1
|
Mishra S, Singh PR, Hu X, Lopez-Quezada L, Jinich A, Jahn R, Geurts L, Shen N, DeJesus MA, Hartman T, Rhee K, Zimmerman M, Dartois V, Jones RM, Jiang X, Almada-Monter R, Bourouiba L, Nathan C. Candidate transmission survival genome of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2025; 122:e2425981122. [PMID: 40053362 PMCID: PMC11912377 DOI: 10.1073/pnas.2425981122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 03/19/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb), a leading cause of death from infection, completes its life cycle entirely in humans except for transmission through the air. To begin to understand how Mtb survives aerosolization, we mimicked liquid and atmospheric conditions experienced by Mtb before and after exhalation using a model aerosol fluid (MAF) based on the water-soluble, lipidic, and cellular constituents of necrotic tuberculosis lesions. MAF induced drug tolerance in Mtb, remodeled its transcriptome, and protected Mtb from dying in microdroplets desiccating in air. Yet survival was not passive: Mtb appeared to rely on hundreds of genes to survive conditions associated with transmission. Essential genes subserving proteostasis offered most protection. A large number of conventionally nonessential genes appeared to contribute as well, including genes encoding proteins that resemble antidesiccants. The candidate transmission survival genome of Mtb may offer opportunities to reduce transmission of tuberculosis.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Prabhat Ranjan Singh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Xiaoyi Hu
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Landys Lopez-Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Adrian Jinich
- Department of Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA92093-0021
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA92093-0021
| | - Robin Jahn
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Luc Geurts
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Naijian Shen
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Michael A. DeJesus
- Laboratory of Host-Pathogen Biology, Rockefeller University, New York, NY10021
| | - Travis Hartman
- Department of Medicine, Weill Cornell Medicine, New York, NY10065
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY10065
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Veronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Richard M. Jones
- Department of Microbiology, University of Washington, Seattle, WA98195
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Ricardo Almada-Monter
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA92093-0021
| | - Lydia Bourouiba
- The Fluid Dynamics of Disease Transmission Laboratory, Fluids and Health Network, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
2
|
Chen B, Bajramović B, Vriesendorp B, Spaink HP. Evolution of the PE_PGRS Proteins of Mycobacteria: Are All Equal or Are Some More Equal than Others? BIOLOGY 2025; 14:247. [PMID: 40136504 PMCID: PMC11939664 DOI: 10.3390/biology14030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
PE_PGRS domain proteins represent a family of proteins found in pathogenic and non-pathogenic mycobacteria such as M. smegmatis. This conserved family is characterized by two distinct regions denoted as the variable PGRS domain defined by glycine-rich repeats, and a PE domain consisting of two antiparallel alpha-helices. There are many indications that PE_PGRS proteins are involved in immunopathogenesis and virulence by evading or triggering the host immune response. However, there is not yet any information on their degree of specialization or redundancy. Computational analysis and structural annotation using AlphaFold3 combined with other tools reveals an exceptionally powerful and unprecedented ability to undergo phase separation by the PGRS domain. This suggests that PGRS's glycine-rich, multivalent, low-complexity composition supports phase separation while adopting a structured conformation, contrary to the disordered nature typical of such domains. While previously never reported, the hypothesized role of PGRS in virulence indicates a novel window into the seemingly ubiquitous role of phase separation in cellular compartmentalization and molecular dynamics. This review aims to summarize the current understanding of the PE_PGRS family and its various biological roles in the context of bioinformatic analyses of some interesting representatives of M. marinum that are under control by host sterols. Based on the structural bioinformatics analysis, we discuss future approaches to uncover the mechanistic role of this intriguing family of mycobacterial proteins in both pathogenic and non-pathogenic mycobacteria.
Collapse
Affiliation(s)
| | | | | | - Herman Pieter Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (B.C.); (B.B.); (B.V.)
| |
Collapse
|
3
|
Sawaswong V, Wongjarit K, Petsong S, Yuliani Y, Somsukpiroh U, Faksri K, Forde T, Payungporn S, Rotcheewaphan S. Diversity and antimicrobial resistance profiles of Mycobacterium avium complex clinical isolates in Thailand based on whole genome comparative analysis. Sci Rep 2025; 15:772. [PMID: 39755794 PMCID: PMC11700178 DOI: 10.1038/s41598-024-84511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.8%) M. intracellulare, 6 (9.1%) M. avium, 5 (7.6%) M. colombiense, and 1 (1.5%) M. timonense. Phylogenetic analysis revealed a high diversity of M. intracellulare isolates and their evolutionary relationships which could be divided into 2 subspecies: M. intracellulare subsp. intracellulare and M. intracellulare subsp. chimaera. In addition, M. intracellulare subsp. chimaera mostly clustered in the distinct clades separated from M. intracellulare strains originating from other countries. Most MAC isolates were resistant to linezolid and moxifloxacin based on phenotypic antimicrobial susceptibility testing. Mutations within rrl gene associated with clarithromycin resistance were detected in M. intracellulare and M. colombiense. The pan-genome analysis presented clade-specific proteins for M. intracellulare, such as PE and PPE protein families. This study provides valuable insights into the genomic diversity and antimicrobial resistance profiles of MAC isolates circulating in Thailand, which are useful for clinical management, guiding the development of targeted diagnostic, and treatment strategies for MAC infections.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kanphai Wongjarit
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthidee Petsong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yonita Yuliani
- Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ubonwan Somsukpiroh
- Department of Microbiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Taya Forde
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwatchareeporn Rotcheewaphan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Hop HT, Liao PC, Wu HY. Enhancement of mycobacterial pathogenesis by host interferon-γ. Cell Mol Life Sci 2024; 81:380. [PMID: 39222120 PMCID: PMC11368887 DOI: 10.1007/s00018-024-05425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The cytokine IFNγ is a principal effector of macrophage activation and immune resistance to mycobacterial infection; however, pathogenic mycobacteria are capable of surviving in IFNγ-activated macrophages by largely unknown mechanisms. In this study, we find that pathogenic mycobacteria, including M. bovis BCG and M. tuberculosis can sense IFNγ to promote their proliferative activity and virulence phenotype. Moreover, interaction with the host intracellular environment increases the susceptibility of mycobacteria to IFNγ through upregulating expression of mmpL10, a mycobacterial IFNγ receptor, thereby facilitating IFNγ-dependent survival and growth of mycobacteria in macrophages. Transmission electron microscopy analysis reveals that IFNγ triggers the secretion of extracellular vesicles, an essential virulence strategy of intracellular mycobacteria, while proteomics identifies numerous pivotal IFNγ-induced effectors required for mycobacterial infection in macrophages. Our study suggests that sensing host IFNγ is a crucial virulence mechanism used by pathogenic mycobacteria to survive and proliferate inside macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
5
|
Pidot SJ, Klatt S, Ates LS, Frigui W, Sayes F, Majlessi L, Izumi H, Monk IR, Porter JL, Bennett-Wood V, Seemann T, Otter A, Taiaroa G, Cook GM, West N, Tobias NJ, Fuerst JA, Stutz MD, Pellegrini M, McConville M, Brosch R, Stinear TP. Marine sponge microbe provides insights into evolution and virulence of the tubercle bacillus. PLoS Pathog 2024; 20:e1012440. [PMID: 39207937 PMCID: PMC11361433 DOI: 10.1371/journal.ppat.1012440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Stephan Klatt
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Louis S. Ates
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Hiroshi Izumi
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Ian R. Monk
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - George Taiaroa
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicholas West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael D. Stutz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Malcolm McConville
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Ullah H, Shi X, Taj A, Cheng L, Yan Q, Sha S, Ahmad, Kang J, Haris M, Ma X, Ma Y. Mycobacterium tuberculosis PE_PGRS38 Enhances Intracellular Survival of Mycobacteria by Inhibiting TLR4/NF-κB-Dependent Inflammation and Apoptosis of the Host. BIOLOGY 2024; 13:313. [PMID: 38785795 PMCID: PMC11118070 DOI: 10.3390/biology13050313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Mycobacterium tuberculosis (Mtb) ranks as the most lethal human pathogen, able to fend off repeated attacks by the immune system or medications. PE_PGRS proteins are hallmarks of the pathogenicity of Mtb and contribute to its antigenic diversity, virulence, and persistence during infection. M. smegmatis is a nonpathogenic mycobacterium that naturally lacks PE_PGRS and is used as a model to express Mtb proteins. PE_PGRS has the capability to evade host immune responses and enhance the intracellular survival of M. smegmatis. Despite the intense investigations into PE_PGRS proteins, their role in tuberculosis remains elusive. We engineered the recombinant M. smegmatis strain Ms-PE_PGRS38. The result shows that PE_PGRS38 is expressed in the cell wall of M. smegmatis. PE_PGRS38 contributes to biofilm formation, confers permeability to the cell wall, and shows variable responses to exogenous stresses. PE_PGRS38 downregulated TLR4/NF-κB signaling in RAW264.7 macrophages and lung tissues of infected mice. In addition, PE_PGRS38 decreased NLRP3-dependent IL-1β release and limited pathogen-mediated inflammasome activity during infection. Moreover, PE_PGRS38 inhibited the apoptosis of RAW264.7 cells by downregulating the expression of apoptotic markers including Bax, cytochrome c, caspase-3, and caspase-9. In a nutshell, our findings demonstrate that PE_PGRS38 is a virulence factor for Mtb that enables recombinant M. smegmatis to survive by resisting and evading the host's immune responses during infection.
