1
|
Zhu N, Smallwood PM, Williams J, Wang Y, Nathans JH. Utility of binding protein fusions to immunoglobulin heavy chain constant regions from mammalian and avian species. J Biol Chem 2025; 301:108324. [PMID: 39971160 PMCID: PMC11964738 DOI: 10.1016/j.jbc.2025.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Antibodies are of central importance as reagents for the localization of proteins and other biomolecules in cells and tissues. To expand the repertoire of antibody-based reagents, we have constructed a series of plasmid vectors that permit expression of amino-terminal fusions to the hinge and Fc regions from goat, guinea pig, human, mouse, and rabbit immunoglobulin Gs, and chicken immunogloblin Y. The resulting fusion proteins can be produced in transfected mammalian cells and detected with commercially available and species-specific secondary antibody reagents. We demonstrate the utility of this platform by constructing and testing Fc fusions with DARPin, single-chain Fv, nanobody, toxin, and chemokine partners. The resulting fusion proteins were used to detect their targets in tissue sections or on the surface of transfected cells by immunofluorescent staining or on the surface of immune cells by flow cytometry. By expanding the range of Fc sequences available for fusion protein production, this platform will expand the repertoire of primary antibody reagents for multiplexed immunostaining and fluorescence-activated cell sorting analyses.
Collapse
Affiliation(s)
- Ningyu Zhu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy H Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
De Faveri F, Ceriani F, Marcotti W. In vivo spontaneous Ca 2+ activity in the pre-hearing mammalian cochlea. Nat Commun 2025; 16:29. [PMID: 39747044 PMCID: PMC11695946 DOI: 10.1038/s41467-024-55519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo. Here we show how calcium dynamics in the cochlear neuroepithelium of live pre-hearing mice shape the activity of the inner hair cells (IHCs) and their afferent synapses. Both IHCs and supporting cells (SCs) generate spontaneous calcium-dependent activity. Calcium waves from SCs synchronise the activity of nearby IHCs, which then spreads longitudinally recruiting several additional IHCs via a calcium wave-independent mechanism. This synchronised IHC activity in vivo increases the probability of afferent terminal recruitment. Moreover, the modiolar-to-pillar segregation in sound sensitivity of mature auditory nerve fibres appears to be primed at pre-hearing ages.
Collapse
Affiliation(s)
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
3
|
O’Connor AP, Amariutei AE, Zanella A, Hool SA, Carlton AJ, Kong F, Saenz-Roldan M, Jeng JY, Lecomte MJ, Johnson SL, Safieddine S, Marcotti W. In vivo AAV9-Myo7a gene rescue restores hearing and cholinergic efferent innervation in inner hair cells. JCI Insight 2024; 9:e182138. [PMID: 39641274 PMCID: PMC11623941 DOI: 10.1172/jci.insight.182138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
In the mammalian cochlea, sensory hair cells are crucial for the transduction of acoustic stimuli into electrical signals, which are then relayed to the central auditory pathway via spiral ganglion neuron (SGN) afferent dendrites. The SGN output is directly modulated by inhibitory cholinergic axodendritic synapses from the efferent fibers originating in the superior olivary complex. When the adult cochlea is subjected to noxious stimuli or aging, the efferent system undergoes major rewiring, such that it reestablishes direct axosomatic contacts with the inner hair cells (IHCs), which occur only transiently during prehearing stages of development. The trigger, origin, and degree of efferent plasticity in the cochlea remains largely unknown. Using functional and morphological approaches, we demonstrate that efferent plasticity in the adult cochlea occurs as a direct consequence of mechanoelectrical transducer current dysfunction. We also show that, different from prehearing stages of development, the lateral olivocochlear - but not the medial olivocochlear - efferent fibers are those that form the axosomatic synapses with the IHCs. The study also demonstrates that in vivo restoration of IHC function using AAV-Myo7a rescue reestablishes the synaptic profile of adult IHCs and improves hearing, highlighting the potential of using gene-replacement therapy for progressive hearing loss.
