1
|
Loftus LV, Rolle LTA, Wang B, Pienta KJ, Amend SR. Dysregulation of Labile Iron Predisposes Chemotherapy Resistant Cancer Cells to Ferroptosis. Int J Mol Sci 2025; 26:4193. [PMID: 40362430 PMCID: PMC12072162 DOI: 10.3390/ijms26094193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Despite centuries of research, metastatic cancer remains incurable due to resistance to all conventional cancer therapeutics. Alternative strategies leveraging non-proliferative vulnerabilities in cancer are required to overcome cancer recurrence. Ferroptosis is an iron dependent cell death pathway that has shown promising pre-clinical activity in several contexts of therapeutic resistant cancer. However, ferroptosis sensitivity is highly variable across tissue types and cell states, posing a challenge for clinical translation. We describe a convergent phenotype induced by chemotherapy where cells surviving chemotherapy have dysregulated iron homeostasis, regardless of initial cell type or chemotherapy used. Elevated labile iron levels are counteracted by NRF2 signaling, yet the resulting antioxidant programs do not alleviate the labile iron burden. Selectively inhibiting GPX4 leads to uniform susceptibility to ferroptosis in surviving cells, highlighting the common reliance on lipid peroxidation defenses. Cellular iron dysregulation is a vulnerability of chemoresistant cancer cells that can be leveraged by triggering ferroptosis.
Collapse
Affiliation(s)
- Luke V. Loftus
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Louis T. A. Rolle
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bowen Wang
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Pathobiology Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth J. Pienta
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Pathobiology Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R. Amend
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Pathobiology Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Rodrigues da Silva R, Larson J, Bothner B, DuBois JL. Heme and iron limitation in a GI-tract foundation species leads to a reshuffling of the metalloproteome and a shift toward manganese usage. Front Chem 2025; 13:1562189. [PMID: 40242659 PMCID: PMC12000045 DOI: 10.3389/fchem.2025.1562189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
The metal-binding complement of the cellular proteome (the metalloproteome) depends on metal availability in the cellular environment and drives cellular metabolism. Bacteroides thetaiotaomicron (Bacteroides theta) is a foundational species in the anaerobic gut microbiome and a heme auxotroph, though little is known about why it requires heme. We hypothesized that B. theta would overproduce heme-binding proteins in response to limitations in non-heme iron, and reciprocally, activate non-heme iron pathways when heme was growth limiting. Here we showed that heme and/or non-heme iron scarcity triggers a more holistic reorganization of its metallome and metalloproteome. Under non-heme iron limitation induced by an Fe(II)-specific chelator, manganese supplementation restored growth, suggesting manganese can partly compensate for non-heme iron. Metalloproteomic analyses using tandem HPLC-ICP-MS revealed significant changes in the distribution of zinc, manganese, and iron in response to varying iron or heme availability. These findings highlight the interplay between heme/non-heme iron and the metallome in bacterial growth regulation, and they underscore a role for manganese under iron scarcity.
Collapse
Affiliation(s)
| | | | | | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| |
Collapse
|
3
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
4
|
Londoño AF, Sharma A, Sealy J, Rana VS, Foor SD, Matrosova VY, Gaidamakova EK, Volpe RP, Daly MJ, Hoffman BM, Pal U, Dumler JS. Borrelia burgdorferi radiosensitivity and Mn antioxidant content: antigenic preservation and pathobiology. mBio 2025; 16:e0313124. [PMID: 39727419 PMCID: PMC11796347 DOI: 10.1128/mbio.03131-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The bacterium responsible for Lyme disease, Borrelia burgdorferi, accumulates high levels of manganese without iron and possesses a polyploid genome, characteristics suggesting potential extreme resistance to radiation. Contrary to expectations, we report that wild-type B. burgdorferi B31 cells are radiosensitive, with a gamma-radiation survival limit for 106 wild-type cells of <1 kGy. Thus, we explored B. burgdorferi radiosensitivity through electron paramagnetic resonance (EPR) spectroscopy by quantitating the fraction of Mn2+ present as antioxidant Mn2+ metabolite complexes (H-Mn). The spirochetes displayed relatively low levels of H-Mn, in stark contrast to the extremely radiation-resistant Deinococcus radiodurans. The H-Mn content as revealed by EPR spectroscopy is sufficiently sensitive to detect small changes in radiosensitivity among B. burgdorferi strains. However, B. burgdorferi cells are significantly more sensitive than predicted by EPR, implicating their linear genome architecture as an additional explanation for radiosensitivity. We then explored the influence of the Mn2+-decapeptide-phosphate antioxidant complex MDP, known to shield proteins during irradiation, and showed that treatment with MDP preserves B. burgdorferi's epitopes at 5 kGy irradiation, which crucially prevents cell proliferation. This finding defines some of the pivotal mechanisms that B. burgdorferi evolved to survive oxidative conditions experienced with tick and mammal immune responses. These observations also provide an opportunity for innovative vaccine development strategies employing ionizing radiation to disrupt the B. burgdorferi genome, while maintaining antigenic potency. These fresh insights extend our understanding of the unique biology of B. burgdorferi and open new avenues for considering novel whole-cell Lyme disease vaccines using MDP and irradiation-based inactivation.IMPORTANCEThe study highlights that electron paramagnetic resonance (EPR) spectroscopy is sufficiently sensitive to detect small differences in radiation resistance among Borrelia burgdorferi strains based on their population of Mn2+-metabolite complexes (H-Mn). B. burgdorferi appears to have evolved a system not to protect from irradiation, but presumably to protect from oxidative stress when cyclically transmitted from tick to mammalian host and back. These data also suggest a path forward in the development of novel vaccines against spirochete infections, including Lyme disease, through preparation involving the synthetic Mn2+-decapeptide-phosphate antioxidant complex MDP to provide B. burgdorferi epitope protection during sterilizing gamma-irradiation that eliminates growth. Given the current lack of effective whole-cell vaccines for Lyme disease, this research identifies a potential strategy for developing alternative radiation-inactivated, yet highly effective vaccines.
Collapse
Affiliation(s)
- Andrés F. Londoño
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Jared Sealy
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- The Cooper Union, ANSOE, New York City, New York, USA
| | - Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Shelby D. Foor
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Vera Y. Matrosova
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Elena K. Gaidamakova
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Robert P. Volpe
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael J. Daly
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - J. Stephen Dumler
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| |
Collapse
|
5
|
Komeda T, Hishinuma T, Kirikae T, Tada T. Escherichia coli with increased aminoglycoside resistance due to an amino acid substitution at position 85 of HemC. J Infect Chemother 2025; 31:102536. [PMID: 39369904 DOI: 10.1016/j.jiac.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE The mechanism of aminoglycoside resistance due to abnormal hemin synthesis remains unclear. We investigate an Escherichia coli strain with a single amino acid substitution at position 85 of HemC. METHODS An aminoglycoside-resistant Escherichia coli DH5α was selected by passaging in Lysogeny Broth (LB) medium containing amikacin. Whole genome sequencing was performed to determine the genetic profile of the strain. An isogenic strain of E. coli DH5α was created. Growth rates, drug susceptibilities and expressions of the heme synthetic genes were compared between the original strain and the isogenic strain. RESULTS Whole genome sequencing revealed a nucleotide substitution at position 254 of hemC from adenine (A) to thymine (T), resulting in an amino acid substitution at position 85 of HemC from histidine (H) to leucine (L). There were no mutations in other heme synthetic genes, including hemA, hemB, hemC, hemD, hemE, hemF, hemG, hemH, hemL, hemN, hemX and hemY. The isogenic strain of E. coli DH5α with H85L in HemC was less susceptible to aminoglycosides, and its growth was slower than that of E. coli DH5α before passage. Quantitative real-time PCR showed that the expression of hemA was higher and the expressions of hemL, hemG and hemX lower in the isogenic strain than before passage. CONCLUSION This is the first report of aminoglycoside resistance due to an amino acid substitution in HemC. These findings suggested that mutations in the heme synthetic genes may indirectly affect the growth rates of E. coli strains and their susceptibilities to aminoglycosides.