Collapse
Affiliation(s)
- Hayan Ullah
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China;
| | - Xiaoxia Shi
- Department of Experimental Teaching Center of Public Health, Dalian Medical University, Dalian 116044, China;
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Lin Cheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Qiulong Yan
- Department of Microbiology, Dalian Medical University, Dalian 116044, China;
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Ahmad
- Department of Immunology, Dalian Medical University, Dalian 116044, China;
| | - Jian Kang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Muhammad Haris
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Xiaochi Ma
- Pharmaceutical Research Center, The Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China;
| |
Collapse
|
7
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
8
|
Medha, Joshi H, Sharma S, Sharma M. Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis. J Biomol Struct Dyn 2023; 41:10009-10025. [PMID: 36448553 DOI: 10.1080/07391102.2022.2151514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) encodes a total of 67 PE_PGRS proteins and definite functions of many of them are still unknown. This study reports PE_PGRS45 (Rv2615c) protein from Mtb as NADPH dependent oxido-reductase having substrate specificity for fatty acyl Coenzyme A. Computational studies predicted PE_PGRS45 to be an integral membrane protein of Mtb. Expression of PE_PGRS45 in non-pathogenic Mycobacterium smegmatis, which does not possess PE_PGRS genes, confirmed its membrane localization. This protein was observed to have NADPH binding motif. Experimental validation confirmed its NADPH dependent oxido-reductase activity (Km value = 34.85 ± 9.478 μM, Vmax = 96.77 ± 7.184 nmol/min/mg of protein). Therefore, its potential to be targeted by first line anti-tubercular drug Isoniazid (INH) was investigated. INH was predicted to bind within the active site of PE_PGRS45 protein and experiments validated its inhibitory effect on the oxido-reductase activity of PE_PGRS45 with IC50/Ki values of 5.66 μM. Mtb is resistant to first line drugs including INH. Therefore, to address the problem of drug resistant TB, docking and Molecular Dynamics (MD) simulation studies between PE_PGRS45 and three drugs (Entacapone, Tolcapone and Verapamil) which are being used in Parkinson's and hypertension treatment were performed. PE_PGRS45 bound the three drugs with similar or better affinity in comparison to INH. Additionally, INH and these drugs bound within the same active site of PE_PGRS45. This study discovered Mtb's PE_PGRS45 protein to have an oxido-reductase activity and could be targeted by drugs that can be repurposed for TB treatment. Furthermore, in-vitro and in-vivo validation will aid in drug-resistant TB treatment. HIGHLIGHTSIn-silico and in-vitro studies of hypothetical protein PE_PGRS45 (Rv2615c) of Mycobacterium tuberculosis (Mtb) reveals it to be an integral membrane proteinPE_PGRS45 protein has substrate specificity for fatty acyl Coenzyme A (fatty acyl CoA) and possess NADPH dependent oxido-reductase activityDocking and simulation studies revealed that first line anti-tubercular drug Isoniazid (INH) and other drugs with anti-TB property have strong affinity for PE_PGRS45 proteinOxido-reductase activity of PE_PGRS45 protein is inhibited by INHPE_PGRS45 protein could be targeted by drugs that can be repurposed for TB treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Medha
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sadhna Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Monika Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| |
Collapse
|
9
|
Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L. Amphibian myelopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104701. [PMID: 37196852 DOI: 10.1016/j.dci.2023.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - David B Stern
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | | | - Keith A Crandall
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
10
|
Bao Y, Yang T, Zhang H, Wang Z, Muhammad I, Jiang X, Ma H. Identification and Phylogenetic Analysis of Mycobacterium avium subsp. avium Strain Isolated from Cow. Transbound Emerg Dis 2023; 2023:5384079. [PMID: 40303751 PMCID: PMC12017052 DOI: 10.1155/2023/5384079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/30/2023] [Accepted: 05/19/2023] [Indexed: 05/02/2025]
Abstract
Mycobacterium avium subsp. avium (MAA) is the main tuberculosis pathogen of poultry and wild birds. MAA can also infect mammals such as pigs, cattle, and horses and can pose a threat to people with low immunity. Here, we describe the first identification of MAA strain HJW isolated from a cow in Jilin Province, China. The isolate was completely sequenced and a phylogenetic analysis of its relationship to members of the Mycobacterium avium complex (MAC) was performed. The results revealed that strain HJW was type MAA based on the analysis of insertion sequence amplification and whole genome sequencing. The HJW genome size was 4,961,843 bp with a GC content of 69.28%. The strain was genetically most closely related to the Mycobacterium avium subsp. avium strain DSM 44156. This study suggests that MAA may pose an infection risk to cattle and provides data support for the phylogeny of Mycobacterium avium.
Collapse
Affiliation(s)
- Yanhong Bao
- College of Life Sciences, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Tianze Yang
- College of Life Sciences, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hanxue Zhang
- College of Life Sciences, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Zi Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Inam Muhammad
- Department of Animal Sciences, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Pakistan
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Xiuyun Jiang
- College of Life Sciences, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China
| | - Hongxia Ma
- College of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
11
|
Li W, Yan Z, Zhang N, Zhang Z, Xiang X. Novel role of PE_PGRS47 in the alteration of mycobacterial cell wall integrity and drug resistance. Arch Microbiol 2023; 205:174. [PMID: 37022460 DOI: 10.1007/s00203-023-03515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
The proline-glutamic acid and proline-proline-glutamic acid (PE/PPE) family of proteins is widespread in pathogenic mycobacteria and plays different roles in mycobacterial physiology. While several PE/PPE family proteins have been studied, the exact function of most PE/PPE proteins in the physiology of Mycobacterium tuberculosis (Mtb) remains unknown. PE_PGRS47 belongs to the PE/PPE family of proteins reported to help Mtb evade protective host immune responses. In this study, we demonstrate a novel role of PE_PGRS47. Heterologous expression of the pe_pgrs47 gene in a non-pathogenic Mycobacterium smegmatis, intrinsically deficient of PE_PGRS protein, exhibits modulated colony morphology and cell wall lipid profile leading to a marked susceptibility to multiple antibiotics and environmental stressors. Using ethidium bromide/Nile red uptake assays, Mycobacterium smegmatis expressing PE_PGRS47 showed higher cell wall permeability than the control strain. Overall, these data suggested that PE_PGRS47 is cell surface exposed and influences cell wall integrity and the formation of mycobacterial colonies, ultimately potentiating the efficacy of lethal stresses against mycobacteria.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China.
| | - Zifei Yan
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China
| | - Nan Zhang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China
| | - Zhiyong Zhang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
12
|
Dong W, Wang G, Bai Y, Li Y, Huo X, Zhao J, Lu W, Lu H, Wang C, Wang X, Chen H, Tan C. Analysis of the noncoding RNA regulatory networks of H37Rv- and H37Rv△1759c-infected macrophages. Front Microbiol 2023; 14:1106643. [PMID: 36992931 PMCID: PMC10042141 DOI: 10.3389/fmicb.2023.1106643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 03/31/2023] Open
Abstract
Noncoding RNAs regulate the process of Mycobacterium tuberculosis (M. tb) infecting the host, but there is no simultaneous transcriptional information of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) and the global regulatory networks of non-coding RNA. Rv1759c, a virulence factor, is a member of protein family containing the proline-glutamic acid (PE) in M. tb, which can increase M. tb survival. To reveal the noncoding RNA regulatory networks and the effect of Rv1759c on non-coding RNA expression during M. tb infection, we collected samples of H37Rv- and H37Rv△1759c-infected macrophages and explored the full transcriptome expression profile. We found 356 mRNAs, 433 lncRNAs, 168 circRNAs, and 12 miRNAs differentially expressed during H37Rv infection, 356 mRNAs, 433 lncRNAs, 168 circRNAs, and 12 miRNAs differentially expressed during H37Rv△1759c infection. We constructed lncRNA/circRNA-miRNA-mRNA regulatory networks during H37Rv and H37Rv△1759c infection. We demonstrated the role of one of the hubs of the networks, hsa-miR-181b-3p, for H37Rv survival in macrophages. We discovered that the expression changes of 68 mRNAs, 92 lncRNAs, 26 circRNAs, and 3 miRNAs were only related to the deletion of Rv1759c by comparing the transcription profiles of H37Rv and H37Rv△1759c. Here, our study comprehensively characterizes the transcriptional profiles in THP1-derived-macrophages infected with H37Rv and H37Rv△1759c, which provides support and new directions for in-depth exploration of noncoding RNA and PE/PPE family functions during the infection process.
