis predicts bacterial hypermutation and multidrug resistance. Nat Commun 2025; 16:19. [PMID: 39746975 PMCID: PMC11695600 DOI: 10.1038/s41467-024-55206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Bacteria of clinical importance, such as Pseudomonas aeruginosa, can become hypermutators upon loss of DNA mismatch repair (MMR) and are clinically correlated with high rates of multidrug resistance (MDR). Here, we demonstrate that hypermutated MMR-deficient P. aeruginosa has a unique mutational signature and rapidly acquires MDR upon repeated exposure to first-line or last-resort antibiotics. MDR acquisition was irrespective of drug class and instead arose through common resistance mechanisms shared between the initial and secondary drugs. Rational combinations of drugs having distinct resistance mechanisms prevented MDR acquisition in hypermutated MMR-deficient P. aeruginosa. Mutational signature analysis of P. aeruginosa across different human disease contexts identified appreciable quantities of MMR-deficient clinical isolates that were already MDR or prone to future MDR acquisition. Mutational signature analysis of patient samples is a promising diagnostic tool that may predict MDR and guide precision-based medical care.
Collapse
Affiliation(s)
- Kalen M Hall
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Informuta, Inc., San Diego, CA, USA
| | - Leonard G Williams
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Informuta, Inc., San Diego, CA, USA
- Bioinnovation Program, Tulane University, New Orleans, LA, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Erin A Kuang
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | | | - William C Wimley
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA.
- Tulane Cancer Center, School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
15
|
Do DT, Yang MR, Vo TNS, Le NQK, Wu YW. Unitig-centered pan-genome machine learning approach for predicting antibiotic resistance and discovering novel resistance genes in bacterial strains. Comput Struct Biotechnol J 2024; 23:1864-1876. [PMID: 38707536 PMCID: PMC11067008 DOI: 10.1016/j.csbj.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
In current genomic research, the widely used methods for predicting antimicrobial resistance (AMR) often rely on prior knowledge of known AMR genes or reference genomes. However, these methods have limitations, potentially resulting in imprecise predictions owing to incomplete coverage of AMR mechanisms and genetic variations. To overcome these limitations, we propose a pan-genome-based machine learning approach to advance our understanding of AMR gene repertoires and uncover possible feature sets for precise AMR classification. By building compacted de Brujin graphs (cDBGs) from thousands of genomes and collecting the presence/absence patterns of unique sequences (unitigs) for Pseudomonas aeruginosa, we determined that using machine learning models on unitig-centered pan-genomes showed significant promise for accurately predicting the antibiotic resistance or susceptibility of microbial strains. Applying a feature-selection-based machine learning algorithm led to satisfactory predictive performance for the training dataset (with an area under the receiver operating characteristic curve (AUC) of > 0.929) and an independent validation dataset (AUC, approximately 0.77). Furthermore, the selected unitigs revealed previously unidentified resistance genes, allowing for the expansion of the resistance gene repertoire to those that have not previously been described in the literature on antibiotic resistance. These results demonstrate that our proposed unitig-based pan-genome feature set was effective in constructing machine learning predictors that could accurately identify AMR pathogens. Gene sets extracted using this approach may offer valuable insights into expanding known AMR genes and forming new hypotheses to uncover the underlying mechanisms of bacterial AMR.
Collapse
Affiliation(s)
- Duyen Thi Do
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Ren Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tran Nam Son Vo
- Department of Business Administration, College of Management, Lunghwa University of Science and Technology, Taoyuan City, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
San Mauro AJS, Høiby N, Ciofu O. Increased susceptibility to azithromycin of Pseudomonas aeruginosa biofilms using RPMI 1640 testing media. APMIS 2024; 132:1086-1095. [PMID: 38622982 PMCID: PMC11582341 DOI: 10.1111/apm.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Azithromycin (AZM) is efficient for treatment of chronic Pseudomonas aeruginosa biofilm lung infections, despite of resistance in conventional susceptibility testing. It has been shown that planktonic P. aeruginosa are more susceptible to AZM when tested in RPMI 1640 medium. The aim of the study was to test the susceptibility to AZM of P. aeruginosa biofilms in LB vs RPMI 1640 media. We investigated the effect of AZM on planktonic and biofilms of (WT) P. aeruginosa (PAO1), the hypermutable (ΔmutS) and the antibiotic-resistant phenotype(ΔnfxB) mutants. The effect of AZM on young and mature biofilms was investigated in the modified Calgary Biofilm Device by estimation of the minimal biofilm inhibitory concentration (MBIC). The AZM MBIC90 in LB/RPMI1640 on young biofilms treated for 24 h was 16/4 μg/mL for PAO1, 32/8 μg/mL for ΔmutS, and 256/16 μg/mL for ΔnfxB, while in mature biofilms was 256/2 μg/mL for PAO1 and ΔmutS and 16/1 μg/mL for ΔnfxB. The effect of AZM was improved when the treatment was prolonged to 72 h, supporting the intracellular accumulation of AZM. An increased susceptibility of P. aeruginosa biofilms to AZM was observed in RPMI 1640 than in LB medium. Our results might improve susceptibility testing and dosing of AZM for treatment of biofilm infections.
Collapse
Affiliation(s)
| | - Niels Høiby
- Institute of Immunology & Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Oana Ciofu
- Institute of Immunology & Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Souque C, González Ojeda I, Baym M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annu Rev Microbiol 2024; 78:361-382. [PMID: 39141706 DOI: 10.1146/annurev-micro-041522-102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.
Collapse
Affiliation(s)
- Célia Souque
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Indra González Ojeda
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| |
Collapse
|
18
|
Marin J, Walewski V, Braun T, Dziri S, Magnan M, Denamur E, Carbonnelle E, Bridier-Nahmias A. Genomic evidence of Escherichia coli gut population diversity translocation in leukemia patients. mSphere 2024; 9:e0053024. [PMID: 39365076 PMCID: PMC11520291 DOI: 10.1128/msphere.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of E. coli gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of E. coli extra-intestinal diseases.
Collapse
Affiliation(s)
- Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Violaine Walewski
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Thorsten Braun
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Samira Dziri
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Mélanie Magnan
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Erick Denamur
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Etienne Carbonnelle
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Antoine Bridier-Nahmias
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| |
Collapse
|
19
|
Ripandelli RA, van Oijen AM, Robinson A. Single-Cell Microfluidics: A Primer for Microbiologists. J Phys Chem B 2024; 128:10311-10328. [PMID: 39400277 PMCID: PMC11514030 DOI: 10.1021/acs.jpcb.4c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in microfluidic technology have made it possible to image live bacterial cells with a high degree of precision and control. In particular, single-cell microfluidic designs have created new opportunities to study phenotypic variation in bacterial populations. However, the development and use of microfluidic devices require specialized resources, and these can be practical barriers to entry for microbiologists. With this review, our intentions are to help demystify the design, construction, and application of microfluidics. Our approach is to present design elements as building blocks from which a multitude of microfluidics applications can be imagined by the microbiologist.
Collapse
|
20
|
Núñez-García LÁ, Feliciano-Guzmán JM, Mireles-Davalos CD, López-Sántiz JR, Ovando-Fonseca JE, Becerril-Vargas E, Jiménez-Martínez ME, Rodríguez-Medina N, Garza-Ramos U, Córdova-Fletes C, Garza-González E. Genomic and phenotypic characterization of Pseudomonas aeruginosa isolates from two Mexican cystic fibrosis attention centers. Microbiol Spectr 2024; 12:e0110024. [PMID: 39440985 PMCID: PMC11619361 DOI: 10.1128/spectrum.01100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Thirty-nine clinical isolates of Pseudomonas aeruginosa collected from 11 cystic fibrosis (CF) patients at two CF attention centers over 10 years were subjected to whole genome sequencing (WGS). Phenotypic tests (i.e., elastase, motility, biofilm, growth rate, and antibiotic susceptibility) were performed to correlate results. A single strain of P. aeruginosa was found to persist over time in longitudinal isolates. No transmission between patients or centers was observed. A tendency to lack genes related to pyoverdine, flagellum, pili, and O-antigen was observed, whereas those related to biofilm, phenazine, and pyochelin were conserved among isolates. In a patient with a 10-year follow-up, a single strain of P. aeruginosa persisted and showed a gradual decrease in elastase activity and growth rate, demonstrating an adaptive phenotype.IMPORTANCEThis study investigates the genomic and phenotypic characteristics of Pseudomonas aeruginosa isolates from Mexican cystic fibrosis (CF) patients, an underrepresented group in CF research. To our knowledge, it is the first to use whole genome sequencing (WGS) to study longitudinally collected P. aeruginosa isolates from this population, evaluating both genomic features and clonal relationships. Remarkably, the study includes samples from one patient over 10 years, offering an extended observation time compared to existing literature. Unlike similar studies, which often lack phenotypic testing, this research incorporates various virulence-related phenotypic assays, enhancing our understanding of gene-to-phenotype correlations. Two potential mechanisms for the loss of elastolytic activity were identified. Furthermore, we conduct an in-depth mobilome analysis, an area that remains largely unexplored in CF contexts. Whole genome sequencing data are publicly available through the NCBI SRA database, facilitating further re-analysis for studies on P. aeruginosa in CF, as well as epidemiological and population structure research.