Collapse
Affiliation(s)
- Andrew P. O’Connor
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ana E. Amariutei
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Alice Zanella
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Sarah A. Hool
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Adam J. Carlton
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Fanbo Kong
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mauricio Saenz-Roldan
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Marie-José Lecomte
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Saaid Safieddine
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Kennedy HJ, Evans MG. Conductance properties of the α9α10 nicotinic acetylcholine receptor of neonatal mouse inner and outer hair cells. Hear Res 2024; 453:109126. [PMID: 39383639 DOI: 10.1016/j.heares.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
In the developing cochlea, just before the onset of hearing on postnatal day 12, the medial olivocochlear efferent axons in synaptic contact with the inner hair cells (IHCs) start withdrawing and new efferent synaptic connections are formed on the outer hair cells (OHCs), thereby progressing towards the adult pattern of medial olivocochlear efferent innervation. The synapses are inhibitory, calcium influx through the α9α10 nicotinic acetylcholine receptors (nAChRs) driving opening of calcium-dependent potassium channels. The nAChRs appear to function similarly in IHCs and OHCs, although with probable kinetic differences. Our aim was to assess their functional similarity in the neonatal mouse cochlea by making whole-cell recordings from both hair cell types between postnatal day 7 and 10 when nAChRs are expressed. ACh was applied to voltage-clamped hair cells by pressure-ejection from a pipette. The cells were dialysed with a Cs+-based solution designed to eliminate calcium-dependent potassium currents. There were differences in amplitude, voltage-sensitivity and reversal potential of the nAChR currents between IHCs and OHCs. There was also some indication that IHC nAChRs have slower activation and desensitization kinetics, although the relatively slow ACh application limited interpretation of this result. These differences, particularly concerning the reversal potential, might indicate the presence of different auxiliary protein subunits of the α9α10 receptor in neonatal IHCs and OHCs.
Collapse
Affiliation(s)
- Helen J Kennedy
- School of Physiology, Pharmacology & Neuroscience, Bristol Neuroscience, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
5
|
Castagnola T, Castagna VC, Kitcher SR, Torres Cadenas L, Di Guilmi MN, Gomez Casati ME, Buonfiglio PI, Dalamón V, Katz E, Elgoyhen AB, Weisz CJ, Goutman JD, Wedemeyer C. Co-release of GABA and ACh from medial olivocochlear neurons fine tunes cochlear efferent inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607644. [PMID: 39185230 PMCID: PMC11343139 DOI: 10.1101/2024.08.12.607644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
During development, inner hair cells (IHCs) in the mammalian cochlea are unresponsive to acoustic stimuli but instead exhibit spontaneous activity. During this same period, neurons originating from the medial olivocochlear complex (MOC) transiently innervate IHCs, regulating their firing pattern which is crucial for the correct development of the auditory pathway. Although the MOC-IHC is a cholinergic synapse, previous evidence indicates the widespread presence of gamma-aminobutyric acid (GABA) signaling markers, including presynaptic GABAB receptors (GABABR). In this study, we explore the source of GABA by optogenetically activating either cholinergic or GABAergic fibers. The optogenetic stimulation of MOC terminals from GAD;ChR2-eYFP and ChAT;ChR2-eYFP mice evoked synaptic currents in IHCs that were blocked by α-bungarotoxin. This suggests that GABAergic fibers release ACh and activate α9α10 nicotinic acetylcholine receptors (nAChRs). Additionally, MOC cholinergic fibers release not only ACh but also GABA, as the effect of GABA on ACh response amplitude was prevented by applying the GABAB-R blocker (CGP 36216). Using optical neurotransmitter detection and calcium imaging techniques, we examined the extent of GABAergic modulation at the single synapse level. Our findings suggest heterogeneity in GABA modulation, as only 15 out of 31 recorded synaptic sites were modulated by applying the GABABR specific antagonist, CGP (100-200 μM). In conclusion, we provide compelling evidence that GABA and ACh are co-released from at least a subset of MOC terminals. In this circuit, GABA functions as a negative feedback mechanism, locally regulating the extent of cholinergic inhibition at certain efferent-IHC synapses during an immature stage.