Collapse
Affiliation(s)
- Wenqi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Gaoyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yajuan Bai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinyu Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Zhao
- WuHan Animal Disease Control Center, Wuhan, Hubei, China
| | - Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hao Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chenchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- *Correspondence: Chen Tan,
| |
Collapse
|
13
|
Arrigoni R, Ballini A, Topi S, Bottalico L, Jirillo E, Santacroce L. Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents. Antibiotics (Basel) 2022; 11:antibiotics11101431. [PMID: 36290089 PMCID: PMC9598247 DOI: 10.3390/antibiotics11101431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). TB treatment is based on the administration of three major antibiotics: isoniazid, rifampicin, and pyrazinamide. However, multi-drug resistant (MDR) Mtb strains are increasing around the world, thus, allowing TB to spread around the world. The stringent response is demonstrated by Mtb strains in order to survive under hostile circumstances, even including exposure to antibiotics. The stringent response is mediated by alarmones, which regulate bacterial replication, transcription and translation. Moreover, the Mtb cell wall contributes to the mechanism of antibiotic resistance along with efflux pump activation and biofilm formation. Immunity over the course of TB is managed by M1-macrophages and M2-macrophages, which regulate the immune response against Mtb infection, with the former exerting inflammatory reactions and the latter promoting an anti-inflammatory profile. T helper 1 cells via secretion of interferon (IFN)-gamma, play a protective role in the course of TB, while T regulatory cells secreting interleukin 10, are anti-inflammatory. Alternative therapeutic options against TB require further discussion. In view of the increasing number of MDR Mtb strains, attempts to replace antibiotics with natural and biological products have been object of intensive investigation. Therefore, in this review the anti-Mtb effects exerted by probiotics, polyphenols, antimicrobial peptides and IFN-gamma will be discussed. All the above cited compounds are endowed either with direct antibacterial activity or with anti-inflammatory and immunomodulating characteristics.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
- Correspondence:
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
14
|
Evaluating the Performance of PPE44, HSPX, ESAT-6 and CFP-10 Factors in Tuberculosis Subunit Vaccines. Curr Microbiol 2022; 79:260. [PMID: 35852636 PMCID: PMC9295111 DOI: 10.1007/s00284-022-02949-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is an intracellular pathogen causing long-term infection in humans that mainly attacks macrophages and can escape from the immune system with the various mechanisms. The only FDA-approved vaccine against M. tuberculosis (MTB) is Mycobacterium bovis bacillus Calmette-Guérin (BCG). The protection of this vaccine typically lasts 10–15 years. Due to the increasing number of people becoming ill with MTB each year worldwide, the need to develop a new effective treatment against the disease has been increased. During the past two decades, the research budget for TB vaccine has quadrupled to over half a billion dollars. Most of these research projects were based on amplifying and stimulating the response of T-cells and developing the subunit vaccines. Additionally, these studies have demonstrated that secretory and immunogenic proteins of MTB play a key role in the pathogenesis of the bacteria. Therefore, these proteins were used to develop the new subunit vaccines. In this review, based on the use of these proteins in the successful new subunit vaccines, the PPE44, HSPX, CFP-10 and ESAT-6 antigens were selected and the role of these antigens in designing and developing new subunit vaccines against TB and for the prevention of TB were investigated.
Collapse
|
15
|
Dong W, Wang G, Feng J, Li P, Wang R, Lu H, Lu W, Wang C, Wang X, Chen H, Xiang Y, Tan C. MiR-25 blunts autophagy and promotes the survival of Mycobacterium tuberculosis by regulating NPC1. iScience 2022; 25:104279. [PMID: 35586071 PMCID: PMC9108763 DOI: 10.1016/j.isci.2022.104279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) evades host clearance by inhibiting autophagy. MicroRNA-25 (miR-25) expression was significantly up-regulated in the lung tissues of mice infected with Bacillus Calmette-Guerin (BCG) and macrophages infected with Mtb or BCG, especially in the early stages of infection. MiR-25 can significantly increase the survival of Mtb and BCG in macrophages. We validated that miR-25 targets the NPC1 protein located on the lysosomal membrane, resulting in damage to lysosomal function, thereby inhibiting autophagolysosome formation and promoting the survival of Mtb and BCG. Consistently, mice lacking miR-25 exhibited more resistant to BCG infection. In addition, we found that Rv1759c induces the expression of miR-25 through NFKB inhibitor zeta (NFKBIZ). This study demonstrates that the role of miR-25 during Mtb infection contributes to a better understanding of the pathogenesis of tuberculosis (TB). Mtb up-modulates miR-25 expression especially in the early stage of infection miR-25 targeting NPC1 impairs autophagic flux in macrophages Mice lacking miR-25 exhibits more resistant to BCG infection Rv1759c regulates miR-25 expression and Mtb survival via NFKBIZ
Collapse
Affiliation(s)
- Wenqi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Gaoyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiajia Feng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Pei Li
- Department of Gastrointestinal Surgery, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Rui Wang
- Department of Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Chenchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiangru Wang
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Hongshan Laboratory, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
| | - Yaozu Xiang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Hongshan Laboratory, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
16
|
Crystal structure of the cytokinin-producing enzyme “lonely guy” (LOG) from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2022; 598:113-118. [DOI: 10.1016/j.bbrc.2022.01.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
|
17
|
Bohaud C, Johansen MD, Varga B, Contreras-Lopez R, Barthelaix A, Hamela C, Sapède D, Cloitre T, Gergely C, Jorgensen C, Kremer L, Djouad F. Exploring Macrophage-Dependent Wound Regeneration During Mycobacterial Infection in Zebrafish. Front Immunol 2022; 13:838425. [PMID: 35401552 PMCID: PMC8987025 DOI: 10.3389/fimmu.2022.838425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen Mycobacterium marinum. Zebrafish were inoculated with different infectious doses of M. marinum prior to fin resection. While mild infection accelerated fin regeneration, moderate or severe infection delayed this process by reducing blastemal cell proliferation and impeding tissue morphogenesis. This was correlated with impaired macrophage recruitment at the wound of the larvae receiving high infectious doses. Macrophage activation characterized, in part, by a high expression level of tnfa was exacerbated in severely infected fish during the early phase of the regeneration process, leading to macrophage necrosis and their complete absence in the later phase. Our results demonstrate how a mycobacterial infection influences the macrophage response and tissue regenerative processes.
Collapse
Affiliation(s)
| | - Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Béla Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | | | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Dora Sapède
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Farida Djouad
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- *Correspondence: Farida Djouad,
| |
Collapse
|
18
|
Gold B, Zhang J, Quezada LL, Roberts J, Ling Y, Wood M, Shinwari W, Goullieux L, Roubert C, Fraisse L, Bacqué E, Lagrange S, Filoche-Rommé B, Vieth M, Hipskind PA, Jungheim LN, Aubé J, Scarry SM, McDonald SL, Li K, Perkowski A, Nguyen Q, Dartois V, Zimmerman M, Olsen DB, Young K, Bonnett S, Joerss D, Parish T, Boshoff HI, Arora K, Barry CE, Guijarro L, Anca S, Rullas J, Rodríguez-Salguero B, Martínez-Martínez MS, Porras-De Francisco E, Cacho M, Barros-Aguirre D, Smith P, Berthel SJ, Nathan C, Bates RH. Identification of β-Lactams Active against Mycobacterium tuberculosis by a Consortium of Pharmaceutical Companies and Academic Institutions. ACS Infect Dis 2022; 8:557-573. [PMID: 35192346 PMCID: PMC8922279 DOI: 10.1021/acsinfecdis.1c00570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/28/2022]
Abstract
Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of β-lactams to kill Mycobacterium tuberculosis (Mtb). In the TB Drug Accelerator (TBDA), a consortium organized by the Bill & Melinda Gates Foundation, individual pharmaceutical companies collaborate with academic screening laboratories. We developed a higher order consortium within the TBDA in which four pharmaceutical companies (GlaxoSmithKline, Sanofi, MSD, and Lilly) collectively collaborated with screeners at Weill Cornell Medicine, the Infectious Disease Research Institute (IDRI), and the National Institute of Allergy and Infectious Diseases (NIAID), pharmacologists at Rutgers University, and medicinal chemists at the University of North Carolina to screen ∼8900 β-lactams, predominantly cephalosporins, and characterize active compounds. In a striking contrast to historical expectation, 18% of β-lactams screened were active against Mtb, many without a β-lactamase inhibitor. One potent cephaloporin was active in Mtb-infected mice. The steps outlined here can serve as a blueprint for multiparty, intra- and intersector collaboration in the development of anti-infective agents.