Collapse
Affiliation(s)
- Luis Ángel Núñez-García
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | | | | | - Eduardo Becerril-Vargas
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de Mexico, Mexico
| | | | - Nadia Rodríguez-Medina
- Instituto Nacional de Salud Pública, Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública, Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| |
Collapse
|
21
|
Rossitto M, Fox V, Vrenna G, Tuccio Guarna Assanti V, Essa N, Lepanto MS, Raimondi S, Agosta M, Cortazzo V, Fini V, Granaglia A, Montemitro E, Cutrera R, Perno CF, Bernaschi P. The Challenging Life of Mutators: How Pseudomonas aeruginosa Survives between Persistence and Evolution in Cystic Fibrosis Lung. Microorganisms 2024; 12:2051. [PMID: 39458360 PMCID: PMC11509988 DOI: 10.3390/microorganisms12102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Cystic fibrosis (CF) is a life-threatening genetic disease characterised by chronic lung infections sustained by opportunistic pathogens such as Pseudomonas aeruginosa. During the chronic long-lasting lung infections, P. aeruginosa adapts to the host environment. Hypermutability, mainly due to defects in the DNA repair system, resulting in an increased spontaneous mutation rate, represents a way to boost the rapid adaptation frequently encountered in CF P. aeruginosa isolates. We selected 609 isolates from 51 patients with CF chronically colonised by P. aeruginosa to study, by full-length genome sequencing, the longitudinal evolution of the bacterium. We recovered at least one hypermutable (mutator) isolate in 57% of patients. By combining genomic information and phenotypic analyses, we followed the evolutionary pathways of the P. aeruginosa mutator strains, identifying their contribution to multi-drug resistance and the emergence of new sub-lineages. By implementing patient clinical data, we observed that mutators preferentially follow a specific evolutionary trajectory in patients with a negative clinical outcome and that maintenance antibiotic polytherapy, based on alternating molecules, apparently reduces the occurrence of hypermutability. Finally, we draw attention to the possibility that modulator-induced changes in the pulmonary environment may be associated with the onset of hypermutability.
Collapse
Affiliation(s)
- Martina Rossitto
- Multimodal Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (V.F.)
| | - Valeria Fox
- Multimodal Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (V.F.)
| | - Gianluca Vrenna
- Multimodal Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (V.F.)
| | - Vanessa Tuccio Guarna Assanti
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| | - Nour Essa
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| | - Maria Stefania Lepanto
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| | - Serena Raimondi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| | - Marilena Agosta
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| | - Venere Cortazzo
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| | - Vanessa Fini
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| | - Annarita Granaglia
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| | - Enza Montemitro
- Pneumology and Cystic Fibrosis Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.M.); (R.C.)
| | - Renato Cutrera
- Pneumology and Cystic Fibrosis Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.M.); (R.C.)
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| | - Paola Bernaschi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.T.G.A.); (N.E.); (M.S.L.); (S.R.); (M.A.); (V.C.); (V.F.); (A.G.); (C.F.P.); (P.B.)
| |
Collapse
|
22
|
Chen KZM, Vu LM, Vollmer AC. Cultivation in long-term simulated microgravity is detrimental to pyocyanin production and subsequent biofilm formation ability of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0021124. [PMID: 39162544 PMCID: PMC11448113 DOI: 10.1128/spectrum.00211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudomonas aeruginosa forms aggregates known as biofilms. Previous studies have shown that when P. aeruginosa is cultivated in space, thicker and structurally different biofilms are formed than from those grown on Earth. We investigated how microgravity, simulated in a laboratory setting, influenced the growth, colonization, and virulence potentials of a P. aeruginosa PA14 wild-type strain, as well as two surface attachment-defective (sad) mutants altered at crucial biofilm-forming steps: flgK and pelA. Using high-aspect ratio rotating-wall vessel (HARV) bioreactors, P. aeruginosa bacteria were grown to stationary phase under prolonged (6 days) exposure to simulated microgravity or normal gravity conditions. After the exposure, the capacity of the culture to form biofilms was measured. Additionally, pigment (pyocyanin) formed by each culture during the incubation was extracted and quantified. We demonstrate that the first prolonged exposure to low-shear modeled microgravity (LSMMG) and without nutrient replenishment significantly diminishes wild-type P. aeruginosa PA14 biofilm formation abilities after exposure and pyocyanin production during exposure, while the mutant strains exhibit differing outcomes for both properties. IMPORTANCE Given plans for humans to engage in prolonged space travel, we investigated biofilm and pigment/virulence factor formation in Pseudomonas aeruginosa when cultivated in microgravity. These bacteria are opportunistic pathogens in immunocompromised individuals. Previous studies of space travelers have shown some immune system diminutions. Hence, our studies shed some light on how prolonged cultivation of bacteria in simulated microgravity conditions affect their growth characteristics.
Collapse
Affiliation(s)
| | - Linda My Vu
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Amy Cheng Vollmer
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
23
|
Cortes-Lara S, Medina-Reatiga P, Barrio-Tofiño ED, Gomis-Font MA, Cabot G, Gómez-Romano F, Ayestarán I, Colomar A, Palou-Rotger A, Oteo-Iglesias J, Campo RD, Cantón R, Horcajada JP, López-Causapé C, Oliver A. Monitoring of Pseudomonas aeruginosa mutational resistome dynamics using an enrichment panel for direct sequencing of clinical samples. EBioMedicine 2024; 108:105367. [PMID: 39332391 PMCID: PMC11467565 DOI: 10.1016/j.ebiom.2024.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a major cause of hospital-acquired and chronic infections, characterised by an extraordinary capacity to develop antimicrobial resistance through the selection of chromosomal mutations, leading to treatment failure. Here, we designed and tested a hybridisation-based capture system for the enrichment of genes of interest before sequencing to monitor resistant populations genomics directly from clinical samples. METHODS A panel for enrichment before sequencing of close to 200 genes related to P. aeruginosa antimicrobial resistance, multilocus sequence typing, mutability or virulence was designed, synthesised (KAPA HyperCap, Roche) and initially validated in vitro using a multidrug-resistant ST175 isolate and representative isolates from major P. aeruginosa clades. In vivo testing included ventilator associated pneumonia by MDR P. aeruginosa in ICU (3-10 sequential samples from 3 patients) and chronic respiratory infection by hypermutable P. aeruginosa in cystic fibrosis (8 sequential samples from a single patient covering a 4-year period). Results from direct sequencing with the enrichment panel were compared with those of whole genome sequencing (WGS) and phenotypic profiling of 10 isolated colonies per sample. FINDINGS In vitro assays confirmed the selectivity of the enrichment panel and the correct identification of the vast mutational resistome of ST175, including specific mutations even when introduced in a 1:100 proportion. In vivo performance was at least equivalent to sequencing 10 colonies per sample, including the accurate identification of the sequence types and the basal and acquired mutational resistome. To note, specific resistance mutations, such as those in ampC leading to resistance to novel β-lactams, could be traced even at frequencies of 1%. Moreover, the coselection of mutator populations and antibiotic resistance mutations, predicted in theoretical and in vitro studies, was evidenced in vivo. INTERPRETATION This proof-of-concept study demonstrates that resistance genomics of P. aeruginosa can be analysed directly from clinical samples, determining not only a considerable reduction in turnaround time and cost from a diagnostics perspective, but also an unprecedented potency for accurate monitoring of in vivo population dynamics in bacterial infections. FUNDING Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea-NextGenerationEU.
Collapse
Affiliation(s)
- Sara Cortes-Lara
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Paola Medina-Reatiga
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Ester Del Barrio-Tofiño
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - María A Gomis-Font
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Gabriel Cabot
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Fernando Gómez-Romano
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Ignacio Ayestarán
- Servicio de Medicina Intensiva, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Asunción Colomar
- Servicio de Medicina Intensiva, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Alexandre Palou-Rotger
- Servicio de Neumología, Hospital Universitario Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBERINFEC, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBERINFEC, Madrid, Spain
| | - Juan P Horcajada
- Servicio de Enfermedades Infecciosas, Hospital del Mar, Hospital del Mar Research Institute, Universitat Pompeu Fabra (UPF) Barcelona, Spain. CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain.