Collapse
Affiliation(s)
- Tomoki Komeda
- Department of Microbiology, Juntendo University School and Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomomi Hishinuma
- Department of Microbiology, Juntendo University School and Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Teruo Kirikae
- Juntendo Advanced Research Institute for Health Science, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University School and Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
6
|
Helmann JD. Metals in Motion: Understanding Labile Metal Pools in Bacteria. Biochemistry 2025; 64:329-345. [PMID: 39755956 PMCID: PMC11755726 DOI: 10.1021/acs.biochem.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Metal ions are essential for all life. In microbial cells, potassium (K+) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg2+) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor. Microbes typically require the transition metals manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn), although the precise set of metal ions needed to sustain life is variable. Intracellular metal pools can be conceptualized as a chemically complex mixture of rapidly exchanging (labile) ions, complemented by those reservoirs that exchange slowly relative to cell metabolism (sequestered). Labile metal pools are buffered by transient interactions with anionic metabolites and macromolecules, with the ribosome playing a major role. Sequestered metal pools include many metalloproteins, cofactors, and storage depots, with some pools redeployed upon metal depletion. Here, I review the size, composition, and dynamics of intracellular metal pools and highlight the major gaps in understanding.
Collapse
Affiliation(s)
- John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States
| |
Collapse
|
7
|
Śmiga M, Olczak T. Exploring heme and iron acquisition strategies of Porphyromonas gingivalis-current facts and hypotheses. FEMS Microbiol Rev 2025; 49:fuaf019. [PMID: 40343779 PMCID: PMC12094164 DOI: 10.1093/femsre/fuaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/11/2025] Open
Abstract
Iron and heme are crucial for pathogenic bacteria living in the human host but are not available in free form due to their binding by iron- and heme-sequestering proteins. Porphyromonas gingivalis causes dysbiosis in the oral microbiome and is considered a keystone pathogen in the onset and progression of periodontal diseases. Its ability to infect and multiply in host cells and its presence in distant tissues and fluids highlights its pathogenic versatility and explains the relationship between periodontal diseases and systemic or neurodegenerative diseases. Porphyromonas gingivalis has evolved specialized mechanisms that allow it to thrive in the host under adverse nutrient-limited conditions. This review presents the updated summary of the mechanisms of iron and heme acquisition by P. gingivalis, with a central role played by gingipains and the unique Hmu system. The potential role of other iron and heme acquisition systems, such as Hus and Iht, indicates the importance of the partially conserved heme biosynthesis pathway, involving homologs of the HemN, HemG, and HemH proteins. In light of increasing antibiotic resistance, difficulties with diagnosis, and drug administration, targeting the mechanisms of heme and iron acquisition of P. gingivalis represents a promising target for developing diagnostic tests, preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Brangulis K, Sürth V, Marcinkiewicz AL, Akopjana I, Kazaks A, Bogans J, Huber A, Lin YP, Kraiczy P. CspZ variant-specific interaction with factor H incorporates a metal site to support Lyme borreliae complement evasion. J Biol Chem 2025; 301:108083. [PMID: 39675703 PMCID: PMC11773018 DOI: 10.1016/j.jbc.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Polymorphic microbial immune evasion proteins dictate the pathogen species- or strain-specific virulence. Metals can impact how microbial proteins confer host-pathogen interactions, but whether this activity can be allelically variable is unclear. Here, we investigate the polymorphic CspZ protein of Lyme disease spirochete bacteria to assess the role of metals in protein-protein interaction. CspZ facilitates evasion of the complement system, the first line of immune defense through binding to the complement regulator factor H (FH). By obtaining a high-resolution cocrystal CspZ-FH structure, we identified a zinc coordinating the binding of FH SCR6-7 domains to a Glu65 on a loop from CspZ of Borrelia burgdorferi B31. However, zinc is dispensable for human FH binding for CspZ orthologs with a different loop orientation and/or lacking this glutamate. Phylogenetic analysis of all known human FH-binding CspZ variants further grouped the proteins into three unique lineages correlating with loop sequences. This suggests multiple FH-binding mechanisms evolved through Lyme disease spirochete-host interactions. Overall, this multidisciplinary work elucidates how the allelically specific immune evasion role of metals is impacted by microbial protein polymorphisms.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Riga, Latvia; Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia.
| | - Valerie Sürth
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Alisa Huber
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA; Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA.
| | - Peter Kraiczy
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany.
| |
Collapse
|
9
|
Teh MR, Armitage AE, Drakesmith H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol Metab 2024; 35:1026-1049. [PMID: 38760200 PMCID: PMC11616622 DOI: 10.1016/j.tem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.
Collapse
Affiliation(s)
- Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Diaz Dilernia F, Watson D, Heinrichs D, Vasarhelyi E. The antimicrobial properties of exogenous copper in human synovial fluid against Staphylococcus aureus. Bone Joint Res 2024; 13:632-646. [PMID: 39504990 PMCID: PMC11540464 DOI: 10.1302/2046-3758.1311.bjr-2024-0148.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Aims The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against Staphylococcus aureus. Methods We performed in vitro growth and viability assays to determine the capability of S. aureus to survive in SF with the addition of 10 µM of copper. We determined the minimum bactericidal concentration of copper (MBC-Cu) and evaluated its sensitivity to killing, comparing wild type (WT) and CopAZB-deficient USA300 strains. Results UAMS-1 demonstrated a greater sensitivity to SF compared to USA300 WT at 12 hours (p = 0.001) and 24 hours (p = 0.027). UAMS-1 died in statistically significant quantities at 24 hours (p = 0.017), and USA300 WT survived at 24 hours. UAMS-1 was more susceptible to the addition of copper at four (p = 0.001), 12 (p = 0.005), and 24 hours (p = 0.006). We confirmed a high sensitivity to killing with the addition of exogenous copper on both strains at four (p = 0.011), 12 (p = 0.011), and 24 hours (p = 0.011). WT and CopAZB-deficient USA300 strains significantly died in SF, demonstrating a MBC-Cu of 50 µM against USA300 WT (p = 0.011). Conclusion SF has antimicrobial properties against S. aureus, and UAMS-1 was more sensitive than USA300 WT. Adding 10 µM of copper was highly toxic, confirming its bactericidal effect. We found CopAZB proteins to be involved in copper effluxion by demonstrating the high sensitivity of mutant strains to lower copper concentrations. Thus, we propose CopAZB proteins as potential targets and use exogenous copper as a treatment alternative against S. aureus.
Collapse
Affiliation(s)
- Fernando Diaz Dilernia
- Adult Hip and Knee Reconstructive Surgery, London Health Sciences Centre, Division of Orthopedic Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Canada
- Division of Orthopedic Surgery, Department of Surgery, Kingston Health Sciences Center, Queen’s University, Kingston, Canada
| | - David Watson
- Adult Hip and Knee Reconstructive Surgery, London Health Sciences Centre, Division of Orthopedic Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - David Heinrichs
- Adult Hip and Knee Reconstructive Surgery, London Health Sciences Centre, Division of Orthopedic Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Edward Vasarhelyi
- Adult Hip and Knee Reconstructive Surgery, London Health Sciences Centre, Division of Orthopedic Surgery, Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Canada
| |
Collapse
|
11
|
Imelio JA, Trajtenberg F, Mondino S, Zarantonelli L, Vitrenko I, Lemée L, Cokelaer T, Picardeau M, Buschiazzo A. Signal-sensing triggers the shutdown of HemKR, regulating heme and iron metabolism in the spirochete Leptospira biflexa. PLoS One 2024; 19:e0311040. [PMID: 39325783 PMCID: PMC11426443 DOI: 10.1371/journal.pone.0311040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Heme and iron metabolic pathways are highly intertwined, both compounds being essential for key biological processes, yet becoming toxic if overabundant. Their concentrations are exquisitely regulated, including via dedicated two-component systems (TCSs) that sense signals and regulate adaptive responses. HemKR is a TCS present in both saprophytic and pathogenic Leptospira species, involved in the control of heme metabolism. However, the molecular means by which HemKR is switched on/off in a signal-dependent way, are still unknown. Moreover, a comprehensive list of HemKR-regulated genes, potentially overlapped with iron-responsive targets, is also missing. Using the saprophytic species Leptospira biflexa as a model, we now show that 5-aminolevulinic acid (ALA) triggers the shutdown of the HemKR pathway in live cells, and does so by stimulating the phosphatase activity of HemK towards phosphorylated HemR. Phospho~HemR dephosphorylation leads to differential expression of multiple genes, including of heme metabolism and transport systems. Besides the heme-biosynthetic genes hemA and the catabolic hmuO, which we had previously reported as phospho~HemR targets, we now extend the regulon identifying additional genes. Finally, we discover that HemR inactivation brings about an iron-deficit tolerant phenotype, synergistically with iron-responsive signaling systems. Future studies with pathogenic Leptospira will be able to confirm whether such tolerance to iron deprivation is conserved among Leptospira spp., in which case HemKR could play a vital role during infection where available iron is scarce. In sum, HemKR responds to abundance of porphyrin metabolites by shutting down and controlling heme homeostasis, while also contributing to integrate the regulation of heme and iron metabolism in the L. biflexa spirochete model.