Collapse
Affiliation(s)
- Ben Gold
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Jun Zhang
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Landys Lopez Quezada
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Julia Roberts
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Yan Ling
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Madeleine Wood
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Wasima Shinwari
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Laurent Goullieux
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Christine Roubert
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Laurent Fraisse
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
| | - Eric Bacqué
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Sophie Lagrange
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | | | - Michal Vieth
- Lilly
Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Dr, San Diego, California 92121, United States
| | - Philip A. Hipskind
- Lilly
Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Louis N. Jungheim
- YourEncore, 20 North Meridian Street, Indianapolis, Indiana 46204, United States
| | - Jeffrey Aubé
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sarah M. Scarry
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stacey L. McDonald
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kelin Li
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Andrew Perkowski
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Quyen Nguyen
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - Matthew Zimmerman
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - David B. Olsen
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Katherine Young
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Shilah Bonnett
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Douglas Joerss
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Laura Guijarro
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sara Anca
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Joaquín Rullas
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | | | | | | | - Monica Cacho
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - David Barros-Aguirre
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Paul Smith
- Independent Consultant, Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Steven J. Berthel
- Panorama Global, 2101
4th Avenue, Suite 2100, Seattle, Washington 98121, United States
| | - Carl Nathan
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Robert H. Bates
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| |
Collapse
|
19
|
Gupta R, Pandey M, Pandey AK, Tiwari PK, Amrathlal RS. Novel genetic polymorphisms identified in the clinical isolates of Mycobacterium tuberculosis PE_PGRS33 gene modulate cytokines expression and promotes survival in macrophages. J Infect Public Health 2022; 15:245-254. [DOI: 10.1016/j.jiph.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
|
20
|
The Mycobacterium tuberculosis PE_PGRS Protein Family Acts as an Immunological Decoy to Subvert Host Immune Response. Int J Mol Sci 2022; 23:ijms23010525. [PMID: 35008950 PMCID: PMC8745494 DOI: 10.3390/ijms23010525] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.
Collapse
|
21
|
Gupta KR, Arora G, Mattoo A, Sajid A. Stringent Response in Mycobacteria: From Biology to Therapeutic Potential. Pathogens 2021; 10:pathogens10111417. [PMID: 34832573 PMCID: PMC8622095 DOI: 10.3390/pathogens10111417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis is a human pathogen that can thrive inside the host immune cells for several years and cause tuberculosis. This is due to the propensity of M. tuberculosis to synthesize a sturdy cell wall, shift metabolism and growth, secrete virulence factors to manipulate host immunity, and exhibit stringent response. These attributes help M. tuberculosis to manage the host response, and successfully establish and maintain an infection even under nutrient-deprived stress conditions for years. In this review, we will discuss the importance of mycobacterial stringent response under different stress conditions. The stringent response is mediated through small signaling molecules called alarmones “(pp)pGpp”. The synthesis and degradation of these alarmones in mycobacteria are mediated by Rel protein, which is both (p)ppGpp synthetase and hydrolase. Rel is important for all central dogma processes—DNA replication, transcription, and translation—in addition to regulating virulence, drug resistance, and biofilm formation. Rel also plays an important role in the latent infection of M. tuberculosis. Here, we have discussed the literature on alarmones and Rel proteins in mycobacteria and highlight that (p)ppGpp-analogs and Rel inhibitors could be designed and used as antimycobacterial compounds against M. tuberculosis and non-tuberculous mycobacterial infections.
Collapse
Affiliation(s)
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Abid Mattoo
- Pharmaceutical Development, Ultragenyx Gene Therapy, Woburn, MA 01801, USA;
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
- Correspondence: or
| |
Collapse
|
22
|
Sharma S, Sharma M. Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) proteins of Mycobacterium tuberculosis: The multifaceted immune-modulators. Acta Trop 2021; 222:106035. [PMID: 34224720 DOI: 10.1016/j.actatropica.2021.106035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The PE/PPE proteins encoded by seven percent (7%) of Mycobacterium tuberculosis (Mtb) genome are the chief constituents to pathogen's virulence reservoir. The fact that these genes have evolved along ESX secretory system in pathogenic Mtb strains make their investigation very intriguing. There is lot of speculation about the prominent role of these proteins at host pathogen interface and in disease pathogenesis. Nevertheless, the exact function of PE/PPE proteins still remains a mystery which calls for further research targeting these proteins. This article is an effort to document all the facts known so far with regard to these unique proteins which involves their origin, evolution, transcriptional control, and most important their role as host immune-modulators. Our understanding strongly points towards the versatile nature of these PE/PPE proteins as Mtb's host immune sensors and as decisive factors in shaping the outcome of infection. Further investigation on these proteins will surely pave way for newer and effective vaccines and therapeutics to control Tuberculosis (TB).
Collapse
Affiliation(s)
- Sadhna Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Monika Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
23
|
PGRS Domain of Rv0297 of Mycobacterium tuberculosis Functions in A Calcium Dependent Manner. Int J Mol Sci 2021; 22:ijms22179390. [PMID: 34502303 PMCID: PMC8430768 DOI: 10.3390/ijms22179390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb), the pathogen causing tuberculosis, is a major threat to human health worldwide. Nearly 10% of M.tb genome encodes for a unique family of PE/PPE/PGRS proteins present exclusively in the genus Mycobacterium. The functions of most of these proteins are yet unexplored. The PGRS domains of these proteins have been hypothesized to consist of Ca2+ binding motifs that help these intrinsically disordered proteins to modulate the host cellular responses. Ca2+ is an important secondary messenger that is involved in the pathogenesis of tuberculosis in diverse ways. This study presents the calcium-dependent function of the PGRS domain of Rv0297 (PE_PGRS5) in M.tb virulence and pathogenesis. Tandem repeat search revealed the presence of repetitive Ca2+ binding motifs in the PGRS domain of the Rv0297 protein (Rv0297PGRS). Molecular Dynamics simulations and fluorescence spectroscopy revealed Ca2+ dependent stabilization of the Rv0297PGRS protein. Calcium stabilized Rv0297PGRS enhances the interaction of Rv0297PGRS with surface localized Toll like receptor 4 (TLR4) of macrophages. The Ca2+ stabilized binding of Rv0297PGRS with the surface receptor of macrophages enhances its downstream consequences in terms of Nitric Oxide (NO) production and cytokine release. Thus, this study points to hitherto unidentified roles of calcium-modulated PE_PGRS proteins in the virulence of M.tb. Understanding the pathogenic potential of Ca2+ dependent PE_PGRS proteins can aid in targeting these proteins for therapeutic interventions.
Collapse
|
24
|
Martin DR, Sibuyi NR, Dube P, Fadaka AO, Cloete R, Onani M, Madiehe AM, Meyer M. Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care. Diagnostics (Basel) 2021; 11:1352. [PMID: 34441287 PMCID: PMC8391981 DOI: 10.3390/diagnostics11081352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The transmission of Tuberculosis (TB) is very rapid and the burden it places on health care systems is felt globally. The effective management and prevention of this disease requires that it is detected early. Current TB diagnostic approaches, such as the culture, sputum smear, skin tuberculin, and molecular tests are time-consuming, and some are unaffordable for low-income countries. Rapid tests for disease biomarker detection are mostly based on immunological assays that use antibodies which are costly to produce, have low sensitivity and stability. Aptamers can replace antibodies in these diagnostic tests for the development of new rapid tests that are more cost effective; more stable at high temperatures and therefore have a better shelf life; do not have batch-to-batch variations, and thus more consistently bind to a specific target with similar or higher specificity and selectivity and are therefore more reliable. Advancements in TB research, in particular the application of proteomics to identify TB specific biomarkers, led to the identification of a number of biomarker proteins, that can be used to develop aptamer-based diagnostic assays able to screen individuals at the point-of-care (POC) more efficiently in resource-limited settings.
Collapse
Affiliation(s)
- Darius Riziki Martin
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Nicole Remaliah Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Phumuzile Dube
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Adewale Oluwaseun Fadaka
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Martin Onani
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| |
Collapse
|
25
|
Bohaud C, Johansen MD, Jorgensen C, Ipseiz N, Kremer L, Djouad F. The Role of Macrophages During Zebrafish Injury and Tissue Regeneration Under Infectious and Non-Infectious Conditions. Front Immunol 2021; 12:707824. [PMID: 34367168 PMCID: PMC8334857 DOI: 10.3389/fimmu.2021.707824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
The future of regenerative medicine relies on our understanding of the mechanistic processes that underlie tissue regeneration, highlighting the need for suitable animal models. For many years, zebrafish has been exploited as an adequate model in the field due to their very high regenerative capabilities. In this organism, regeneration of several tissues, including the caudal fin, is dependent on a robust epimorphic regenerative process, typified by the formation of a blastema, consisting of highly proliferative cells that can regenerate and completely grow the lost limb within a few days. Recent studies have also emphasized the crucial role of distinct macrophage subpopulations in tissue regeneration, contributing to the early phases of inflammation and promoting tissue repair and regeneration in late stages once inflammation is resolved. However, while most studies were conducted under non-infectious conditions, this situation does not necessarily reflect all the complexities of the interactions associated with injury often involving entry of pathogenic microorganisms. There is emerging evidence that the presence of infectious pathogens can largely influence and modulate the host immune response and the regenerative processes, which is sometimes more representative of the true complexities underlying regenerative mechanics. Herein, we present the current knowledge regarding the paths involved in the repair of non-infected and infected wounds using the zebrafish model.