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain.
| |
Collapse
|
24
|
Hameed P S, Kotakonda H, Sharma S, Nandishaiah R, Katagihallimath N, Rao R, Sadler C, Slater I, Morton M, Chandrasekaran A, Griffen E, Pillai D, Reddy S, Bharatham N, Venkatesan S, Jonnalagadda V, Jayaraman R, Nanjundappa M, Sharma M, Raveendran S, Rajagopal S, Tumma H, Watters A, Becker H, Lindley J, Flamm R, Huband M, Sahm D, Hackel M, Mathur T, Kolamunnage-Dona R, Unsworth J, Mcentee L, Farrington N, Manickam D, Chandrashekara N, Jayachandiran S, Reddy H, Shanker S, Richard V, Thomas T, Nagaraj S, Datta S, Sambandamurthy V, Ramachandran V, Clay R, Tomayko J, Das S, V B. BWC0977, a broad-spectrum antibacterial clinical candidate to treat multidrug resistant infections. Nat Commun 2024; 15:8202. [PMID: 39294149 PMCID: PMC11410943 DOI: 10.1038/s41467-024-52557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
The global crisis of antimicrobial resistance (AMR) necessitates the development of broad-spectrum antibacterial drugs effective against multi-drug resistant (MDR) pathogens. BWC0977, a Novel Bacterial Topoisomerase Inhibitor (NBTI) selectively inhibits bacterial DNA replication via inhibition of DNA gyrase and topoisomerase IV. BWC0977 exhibited a minimum inhibitory concentration (MIC90) of 0.03-2 µg/mL against a global panel of MDR Gram-negative bacteria including Enterobacterales and non-fermenters, Gram-positive bacteria, anaerobes and biothreat pathogens. BWC0977 retains activity against isolates resistant to fluoroquinolones (FQs), carbapenems and colistin and demonstrates efficacy against multiple pathogens in two rodent species with significantly higher drug levels in the epithelial lining fluid of infected lungs. In healthy volunteers, single-ascending doses of BWC0977 administered intravenously ( https://clinicaltrials.gov/study/NCT05088421 ) was found to be safe, well tolerated (primary endpoint) and achieved dose-proportional exposures (secondary endpoint) consistent with modelled data from preclinical studies. Here, we show that BWC0977 has the potential to treat a range of critical-care infections including MDR bacterial pneumonias.
Collapse
Affiliation(s)
- Shahul Hameed P
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Harish Kotakonda
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sreevalli Sharma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Radha Nandishaiah
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Nainesh Katagihallimath
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Ranga Rao
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Claire Sadler
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Ian Slater
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Michael Morton
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | | | - Ed Griffen
- Medchemica Ltd., No. 8162245, Ebenezer House, Newcastle-under-Lyme, Staffordshire, ST5 2BE, England
| | - Dhanashree Pillai
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sambasiva Reddy
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Nagakumar Bharatham
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Suryanarayanan Venkatesan
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Venugopal Jonnalagadda
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Ramesh Jayaraman
- TheraIndx Lifesciences Pvt. Ltd., Sy No. 27, Deganahalli, Bangalore, 562123, India
| | - Mahesh Nanjundappa
- TheraIndx Lifesciences Pvt. Ltd., Sy No. 27, Deganahalli, Bangalore, 562123, India
| | - Maitrayee Sharma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Savitha Raveendran
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Harikrishna Tumma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Amy Watters
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Holly Becker
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Jill Lindley
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Robert Flamm
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Michael Huband
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Dan Sahm
- IHMA USA, 2122 Palmer Drive, Schaumburg, IL, 60173-3817, USA
| | - Meredith Hackel
- IHMA USA, 2122 Palmer Drive, Schaumburg, IL, 60173-3817, USA
| | | | - Ruwanthi Kolamunnage-Dona
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jennifer Unsworth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Laura Mcentee
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Nikki Farrington
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Dhanasekaran Manickam
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Narayana Chandrashekara
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Sivakandan Jayachandiran
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Hrushikesava Reddy
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Sathya Shanker
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Vijay Richard
- Narayana Health, Mazumdar Shaw Medical Center, 258/A, Bommasandra Industrial Area, Hosur Road, Bangalore, 560 099, India
| | - Teby Thomas
- Microbiology laboratory, St. John's Hospital, Sarjapur Road, Bangalore, 560 034, India
| | - Savitha Nagaraj
- Microbiology laboratory, St. John's Hospital, Sarjapur Road, Bangalore, 560 034, India
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Vasan Sambandamurthy
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Vasanthi Ramachandran
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Robert Clay
- Highbury Regulatory Science Limited, SK10 4TG, Nether Alderley, Cheshire, SK10 4TG, UK
| | - John Tomayko
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Shampa Das
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Balasubramanian V
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India.
| |
Collapse
|
25
|
Suttenfield LC, Rapti Z, Chandrashekhar JH, Steinlein AC, Vera JC, Kim T, Whitaker RJ. Phage-mediated resolution of genetic conflict alters the evolutionary trajectory of Pseudomonas aeruginosa lysogens. mSystems 2024; 9:e0080124. [PMID: 39166874 PMCID: PMC11406979 DOI: 10.1128/msystems.00801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is naturally infected by a large class of temperate, transposable, Mu-like phages. We examined the genotypic and phenotypic diversity of P. aeruginosa PA14 lysogen populations as they resolve clustered regularly interspaced short palindromic repeat (CRISPR) autoimmunity, mediated by an imperfect CRISPR match to the Mu-like DMS3 prophage. After 12 days of evolution, we measured a decrease in spontaneous induction in both exponential and stationary phase growth. Co-existing variation in spontaneous induction rates in the exponential phase depended on the way the coexisting strains resolved genetic conflict. Multiple mutational modes to resolve genetic conflict between host and phage resulted in coexistence in evolved populations of single lysogens that maintained CRISPR immunity to other phages and polylysogens that lost immunity completely. This work highlights a new dimension of the role of lysogenic phages in the evolution of their hosts.IMPORTANCEThe chronic opportunistic multi-drug-resistant pathogen Pseudomonas aeruginosa is persistently infected by temperate phages. We assess the contribution of temperate phage infection to the evolution of the clinically relevant strain UCBPP-PA14. We found that a low level of clustered regularly interspaced short palindromic repeat (CRISPR)-mediated self-targeting resulted in polylysogeny evolution and large genome rearrangements in lysogens; we also found extensive diversification in CRISPR spacers and cas genes. These genomic modifications resulted in decreased spontaneous induction in both exponential and stationary phase growth, increasing lysogen fitness. This work shows the importance of considering latent phage infection in characterizing the evolution of bacterial populations.
Collapse
Affiliation(s)
- Laura C Suttenfield
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jayadevi H Chandrashekhar
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amelia C Steinlein
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Juan Cristobal Vera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ted Kim
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rachel J Whitaker
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
26
|
Matsumoto T, Hashimoto M, Huang WC, Teng CH, Niwa T, Yamada M, Negishi T. Molecular characterization of a carbon dioxide-dependent Proteus mirabilis small-colony variant isolated from a clinical specimen. J Infect Chemother 2024; 30:881-886. [PMID: 38442770 DOI: 10.1016/j.jiac.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Carbon dioxide-dependent Proteus mirabilis has been isolated from clinical specimens. It is not clear whether mutations in carbonic anhydrase are responsible for the carbon dioxide dependence of P. mirabilis. The pathogenicity of carbon dioxide-dependent P. mirabilis also remains unclear. The purpose of this study was to determine the cause carbon dioxide dependence of P. mirabilis and its pathogenicity. METHODS The DNA sequence of can encoding carbonic anhydrase of a carbon dioxide-dependent P. mirabilis small colony variant (SCV) isolate was analyzed. To confirm that impaired carbonic anhydrase activity is responsible for the formation of the carbon dioxide-dependent SCV phenotype of P. mirabilis, we performed complementation experiments using plasmids with intact can. Additionally, mouse infection experiments were performed to confirm the change in virulence due to the mutation of carbonic anhydrase. RESULTS We found that the can gene of the carbon dioxide-dependent P. mirabilis SCV isolate showed had a frameshift mutation with a deletion of 1 bp (c. 173delC). The can of P. mirabilis encodes carbonic anhydrase was also found to function in Escherichia coli. The cause of the carbon dioxide-dependent SCV phenotype of P. mirabilis was an abnormality in carbonic anhydrase. Nevertheless, no changes were observed in virulence due to the mutation of carbonic anhydrase in mouse infection experiments. CONCLUSIONS The can gene is essential for the growth of P. mirabilis in ambient air. The mechanisms underlying this fitness advantage in terms of infection warrant further investigation.
Collapse
Affiliation(s)
- Takehisa Matsumoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan; Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, School of Health Sciences, Shinshu University, Matsumoto, Japan.
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Takahiko Niwa
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan; Department of Clinical Laboratory, Gunma University Hospital, Maebashi, Japan
| | - Mariko Yamada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Tatsuya Negishi
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
27
|
Deng MZ, Liu Q, Cui SJ, Wang YX, Zhu G, Fu H, Gan M, Xu YY, Cai X, Wang S, Sha W, Zhao GP, Fortune SM, Lyu LD. An additional proofreader contributes to DNA replication fidelity in mycobacteria. Proc Natl Acad Sci U S A 2024; 121:e2322938121. [PMID: 39141351 PMCID: PMC11348249 DOI: 10.1073/pnas.2322938121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the β clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.