Collapse
Affiliation(s)
- Tais Castagnola
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria C Castagna
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, (1121) Ciudad Autónoma de Buenos Aires, Argentina
| | - Siân R. Kitcher
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Mariano N Di Guilmi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Gomez Casati
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, (1121) Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula I Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Viviana Dalamón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, (1121) Ciudad Autónoma de Buenos Aires, Argentina
| | - Catherine J.C. Weisz
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Wedemeyer
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Zhang C, Burger RM. Cholinergic modulation in the vertebrate auditory pathway. Front Cell Neurosci 2024; 18:1414484. [PMID: 38962512 PMCID: PMC11220170 DOI: 10.3389/fncel.2024.1414484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Acetylcholine (ACh) is a prevalent neurotransmitter throughout the nervous system. In the brain, ACh is widely regarded as a potent neuromodulator. In neurons, ACh signals are conferred through a variety of receptors that influence a broad range of neurophysiological phenomena such as transmitter release or membrane excitability. In sensory circuitry, ACh modifies neural responses to stimuli and coordinates the activity of neurons across multiple levels of processing. These factors enable individual neurons or entire circuits to rapidly adapt to the dynamics of complex sensory stimuli, underscoring an essential role for ACh in sensory processing. In the auditory system, histological evidence shows that acetylcholine receptors (AChRs) are expressed at virtually every level of the ascending auditory pathway. Despite its apparent ubiquity in auditory circuitry, investigation of the roles of this cholinergic network has been mainly focused on the inner ear or forebrain structures, while less attention has been directed at regions between the cochlear nuclei and midbrain. In this review, we highlight what is known about cholinergic function throughout the auditory system from the ear to the cortex, but with a particular emphasis on brainstem and midbrain auditory centers. We will focus on receptor expression, mechanisms of modulation, and the functional implications of ACh for sound processing, with the broad goal of providing an overview of a newly emerging view of impactful cholinergic modulation throughout the auditory pathway.
Collapse
Affiliation(s)
- Chao Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
8
|
Bachman JL, Kitcher SR, Vattino LG, Beaulac HJ, Chaves MG, Rivera IH, Katz E, Wedemeyer C, Weisz CJ. GABAergic synapses between auditory efferent neurons and type II spiral ganglion afferent neurons in the mouse cochlea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587185. [PMID: 38586043 PMCID: PMC10996694 DOI: 10.1101/2024.03.28.587185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cochlear outer hair cells (OHCs) are electromotile and are implicated in mechanisms of amplification of responses to sound that enhance sound sensitivity and frequency tuning. They send information to the brain through glutamatergic synapses onto a small subpopulation of neurons of the ascending auditory nerve, the type II spiral ganglion neurons (SGNs). The OHC synapses onto type II SGNs are sparse and weak, suggesting that type II SGNs respond primarily to loud and possibly damaging levels of sound. OHCs also receive innervation from the brain through the medial olivocochlear (MOC) efferent neurons. MOC neurons are cholinergic yet exert an inhibitory effect on auditory function as they are coupled to alpha9/alpha10 nicotinic acetylcholine receptors (nAChRs) on OHCs, which leads to calcium influx that gates SK potassium channels. The net hyperpolarization exerted by this efferent synapse reduces OHC activity-evoked electromotility and is implicated in cochlear gain control, protection against acoustic trauma, and attention. MOC neurons also label for markers of gamma-aminobutyric acid (GABA) and GABA synthesis. GABAB autoreceptor (GABABR) activation by GABA released from MOC terminals has been demonstrated to reduce ACh release, confirming important negative feedback roles for GABA. However, the full complement of GABAergic activity in the cochlea is not currently understood, including the mechanisms that regulate GABA release from MOC axon terminals, whether GABA diffuses from MOC axon terminals to other postsynaptic cells, and the location and function of GABAA receptors (GABAARs). Previous electron microscopy studies suggest that MOC neurons form contacts onto several other cell types in the cochlea, but whether these contacts form functional synapses, and what neurotransmitters are employed, are unknown. Here we use immunohistochemistry, optical neurotransmitter imaging and patch-clamp electrophysiology from hair cells, afferent dendrites, and efferent axons to demonstrate that in addition to presynaptic GABABR autoreceptor activation, MOC efferent axon terminals release GABA onto type II SGN afferent dendrites with postsynaptic activity mediated by GABAARs. This synapse may have multiple roles including developmental regulation of cochlear innervation, fine tuning of OHC activity, or providing feedback to the brain about MOC and OHC activity.