Collapse
Affiliation(s)
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | |
Collapse
|
26
|
De Maio F, Berisio R, Manganelli R, Delogu G. PE_PGRS proteins of Mycobacterium tuberculosis: A specialized molecular task force at the forefront of host-pathogen interaction. Virulence 2021; 11:898-915. [PMID: 32713249 PMCID: PMC7550000 DOI: 10.1080/21505594.2020.1785815] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
To the PE_PGRS protein subfamily belongs a group of surface-exposed mycobacterial antigens that in Mycobacterium tuberculosis (Mtb) H37Rv accounts to more than 65 genes, 51 of which are thought to express a functional protein. PE_PGRS proteins share a conserved structural architecture with three main domains: the N-terminal PE domain; the PGRS domain, that can vary in sequence and size and is characterized by the presence of multiple GGA-GGX amino acid repeats; the highly conserved sequence containing the GRPLI motif that links the PE and PGRS domains; the unique C-terminus end that can vary in size from few to up to ≈ 300 amino acids. pe_pgrs genes emerged in slow-growing mycobacteria and expanded and diversified in MTBC and few other pathogenic mycobacteria. Interestingly, despite sequence homology and apparent redundancy, PE_PGRS proteins seem to have evolved a peculiar function. In this review, we summarize the actual knowledge on this elusive protein family in terms of evolution, structure, and function, focusing on the role of PE_PGRS in TB pathogenesis. We provide an original hypothesis on the role of the PE domain and propose a structural model for the polymorphic PGRS domain that might explain how so similar proteins can have different physiological functions.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" , Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore , Rome, Italy
| | - Rita Berisio
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB , Naples, Italy
| | | | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore , Rome, Italy.,Mater Olbia Hospital , Olbia, Italy
| |
Collapse
|
27
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
28
|
Xie Y, Zhou Y, Liu S, Zhang XL. PE_PGRS: Vital proteins in promoting mycobacterial survival and modulating host immunity and metabolism. Cell Microbiol 2020; 23:e13290. [PMID: 33217152 DOI: 10.1111/cmi.13290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is the leading infectious cause of mortality worldwide. One of the key reasons for M. tb pathogenesis is the capability of M. tb to evade immune elimination and survive in macrophage, eventually causing chronic infection. However the pathogenicity mechanism of M. tb is not unclear yet, and thus diagnosis and therapy for TB remains a challenge. The genome of M. tb, encodes a unique protein family known as the PGRS family, with largely unexplored functions. Recently, an increasing number of reports have shown that the PE_PGRS proteins play critical roles in bacterial pathogenesis and immune evasion. The PE_PGRS protein family, characterized by a special N-terminal PE (Pro (P)-Glu (E) motif) domain and a C-terminal PGRS (Polymorphic GC-rich Repetitive Sequences) domain, is restricted mainly to pathogenic mycobacteria. Here we summarize current literature on the PE_PGRS as vital proteins in promoting bacterial survival and modulating host immunity, cell death and metabolism. We also highlight the potential of PE_PGRS as novel targets of anti-mycobacterial interventions for TB control.
Collapse
Affiliation(s)
- Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital, Department of Immunology Wuhan University School of Basic Medical Sciences, Wuhan, China.,State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, China
| | - Yidan Zhou
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Sheng Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital, Department of Immunology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital, Department of Immunology Wuhan University School of Basic Medical Sciences, Wuhan, China.,State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
29
|
Augenstreich J, Briken V. Host Cell Targets of Released Lipid and Secreted Protein Effectors of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:595029. [PMID: 33194845 PMCID: PMC7644814 DOI: 10.3389/fcimb.2020.595029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a very successful pathogen, strictly adapted to humans and the cause of tuberculosis. Its success is associated with its ability to inhibit host cell intrinsic immune responses by using an arsenal of virulence factors of different nature. It has evolved to synthesize a series of complex lipids which form an outer membrane and may also be released to enter host cell membranes. In addition, secreted protein effectors of Mtb are entering the host cell cytosol to interact with host cell proteins. We briefly discuss the current model, involving the ESX-1 type seven secretion system and the Mtb lipid phthiocerol dimycoserosate (PDIM), of how Mtb creates pores in the phagosomal membrane to allow Mtb proteins to access to the host cell cytosol. We provide an exhaustive list of Mtb secreted proteins that have effector functions. They modify (mostly inhibit but sometimes activate) host cell pathways such as: phagosome maturation, cell death, cytokine response, xenophagy, reactive oxygen species (ROS) response via NADPH oxidase 2 (NOX2), nitric oxide (NO) response via NO Synthase 2 (NOS2) and antigen presentation via MHC class I and class II molecules. We discuss the host cell targets for each lipid and protein effector and the importance of the Mtb effector for virulence of the bacterium.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
30
|
Sharma T, Grover S, Arora N, P M, Ehtesham NZ, Hasnain SE. PGRS Domain of Rv0297 of Mycobacterium tuberculosis Is Involved in Modulation of Macrophage Functions to Favor Bacterial Persistence. Front Cell Infect Microbiol 2020; 10:451. [PMID: 33042856 PMCID: PMC7517703 DOI: 10.3389/fcimb.2020.00451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) Rv0297-encoded PE_PGRS5 has been known to be expressed at the later stages of infection and in acidified phagosomes during transcriptome and proteomic studies. The possible role of Rv0297 in the modulation of phagosomal maturation and in providing protection against a microbicidal environment has been hypothesized. We show that Rv0297PGRS is involved in modulating the calcium homeostasis of macrophages followed by impedance of the phagolysosomal acidification process. This is evident from the downregulation of the late endosomal markers (Rab7 and cathepsin D) in the macrophages infected with recombinant Mycobacterium smegmatis (rM.smeg)—M.smeg_Rv0297 and M.smeg_Rv0297PGRS—or treated with recombinant Rv0297PGRS protein. Macrophages infected with rM.smeg expressing Rv0297 produce nitric oxide and undergo apoptosis, which may aid in the dissemination of pathogen in the later stages of infection. Rv0297 was also found to be involved in rescuing the bacterium from oxidative and hypoxic stress employed by macrophages and augmented the survivability of the recombinant bacterium. These results attribute to the functional significance of this protein in M.tb virulence mechanism. The fact that this protein gets expressed at the later stages of lung granulomas during M.tb infection suggests that the bacterium possibly employs Rv0297 as its dissemination and survival strategy.
Collapse
Affiliation(s)
- Tarina Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Sonam Grover
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Naresh Arora
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Manjunath P
- ICMR-National Institute of Pathology, New Delhi, India
| | | | - Seyed Ehtesham Hasnain
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, Hyderabad, India
| |
Collapse
|
31
|
Parbhoo T, Sampson SL, Mouton JM. Recent Developments in the Application of Flow Cytometry to Advance our Understanding of Mycobacterium tuberculosis Physiology and Pathogenesis. Cytometry A 2020; 97:683-693. [PMID: 32437069 PMCID: PMC7496436 DOI: 10.1002/cyto.a.24030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
The ability of the bacterial pathogen Mycobacterium tuberculosis to adapt and survive within human cells to disseminate to other individuals and cause active disease is poorly understood. Research supports that as M. tuberculosis adapts to stressors encountered in the host, it exhibits variable physiological and metabolic states that are time and niche-dependent. Challenges associated with effective treatment and eradication of tuberculosis (TB) are in part attributed to our lack of understanding of these different mycobacterial phenotypes. This is mainly due to a lack of suitable tools to effectively identify/detect heterogeneous bacterial populations, which may include small, difficult-to-culture subpopulations. Importantly, flow cytometry allows rapid and affordable multiparametric measurements of physical and chemical characteristics of single cells, without the need to preculture cells. Here, we summarize current knowledge of flow cytometry applications that have advanced our understanding of the physiology of M. tuberculosis during TB disease. Specifically, we review how host-associated stressors influence bacterial characteristics such as metabolic activity, membrane potential, redox status and the mycobacterial cell wall. Further, we highlight that flow cytometry offers unprecedented opportunities for insight into bacterial population heterogeneity, which is increasingly appreciated as an important determinant of disease outcome. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Trisha Parbhoo
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Samantha L. Sampson
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Jacoba M. Mouton
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
32
|
Ly A, Liu J. Mycobacterial Virulence Factors: Surface-Exposed Lipids and Secreted Proteins. Int J Mol Sci 2020; 21:ijms21113985. [PMID: 32498243 PMCID: PMC7312605 DOI: 10.3390/ijms21113985] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
The clinically important Mycobacterium tuberculosis (M. tb) and related mycobacterial pathogens use various virulence mechanisms to survive and cause disease in their hosts. Several well-established virulence factors include the surface-exposed lipids in the mycobacterial outer membrane, as well as the Esx family proteins and the Pro-Glu (PE)/ Pro-Pro-Glu (PPE) family proteins secreted by type VII secretion systems (T7SS). Five ESX T7SS exist in M. tb and three—EsxA secretion system-1 (ESX-1), ESX-3, and ESX-5—have been implicated in virulence, yet only the structures of ESX-3 and ESX-5 have been solved to date. Here, we summarize the current research on three outer membrane lipids—phthiocerol dimycocerosates, phenolic glycolipids, and sulfolipids—as well as the secretion machinery and substrates of three mycobacterial T7SS—ESX-1, ESX-3, and ESX-5. We propose a structural model of the M. tb ESX-1 system based on the latest structural findings of the ESX-3 and ESX-5 secretion apparatuses to gain insight into the transport mechanism of ESX-associated virulence factors.