Collapse
Affiliation(s)
- Ming-Zhi Deng
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Shu-Jun Cui
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Yi-Xin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai200433, China
| | - Guoliang Zhu
- Shanghai Zelixir Biotech Company Ltd., Shanghai200030, China
| | - Han Fu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Chinese Academy of Sciences Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai200032, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Mingyu Gan
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai201102, China
| | - Yuan-Yuan Xu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai200030, China
| | - Wei Sha
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai200433, China
| | - Guo-Ping Zhao
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai200433, China
- Chinese Academy of Sciences Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai200032, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai200433, China
| |
Collapse
|
28
|
Şimşek E, Kim K, Lu J, Silver A, Luo N, Lee CT, You L. A 'rich-get-richer' mechanism drives patchy dynamics and resistance evolution in antibiotic-treated bacteria. Mol Syst Biol 2024; 20:880-897. [PMID: 38877321 PMCID: PMC11297297 DOI: 10.1038/s44320-024-00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024] Open
Abstract
Bacteria in nature often form surface-attached communities that initially comprise distinct subpopulations, or patches. For pathogens, these patches can form at infection sites, persist during antibiotic treatment, and develop into mature biofilms. Evidence suggests that patches can emerge due to heterogeneity in the growth environment and bacterial seeding, as well as cell-cell signaling. However, it is unclear how these factors contribute to patch formation and how patch formation might affect bacterial survival and evolution. Here, we demonstrate that a 'rich-get-richer' mechanism drives patch formation in bacteria exhibiting collective survival (CS) during antibiotic treatment. Modeling predicts that the seeding heterogeneity of these bacteria is amplified by local CS and global resource competition, leading to patch formation. Increasing the dose of a non-eradicating antibiotic treatment increases the degree of patchiness. Experimentally, we first demonstrated the mechanism using engineered Escherichia coli and then demonstrated its applicability to a pathogen, Pseudomonas aeruginosa. We further showed that the formation of P. aeruginosa patches promoted the evolution of antibiotic resistance. Our work provides new insights into population dynamics and resistance evolution during surface-attached bacterial growth.
Collapse
Affiliation(s)
- Emrah Şimşek
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Jia Lu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Anita Silver
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Nan Luo
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Charlotte T Lee
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27708, USA.
| |
Collapse
|
29
|
Almeida MM, Bastos LR, Firmida MC, Albano RM, Marques EA, Leão RS. Genomic Comparative of Pseudomonas aeruginosa Small Colony Variant, Mucoid and Non-mucoid Phenotypes Obtained from a Patient with Cystic Fibrosis During Respiratory Exacerbations. Curr Microbiol 2024; 81:274. [PMID: 39017880 DOI: 10.1007/s00284-024-03769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/02/2023] [Indexed: 07/18/2024]
Abstract
Pseudomonas aeruginosa, the most prevalent opportunistic pathogen in chronic obstructive pulmonary disease, associated with high morbidity and mortality in patients with cystic fibrosis (CF), is practically impossible to be eradicated from the airways in chronicity. Its extraordinary genomic plasticity is possibly associated with high antimicrobial resistance, virulence factors, and its phenotypic diversity. The occurrence of P. aeruginosa isolates promoting airway infection, showing mucoid, non-mucoid, and small colony variant (SCV) phenotypes, was observed simultaneously, in the present study, in sputum cultures obtained from a male CF young patient with chronic pulmonary infection for over a decade. The isolates belonged to a new ST (2744) were obtained in two moments of exacerbation of the respiratory disease, in which he was hospitalized. Genetic background and phenotypic analysis indicated that the isolates exhibited multi- and pan-antimicrobial resistant profiles, as well as non-susceptible to polymyxin and predominantly hypermutable (HPM) phenotypes. Whole genome sequencing showed variations in genome sizes, coding sequences and their determinants of resistance and virulence. The annotated genomes were compared for antimicrobial resistance, hypermutability, and SCV characteristics. We highlight the lack of reported genetic determinants of SCV emergence and HPM phenotypes, which can be explained in part due to the very short time between collections of isolates. To the best of our knowledge, this is the first report of genome sequencing of P. aeruginosa SCV from a CF patient in Brazil.
Collapse
Affiliation(s)
- Mila M Almeida
- Departamentode Microbiologia, Imunologia E Parasitologia, Faculdade de Ciências Médicas, Universidade Do Estado Do Rio de Janeiro, Avenida 28 de Setembro, 87, S/N, Vila Isabel, Rio de Janeiro/RJ, Brazil
| | - Leonardo R Bastos
- Departamentode Microbiologia, Imunologia E Parasitologia, Faculdade de Ciências Médicas, Universidade Do Estado Do Rio de Janeiro, Avenida 28 de Setembro, 87, S/N, Vila Isabel, Rio de Janeiro/RJ, Brazil
| | - Mônica C Firmida
- Departamentode Doenças Do Tórax, Faculdade de Ciências Médicas, Universidade Do Estado Do Rio de Janeiro, Avenida 28 de Setembro, 87, Vila Isabel, Rio de Janeiro, Brazil
| | - Rodolpho M Albano
- Departamentode Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Avenida 28 de Setembro, 87, Vila Isabel, Rio de Janeiro/RJ, Brazil
| | - Elizabeth A Marques
- Departamentode Microbiologia, Imunologia E Parasitologia, Faculdade de Ciências Médicas, Universidade Do Estado Do Rio de Janeiro, Avenida 28 de Setembro, 87, S/N, Vila Isabel, Rio de Janeiro/RJ, Brazil
| | - Robson S Leão
- Departamentode Microbiologia, Imunologia E Parasitologia, Faculdade de Ciências Médicas, Universidade Do Estado Do Rio de Janeiro, Avenida 28 de Setembro, 87, S/N, Vila Isabel, Rio de Janeiro/RJ, Brazil.
| |
Collapse
|
30
|
Marey MA, Abozahra R, El-Nikhely NA, Kamal MF, Abdelhamid SM, El-Kholy MA. Transforming microbial pigment into therapeutic revelation: extraction and characterization of pyocyanin from Pseudomonas aeruginosa and its therapeutic potential as an antibacterial and anticancer agent. Microb Cell Fact 2024; 23:174. [PMID: 38867319 PMCID: PMC11170807 DOI: 10.1186/s12934-024-02438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The objectives of the current study were to extract pyocyanin from Pseudomonas aeruginosa clinical isolates, characterize its chemical nature, and assess its biological activity against different bacteria and cancer cells. Due to its diverse bioactive properties, pyocyanin, being one of the virulence factors of P. aeruginosa, holds a promising, safe, and available therapeutic potential. METHODS 30 clinical P. aeruginosa isolates were collected from different sources of infections and identified by routine methods, the VITEK 2 compact system, and 16 S rRNA. The phenazine-modifying genes (phzM, phzS) were identified using polymerase chain reaction (PCR). Pyocyanin chemical characterization included UV-Vis spectrophotometry, Fourier Transform Infra-Red spectroscopy (FTIR), Gas Chromatography-Mass Spectrometry (GC-MS), and Liquid Chromatography-Mass Spectrometry (LC-MS). The biological activity of pyocyanin was explored by determining the MIC values against different clinical bacterial strains and assessing its anticancer activity against A549, MDA-MB-231, and Caco-2 cancer cell lines using cytotoxicity, wound healing and colony forming assays. RESULTS All identified isolates harboured at least one of the phzM or phzS genes. The co-presence of both genes was demonstrated in 13 isolates. The UV-VIS absorbance peaks were maxima at 215, 265, 385, and 520 nm. FTIR could identify the characteristic pyocyanin functional groups, whereas both GC-MS and LC-MS elucidated the chemical formula C11H18N2O2, with a molecular weight 210. The quadri-technical analytical approaches confirmed the chemical nature of the extracted pyocyanin. The extract showed broad-spectrum antibacterial activity, with the greatest activity against Bacillus, Staphylococcus, and Streptococcus species (MICs 31.25-125 µg/mL), followed by E. coli isolates (MICs 250-1000 µg/mL). Regarding the anticancer activity, the pyocyanin extract showed IC50 values against A549, MDA-MB-231, and Caco-2 cancer cell lines of 130, 105, and 187.9 µg/mL, respectively. Furthermore, pyocyanin has markedly suppressed colony formation and migratory abilities in these cells. CONCLUSIONS The extracted pyocyanin has demonstrated to be a potentially effective candidate against various bacterial infections and cancers. Hence, the current findings could contribute to producing this natural compound easily through an affordable method. Nonetheless, future studies are required to investigate pyocyanin's effects in vivo and analyse the results of combining it with other traditional antibiotics or anticancer drugs.