Collapse
Affiliation(s)
- Juan Andrés Imelio
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Felipe Trajtenberg
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Iakov Vitrenko
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Laure Lemée
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Cokelaer
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Dept of Microbiology, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Sun X, Zhou X, Shi X, Abed OA, An X, Lei YL, Moon JJ. Strategies for the development of metalloimmunotherapies. Nat Biomed Eng 2024; 8:1073-1091. [PMID: 38914800 PMCID: PMC11410547 DOI: 10.1038/s41551-024-01221-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/30/2024] [Indexed: 06/26/2024]
Abstract
Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Editas Medicine, Cambridge, MA, USA.
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Kang SM, Kang HS, Chung WH, Kang KT, Kim DH. Structural Perspectives on Metal Dependent Roles of Ferric Uptake Regulator (Fur). Biomolecules 2024; 14:981. [PMID: 39199369 PMCID: PMC11353095 DOI: 10.3390/biom14080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Iron is crucial for the metabolism and growth of most prokaryotic cells. The ferric uptake regulator (Fur) protein plays a central role in regulating iron homeostasis and metabolic processes in bacteria. It ensures the proper utilization of iron and the maintenance of cellular functions in response to environmental cues. Fur proteins are composed of an N-terminal DNA-binding domain (DBD) and a C-terminal dimerization domain (DD), typically existing as dimers in solution. Fur proteins have conserved metal-binding sites named S1, S2, and S3. Among them, site S2 serves as a regulatory site, and metal binding at S2 results in conformational changes. Additionally, as a transcriptional regulator, Fur specifically binds to a consensus DNA sequence called the Fur box. To elucidate the structural and functional properties of Fur proteins, various structures of metal- or DNA-bound Fur proteins or apo-Fur proteins have been determined. In this review, we focus on the structural properties of Fur proteins according to their ligand-bound state and the drug development strategies targeting Fur proteins. This information provides valuable insights for drug discovery.
Collapse
Affiliation(s)
- Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea; (S.-M.K.); (W.-H.C.); (K.-T.K.)
| | - Hoon-Seok Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Woo-Hyun Chung
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea; (S.-M.K.); (W.-H.C.); (K.-T.K.)
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea; (S.-M.K.); (W.-H.C.); (K.-T.K.)
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| |
Collapse
|
15
|
Yang T, Chen S, Qiu L, Guo Q, Wang Z, Jiang Y, Bai H, Bi Y, Chang G. Effect of High Dietary Iron on Fat Deposition and Gut Microbiota in Chickens. Animals (Basel) 2024; 14:2254. [PMID: 39123780 PMCID: PMC11310990 DOI: 10.3390/ani14152254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
To meet the demand of consumers for chicken products, poultry breeders have made improvements to chickens. However, this has led to a new problem in the modern poultry industry, namely excessive fat deposition. This study aims to understand the effects of dietary iron supplementation on fat deposition and gut microbiota in chickens. In this study, we investigated the effects of iron on the growth performance, fat deposition, and gut microbiota of silky fowl black-bone chickens. A total of 75 7-week-old silky fowl black-bone chickens were randomly divided into three groups (five replicates per group, five chickens per replicate) and fed them for 28 days using a growing diet (control group), a growing diet + 10% tallow (high-fat diet group, HFD group), and a growing diet + 10% tallow + 500 mg/kg iron (HFDFe500 group), respectively. We detected the effects of iron on the growth performance, fat deposition, and gut microbiota of silky fowl black-bone chickens using the growth performance index test, oil red O staining, and HE staining, and found that the high-fat diet significantly increased liver and serum fat deposition and liver injury, while the addition of iron to the diet could reduce the fat deposition caused by the high-fat diet and alleviate liver injury. In addition, 16S rDNA sequencing was used to compare the relative abundance of gut microbiota in the cecal contents in different feeding groups. The results showed that the high-fat diet could induce gut microbiota imbalance in chickens, while the high-iron diet reversed the gut microbiota imbalance. PICRUSt functional prediction analysis showed that dietary iron supplementation affected amino acid metabolism, energy metabolism, cofactors, and vitamin metabolism pathways. In addition, correlation analysis showed that TG was significantly associated with Firmicutes and Actinobacteriota (p < 0.05). Overall, these results revealed high dietary iron (500 mg/kg) could reduce fat deposition and affect the gut microbiota of silky fowl black-bone chickens, suggesting that iron may regulate fat deposition by influencing the gut microbiota of chickens and provides a potential avenue that prevents excessive fat deposition in chickens by adding iron to the diet.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Grossman AS, Gell DA, Wu DG, Carper DL, Hettich RL, Goodrich-Blair H. Bacterial hemophilin homologs and their specific type eleven secretor proteins have conserved roles in heme capture and are diversifying as a family. J Bacteriol 2024; 206:e0044423. [PMID: 38506530 PMCID: PMC11332152 DOI: 10.1128/jb.00444-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.
Collapse
Affiliation(s)
- Alex S. Grossman
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Derek G. Wu
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Dana L. Carper
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
17
|
Thompson C, Waldron C, George S, Ouyang Z. Assessment of the hypothetical protein BB0616 in the murine infection of Borrelia burgdorferi. Infect Immun 2024; 92:e0009024. [PMID: 38700336 PMCID: PMC11237664 DOI: 10.1128/iai.00090-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
bb0616 of Borrelia burgdorferi, the Lyme disease pathogen, encodes a hypothetical protein of unknown function. In this study, we showed that BB0616 was not surface-exposed or associated with the membrane through localization analyses using proteinase K digestion and cell partitioning assays. The expression of bb0616 was influenced by a reduced pH but not by growth phases, elevated temperatures, or carbon sources during in vitro cultivation. A transcriptional start site for bb0616 was identified by using 5' rapid amplification of cDNA ends, which led to the identification of a functional promoter in the 5' regulatory region upstream of bb0616. By analyzing a bb0616-deficient mutant and its isogenic complemented counterparts, we found that the infectivity potential of the mutant was significantly attenuated. The inactivation of bb0616 displayed no effect on borrelial growth in the medium or resistance to oxidative stress, but the mutant was significantly more susceptible to osmotic stress. In addition, the production of global virulence regulators such as BosR and RpoS as well as virulence-associated outer surface lipoproteins OspC and DbpA was reduced in the mutant. These phenotypes were fully restored when gene mutation was complemented with a wild-type copy of bb0616. Based on these findings, we concluded that the hypothetical protein BB0616 is required for the optimal infectivity of B. burgdorferi, potentially by impacting B. burgdorferi virulence gene expression as well as survival of the spirochete under stressful conditions.
Collapse
Affiliation(s)
- Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Connor Waldron
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sierra George
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
18
|
Gajda-Morszewski P, Poznańska A, Federyga E, Ściuk A, Brindell M. Encapsulated Mn-Saturated Lactoferrin as a Safe Source of Manganese Ions for Restoring Probiotic Lactobacillus plantarum. Molecules 2024; 29:2735. [PMID: 38930801 PMCID: PMC11205955 DOI: 10.3390/molecules29122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The growth of Lactobacillus plantarum, a member of the Lactobacillus genus, which plays a crucial role in the bacterial microbiome of the gut, is significantly influenced by manganese ions. They can be safely delivered to the intestines by exploiting the chelating abilities of lactoferrin. The aim of this work was to encapsulate lactoferrin saturated with manganese ions (MnLf) in a system based on the Eudragit® RS polymer to protect protein from degradation and manganese release in the gastric environment. The entrapment efficiency was satisfactory, reaching about 95%, and most importantly, manganese ions were not released during microparticles (MPs) formation. The release profile of the protein from the freshly prepared MPs was sustained, with less than 15% of the protein released within the first hour. To achieve similar protein release efficiency, freeze-drying was carried out in the presence of 10% (w/v) mannitol as a cryoprotectant for MPs frozen at -20 °C. MPs with encapsulated MnLf exhibited prebiotic activity towards Lactobacillus plantarum. More importantly, the presence of equivalent levels of manganese ions in free form in the medium, as well as chelating by lactoferrin encapsulated in MPs, had a similar impact on stimulating bacterial growth. This indicates that the bioavailability of manganese ions in our prepared system is very good.