Collapse
Affiliation(s)
| | - Jun Liu
- Correspondence: ; Tel.: +1-416-946-5067
| |
Collapse
|
33
|
Röltgen K, Pluschke G. Buruli ulcer: The Efficacy of Innate Immune Defense May Be a Key Determinant for the Outcome of Infection With Mycobacterium ulcerans. Front Microbiol 2020; 11:1018. [PMID: 32523571 PMCID: PMC7261859 DOI: 10.3389/fmicb.2020.01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Buruli ulcer (BU) is a neglected, tropical infectious disease of the skin and the subcutaneous tissue caused by Mycobacterium ulcerans. This pathogen has emerged as a new species from a common ancestor with Mycobacterium marinum by acquisition of the virulence plasmid pMUM. The plasmid encodes enzymes required for the synthesis of the macrolide toxin mycolactone, which has cytotoxic and immunosuppressive activities. In advanced BU lesions, extracellular clusters of M. ulcerans reside in necrotic subcutaneous tissue and are protected from infiltrating leukocytes by the cytotoxic activity of secreted mycolactone. Several lines of evidence indicate that elements of the innate immune system eliminate in many cases the initial inoculum before bacterial clusters can form and that therefore exposure to M. ulcerans leads only in a minority of individuals to the characteristic chronic necrotizing BU lesions. It is assumed that phagocytes play a key role in early host defense against M. ulcerans. Antibodies against bacterial surface structures seem to have less potential to enhance innate immunity than TH1 cell responses. Precise innate and adaptive immune effector mechanisms leading to protective immunity are however unclear, complicating the development of effective vaccines, the most desired solution to control BU. The tuberculosis vaccine Mycobacterium bovis Bacillus Calmette–Guérin (BCG) has limited short-term protective activity against BU. Whether this effect is due to the broad antigenic cross-reactivity between M. bovis and M. ulcerans or is at least partly mediated by a non-specific enhanced responsiveness of innate immune cells to secondary stimulation, recently described as “trained immunity” or “innate immune memory” is unknown but has major implications for vaccine design. Current vaccine research and development activities are focusing on recombinant BCG, subunit vaccines with selected M. ulcerans proteins, and the neutralization of mycolactone.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Knobloch P, Koliwer-Brandl H, Arnold FM, Hanna N, Gonda I, Adenau S, Personnic N, Barisch C, Seeger MA, Soldati T, Hilbi H. Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Cell Microbiol 2020; 22:e13163. [PMID: 31945239 DOI: 10.1111/cmi.13163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium-containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid-bound mycobactin (MBT) and the water-soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe-MBT or Fe-cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe-cMBT promoted the growth of wild-type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild-type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra- and intracellular growth of the pathogen.
Collapse
Affiliation(s)
- Paulina Knobloch
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | | | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Sophia Adenau
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Long Q, Xiang X, Yin Q, Li S, Yang W, Sun H, Liu Q, Xie J, Deng W. PE_PGRS62 promotes the survival of Mycobacterium smegmatis within macrophages via disrupting ER stress-mediated apoptosis. J Cell Physiol 2019; 234:19774-19784. [PMID: 30937925 DOI: 10.1002/jcp.28577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis, the leading causative agent of tuberculosis, remains one of the most deadly infectious pathogens. PE_PGRS proteins become a new focus as their species specificity in mycobacteria, especially in pathogenic mycobacteria. Despite intensive research, PE_PGRS proteins are still a mysterious aspect of mycobacterial pathogenesis with unknown mechanism. Herein, we focused on a PE_PGRS member from M. tuberculosis, PE_PGRS62, characterized by a surface-exposed protein function in disrupting phagolysosome maturation. Expression of PE_PGRS62 in Mycobacterium smegmatis, a nonpathogenic species naturally deficient in PE_PGRS genes, resulted in enhanced resistance to various in vitro stresses and cellular survival in macrophage. As a consequence, the cytokine profiles of macrophage were disturbed and cell apoptosis were inhibited via decreasing endoplasmic reticulum stress response.
Collapse
Affiliation(s)
- Quanxin Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Qingqin Yin
- Department of Respiratory Medicine, China National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shuangjiang Li
- Department of Physical Examination Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenmin Yang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, People's Republic of China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, People's Republic of China
| | - Wanyan Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
36
|
Popovic M, Yaparla A, Paquin‐Proulx D, Koubourli DV, Webb R, Firmani M, Grayfer L. Colony‐stimulating factor‐1‐ and interleukin‐34‐derived macrophages differ in their susceptibility to
Mycobacterium marinum. J Leukoc Biol 2019; 106:1257-1269. [DOI: 10.1002/jlb.1a0919-147r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Milan Popovic
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Amulya Yaparla
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Dominic Paquin‐Proulx
- Department of Microbiology Immunology and Tropical Medicine George Washington University Washington DC 20037 USA
| | - Daphne V. Koubourli
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Rose Webb
- Pathology Core Laboratory George Washington University Washington DC 20037 USA
| | - Marcia Firmani
- Department of Biomedical Laboratory Sciences George Washington University Washington DC 20037 USA
| | - Leon Grayfer
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| |
Collapse
|
37
|
Madacki J, Mas Fiol G, Brosch R. Update on the virulence factors of the obligate pathogen Mycobacterium tuberculosis and related tuberculosis-causing mycobacteria. INFECTION GENETICS AND EVOLUTION 2019; 72:67-77. [DOI: 10.1016/j.meegid.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
|
38
|
A New ESX-1 Substrate in Mycobacterium marinum That Is Required for Hemolysis but Not Host Cell Lysis. J Bacteriol 2019; 201:JB.00760-18. [PMID: 30833360 DOI: 10.1128/jb.00760-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The ESX-1 (ESAT-6 system 1) secretion system plays a conserved role in the virulence of diverse mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis and M. marinum, an environmental mycobacterial species. The ESX-1 system promotes the secretion of protein virulence factors to the extracytoplasmic environment. The secretion of these proteins triggers the host response by lysing the phagosome during macrophage infection. Using proteomic analyses of the M. marinum secretome in the presence and absence of a functional ESX-1 system, we and others have hypothesized that MMAR_2894, a PE family protein, is a potential ESX-1 substrate in M. marinum We used genetic and quantitative proteomic approaches to determine if MMAR_2894 is secreted by the ESX-1 system, and we defined the requirement of MMAR_2894 for ESX-1-mediated secretion and virulence. We show that MMAR_2894 is secreted by the ESX-1 system in M. marinum and is itself required for the optimal secretion of the known ESX-1 substrates in M. marinum Moreover, we found that MMAR_2894 was differentially required for hemolysis and cytolysis of macrophages, two lytic activities ascribed to the M. marinum ESX-1 system.IMPORTANCE Both Mycobacterium tuberculosis, the cause of human tuberculosis (TB), and Mycobacterium marinum, a pathogen of ectotherms, use the ESX-1 secretion system to cause disease. There are many established similarities between the ESX-1 systems in M. tuberculosis and in M. marinum Yet the two bacteria infect different hosts, hinting at species-specific functions of the ESX-1 system. Our findings demonstrate that MMAR_2894 is a PE protein secreted by the ESX-1 system of M. marinum We show that MMAR_2894 is required for the optimal secretion of mycobacterial proteins required for disease. Because the MMAR_2894 gene is not conserved in M. tuberculosis, our findings demonstrate that MMAR_2894 may contribute to a species-specific function of the ESX-1 system in M. marinum, providing new insight into how the M. marinum and M. tuberculosis systems differ.