Collapse
Affiliation(s)
- Moustafa A Marey
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir Campus, P.O. Box 1029, Alexandria, Egypt
| | - Rania Abozahra
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nefertiti A El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Miranda F Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Beheira, Egypt
| | - Sarah M Abdelhamid
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohammed A El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir Campus, P.O. Box 1029, Alexandria, Egypt.
| |
Collapse
|
31
|
Maruri-Aransolo A, López-Causapé C, Hernández-García M, García-Castillo M, Caballero-Pérez JDD, Oliver A, Cantón R. In vitro activity of cefiderocol in Pseudomonas aeruginosa isolates from people with cystic fibrosis recovered during three multicentre studies in Spain. J Antimicrob Chemother 2024; 79:1432-1440. [PMID: 38708553 DOI: 10.1093/jac/dkae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES Despite the introduction of cystic fibrosis transmembrane conductance regulator (CFTR) modulators, Pseudomonas aeruginosa is still a major pathogen in people with cystic fibrosis (pwCF). We determine the activity of cefiderocol and comparators in a collection of 154 P. aeruginosa isolates recovered from pwCF during three multicentre studies performed in 17 Spanish hospitals in 2013, 2017 and 2021. METHODS ISO broth microdilution was performed and MICs were interpreted with CLSI and EUCAST criteria. Mutation frequency and WGS were also performed. RESULTS Overall, 21.4% were MDR, 20.8% XDR and 1.3% pandrug-resistant (PDR). Up to 17% of the isolates showed a hypermutator phenotype. Cefiderocol demonstrated excellent activity; only 13 isolates (8.4%) were cefiderocol resistant by EUCAST (none using CLSI). A high proportion of the isolates resistant to ceftolozane/tazobactam (71.4%), meropenem/vaborbactam (70.0%), imipenem/relebactam (68.0%) and ceftazidime/avibactam (55.6%) were susceptible to cefiderocol. Nine out of 13 cefiderocol-resistant isolates were hypermutators (P < 0.001). Eighty-three STs were detected, with ST98 being the most frequent. Only one isolate belonging to the ST175 high-risk clone carried blaVIM-2. Exclusive mutations affecting genes involved in membrane permeability, AmpC overexpression (L320P-AmpC) and efflux pump up-regulation were found in cefiderocol-resistant isolates (MIC = 4-8 mg/L). Cefiderocol resistance could also be associated with mutations in genes related to iron uptake (tonB-dependent receptors and pyochelin/pyoverdine biosynthesis). CONCLUSIONS Our results position cefiderocol as a therapeutic option in pwCF infected with P. aeruginosa resistant to most recent β-lactam/β-lactamase inhibitor combinations.
Collapse
Affiliation(s)
- Ainhize Maruri-Aransolo
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario de Son Espases and (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - María García-Castillo
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan de Dios Caballero-Pérez
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario de Son Espases and (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Breen SKJ, Harper M, López-Causapé C, Rogers KE, Tait JR, Smallman TR, Lang Y, Lee WL, Zhou J, Zhang Y, Bulitta JB, Nation RL, Oliver A, Boyce JD, Landersdorfer CB. Synergistic effects of inhaled aztreonam plus tobramycin on hypermutable cystic fibrosis Pseudomonas aeruginosa isolates in a dynamic biofilm model evaluated by mechanism-based modelling and whole genome sequencing. Int J Antimicrob Agents 2024; 63:107161. [PMID: 38561094 DOI: 10.1016/j.ijantimicag.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Hypermutable Pseudomonas aeruginosa strains are highly prevalent in chronic lung infections of patients with cystic fibrosis (CF). Acute exacerbations of these infections have limited treatment options. This study aimed to investigate inhaled aztreonam and tobramycin against clinical hypermutable P. aeruginosa strains using the CDC dynamic in vitro biofilm reactor (CBR), mechanism-based mathematical modelling (MBM) and genomic studies. METHODS Two CF multidrug-resistant strains were investigated in a 168 h CBR (n = 2 biological replicates). Regimens were inhaled aztreonam (75 mg 8-hourly) and tobramycin (300 mg 12-hourly) in monotherapies and combination. The simulated pharmacokinetic profiles of aztreonam and tobramycin (t1/2 = 3 h) were based on published lung fluid concentrations in patients with CF. Total viable and resistant counts were determined for planktonic and biofilm bacteria. MBM of total and resistant bacterial counts and whole genome sequencing were completed. RESULTS Both isolates showed reproducible bacterial regrowth and resistance amplification for the monotherapies by 168 h. The combination performed synergistically, with minimal resistant subpopulations compared to the respective monotherapies at 168 h. Mechanistic synergy appropriately described the antibacterial effects of the combination regimen in the MBM. Genomic analysis of colonies recovered from monotherapy regimens indicated noncanonical resistance mechanisms were likely responsible for treatment failure. CONCLUSION The combination of aztreonam and tobramycin was required to suppress the regrowth and resistance of planktonic and biofilm bacteria in all biological replicates of both hypermutable multidrug-resistant P. aeruginosa CF isolates. The developed MBM could be utilised for future investigations of this promising inhaled combination.
Collapse
Affiliation(s)
- Siobhonne K J Breen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Kate E Rogers
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jessica R Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Thomas R Smallman
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Wee L Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yongzhen Zhang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jurgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - John D Boyce
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
33
|
Pell ME, Blankenship HM, Gaddy JA, Davies HD, Manning SD. Intrapartum antibiotic prophylaxis selects for mutators in group B streptococci among persistently colonized patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587590. [PMID: 38617326 PMCID: PMC11014637 DOI: 10.1101/2024.04.01.587590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Through vaginal colonization, GBS causes severe pregnancy outcomes including neonatal sepsis and meningitis. Although intrapartum antibiotic prophylaxis (IAP) has reduced early-onset disease rates, persistent GBS colonization has been observed in patients following prophylaxis. To determine whether IAP selects for genomic signatures that enhance GBS survival and persistence in the vaginal tract, whole-genome sequencing was performed on 97 isolates from 58 patients before (prenatal) and after (postpartum) IAP/childbirth. Core-gene mutation analysis identified 7,025 mutations between the paired isolates. Three postpartum isolates accounted for 98% of mutations and were classified as "mutators" because of point mutations within DNA repair systems. In vitro assays revealed stronger biofilms in two mutators. These findings suggest that antibiotics select for mutations that promote survival in vivo, which increases the likelihood of transmission to neonates. They also demonstrate how mutators can provide a reservoir of beneficial mutations that enhance fitness and genetic diversity in the GBS population.
Collapse
Affiliation(s)
- Macy E Pell
- Michigan State University, Department of Microbiology, Genetics, and Immunology (MGI), E. Lansing, MI
| | - Heather M Blankenship
- Michigan Department of Health and Human Services, Bureau of Laboratories, Division of Infectious Diseases, Lansing, MI
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN
| | | | - Shannon D Manning
- Michigan State University, Department of Microbiology, Genetics, and Immunology (MGI), E. Lansing, MI
| |
Collapse
|
34
|
Müller M, Wiencierz A, Gehringer C, Muigg V, Bassetti S, Siegemund M, Hinic V, Tschudin-Sutter S, Egli A. Factors associated with non-carbapenemase mediated carbapenem resistance of Gram-negative bacteria: a retrospective case-control study. Int Microbiol 2024; 27:597-606. [PMID: 37556067 PMCID: PMC10991015 DOI: 10.1007/s10123-023-00405-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
Infections with carbapenemase-producing Gram-negative bacteria are related to increased morbidity and mortality, yet little is known regarding infections caused by non-beta-lactamase mediated carbapenem-resistant bacteria. Our objective was to identify risk factors for, and the clinical impact of infections caused by carbapenem-resistant carbapenemase-negative Enterobacterales and Pseudomonas aeruginosa. This retrospective matched case-control study was performed at the University Hospital of Basel, Switzerland, in 2016. We focused on other resistance mechanisms by excluding laboratory-confirmed carbapenemase-positive cases. Carbapenem resistance was set as the primary endpoint, and important risk factors were investigated by conditional logistic regression. The clinical impact of carbapenem resistance was estimated using regression models containing the resistance indicator as explanatory factor and adjusting for potential confounders. Seventy-five cases of infections with carbapenem-resistant, carbapenemase-negative bacteria were identified and matched with 75 controls with carbapenem-susceptible infections. The matched data set was well-balanced regarding age, gender, and comorbidity. Duration of prior carbapenem treatment (OR 1.15, [1.01, 1.31]) correlated with resistance to carbapenems. Our study showed that patients with carbapenem-resistant bacteria stayed 1.59 times (CI [0.81, 3.14]) longer in an ICU. The analyzed dataset did not provide evidence for strong clinical implications of resistance to carbapenems or increased mortality. The duration of prior carbapenem treatment seems to be a strong risk factor for the development of carbapenem resistance. The higher risk for a longer ICU stay could be a consequence of a carbapenem resistance. In contrast to carbapenemase-producers, the clinical impact of carbapenamase-negative, carbapenem-resistant strains may be limited. Trial registration: The study design was prospectively approved by the local Ethics Commission on 10.08.2017 (EKNZ BASEC 2017-00222).
Collapse
Affiliation(s)
- Marius Müller
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Andrea Wiencierz
- Clinical Trial Unit, University Hospital Basel, Basel, Switzerland
| | - Christian Gehringer
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Veronika Muigg
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Stefano Bassetti
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Intensive Care Medicine, Department of Acute Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Vladimira Hinic
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Sarah Tschudin-Sutter
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland.
| |
Collapse
|
35
|
Gifford DR, Bhattacharyya A, Geim A, Marshall E, Krašovec R, Knight CG. Environmental and genetic influence on the rate and spectrum of spontaneous mutations in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001452. [PMID: 38687010 PMCID: PMC11084559 DOI: 10.1099/mic.0.001452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Spontaneous mutations are the ultimate source of novel genetic variation on which evolution operates. Although mutation rate is often discussed as a single parameter in evolution, it comprises multiple distinct types of changes at the level of DNA. Moreover, the rates of these distinct changes can be independently influenced by genomic background and environmental conditions. Using fluctuation tests, we characterized the spectrum of spontaneous mutations in Escherichia coli grown in low and high glucose environments. These conditions are known to affect the rate of spontaneous mutation in wild-type MG1655, but not in a ΔluxS deletant strain - a gene with roles in both quorum sensing and the recycling of methylation products used in E. coli's DNA repair process. We find an increase in AT>GC transitions in the low glucose environment, suggesting that processes relating to the production or repair of this mutation could drive the response of overall mutation rate to glucose concentration. Interestingly, this increase in AT>GC transitions is maintained by the glucose non-responsive ΔluxS deletant. Instead, an elevated rate of GC>TA transversions, more common in a high glucose environment, leads to a net non-responsiveness of overall mutation rate for this strain. Our results show how relatively subtle changes, such as the concentration of a carbon substrate or loss of a regulatory gene, can substantially influence the amount and nature of genetic variation available to selection.