Collapse
Affiliation(s)
- Przemysław Gajda-Morszewski
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland; (P.G.-M.); (A.P.); (E.F.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, 30-348 Kraków, Poland;
| | - Anna Poznańska
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland; (P.G.-M.); (A.P.); (E.F.)
| | - Eryk Federyga
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland; (P.G.-M.); (A.P.); (E.F.)
| | - Anna Ściuk
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, 30-348 Kraków, Poland;
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Małgorzata Brindell
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland; (P.G.-M.); (A.P.); (E.F.)
| |
Collapse
|
19
|
Pereira TA, Espósito BP. Can iron chelators ameliorate viral infections? Biometals 2024; 37:289-304. [PMID: 38019378 DOI: 10.1007/s10534-023-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The redox reactivity of iron is a double-edged sword for cell functions, being either essential or harmful depending on metal concentration and location. Deregulation of iron homeostasis is associated with several clinical conditions, including viral infections. Clinical studies as well as in silico, in vitro and in vivo models show direct effects of several viruses on iron levels. There is support for the strategy of iron chelation as an alternative therapy to inhibit infection and/or viral replication, on the rationale that iron is required for the synthesis of some viral proteins and genes. In addition, abnormal iron levels can affect signaling immune response. However, other studies report different effects of viral infections on iron homeostasis, depending on the class and genotype of the virus, therefore making it difficult to predict whether iron chelation would have any benefit. This review brings general aspects of the relationship between iron homeostasis and the nonspecific immune response to viral infections, along with its relevance to the progress or inhibition of the inflammatory process, in order to elucidate situations in which the use of iron chelators could be efficient as antivirals.
Collapse
|
20
|
Sun Y, Ren Y, Song LY, Wang YY, Li TG, Wu YL, Li L, Yang ZS. Targeting iron-metabolism:a potential therapeutic strategy for pulmonary fibrosis. Biomed Pharmacother 2024; 172:116270. [PMID: 38364737 DOI: 10.1016/j.biopha.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Iron homeostasisis is integral to normal physiological and biochemical processes of lungs. The maintenance of iron homeostasis involves the process of intake, storage and output, dependening on iron-regulated protein/iron response element system to operate tightly metabolism-related genes, including TFR1, DMT1, Fth, and FPN. Dysregulation of iron can lead to iron overload, which increases the virulence of microbial colonisers and the occurrence of oxidative stress, causing alveolar epithelial cells to undergo necrosis and apoptosis, and form extracellular matrix. Accumulated iron drive iron-dependent ferroptosis to exacerbated pulmonary fibrosis. Notably, the iron chelator deferoxamine and the lipophilic antioxidant ferritin-1 have been shown to attenuate ferroptosis and inhibit lipid peroxidation in pulmonary fibrosis. The paper summarises the regulatory mechanisms of dysregulated iron metabolism and ferroptosis in the development of pulmonary fibrosis. Targeting iron metabolism may be a potential therapeutic strategy for the prevention and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Yu Ren
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Li-Yun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Yin-Ying Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, 1076 Yuhua Road Kunming, Yunnan 650500, China
| | - Tian-Gang Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Ying-Li Wu
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China
| | - Li Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China.
| | - Zhong-Shan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, Yunnan, China.
| |
Collapse
|
21
|
Zhang J, Su T, Fan Y, Cheng C, Xu L, LiTian. Spotlight on iron overload and ferroptosis: Research progress in female infertility. Life Sci 2024; 340:122370. [PMID: 38141854 DOI: 10.1016/j.lfs.2023.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Iron is an essential trace element for organisms. However, iron overload, which is common in haematological disorders (e.g. haemochromatosis, myelodysplastic syndromes, aplastic anaemia, and thalassaemia, blood transfusion-dependent or not), can promote reactive oxygen species generation and induce ferroptosis, a novel form of programmed cell death characterised by excess iron and lipid peroxidation, thus causing cell and tissue damage. Infertility is a global health concern. Recent evidence has indicated the emerging role of iron overload and ferroptosis in female infertility by inducing hypogonadism, causing ovary dysfunction, impairing preimplantation embryos, attenuating endometrial receptivity, and crosstalk between subfertility-related disorders, such as polycystic ovary syndrome and endometriosis. In addition, gut microbiota and their metabolites are involved in iron metabolism, ferroptosis, and female infertility. In this review, we systematically elaborate on the current research progress in female infertility with a novel focus on iron overload and ferroptosis and summarise promising therapies targeting iron overload and ferroptosis to recover fertility in women. In summary, our study provides new insights into female infertility and offers literature references for the clinical management of female infertility associated with iron overload and ferroptosis, which may be beneficial for females with haematopoietic disorders suffering from both iron overload and infertility.
Collapse
Affiliation(s)
- Jinghua Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Tiantian Su
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Yuan Fan
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Cheng Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - LiTian
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
22
|
Brangulis K, Akopjana I, Bogans J, Kazaks A, Tars K. Structural studies of chromosomally encoded outer surface lipoprotein BB0158 from Borrelia burgdorferi sensu stricto. Ticks Tick Borne Dis 2024; 15:102287. [PMID: 38016210 DOI: 10.1016/j.ttbdis.2023.102287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Lyme disease, or also known as Lyme borreliosis, is caused by the spirochetes belonging to the Borrelia burgdorferi sensu lato complex, which can enter the human body following the bite of an infected tick. Many membrane lipid-bound proteins, also known as lipoproteins, are located on the surface of B. burgdorferi sensu lato and play a crucial role in the spirochete to interact with its environment, whether in ticks or mammals. Since the spirochete needs to perform various tasks, such as resisting the host's immune system or spreading throughout the organism, it is not surprising that numerous surface proteins have been found to be essential for B. burgdorferi sensu lato complex bacteria in causing Lyme disease. In this study, we have determined (at 2.4 Å resolution) and characterized the 3D structure of BB0158, one of the few chromosomally encoded outer surface proteins from B. burgdorferi sensu stricto. BB0158 belongs to the paralogous gene family 44 (PFam44), consisting of four other members (BB0159, BBA04, BBE09 and BBK52). The characterization of BB0158, which appears to form a domain-swapped dimer, in conjunction with the characterization of the corresponding PFam44 members, certainly contribute to our understanding of B. burgdorferi sensu stricto proteins.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia.
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
23
|
Stefanache A, Lungu II, Butnariu IA, Calin G, Gutu C, Marcu C, Grierosu C, Bogdan Goroftei ER, Duceac LD, Dabija MG, Popa F, Damir D. Understanding How Minerals Contribute to Optimal Immune Function. J Immunol Res 2023; 2023:3355733. [PMID: 37946846 PMCID: PMC10632063 DOI: 10.1155/2023/3355733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023] Open
Abstract
Sufficient mineral supply is vital not only for the innate immune system but also for the components of the adaptive immune defense, which encompass defense mechanisms against pathogens and the delicate balance of pro- and anti-inflammatory regulation in the long term. Generally, a well-balanced diet is capable of providing the necessary minerals to support the immune system. Nevertheless, specific vulnerable populations should be cautious about obtaining adequate amounts of minerals such as magnesium, zinc, copper, iron, and selenium. Inadequate levels of these minerals can temporarily impair immune competence and disrupt the long-term regulation of systemic inflammation. Therefore, comprehending the mechanisms and sources of these minerals is crucial. In exceptional circumstances, mineral deficiencies may necessitate supplementation; however, excessive intake of supplements can have adverse effects on the immune system and should be avoided. Consequently, any supplementation should be approved by medical professionals and administered in recommended doses. This review emphasizes the crucial significance of minerals in promoting optimal functioning of the immune system. It investigates the indispensable minerals required for immune system function and the regulation of inflammation. Moreover, it delves into the significance of maintaining an optimized intake of minerals from a nutritional standpoint.