Collapse
|
39
|
Song N, Li Z, Cui Z, Chen L, Cui Y, Dang G, Li Z, Li H, Liu S. The prominent alteration in transcriptome and metabolome of Mycobacterium bovis BCG str. Tokyo 172 induced by vitamin B 1. BMC Microbiol 2019; 19:104. [PMID: 31117936 PMCID: PMC6530141 DOI: 10.1186/s12866-019-1492-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/14/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vitamin B1 (VB1) is a crucial dietary nutrient and essential cofactor for several key enzymes in the regulation of cellular and metabolic processes, and more importantly in the activation of immune system. To date, the precise role of VB1 in Mycobacterium tuberculosis remains to be fully understood. RESULTS In this study, the transcriptional and metabolic profiles of VB1-treated Mycobacterium. bovis BCG were analyzed by RNA-sequencing and LC-MS (Liquid chromatography coupled to mass spectrometry). The selection of BCG strain was based on its common physiological features shared with M. tuberculosis. The results of cell growth assays demonstrated that VB1 inhibited the BCG growth rate in vitro. Transcriptomic analysis revealed that the expression levels of genes related to fatty acid metabolism, cholesterol metabolism, glycolipid catabolism, DNA replication, protein translation, cell division and cell wall formation were significantly downregulated in M. bovis BCG treated with VB1. In addition, the metabolomics LC-MS data indicated that most of the amino acids and adenosine diphosphate (ADP) were decreased in M. bovis BCG strain after VB1 treatment. CONCLUSIONS This study provides the molecular and metabolic bases to understand the impacts of VB1 on M.bovis BCG.
Collapse
Affiliation(s)
- Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoli Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
40
|
Saelens JW, Viswanathan G, Tobin DM. Mycobacterial Evolution Intersects With Host Tolerance. Front Immunol 2019; 10:528. [PMID: 30967867 PMCID: PMC6438904 DOI: 10.3389/fimmu.2019.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past 200 years, tuberculosis (TB) has caused more deaths than any other infectious disease, likely infecting more people than it has at any other time in human history. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, is an obligate human pathogen that has evolved through the millennia to become an archetypal human-adapted pathogen. This review focuses on the evolutionary framework by which Mtb emerged as a specialized human pathogen and applies this perspective to the emergence of specific lineages that drive global TB burden. We consider how evolutionary pressures, including transmission dynamics, host tolerance, and human population patterns, may have shaped the evolution of diverse mycobacterial genomes.
Collapse
Affiliation(s)
- Joseph W. Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
41
|
Koliwer‐Brandl H, Knobloch P, Barisch C, Welin A, Hanna N, Soldati T, Hilbi H. DistinctMycobacterium marinumphosphatases determine pathogen vacuole phosphoinositide pattern, phagosome maturation, and escape to the cytosol. Cell Microbiol 2019; 21:e13008. [DOI: 10.1111/cmi.13008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Hendrik Koliwer‐Brandl
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Paulina Knobloch
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Caroline Barisch
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Amanda Welin
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Nabil Hanna
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Thierry Soldati
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| |
Collapse
|
42
|
Meena LS. Interrelation of Ca2+ and PE_PGRS proteins during Mycobacterium tuberculosis pathogenesis. J Biosci 2019. [DOI: 10.1007/s12038-018-9828-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Li W, Deng W, Xie J. Expression and regulatory networks of Mycobacterium tuberculosis PE/PPE family antigens. J Cell Physiol 2018; 234:7742-7751. [PMID: 30478834 DOI: 10.1002/jcp.27608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 01/06/2023]
Abstract
PE/PPE family antigens are distributed mainly in pathogenic mycobacteria and serve as potential antituberculosis (TB) vaccine components. Some PE/PPE family antigens can regulate the host innate immune response, interfere with macrophage activation and phagolysosome fusion, and serve as major sources of antigenic variation. PE/PPE antigens have been associated with mycobacteria pathogenesis; pe/ppe genes are mainly found in pathogenic mycobacteria and are differentially expressed between Mtb and Mycobacterium bovis. PE/PPE proteins were essential for the growth of Mtb, and PE/PPE proteins were differentially expressed under a variety of conditions. Multiple mycobacterial-virulence-related transcription factors, sigma factors, the global transcriptional regulation factor Lsr2, MprAB, and PhoPR two-component regulatory systems, and cyclic adenine monophosphate-dependent regulators, regulate the expression of PE/PPE family antigens. Multiple-scale integrative analysis revealed the expression and regulatory networks of PE/PPE family antigens underlying the virulence and pathogenesis of Mtb, providing important clues for the discovery of new anti-TB measures.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Wanyan Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
44
|
Sattler N, Bosmani C, Barisch C, Guého A, Gopaldass N, Dias M, Leuba F, Bruckert F, Cosson P, Soldati T. Functions of the Dictyostelium LIMP-2 and CD36 homologues in bacteria uptake, phagolysosome biogenesis and host cell defence. J Cell Sci 2018; 131:jcs218040. [PMID: 30054386 DOI: 10.1242/jcs.218040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2023] Open
Abstract
Phagocytic cells take up, kill and digest microbes by a process called phagocytosis. To this end, these cells bind the particle, rearrange their actin cytoskeleton, and orchestrate transport of digestive factors to the particle-containing phagosome. The mammalian lysosomal membrane protein LIMP-2 (also known as SCARB2) and CD36, members of the class B of scavenger receptors, play a crucial role in lysosomal enzyme trafficking and uptake of mycobacteria, respectively, and generally in host cell defences against intracellular pathogens. Here, we show that the Dictyostelium discoideum LIMP-2 homologue LmpA regulates phagocytosis and phagolysosome biogenesis. The lmpA knockdown mutant is highly affected in actin-dependent processes, such as particle uptake, cellular spreading and motility. Additionally, the cells are severely impaired in phagosomal acidification and proteolysis, likely explaining the higher susceptibility to infection with the pathogenic bacterium Mycobacterium marinum, a close cousin of the human pathogen Mycobacterium tuberculosis Furthermore, we bring evidence that LmpB is a functional homologue of CD36 and specifically mediates uptake of mycobacteria. Altogether, these data indicate a role for LmpA and LmpB, ancestors of the family of which LIMP-2 and CD36 are members, in lysosome biogenesis and host cell defence.
Collapse
Affiliation(s)
- Natascha Sattler
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Cristina Bosmani
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Caroline Barisch
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Aurélie Guého
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Navin Gopaldass
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Marco Dias
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Florence Leuba
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Franz Bruckert
- Laboratoire des Matériaux et du Génie Physique (LMGP), Grenoble Institute of Technology, 3 parvis Louis Néel, BP 257, 38016 Grenoble cedex 1, France
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| |
Collapse
|
45
|
PE-only/PE_PGRS proteins of Mycobacterium tuberculosis contain a conserved tetra-peptide sequence DEVS/DXXS that is a potential caspase-3 cleavage motif. J Biosci 2018. [DOI: 10.1007/s12038-018-9775-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Abstract
It was recently reported that the human-exclusive pathogen Mycobacterium tuberculosis secretes cytokinins, which had only been known as plant hormones. While cytokinins are well-established, adenine-based signaling molecules in plants, they have never been shown to participate in signal transduction in other kingdoms of life. M. tuberculosis is not known to interact with plants. Therefore, we tested the hypothesis that cytokinins trigger transcriptional changes within this bacterial species. Here, we show cytokinins induced the strong expression of the M. tuberculosis gene Rv0077c. We found that Rv0077c expression is repressed by a TetR-like transcriptional repressor, Rv0078. Strikingly, cytokinin-induced expression of Rv0077c resulted in a loss of acid-fast staining of M. tuberculosis While acid-fast staining is thought to be associated with changes in the bacterial cell envelope and virulence, Rv0077c-induced loss of acid-fastness did not affect antibiotic susceptibility or attenuate bacterial growth in mice, consistent with an unaltered mycolic acid profile of Rv0077c-expressing cells. Collectively, these findings show cytokinins signal transcriptional changes that can affect M. tuberculosis acid-fastness and that cytokinin signaling is no longer limited to the kingdom Plantae.IMPORTANCE Cytokinins have only previously been known as plant hormones. The discovery that they can be used as signaling molecules outside of plants broadens the repertoire of small molecules that can potentially affect gene expression in all domains of life.