Collapse
Affiliation(s)
- Danna R. Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Anish Bhattacharyya
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra Geim
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Pembroke College, University of Cambridge, Cambridge, UK
| | - Eleanor Marshall
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Doğan E, Sydow K, Heiden SE, Eger E, Wassilew G, Proctor RA, Bohnert JA, Idelevich EA, Schaufler K, Becker K. Klebsiella pneumoniae exhibiting a phenotypic hyper-splitting phenomenon including the formation of small colony variants. Front Cell Infect Microbiol 2024; 14:1372704. [PMID: 38601740 PMCID: PMC11004228 DOI: 10.3389/fcimb.2024.1372704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient's urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic "hyper-splitting" in a K. pneumoniae SCV and its potential clinical significance.
Collapse
Affiliation(s)
- Eyüp Doğan
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Sydow
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Stefan E. Heiden
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Elias Eger
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Georgi Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
37
|
Wu Z, Bi Y, Zhang J, Gao T, Li X, Hao J, Li G, Liu P, Liu X. Multidrug resistance of Botrytis cinerea associated with its adaptation to plant secondary metabolites. mBio 2024; 15:e0223723. [PMID: 38259067 PMCID: PMC10865845 DOI: 10.1128/mbio.02237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Fungicides are an effective way to control gray mold of grapes, but the pathogen Botrytis cinerea can develop resistance, overcoming the effectiveness of a fungicide that is repeatedly applied. More importantly, the emergence of multidrug resistance (MDR) in the field, where multiple fungicides with different modes of action simultaneously lose their efficacies, is a significant concern. MDR is associated with ATP-binding cassette (ABC) transporters of the pathogen, and certain plant secondary metabolites (PSMs) stimulate the upregulation of ABC transporters, we hypothesized that the pathogen's preadaptation to PSMs might contribute to MDR development. To test this in B. cinerea, ten PSMs, namely, resveratrol, reserpine, chalcone, flavanone, eugenol, farnesol, anethene, camptothecin, salicylic acid, and psoralen, were selected based on their association with ABC transporters involved in fungicide resistance. B. cinerea strain B05.10 was continuously transferred for 15 generations on potato dextrose agar amended with a PSM (PDAP), and sensitivities to PSMs and fungicides were examined on the 5th, 10th, and 15th generations. RNA was extracted from B. cinerea from the selected generations. After 15 generations of culture transfers, an up-regulation was observed in the expression of ABC transporter-encoding genes BcatrB, BcatrD, and BcatrK using quantitative polymerase chain reaction (qPCR). This upregulation was found to contribute to MDR of B. cinerea against two or more fungicides, among azoxystrobin, boscalid, fludioxonil, difenoconazole, prochloraz, and pyrimethanil. This finding was confirmed through genetic transformation. The decreased sensitivity of B. cinerea to fungicides was confirmed as a subsequent MDR phenotype after exposure to camptothecin, flavanone, and resveratrol. Besides, transcriptome analysis also revealed the upregulation of transcription factors related to ABC expression following resveratrol exposure. This suggests that PSMs contributed to inducing preadaptation of B. cinerea, leading to subsequent MDR.IMPORTANCEThe emergence of MDR in plant pathogens is a threat to plant disease management and leads to the use of excessive fungicides. Botrytis cinerea is of particular concern because its MDR has widely emerged in the field. Understanding its genesis is the first step for controlling MDR. In this study, the contribution of PSMs to MDR has been examined. Effective management of this pathogen in agroecosystems relies on a better understanding of how it copes with phytochemicals or fungicides.
Collapse
Affiliation(s)
- Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yue Bi
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Department of Plant Pathology, Tianjin Agricultural University, Tianjin, China
| | - Junting Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tuqiang Gao
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xueming Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Guihua Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Vanderwoude J, Azimi S, Read TD, Diggle SP. The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of Pseudomonas aeruginosa populations in cystic fibrosis lung infection. mBio 2024; 15:e0310923. [PMID: 38171021 PMCID: PMC10865868 DOI: 10.1128/mbio.03109-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which causes chronic, drug-resistant lung infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within P. aeruginosa populations sourced from CF lung infections. We analyzed 300 clinical isolates from four CF patients (75 per patient) and found that genomic diversity is not a consistent indicator of phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR diversity comparable to those with significantly more genetic variation. We also observed that hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting expectations from their treatment histories. Investigating potential evolutionary trade-offs, we found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for phenotypic AMR diversity, (ii) hypermutator populations may develop increased antimicrobial sensitivity under selection pressure, (iii) collateral sensitivity is not a prominent feature in CF strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, emphasizing the complexity of bacterial adaptation during infection.IMPORTANCEUpon infection in the cystic fibrosis (CF) lung, Pseudomonas aeruginosa rapidly acquires genetic mutations, especially in genes involved in antimicrobial resistance (AMR), often resulting in diverse, treatment-resistant populations. However, the role of bacterial population diversity within the context of chronic infection is still poorly understood. In this study, we found that hypermutator strains of P. aeruginosa in the CF lung undergoing treatment with tobramycin evolved increased sensitivity to tobramycin relative to non-hypermutators within the same population. This finding suggests that antimicrobial treatment may only exert weak selection pressure on P. aeruginosa populations in the CF lung. We further found no evidence for collateral sensitivity in these clinical populations, suggesting that collateral sensitivity may not be a robust, naturally occurring phenomenon for this microbe.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Martignoni MM, Tyson RC, Kolodny O, Garnier J. Mutualism at the leading edge: insights into the eco-evolutionary dynamics of host-symbiont communities during range expansion. J Math Biol 2024; 88:24. [PMID: 38308102 DOI: 10.1007/s00285-023-02037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 02/04/2024]
Abstract
The evolution of mutualism between host and symbiont communities plays an essential role in maintaining ecosystem function and should therefore have a profound effect on their range expansion dynamics. In particular, the presence of mutualistic symbionts at the leading edge of a host-symbiont community should enhance its propagation in space. We develop a theoretical framework that captures the eco-evolutionary dynamics of host-symbiont communities, to investigate how the evolution of resource exchange may shape community structure during range expansion. We consider a community with symbionts that are mutualistic or parasitic to various degrees, where parasitic symbionts receive the same amount of resource from the host as mutualistic symbionts, but at a lower cost. The selective advantage of parasitic symbionts over mutualistic ones is increased with resource availability (i.e. with host density), promoting mutualism at the range edges, where host density is low, and parasitism at the population core, where host density is higher. This spatial selection also influences the speed of spread. We find that the host growth rate (which depends on the average benefit provided by the symbionts) is maximal at the range edges, where symbionts are more mutualistic, and that host-symbiont communities with high symbiont density at their core (e.g. resulting from more mutualistic hosts) spread faster into new territories. These results indicate that the expansion of host-symbiont communities is pulled by the hosts but pushed by the symbionts, in a unique push-pull dynamic where both the host and symbionts are active and tightly-linked players.
Collapse
Affiliation(s)
- Maria M Martignoni
- Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rebecca C Tyson
- CMPS Department (Mathematics), University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Oren Kolodny
- Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jimmy Garnier
- Laboratory of Mathematics, CNRS, Université Savoie-Mont Blanc, Université Grenoble Alpes, Chambery, France
| |
Collapse
|
40
|
Espaillat A, Colque CA, Rago D, La Rosa R, Molin S, Johansen HK. Adaptive Evolution of Pseudomonas aeruginosa in Human Airways Shows Phenotypic Convergence Despite Diverse Patterns of Genomic Changes. Mol Biol Evol 2024; 41:msae022. [PMID: 38366124 PMCID: PMC10883414 DOI: 10.1093/molbev/msae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Selective forces in the environment drive bacterial adaptation to novel niches, choosing the fitter variants in the population. However, in dynamic and changing environments, the evolutionary processes controlling bacterial adaptation are difficult to monitor. Here, we follow 9 people with cystic fibrosis chronically infected with Pseudomonas aeruginosa, as a proxy for bacterial adaptation. We identify and describe the bacterial changes and evolution occurring between 15 and 35 yr of within-host evolution. We combine whole-genome sequencing, RNA sequencing, and metabolomics and compare the evolutionary trajectories directed by the adaptation of 4 different P. aeruginosa lineages to the lung. Our data suggest divergent evolution at the genomic level for most of the genes, with signs of convergent evolution with respect to the acquisition of mutations in regulatory genes, which drive the transcriptional and metabolomic program at late time of evolution. Metabolomics further confirmed convergent adaptive phenotypic evolution as documented by the reduction of the quorum-sensing molecules acyl-homoserine lactone, phenazines, and rhamnolipids (except for quinolones). The modulation of the quorum-sensing repertoire suggests that similar selective forces characterize at late times of evolution independent of the patient. Collectively, our data suggest that similar environments and similar P. aeruginosa populations in the patients at prolonged time of infection are associated with an overall reduction of virulence-associated features and phenotypic convergence.