Collapse
Affiliation(s)
- Alina Stefanache
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ionut-Iulian Lungu
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Gabriela Calin
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Carmen Grierosu
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | | | - Letitia-Doina Duceac
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | | | - Florina Popa
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Daniela Damir
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
24
|
Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. MASS SPECTROMETRY REVIEWS 2023; 42:1221-1243. [PMID: 34854486 DOI: 10.1002/mas.21755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/07/2023]
Abstract
Infection metallomics is a mass spectrometry (MS) platform we established based on the central concept that microbial metallophores are specific, sensitive, noninvasive, and promising biomarkers of invasive infectious diseases. Here we review the in vitro, in vivo, and clinical applications of metallophores from historical and functional perspectives, and identify under-studied and emerging application areas with high diagnostic potential for the post-COVID era. MS with isotope data filtering is fundamental to infection metallomics; it has been used to study the interplay between "frenemies" in hosts and to monitor the dynamic response of the microbiome to antibiotic and antimycotic therapies. During infection in critically ill patients, the hostile environment of the host's body activates secondary bacterial, mycobacterial, and fungal metabolism, leading to the production of metallophores that increase the pathogen's chance of survival in the host. MS can reveal the structures, stability, and threshold concentrations of these metal-containing microbial biomarkers of infection in humans and model organisms, and can discriminate invasive disease from benign colonization based on well-defined thresholds distinguishing proliferation from the colonization steady state.
Collapse
Affiliation(s)
- Rutuja H Patil
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
25
|
Hegde P, Orimoloye MO, Sharma S, Engelhart CA, Schnappinger D, Aldrich CC. Polyfluorinated salicylic acid analogs do not interfere with siderophore biosynthesis. Tuberculosis (Edinb) 2023; 140:102346. [PMID: 37119793 PMCID: PMC10247463 DOI: 10.1016/j.tube.2023.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is a leading cause of infectious disease mortality. The salicylic acid derived small molecule siderophores known as mycobactins are essential in vivo for iron acquisition of Mtb where iron is restricted in the host. Herein, we synthesize and explore the mechanism of action of polyfluorinated salicylic acid derivates, which were previously reported to possess potent antimycobacterial activity. We hypothesized fluorinated salicylic acid derivates may inhibit mycobactin biosynthesis through initial bioactivation and conversion to downstream metabolites that block late steps in assembly of the mycobactins. Enzymatic studies demonstrated that some of the fluorinated salicylic acid derivatives compounds were readily activated by the bifunctional adenylating enzyme MbtA, responsible for incorporation of salicylic acid into the mycobactin biosynthetic pathway; however, they did not inhibit mycobactin biosynthesis as confirmed by LS-MS/MS using an authentic synthetic mycobactin standard. Further mechanistic analysis of the most active derivative (Sal-4) using an MbtA-overexpressing Mtb strain as well as complementation studies with iron and salicylic acid revealed Sal-4 cannot be antagonized by overexpression of MbtA or through supplementation with iron or salicylic acid. Taken together, our results indicate the observed antimycobacterial activity of polyfluorinated salicylic acid derivative is independent of mycobactin biosynthesis.
Collapse
Affiliation(s)
- Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
26
|
Wooldridge R, Stone S, Pedraza A, Ray WK, Helm RF, Allen KD. The Chlamydia trachomatis p-aminobenzoate synthase CADD is a manganese-dependent oxygenase that uses its own amino acid residues as substrates. FEBS Lett 2023; 597:557-572. [PMID: 36647787 DOI: 10.1002/1873-3468.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023]
Abstract
CADD (chlamydia protein associating with death domains) is a p-aminobenzoate (pAB) synthase involved in a noncanonical route for tetrahydrofolate biosynthesis in Chlamydia trachomatis. Although previously implicated to employ a diiron cofactor, here, we show that pAB synthesis by CADD requires manganese and the physiological cofactor is most likely a heterodinuclear Mn/Fe cluster. Isotope-labeling experiments revealed that the two oxygen atoms in the carboxylic acid portion of pAB are derived from molecular oxygen. Further, mass spectrometry-based proteomic analyses of CADD-derived peptides demonstrated a glycine substitution at Tyr27, providing strong evidence that this residue is sacrificed for pAB synthesis. Additionally, Lys152 was deaminated and oxidized to aminoadipic acid, supporting its proposed role as a sacrificial amino group donor.
Collapse
Affiliation(s)
| | - Spenser Stone
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Andrew Pedraza
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Kylie D Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
27
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
28
|
Huynh U, Zastrow ML. Metallobiology of Lactobacillaceae in the gut microbiome. J Inorg Biochem 2023; 238:112023. [PMID: 36270041 PMCID: PMC9888405 DOI: 10.1016/j.jinorgbio.2022.112023] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022]
Abstract
Lactobacillaceae are a diverse family of lactic acid bacteria found in the gut microbiota of humans and many animals. These bacteria exhibit beneficial effects on intestinal health, including modulating the immune system and providing protection against pathogens, and many species are frequently used as probiotics. Gut bacteria acquire essential metal ions, like iron, zinc, and manganese, through the host diet and changes to the levels of these metals are often linked to alterations in microbial community composition, susceptibility to infection, and gastrointestinal diseases. Lactobacillaceae are frequently among the organisms increased or decreased in abundance due to changes in metal availability, yet many of the molecular mechanisms underlying these changes have yet to be defined. Metal requirements and metallotransporters have been studied in some species of Lactobacillaceae, but few of the mechanisms used by these bacteria to respond to metal limitation or excess have been investigated. This review provides a current overview of these mechanisms and covers how iron, zinc, and manganese impact Lactobacillaceae in the gut microbiota with an emphasis on their biochemical roles, requirements, and homeostatic mechanisms in several species.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, TX, USA
| | | |
Collapse
|
29
|
Butler A, Jelowicki AM, Ogasawara HA, Reitz ZL, Stow PR, Thomsen E. Mining elements of siderophore chirality encoded in microbial genomes. FEBS Lett 2023; 597:134-140. [PMID: 36370136 DOI: 10.1002/1873-3468.14539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
The vast majority of bacteria require iron to grow. A significant iron acquisition strategy is the production of siderophores, which are secondary microbial metabolites synthesized to sequester iron(III). Siderophore structures encompass a variety of forms, of which highly modified peptidic siderophores are of interest herein. State-of-the-art genome mining tools, such as antiSMASH (antibiotics & Secondary Metabolite Analysis SHell), hold the potential to predict and discover new peptidic siderophores, including a combinatoric suite of triscatechol siderophores framed on a triserine-ester backbone of the general class, (DHB-l/d CAA-l Ser)3 (CAA, cationic amino acid). Siderophores with l/d Arg, l/d Lys and l Orn, but not d Orn, were predicted in bacterial genomes. Fortuitously the d Orn siderophore was identified, yet its lack of prediction highlights the limitation of current genome mining tools. The full combinatoric suite of these siderophores, which form chiral iron(III) complexes, reveals stereospecific coordination chemistry encoded in microbial genomes. The chirality embedded in this suite of Fe(III)-siderophores raises the question of whether the relevant siderophore-mediated iron acquisition pathways are stereospecific and selective for ferric siderophore complexes of a defined configuration.