Collapse
|
47
|
The PGRS Domain of Mycobacterium tuberculosis PE_PGRS Protein Rv0297 Is Involved in Endoplasmic Reticulum Stress-Mediated Apoptosis through Toll-Like Receptor 4. mBio 2018; 9:mBio.01017-18. [PMID: 29921671 PMCID: PMC6016250 DOI: 10.1128/mbio.01017-18] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The genome of Mycobacterium tuberculosis, the causal organism of tuberculosis (TB), encodes a unique protein family known as the PE/PPE/PGRS family, present exclusively in the genus Mycobacterium and nowhere else in the living kingdom, with largely unexplored functions. We describe the functional significance of the PGRS domain of Rv0297, a member of this family. In silico analyses revealed the presence of intrinsically disordered stretches and putative endoplasmic reticulum (ER) localization signals in the PGRS domain of Rv0297 (Rv0297PGRS). The PGRS domain aids in ER localization, which was shown by infecting macrophage cells with M. tuberculosis and by overexpressing the protein by transfection in macrophage cells followed by activation of the unfolded protein response, as evident from increased expression of GRP78/GRP94 and CHOP/ATF4, leading to disruption of intracellular Ca2+ homeostasis and increased nitric oxide (NO) and reactive oxygen species (ROS) production. The consequent activation of the effector caspase-8 resulted in apoptosis of macrophages, which was Toll-like receptor 4 (TLR4) dependent. Administration of recombinant Rv0297PGRS (rRv0297PGRS) also exhibited similar effects. These results implicate a hitherto-unknown role of the PGRS domain of the PE_PGRS protein family in ER stress-mediated cell death through TLR4. Since this protein is already known to be present at later stages of infection in human granulomas it points to the possibility of it being employed by M. tuberculosis for its dissemination via an apoptotic mechanism. Apoptosis is generally thought to be a defense mechanism in protecting the host against Mycobacterium tuberculosis in early stages of infection. However, apoptosis during later stages in lung granulomas may favor the bacterium in disseminating the disease. ER stress has been found to induce apoptosis in TB granulomas, in zones where apoptotic macrophages accumulate in mice and humans. In this study, we report ER stress-mediated apoptosis of host cells by the Rv0297-encoded PE_PGRS5 protein of M. tuberculosis exceptionally present in the pathogenic Mycobacterium genus. The PGRS domain of Rv0297 aids the protein in localizing to the ER and induces the unfolded protein response followed by apoptosis of macrophages. The effect of the Rv0297PGRS domain was found to be TLR4 dependent. This study presents novel insights on the strategies employed by M. tuberculosis to disseminate the disease.
Collapse
|
48
|
Ates LS, Sayes F, Frigui W, Ummels R, Damen MPM, Bottai D, Behr MA, van Heijst JWJ, Bitter W, Majlessi L, Brosch R. RD5-mediated lack of PE_PGRS and PPE-MPTR export in BCG vaccine strains results in strong reduction of antigenic repertoire but little impact on protection. PLoS Pathog 2018; 14:e1007139. [PMID: 29912964 PMCID: PMC6023246 DOI: 10.1371/journal.ppat.1007139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/28/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis is the deadliest infectious disease worldwide. Although the BCG vaccine is widely used, it does not efficiently protect against pulmonary tuberculosis and an improved tuberculosis vaccine is therefore urgently needed. Mycobacterium tuberculosis uses different ESX/Type VII secretion (T7S) systems to transport proteins important for virulence and host immune responses. We recently reported that secretion of T7S substrates belonging to the mycobacteria-specific Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins of the PGRS (polymorphic GC-rich sequences) and MPTR (major polymorphic tandem repeat) subfamilies required both a functional ESX-5 system and a functional PPE38/71 protein for secretion. Inactivation of ppe38/71 and the resulting loss of PE_PGRS/PPE-MPTR secretion were linked to increased virulence of M. tuberculosis strains. Here, we show that a predicted total of 89 PE_PGRS/PPE-MPTR surface proteins are not exported by certain animal-adapted strains of the M. tuberculosis complex including M. bovis. This Δppe38/71-associated secretion defect therefore also occurs in the M. bovis-derived tuberculosis vaccine BCG and could be partially restored by introduction of the M. tuberculosis ppe38-locus. Epitope mapping of the PPE-MPTR protein PPE10, further allowed us to monitor T-cell responses in splenocytes from BCG/M. tuberculosis immunized mice, confirming the dependence of PPE10-specific immune-induction on ESX-5/PPE38-mediated secretion. Restoration of PE_PGRS/PPE-MPTR secretion in recombinant BCG neither altered global antigenic presentation or activation of innate immune cells, nor protective efficacy in two different mouse vaccination-infection models. This unexpected finding stimulates a reassessment of the immunomodulatory properties of PE_PGRS/PPE-MPTR proteins, some of which are contained in vaccine formulations currently in clinical evaluation. One of the major findings of the pioneering Mycobacterium tuberculosis H37Rv genome sequencing project was the identification of the highly abundant PE and PPE proteins, named after their N-terminal motifs Pro–Glu (PE) or Pro–Pro–Glu (PPE). Within the 20 years of research since then, many claims were made that PE/PPE proteins, including the two large subgroups encoded by repetitive sequences with very high GC content (PE_PGRS and PPE-MPTR families), are exported to the bacterial surface or beyond, and show broad immunomodulatory impact on host-pathogen interaction. We thus screened strains from different branches of the M. tuberculosis complex, including the attenuated Mycobacterium bovis BCG vaccine strains, for their capacity to export PE_PGRS/PPE-MPTR proteins. Strikingly, we found that BCG strains were unable to export the plethora of PE_PGRS/PPE-MPTR proteins due to the absence of the region of difference RD5, which in M. tuberculosis encodes PPE38, required for PE_PGRS/PPE-MPTR export. Surprisingly, the restoration of PE_PGRS/PPE-MPTR export by genetic complementation in recombinant BCG did not result in immunomodulatory changes or altered protection in mouse models. Our results thus put into perspective the numerous reports on virulence-associated immunomodulatory impact of individual PE_PGRS and PPE-MPTR proteins and open novel questions on their biological function(s).
Collapse
Affiliation(s)
- Louis S. Ates
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail: (LSA); (RB)
| | - Fadel Sayes
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Roy Ummels
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | - Merel P. M. Damen
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit, Amsterdam, the Netherlands
| | - Daria Bottai
- University of Pisa, Department of Biology, Pisa, Italy
| | - Marcel A. Behr
- McGill International TB Centre, Infectious Diseases and Immunity in Global Health Program at the McGill University Health Centre Research Institute, Montreal, Canada
| | - Jeroen W. J. van Heijst
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit, Amsterdam, the Netherlands
| | - Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- * E-mail: (LSA); (RB)
| |
Collapse
|
49
|
Torres R, Dorriz D, Saviola B. Induction of the acid inducible lipF promoter is reversibly inhibited in pH ranges of pH 4.2-4.0. BMC Res Notes 2018; 11:284. [PMID: 29739437 PMCID: PMC5941605 DOI: 10.1186/s13104-018-3370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/20/2018] [Indexed: 11/29/2022] Open
Abstract
Objective In the human body pathogenic mycobacteria encounter low pH within the phagosomes of macrophages where they reside after being internalized by the host cell. Low pH within macrophages has been shown to induce expression of a variety of genes within these bacteria. It had been previously observed that the Mycobacterium tuberculosis lipF promoter is transcriptionally upregulated between pHs 4.5–6.4 in Mycobacterium smegmatis, with an upper pH limit of 6.4 capable of promoter induction. To better understand the parameters of acid induced gene expression, we sought to determine the lower pH limit capable of lipF promoter induction. Results As we had already determined an upper pH limit, we determine here that there is a lower limit of pH’s capable of upregulating the lipF promoter, with pH below 4.3 not positively upregulating the promoter. At non-inducing pH 4.2 the bacterial cells remain viable in the absence of acid induced lipF promoter upregulation and subsequent exposure to acid pH 5.0 results in lipF promoter upregulation. There appears to be a lower limit of pH capable of upregulating lipF promoter expression and this limit is not due to cell death.
Collapse
Affiliation(s)
- Rachelle Torres
- Mercy Medical Center Merced Hospital, 333 Mercy Avenue, Merced, CA, 95340, USA
| | - Donna Dorriz
- Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second St., Pomona, CA, 91766, USA
| | - Beatrice Saviola
- Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second St., Pomona, CA, 91766, USA.
| |
Collapse
|
50
|
Mycobacterium tuberculosis PE_PGRS18 enhances the intracellular survival of M. smegmatis via altering host macrophage cytokine profiling and attenuating the cell apoptosis. Apoptosis 2018; 22:502-509. [PMID: 27987050 DOI: 10.1007/s10495-016-1336-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis PE/PPE family proteins, named after the presence of conserved PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains at N-terminal, are prevalent in M. tuberculosis genome. The function of most PE/PPE family proteins remains elusive. To characterize the function of PE_PGRS18, the encoding gene was heterologously expressed in M. smegmatis, a nonpathogenic mycobacterium. The recombinant PE_PGRS18 is cell wall associated. M. smegmatis PE_PGRS18 recombinant showed differential response to stresses and altered the production of host cytokines IL-6, IL-1β, IL-12p40 and IL-10, as well as enhanced survival within macrophages largely via attenuating the apoptosis of macrophages. In summary, the study firstly unveiled the role of PE_PGRS18 in physiology and pathogenesis of mycobacterium.
Collapse
|