Collapse
Affiliation(s)
- Akbar Espaillat
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen Ø 2100, Denmark
| | | | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Ruggero La Rosa
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen Ø 2100, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen Ø 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| |
Collapse
|
41
|
Abstract
Bacterial pathogens undergo remarkable adaptive change in response to the selective forces they encounter during host colonization and infection. Studies performed over the past few decades have demonstrated that many general evolutionary processes can be discerned during the course of host adaptation, including genetic diversification of lineages, clonal succession events, convergent evolution, and balanced fitness trade-offs. In some cases, elevated mutation rates resulting from mismatch repair or proofreading deficiencies accelerate evolution, and active mobile genetic elements or phages may facilitate genome plasticity. The host immune response provides another critical component of the fitness landscapes guiding adaptation, and selection operating on pathogens at this level may lead to immune evasion and the establishment of chronic infection. This review summarizes recent advances in this field, with a special focus on different forms of bacterial genome plasticity in the context of infection, and considers clinical consequences of adaptive changes for the host.
Collapse
Affiliation(s)
- John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Nozick SH, Ozer EA, Medernach R, Kochan TJ, Kumar R, Mills JO, Wunderlink RG, Qi C, Hauser AR. Phenotypes of a Pseudomonas aeruginosa hypermutator lineage that emerged during prolonged mechanical ventilation in a patient without cystic fibrosis. mSystems 2024; 9:e0048423. [PMID: 38132670 PMCID: PMC10804958 DOI: 10.1128/msystems.00484-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Hypermutator lineages of Pseudomonas aeruginosa arise frequently during the years of airway infection experienced by patients with cystic fibrosis and bronchiectasis but are rare in the absence of chronic infection and structural lung disease. Since the onset of the COVID-19 pandemic, large numbers of patients have remained mechanically ventilated for extended periods of time. These patients are prone to acquire bacterial pathogens that persist for many weeks and have the opportunity to evolve within the pulmonary environment. However, little is known about what types of adaptations occur in these bacteria and whether these adaptations mimic those observed in chronic infections. We describe a COVID-19 patient with a secondary P. aeruginosa lung infection in whom the causative bacterium persisted for >50 days. Over the course of this infection, a hypermutator lineage of P. aeruginosa emerged and co-existed with a non-hypermutator lineage. Compared to the parental lineage, the hypermutator lineage evolved to be less cytotoxic and less virulent. Genomic analyses of the hypermutator lineage identified numerous mutations, including in the mismatch repair gene mutL and other genes frequently mutated in individuals with cystic fibrosis. Together, these findings demonstrate that hypermutator lineages can emerge when P. aeruginosa persists following acute infections such as ventilator-associated pneumonia and that these lineages have the potential to affect patient outcomes.IMPORTANCEPseudomonas aeruginosa may evolve to accumulate large numbers of mutations in the context of chronic infections such as those that occur in individuals with cystic fibrosis. However, these "hypermutator" lineages are rare following acute infections. Here, we describe a non-cystic fibrosis patient with COVID-19 pneumonia who remained mechanically ventilated for months. The patient became infected with a strain of P. aeruginosa that evolved to become a hypermutator. We demonstrate that hypermutation led to changes in cytotoxicity and virulence. These findings are important because they demonstrate that P. aeruginosa hypermutators can emerge following acute infections and that they have the potential to affect patient outcomes in this setting.
Collapse
Affiliation(s)
- Sophia H. Nozick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A. Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rachel Medernach
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Travis J. Kochan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rebecca Kumar
- />Department of Medicine, Division of Infectious Diseases, Georgetown University, Washington, DC, USA
| | - Jori O. Mills
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard G. Wunderlink
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
43
|
Ghassani A, Triponney P, Bour M, Plésiat P, Jeannot K. Mutations in genes lpxL1, bamA, and pmrB impair the susceptibility of cystic fibrosis strains of Pseudomonas aeruginosa to murepavadin. Antimicrob Agents Chemother 2024; 68:e0129823. [PMID: 38092672 PMCID: PMC10790571 DOI: 10.1128/aac.01298-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024] Open
Abstract
Murepavadin is a peptidomimetic exhibiting specific inhibitory activity against Pseudomonas species. In the present study, its in vitro activity was assessed on 230 cystic fibrosis (CF) strains of Pseudomonas aeruginosa isolated from 12 French hospitals, in comparison with 12 other antipseudomonal antibiotics. Although murepavadin is still in preclinical stage of development, 9.1% (n = 21) of strains had a minimum inhibitory concentration (MIC) >4 mg/L, a level at least 128-fold higher than the modal MIC value of the whole collection (≤0.06 mg/L). Whole-genome sequencing of these 21 strains along with more susceptible isogenic counterparts coexisting in the same patients revealed diverse mutations in genes involved in the synthesis (lpxL1 and lpxL2) or transport of lipopolysaccharides (bamA, lptD, and msbA), or encoding histidine kinases of two-component systems (pmrB and cbrA). Allelic replacement experiments with wild-type reference strain PAO1 confirmed that alteration of genes lpxL1, bamA, and/or pmrB can decrease the murepavadin susceptibility from 8- to 32-fold. Furthermore, we found that specific amino acid substitutions in histidine kinase PmrB (G188D, Q105P, and D45E) reduce the susceptibility of P. aeruginosa to murepavadin, colistin, and tobramycin, three antibiotics used or intended to be used (murepavadin) in aerosols to treat colonized CF patients. Whether colistin or tobramycin may select mutants resistant to murepavadin or the opposite needs to be addressed by clinical studies.
Collapse
Affiliation(s)
- Aya Ghassani
- UMR6249 CNRS Chrono-environnement, Université de Franche-Comté, Besançon, France
| | - Pauline Triponney
- Laboratoire associé au Centre National de Référence de la résistance aux antibiotiques, Besançon, France
| | - Maxime Bour
- Laboratoire associé au Centre National de Référence de la résistance aux antibiotiques, Besançon, France
| | - Patrick Plésiat
- UMR6249 CNRS Chrono-environnement, Université de Franche-Comté, Besançon, France
| | - Katy Jeannot
- UMR6249 CNRS Chrono-environnement, Université de Franche-Comté, Besançon, France
- Laboratoire associé au Centre National de Référence de la résistance aux antibiotiques, Besançon, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
| | - MucoMicrobes study GroupCardot-MartinEmilie1CattoirVincent2CrémetLise3Doléan-JordheimAnne4FerroniAgnès5GarnierFabien6Guet-RevilletHélène7GuillardThomas8Hery-ArnaudGeneviève9ImbertGuenièvre10MarianiPatricia11Centre Hospitalier Universitaire Foch, Paris, FranceCentre Hospitalier Universitaire de Rennes, Rennes, FranceCentre Hospitalier Universitaire de Nantes, Nantes, FranceHospices civils de Lyon, Lyon, FranceCentre Hospitalier Universitaire de Necker, Paris, FranceCentre Hospitalier Universitaire de Limoges, Limoges, FranceCentre Hospitalier Universitaire de Toulouse, Toulouse, FranceCentre Hospitalier Universitaire de Reims, Reims, FranceCentre Hospitalier Universitaire de Brest, Brest, FranceCentre Hospitalier de Toulon, Toulon, FranceCentre Hospitalier Universitaire Robert Debré, Paris, France
- UMR6249 CNRS Chrono-environnement, Université de Franche-Comté, Besançon, France
- Laboratoire associé au Centre National de Référence de la résistance aux antibiotiques, Besançon, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
| |
Collapse
|
44
|
Wang S, Chan SY, Deng Y, Khoo BL, Chua SL. Oxidative stress induced by Etoposide anti-cancer chemotherapy drives the emergence of tumor-associated bacteria resistance to fluoroquinolones. J Adv Res 2024; 55:33-44. [PMID: 36822389 PMCID: PMC10770098 DOI: 10.1016/j.jare.2023.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant bacterial infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, are prevalent in lung cancer patients, resulting in poor clinical outcomes and high mortality. Etoposide (ETO) is an FDA-approved chemotherapy drug that kills cancer cells by damaging DNA through oxidative stress. However, it is unclear if ETO can cause unintentional side effects on tumor-associated microbial pathogens, such as inducing antibiotic resistance. OBJECTIVES We aimed to show that prolonged ETO treatment could unintendedly confer fluoroquinolone antibiotic resistance to P. aeruginosa, and evaluate the effect of tumor-associated P. aeruginosa on tumor progression. METHODS We employed experimental evolution assay to treat P. aeruginosa with prolonged ETO exposure, evaluated the ciprofloxacin resistance, and elucidated the gene mutations by DNA sequencing. We also established a lung tumor-P. aeruginosa bacterial model to study the role of ETO-evolved intra-tumoral bacteria in tumor progression using immunostaining and confocal microscopy. RESULTS ETO could generate oxidative stress and lead to gene mutations in P. aeruginosa, especially the gyrase (gyrA) gene, resulting in acquired fluoroquinolone resistance. We further demonstrated using a microfluidic-based lung tumor-P. aeruginosa coculture model that bacteria can evolve ciprofloxacin (CIP) resistance in a tumor microenvironment. Moreover, ETO-induced CIP-resistant (EICR) mutants could form multicellular biofilms which protected tumor cells from ETO killing and enabled tumor progression. CONCLUSION Overall, our preclinical proof-of-concept provides insights into how anti-cancer chemotherapy could inadvertently allow tumor-associated bacteria to acquire antibiotic resistance mutations and shed new light on the development of novel anti-cancer treatments based on anti-bacterial strategies.