Collapse
Affiliation(s)
- Alison Butler
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Aneta M Jelowicki
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Haley A Ogasawara
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Zachary L Reitz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Parker R Stow
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Emil Thomsen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| |
Collapse
|
30
|
Mayneris-Perxachs J, Moreno-Navarrete JM, Fernández-Real JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol 2022; 18:683-698. [PMID: 35986176 DOI: 10.1038/s41574-022-00721-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Iron is critical for the appearance and maintenance of life on Earth. Almost all organisms compete or cooperate for iron acquisition, demonstrating the importance of this essential element for the biological and physiological processes that are key for the preservation of metabolic homeostasis. In humans and other mammals, the bidirectional interactions between the bacterial component of the gut microbiota and the host for iron acquisition shape both host and microbiota metabolism. Bacterial functions influence host iron absorption, whereas the intake of iron, iron deficiency and iron excess in the host affect bacterial biodiversity, taxonomy and function, resulting in changes in bacterial virulence. These consequences of the host-microbial crosstalk affect systemic levels of iron, its storage in different tissues and host glucose metabolism. At the interface between the host and the microbiota, alterations in the host innate immune system and in circulating soluble factors that regulate iron (that is, hepcidin, lipocalin 2 and lactoferrin) are associated with metabolic disease. In fact, patients with obesity-associated metabolic dysfunction and insulin resistance exhibit dysregulation in iron homeostasis and alterations in their gut microbiota profile. From an evolutionary point of view, the pursuit of two important nutrients - glucose and iron - has probably driven human evolution towards the most efficient pathways and genes for human survival and health.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
31
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
32
|
Iron Acquisition Mechanisms and Their Role in the Virulence of Acinetobacter baumannii. Infect Immun 2022; 90:e0022322. [PMID: 36066263 PMCID: PMC9584212 DOI: 10.1128/iai.00223-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential element for survival of most organisms. One mechanism of host defense is to tightly chelate iron to several proteins to limit its extracellular availability. This has forced pathogens such as Acinetobacter baumannii to adapt mechanisms for the acquisition and utilization of iron even in iron-limiting conditions. A. baumannii uses a variety of iron acquisition strategies to meet its iron requirements. It can lyse erythrocytes to harvest the heme molecules, use iron-chelating siderophores, and use outer membrane vesicles to acquire iron. Iron acquisition pathways, in general, have been seen to affect many other virulence factors such as cell adherence, cell motility, and biofilm formation. The knowledge gained from research on iron acquisition led to the synthesis of the antibiotic cefiderocol, which uses iron uptake pathways for entry into the cell with some success as a novel cephalosporin. Understanding the mechanisms of iron acquisition of A. baumannii allows for insight into clinical infections and offer potential targets for novel antibiotics or potentiators of current drugs.
Collapse
|
33
|
Socarras KM, Haslund-Gourley BS, Cramer NA, Comunale MA, Marconi RT, Ehrlich GD. Large-Scale Sequencing of Borreliaceae for the Construction of Pan-Genomic-Based Diagnostics. Genes (Basel) 2022; 13:1604. [PMID: 36140772 PMCID: PMC9498496 DOI: 10.3390/genes13091604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The acceleration of climate change has been associated with an alarming increase in the prevalence and geographic range of tick-borne diseases (TBD), many of which have severe and long-lasting effects-particularly when treatment is delayed principally due to inadequate diagnostics and lack of physician suspicion. Moreover, there is a paucity of treatment options for many TBDs that are complicated by diagnostic limitations for correctly identifying the offending pathogens. This review will focus on the biology, disease pathology, and detection methodologies used for the Borreliaceae family which includes the Lyme disease agent Borreliella burgdorferi. Previous work revealed that Borreliaceae genomes differ from most bacteria in that they are composed of large numbers of replicons, both linear and circular, with the main chromosome being the linear with telomeric-like termini. While these findings are novel, additional gene-specific analyses of each class of these multiple replicons are needed to better understand their respective roles in metabolism and pathogenesis of these enigmatic spirochetes. Historically, such studies were challenging due to a dearth of both analytic tools and a sufficient number of high-fidelity genomes among the various taxa within this family as a whole to provide for discriminative and functional genomic studies. Recent advances in long-read whole-genome sequencing, comparative genomics, and machine-learning have provided the tools to better understand the fundamental biology and phylogeny of these genomically-complex pathogens while also providing the data for the development of improved diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kayla M. Socarras
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Nicholas A. Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Garth D. Ehrlich
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
34
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
35
|
Xu J, Cotruvo JA. Reconsidering the czcD (NiCo) Riboswitch as an Iron Riboswitch. ACS BIO & MED CHEM AU 2022; 2:376-385. [PMID: 35996475 PMCID: PMC9389577 DOI: 10.1021/acsbiomedchemau.1c00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Recent work has proposed
a new mechanism of bacterial iron regulation:
riboswitches that undergo a conformational change in response to FeII. The czcD (NiCo) riboswitch was initially
proposed to be specific for NiII and CoII, but
we recently showed via a czcD-based fluorescent sensor
that FeII is also a plausible physiological ligand for
this riboswitch class. Here, we provide direct evidence that this
riboswitch class responds to FeII. Isothermal titration
calorimetry studies of the native czcD riboswitches
from three organisms show no response to MnII, a weak response
to ZnII, and similar dissociation constants (∼1
μM) and conformational responses for FeII, CoII, and NiII. Only the iron response is in the physiological
concentration regime; the riboswitches’ responses to CoII, NiII, and ZnII require 103-, 105-, and 106-fold higher “free”
metal ion concentrations, respectively, than the typical availability
of those metal ions in cells. By contrast, the “Sensei”
RNA, recently claimed to be an iron-specific riboswitch, exhibits
no response to FeII. Our results demonstrate that iron
responsiveness is a conserved property of czcD riboswitches
and clarify that this is the only family of iron-responsive riboswitch
identified to date, setting the stage for characterization of their
physiological function.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
36
|
Transcriptomic Response of the Diazotrophic Bacteria Gluconacetobacter diazotrophicus Strain PAL5 to Iron Limitation and Characterization of the fur Regulatory Network. Int J Mol Sci 2022; 23:ijms23158533. [PMID: 35955667 PMCID: PMC9368920 DOI: 10.3390/ijms23158533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Gluconacetobacter diazotrophicus has been the focus of several studies aiming to understand the mechanisms behind this endophytic diazotrophic bacterium. The present study is the first global analysis of the early transcriptional response of exponentially growing G. diazotrophicus to iron, an essential cofactor for many enzymes involved in various metabolic pathways. RNA-seq, targeted gene mutagenesis and computational motif discovery tools were used to define the G. diazotrophicusfur regulon. The data analysis showed that genes encoding functions related to iron homeostasis were significantly upregulated in response to iron limitations. Certain genes involved in secondary metabolism were overexpressed under iron-limited conditions. In contrast, it was observed that the expression of genes involved in Fe-S cluster biosynthesis, flagellar biosynthesis and type IV secretion systems were downregulated in an iron-depleted culture medium. Our results support a model that controls transcription in G. diazotrophicus by fur function. The G. diazotrophicusfur protein was able to complement an E. colifur mutant. These results provide new insights into the effects of iron on the metabolism of G. diazotrophicus, as well as demonstrate the essentiality of this micronutrient for the main characteristics of plant growth promotion by G. diazotrophicus.
Collapse
|
37
|
Perner J, Hajdusek O, Kopacek P. Independent somatic distribution of heme and iron in ticks. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100916. [PMID: 35346896 DOI: 10.1016/j.cois.2022.100916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 05/27/2023]
Abstract
Ticks are blood-feeding ectoparasites with distinct genomic reductions, inevitably linking them to a parasitic lifestyle. Ticks have lost the genomic coding and, thus, biochemical capacity to synthesize heme, an essential metabolic cofactor, de novo. Instead, they are equipped with acquisition and distribution pathways for reuse of host heme. Unlike insects or mammals, ticks and mites cannot cleave the porphyrin ring of heme to release iron. Bioavailable iron is thus acquired by ticks from the host serum transferrin. Somatic trafficking of iron, however, is independent of heme and is mediated by a secretory type of ferritin. Heme and iron systemic homeostasis in ticks represents, therefore, key adaptive traits enabling successful feeding and reproduction.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
38
|
Ženíšková K, Grechnikova M, Sutak R. Copper Metabolism in Naegleria gruberi and Its Deadly Relative Naegleria fowleri. Front Cell Dev Biol 2022; 10:853463. [PMID: 35478954 PMCID: PMC9035749 DOI: 10.3389/fcell.2022.853463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Although copper is an essential nutrient crucial for many biological processes, an excessive concentration can be toxic and lead to cell death. The metabolism of this two-faced metal must be strictly regulated at the cell level. In this study, we investigated copper homeostasis in two related unicellular organisms: nonpathogenic Naegleria gruberi and the “brain-eating amoeba” Naegleria fowleri. We identified and confirmed the function of their specific copper transporters securing the main pathway of copper acquisition. Adjusting to different environments with varying copper levels during the life cycle of these organisms requires various metabolic adaptations. Using comparative proteomic analyses, measuring oxygen consumption, and enzymatic determination of NADH dehydrogenase, we showed that both amoebas respond to copper deprivation by upregulating the components of the branched electron transport chain: the alternative oxidase and alternative NADH dehydrogenase. Interestingly, analysis of iron acquisition indicated that this system is copper-dependent in N. gruberi but not in its pathogenic relative. Importantly, we identified a potential key protein of copper metabolism of N. gruberi, the homolog of human DJ-1 protein, which is known to be linked to Parkinson’s disease. Altogether, our study reveals the mechanisms underlying copper metabolism in the model amoeba N. gruberi and the fatal pathogen N. fowleri and highlights the differences between the two amoebas.
Collapse
|
39
|
Gwynne PJ, Clendenen LH, Turk SP, Marques AR, Hu LT. Antiphospholipid autoantibodies in Lyme disease arise after scavenging of host phospholipids by Borrelia burgdorferi. J Clin Invest 2022; 132:152506. [PMID: 35289310 PMCID: PMC8920326 DOI: 10.1172/jci152506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
A close association with its vertebrate and tick hosts allows Borrelia burgdorferi, the bacterium responsible for Lyme disease, to eliminate many metabolic pathways and instead scavenge key nutrients from the host. A lipid-defined culture medium was developed to demonstrate that exogenous lipids are an essential nutrient of B. burgdorferi, which can accumulate intact phospholipids from its environment to support growth. Antibody responses to host phospholipids were studied in mice and humans using an antiphospholipid ELISA. Several of these environmentally acquired phospholipids including phosphatidylserine and phosphatidic acid, as well as borrelial phosphatidylcholine, are the targets of antibodies that arose early in infection in the mouse model. Patients with acute infections demonstrated antibody responses to the same lipids. The elevation of antiphospholipid antibodies predicted early infection with better sensitivity than did the standardized 2-tier tests currently used in diagnosis. Sera obtained from patients with Lyme disease before and after antibiotic therapy showed declining antiphospholipid titers after treatment. Further study will be required to determine whether these antibodies have utility in early diagnosis of Lyme disease, tracking of the response to therapy, and diagnosis of reinfection, areas in which current standardized tests are inadequate.
Collapse
Affiliation(s)
- Peter J Gwynne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Luke H Clendenen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Siu-Ping Turk
- Laboratory of Clinical Microbiology and Immunology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Adriana R Marques
- Laboratory of Clinical Microbiology and Immunology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Huynh U, Qiao M, King J, Trinh B, Valdez J, Haq M, Zastrow ML. Differential Effects of Transition Metals on Growth and Metal Uptake for Two Distinct Lactobacillus Species. Microbiol Spectr 2022; 10:e0100621. [PMID: 35080431 PMCID: PMC8791193 DOI: 10.1128/spectrum.01006-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus is a genus of Gram-positive bacteria and comprises a major part of the lactic acid bacteria group that converts sugars to lactic acid. Lactobacillus species found in the gut microbiota are considered beneficial to human health and commonly used in probiotic formulations, but their molecular functions remain poorly defined. Microbes require metal ions for growth and function and must acquire them from the surrounding environment. Therefore, lactobacilli need to compete with other gut microbes for these nutrients, although their metal requirements are not well-understood. Indeed, the abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like zinc, manganese, and iron, but few studies have investigated the role of metals, especially zinc, in the physiology and metabolism of Lactobacillus species. Here, we investigated metal uptake by quantifying total cellular metal contents and compared how transition metals affect the growth of two distinct Lactobacillus species, Lactobacillus plantarum ATCC 14917 and Lactobacillus acidophilus ATCC 4356. When grown in rich or metal-limited medium, both species took up more manganese, zinc, and iron compared with other transition metals measured. Distinct zinc-, manganese- and iron-dependent patterns were observed in the growth kinetics for these species and while certain levels of each metal promoted the growth kinetics of both Lactobacillus species, the effects depend significantly on the culture medium and growth conditions. IMPORTANCE The gastrointestinal tract contains trillions of microorganisms, which are central to human health. Lactobacilli are considered beneficial microbiota members and are often used in probiotics, but their molecular functions, and especially those which are metal-dependent, remain poorly defined. Abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like manganese, zinc, and iron, but results are complex, sometimes contradictory, and poorly predictable. There is a significant need to understand how host diet and metabolism will affect the microbiota, given that changes in microbiota composition are linked with disease and infection. The significance of our research is in gaining insight to how metals distinctly affect individual Lactobacillus species, which could lead to novel therapeutics and improved medical treatment. Growth kinetics and quantification of metal contents highlights how distinct species can respond differently to varied metal availability and provide a foundation for future molecular and mechanistic studies.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Muxin Qiao
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - John King
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Brittany Trinh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Juventino Valdez
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Marium Haq
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Melissa L. Zastrow
- Department of Chemistry, University of Houston, Houston, Texas, United States
| |
Collapse
|
41
|
Abstract
Iron is an irreplaceable component of proteins and enzyme systems required for life. This need for iron is a well-characterized evolutionary mechanism for genetic selection. However, there is limited consideration of how iron bioavailability, initially determined by planetary accretion but fluctuating considerably at global scale over geological time frames, has shaped the biosphere. We describe influences of iron on planetary habitability from formation events >4 Gya and initiation of biochemistry from geochemistry through oxygenation of the atmosphere to current host–pathogen dynamics. By determining the iron and transition element distribution within the terrestrial planets, planetary core formation is a constraint on both the crustal composition and the longevity of surface water, hence a planet’s habitability. As such, stellar compositions, combined with metallic core-mass fraction, may be an observable characteristic of exoplanets that relates to their ability to support life. On Earth, the stepwise rise of atmospheric oxygen effectively removed gigatons of soluble ferrous iron from habitats, generating evolutionary pressures. Phagocytic, infectious, and symbiotic behaviors, dating from around the Great Oxygenation Event, refocused iron acquisition onto biotic sources, while eukaryotic multicellularity allows iron recycling within an organism. These developments allow life to more efficiently utilize a scarce but vital nutrient. Initiation of terrestrial life benefitted from the biochemical properties of abundant mantle/crustal iron, but the subsequent loss of iron bioavailability may have been an equally important driver of compensatory diversity. This latter concept may have relevance for the predicted future increase in iron deficiency across the food chain caused by elevated atmospheric CO2.
Collapse
|
42
|
Grassmann AA, Zavala-Alvarado C, Bettin EB, Picardeau M, Benaroudj N, Caimano MJ. The FUR-like regulators PerRA and PerRB integrate a complex regulatory network that promotes mammalian host-adaptation and virulence of Leptospira interrogans. PLoS Pathog 2021; 17:e1009078. [PMID: 34855918 PMCID: PMC8638967 DOI: 10.1371/journal.ppat.1009078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Leptospira interrogans, the causative agent of most cases of human leptospirosis, must respond to myriad environmental signals during its free-living and pathogenic lifestyles. Previously, we compared L. interrogans cultivated in vitro and in vivo using a dialysis membrane chamber (DMC) peritoneal implant model. From these studies emerged the importance of genes encoding the Peroxide responsive regulators PerRA and PerRB. First described in in Bacillus subtilis, PerRs are widespread in Gram-negative and -positive bacteria, where regulate the expression of gene products involved in detoxification of reactive oxygen species and virulence. Using perRA and perRB single and double mutants, we establish that L. interrogans requires at least one functional PerR for infectivity and renal colonization in a reservoir host. Our finding that the perRA/B double mutant survives at wild-type levels in DMCs is noteworthy as it demonstrates that the loss of virulence is not due to a metabolic lesion (i.e., metal starvation) but instead reflects dysregulation of virulence-related gene products. Comparative RNA-Seq analyses of perRA, perRB and perRA/B mutants cultivated within DMCs identified 106 genes that are dysregulated in the double mutant, including ligA, ligB and lvrA/B sensory histidine kinases. Decreased expression of LigA and LigB in the perRA/B mutant was not due to loss of LvrAB signaling. The majority of genes in the perRA and perRB single and double mutant DMC regulons were differentially expressed only in vivo, highlighting the importance of host signals for regulating gene expression in L. interrogans. Importantly, the PerRA, PerRB and PerRA/B DMC regulons each contain multiple genes related to environmental sensing and/or transcriptional regulation. Collectively, our data suggest that PerRA and PerRB are part of a complex regulatory network that promotes host adaptation by L. interrogans within mammals.