Collapse
Affiliation(s)
- Shan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region China
| | - Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region China
| | - Yanlin Deng
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), China; City University of Hong Kong-Shenzhen Futian Research Institute, Shenzhen, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region China; Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen, China; Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region China.
| |
Collapse
|
45
|
Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 2023; 5:100129. [PMID: 37205903 PMCID: PMC10189392 DOI: 10.1016/j.bioflm.2023.100129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of life-threatening acute infections and life-long lasting chronic infections. The characteristic biofilm mode of life in P. aeruginosa chronic infections severely limits the efficacy of antimicrobial therapies, as it leads to intrinsic tolerance, involving physical and physiological factors in addition to biofilm-specific genes that can confer a transient protection against antibiotics promoting the development of resistance. Indeed, a striking feature of this pathogen is the extraordinary capacity to develop resistance to nearly all available antibiotics through the selection of chromosomal mutations, evidenced by its outstanding and versatile mutational resistome. This threat is dramatically amplified in chronic infections, driven by the frequent emergence of mutator variants with enhanced spontaneous mutation rates. Thus, this mini review is focused on describing the complex interplay of antibiotic resistance mechanisms in P. aeruginosa biofilms, to provide potentially useful information for the design of effective therapeutic strategies.
Collapse
Affiliation(s)
- María Fernández-Billón
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Aina E. Llambías-Cabot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - María D. Macià
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
- Corresponding author. Department of Microbiology, Hospital Universitario Son Espases, Crta. Vallemossa 79, 07120, Palma de Mallorca, Spain.
| |
Collapse
|
46
|
On YY, Figueroa W, Fan C, Ho PM, Bényei ÉB, Weimann A, Ruis C, Floto AR, Welch M. Impact of transient acquired hypermutability on the inter- and intra-species competitiveness of Pseudomonas aeruginosa. THE ISME JOURNAL 2023; 17:1931-1939. [PMID: 37666975 PMCID: PMC10579334 DOI: 10.1038/s41396-023-01503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Once acquired, hypermutation is unrelenting, and in the long-term, leads to impaired fitness due to its cumulative impact on the genome. This raises the question of why hypermutators arise so frequently in microbial ecosystems. In this work, we explore this problem by examining how the transient acquisition of hypermutability affects inter- and intra-species competitiveness, and the response to environmental insults such as antibiotic challenge. We do this by engineering Pseudomonas aeruginosa to allow the expression of an important mismatch repair gene, mutS, to be experimentally controlled over a wide dynamic range. We show that high levels of mutS expression induce genomic stasis (hypomutation), whereas lower levels of induction lead to progressively higher rates of mutation. Whole-genome sequence analyses confirmed that the mutational spectrum of the inducible hypermutator is similar to the distinctive profile associated with mutS mutants obtained from the airways of people with cystic fibrosis (CF). The acquisition of hypermutability conferred a distinct temporal fitness advantage over the wild-type P. aeruginosa progenitor strain, in both the presence and the absence of an antibiotic selection pressure. However, over a similar time-scale, acquisition of hypermutability had little impact on the population dynamics of P. aeruginosa when grown in the presence of a competing species (Staphylococcus aureus). These data indicate that in the short term, acquired hypermutability primarily confers a competitive intra-species fitness advantage.
Collapse
Affiliation(s)
- Yue Yuan On
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Wendy Figueroa
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Catherine Fan
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
- Currently based at Epoch Biodesign, Oxford, UK
| | - Pok-Man Ho
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Aaron Weimann
- Heart Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Christopher Ruis
- Heart Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andres R Floto
- Heart Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
47
|
Horton JS, Taylor TB. Mutation bias and adaptation in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001404. [PMID: 37943288 PMCID: PMC10710837 DOI: 10.1099/mic.0.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Genetic mutation, which provides the raw material for evolutionary adaptation, is largely a stochastic force. However, there is ample evidence showing that mutations can also exhibit strong biases, with some mutation types and certain genomic positions mutating more often than others. It is becoming increasingly clear that mutational bias can play a role in determining adaptive outcomes in bacteria in both the laboratory and the clinic. As such, understanding the causes and consequences of mutation bias can help microbiologists to anticipate and predict adaptive outcomes. In this review, we provide an overview of the mechanisms and features of the bacterial genome that cause mutational biases to occur. We then describe the environmental triggers that drive these mechanisms to be more potent and outline the adaptive scenarios where mutation bias can synergize with natural selection to define evolutionary outcomes. We conclude by describing how understanding mutagenic genomic features can help microbiologists predict areas sensitive to mutational bias, and finish by outlining future work that will help us achieve more accurate evolutionary forecasts.
Collapse
Affiliation(s)
- James S. Horton
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| |
Collapse
|
48
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Deng MZ, Liu Q, Cui SJ, Fu H, Gan M, Xu YY, Cai X, Sha W, Zhao GP, Fortune SM, Lyu LD. Mycobacterial DnaQ is an Alternative Proofreader Ensuring DNA Replication Fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563508. [PMID: 37961690 PMCID: PMC10634781 DOI: 10.1101/2023.10.24.563508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Remove of mis-incorporated nucleotides ensures replicative fidelity. Although the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, proofreading in mycobacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase despite the presence of an alternative DnaQ homolog. Here, we show that depletion of DnaQ in Mycolicibacterium smegmatis results in increased mutation rate, leading to AT-biased mutagenesis and elevated insertions/deletions in homopolymer tract. We demonstrated that mycobacterial DnaQ binds to the b-clamp and functions synergistically with the PHP domain to correct replication errors. Further, we found that the mycobacterial DnaQ sustains replicative fidelity upon chromosome topological stress. Intriguingly, we showed that a naturally evolved DnaQ variant prevalent in clinical Mycobacterium tuberculosis isolates enables hypermutability and is associated with extensive drug resistance. These results collectively establish that the alternative DnaQ functions in proofreading, and thus reveal that mycobacteria deploy two proofreaders to maintain replicative fidelity.
Collapse
Affiliation(s)
- Ming-Zhi Deng
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
- These authors contributed equally
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
- These authors contributed equally
| | - Shu-Jun Cui
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, P.R.China
| | - Han Fu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, P.R.China
- University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Mingyu Gan
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, 201102, P.R.China
| | - Yuan-Yuan Xu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
| | - Wei Sha
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai 200433, P.R.China
| | - Guo-Ping Zhao
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, P.R.China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, P.R.China
- University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R.China
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai 200433, P.R.China
| |
Collapse
|
50
|
Evans CR, Smiley MK, Asahara Thio S, Wei M, Florek LC, Dayton H, Price-Whelan A, Min W, Dietrich LEP. Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation. Proc Natl Acad Sci U S A 2023; 120:e2313208120. [PMID: 37847735 PMCID: PMC10614215 DOI: 10.1073/pnas.2313208120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Within biofilms, gradients of electron acceptors such as oxygen stimulate the formation of physiological subpopulations. This heterogeneity can enable cross-feeding and promote drug resilience, features of the multicellular lifestyle that make biofilm-based infections difficult to treat. The pathogenic bacterium Pseudomonas aeruginosa produces pigments called phenazines that can support metabolic activity in hypoxic/anoxic biofilm subzones, but these compounds also include methylated derivatives that are toxic to their producer under some conditions. In this study, we uncover roles for the global regulators RpoS and Hfq/Crc in controlling the beneficial and detrimental effects of methylated phenazines in biofilms. Our results indicate that RpoS controls phenazine methylation by modulating activity of the carbon catabolite repression pathway, in which the Hfq/Crc complex inhibits translation of the phenazine methyltransferase PhzM. We find that RpoS indirectly inhibits expression of CrcZ, a small RNA that binds to and sequesters Hfq/Crc, specifically in the oxic subzone of P. aeruginosa biofilms. Deletion of rpoS or crc therefore leads to overproduction of methylated phenazines, which we show leads to increased metabolic activity-an apparent beneficial effect-in hypoxic/anoxic subpopulations within biofilms. However, we also find that under specific conditions, biofilms lacking RpoS and/or Crc show increased sensitivity to phenazines indicating that the increased metabolic activity in these mutants comes at a cost. Together, these results suggest that complex regulation of PhzM allows P. aeruginosa to simultaneously exploit the benefits and limit the toxic effects of methylated phenazines.
Collapse
Affiliation(s)
| | - Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Sean Asahara Thio
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY10027
| | - Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
| | | |
Collapse
|