Collapse
Affiliation(s)
- André A. Grassmann
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
| | - Crispin Zavala-Alvarado
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Communauté d’universités et d’établissements (COMUE), Bio Sorbonne Paris Cité (BioSPC), Paris, France
| | - Everton B. Bettin
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sol, Brazil
| | - Mathieu Picardeau
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Nadia Benaroudj
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, United States of America
| |
Collapse
|
43
|
Silva AM, Moniz T, de Castro B, Rangel M. Human transferrin: An inorganic biochemistry perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Metal utilization in genome-reduced bacteria: Do human mycoplasmas rely on iron? Comput Struct Biotechnol J 2021; 19:5752-5761. [PMID: 34765092 PMCID: PMC8566771 DOI: 10.1016/j.csbj.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Mycoplasmas are parasitic bacteria with streamlined genomes and complex nutritional requirements. Although iron is vital for almost all organisms, its utilization by mycoplasmas is controversial. Despite its minimalist nature, mycoplasmas can survive and persist within the host, where iron availability is rigorously restricted through nutritional immunity. In this review, we describe the putative iron-enzymes, transporters, and metalloregulators of four relevant human mycoplasmas. This work brings in light critical differences in the mycoplasma-iron interplay. Mycoplasma penetrans, the species with the largest genome (1.36 Mb), shows a more classic repertoire of iron-related proteins, including different enzymes using iron-sulfur clusters as well as iron storage and transport systems. In contrast, the iron requirement is less apparent in the three species with markedly reduced genomes, Mycoplasma genitalium (0.58 Mb), Mycoplasma hominis (0.67 Mb) and Mycoplasma pneumoniae (0.82 Mb), as they exhibit only a few proteins possibly involved in iron homeostasis. The multiple facets of iron metabolism in mycoplasmas illustrate the remarkable evolutive potential of these minimal organisms when facing nutritional immunity and question the dependence of several human-infecting species for iron. Collectively, our data contribute to better understand the unique biology and infective strategies of these successful pathogens.
Collapse
Key Words
- ABC, ATP-binding cassette
- ECF transporter
- ECF, energy-coupling factor
- Fur, ferric uptake regulator
- Hrl, histidine-rich lipoprotein
- Iron homeostasis
- Metal acquisition
- Metalloenzyme
- Mge, Mycoplasma genitalium
- Mho, Mycoplasma hominis
- Mollicutes
- Mpe, Mycoplasma penetrans
- Mpn, Mycoplasma pneumonia
- Mycoplasmas
- PDB, protein data bank
- RNR, ribonucleotide reductase
- XRF, X-ray fluorescence
- ZIP, zinc-iron permease
Collapse
|
45
|
The Human Innate Immune Protein Calprotectin Elicits a Multimetal Starvation Response in Pseudomonas aeruginosa. Microbiol Spectr 2021; 9:e0051921. [PMID: 34549997 PMCID: PMC8557868 DOI: 10.1128/spectrum.00519-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To combat infections, the mammalian host limits availability of essential transition metals such as iron (Fe), zinc (Zn), and manganese (Mn) in a strategy termed "nutritional immunity." The innate immune protein calprotectin (CP) contributes to nutritional immunity by sequestering these metals to exert antimicrobial activity against a broad range of microbial pathogens. One such pathogen is Pseudomonas aeruginosa, which causes opportunistic infections in vulnerable populations, including individuals with cystic fibrosis. CP was previously shown to withhold Fe(II) and Zn(II) from P. aeruginosa and induce Fe and Zn starvation responses in this pathogen. In this work, we performed quantitative, label-free proteomics to further elucidate how CP impacts metal homeostasis pathways in P. aeruginosa. We report that CP induces an incomplete Fe starvation response, as many Fe-containing proteins that are repressed by Fe limitation are not affected by CP treatment. The Zn starvation response elicited by CP seems to be more complete than the Fe starvation response and includes increases in Zn transporters and Zn-independent proteins. CP also induces the expression of membrane-modifying proteins, and metal depletion studies indicate this response results from the sequestration of multiple metals. Moreover, the increased expression of membrane-modifying enzymes upon CP treatment correlates with increased tolerance to polymyxin B. Thus, the response of P. aeruginosa to CP treatment includes both single- and multimetal starvation responses and includes many factors related to virulence potential, broadening our understanding of this pathogen's interaction with the host. IMPORTANCE Transition metal nutrients are critical for growth and infection by all pathogens, and the innate immune system withholds these metals from pathogens to limit their growth in a strategy termed "nutritional immunity." While multimetal depletion by the host is appreciated, the majority of studies have focused on individual metals. Here, we use the innate immune protein calprotectin (CP), which complexes with several metals, including iron (Fe), zinc (Zn), and manganese (Mn), and the opportunistic pathogen Pseudomonas aeruginosa to investigate multimetal starvation. Using an unbiased label-free proteomics approach, we demonstrate that multimetal withholding by CP induces a regulatory response that is not merely additive of individual metal starvation responses, including the induction of lipid A modification proteins.
Collapse
|
46
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
47
|
Alamir OF, Oladele RO, Ibe C. Nutritional immunity: targeting fungal zinc homeostasis. Heliyon 2021; 7:e07805. [PMID: 34466697 PMCID: PMC8384899 DOI: 10.1016/j.heliyon.2021.e07805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Transition metals, such as Zn2+, are essential dietary constituents of all biological life, including mammalian hosts and the pathogens that infect them. Therefore, to thrive and cause infection, pathogens must successfully assimilate these elements from the host milieu. Consequently, mammalian immunity has evolved to actively restrict and/or pool metals to toxic concentrations in an effort to attenuate microbial pathogenicity - a process termed nutritional immunity. Despite host-induced Zn2+ nutritional immunity, pathogens such as Candida albicans, are still capable of causing disease and thus must be equipped with robust Zn2+ sensory, uptake and detoxification machinery. This review will discuss the strategies employed by mammalian hosts to limit Zn2+ during infection, and the subsequent fungal interventions that counteract Zn2+ nutritional immunity.
Collapse
Affiliation(s)
- Omran F Alamir
- Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education and Training, Al Asimah, Kuwait
| | - Rita O Oladele
- Department of Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - C Ibe
- Department of Microbiology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
48
|
Pajarillo EAB, Lee E, Kang DK. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:750-761. [PMID: 34466679 PMCID: PMC8379138 DOI: 10.1016/j.aninu.2021.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.
Collapse
Affiliation(s)
- Edward Alain B. Pajarillo
- Department of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, FL, USA
| | - Eunsook Lee
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
49
|
Liotta L, Luchini A. Unconventional Approaches to Direct Detection of Borreliosis and Other Tick Borne Illnesses: A Path Forward. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:164-172. [PMID: 34414392 PMCID: PMC8372993 DOI: 10.33696/immunology.3.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lance Liotta
- George Mason University, Manassas, Virginia, USA
| | | |
Collapse
|
50
|
Girelli D, Marchi G, Busti F, Vianello A. Iron metabolism in infections: Focus on COVID-19. Semin Hematol 2021; 58:182-187. [PMID: 34389110 PMCID: PMC8305218 DOI: 10.1053/j.seminhematol.2021.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
Iron is a micronutrient essential for a wide range of metabolic processes in virtually all living organisms. During infections, a battle for iron takes place between the human host and the invading pathogens. The liver peptide hepcidin, which is phylogenetically and structurally linked to defensins (antimicrobial peptides of the innate immunity), plays a pivotal role by subtracting iron to pathogens through its sequestration into host cells, mainly macrophages. While this phenomenon is well studied in certain bacterial infections, much less is known regarding viral infections. Iron metabolism also has implications on the functionality of cells of the immune system. Once primed by the contact with antigen presenting cells, lymphocytes need iron to sustain the metabolic burst required for mounting an effective cellular and humoral response. The COVID-19 pandemic has boosted an amount of clinical and translational research over the possible influences of nutrients on SARS-CoV-2 infection, in terms of either susceptibility or clinical course. Here we review the intersections between iron metabolism and COVID-19, belonging to the wider domain of the so-called “nutritional immunity”. A better understanding of such connections has potential broad implications, either from a mechanistic standpoint, or for the development of more effective strategies for managing COVID-19 and possible future pandemics.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Euro Blood Net Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Italy.
| | - Giacomo Marchi
- Department of Medicine, Section of Internal Medicine, University of Verona, Euro Blood Net Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, University of Verona, Euro Blood Net Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Italy
| | - Alice Vianello
- Department of Medicine, Section of Internal Medicine, University of Verona, Euro Blood Net Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Italy
| |
Collapse
|