Collapse
Affiliation(s)
- Julia L. Bachman
- These authors contributed equally
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
- The National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Siân R. Kitcher
- These authors contributed equally
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Lucas G. Vattino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
- Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Holly J. Beaulac
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - M. Grace Chaves
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
- Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Graduate Program in Speech and Hearing Biosciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Israel Hernandez Rivera
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Carolina Wedemeyer
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Catherine J.C. Weisz
- Section on Neuronal Circuitry, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Slika E, Fuchs PA. Genetic tools for studying cochlear inhibition. Front Cell Neurosci 2024; 18:1372948. [PMID: 38560293 PMCID: PMC10978695 DOI: 10.3389/fncel.2024.1372948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Efferent feedback to the mammalian cochlea includes cholinergic medial olivocochlear neurons (MOCs) that release ACh to hyperpolarize and shunt the voltage change that drives electromotility of outer hair cells (OHCs). Via brainstem connectivity, MOCs are activated by sound in a frequency- and intensity-dependent manner, thereby reducing the amplification of cochlear vibration provided by OHC electromotility. Among other roles, this efferent feedback protects the cochlea from acoustic trauma. Lesion studies, as well as a variety of genetic mouse models, support the hypothesis of efferent protection from acoustic trauma. Genetic knockout and gain-of-function knockin of the unique α9α10-containing nicotinic acetylcholine receptor (nAChR) in hair cells show that acoustic protection correlates with the efficacy of cholinergic inhibition of OHCs. This protective effect was replicated by viral transduction of the gain-of-function α9L9'T nAChR into α9-knockout mice. Continued progress with "efferent gene therapy" will require a reliable method for visualizing nAChR expression in cochlear hair cells. To that end, mice expressing HA-tagged α9 or α10 nAChRs were generated using CRISPR technology. This progress will facilitate continued study of the hair cell nAChR as a therapeutic target to prevent hearing loss and potentially to ameliorate associated pathologies such as hyperacusis.
Collapse
Affiliation(s)
| | - Paul Albert Fuchs
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins, University School of Medicine Baltimore, Baltimore, MD, United States
| |
Collapse
|
10
|
Cacace AT, Berri B. Blast Overpressures as a Military and Occupational Health Concern. Am J Audiol 2023; 32:779-792. [PMID: 37713532 DOI: 10.1044/2023_aja-23-00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
PURPOSE This tutorial reviews effects of environmental stressors like blast overpressures and other well-known acoustic contaminants (continuous, intermittent, and impulsive noise) on hearing, tinnitus, vestibular, and balance-related functions. Based on the overall outcome of these effects, detailed consideration is given to the health and well-being of individuals. METHOD Because hearing loss and tinnitus are consequential in affecting quality of life, novel neuromodulation paradigms are reviewed for their positive abatement and treatment-related effects. Examples of clinical data, research strategies, and methodological approaches focus on repetitive transcranial magnetic stimulation (rTMS) and electrical stimulation of the vagus nerve paired with tones (VNSt) for their unique contributions to this area. RESULTS Acoustic toxicants transmitted through the atmosphere are noteworthy for their propensity to induce hearing loss and tinnitus. Mounting evidence also indicates that high-level rapid onset changes in atmospheric sound pressure can significantly impact vestibular and balance function. Indeed, the risk of falling secondary to loss of, or damage to, sensory receptor cells in otolith organs (utricle and saccule) is a primary reason for this concern. As part of the complexities involved in VNSt treatment strategies, vocal dysfunction may also manifest. In addition, evaluation of temporospatial gait parameters is worthy of consideration based on their ability to detect and monitor incipient neurological disease, cognitive decline, and mortality. CONCLUSION Highlighting these respective areas underscores the need to enhance information exchange among scientists, clinicians, and caregivers on the benefits and complications of these outcomes.
Collapse
Affiliation(s)
- Anthony T Cacace
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
| | - Batoul Berri
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
- Department of Otolaryngology, University of Michigan, Ann Arbor
| |
Collapse
|
11
|
Affiliation(s)
- Mary G. Chaves
- Speech, Hearing Biosciences and Technology Graduate Program, Harvard Medical School and Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Jeffrey R. Holt
- Speech, Hearing Biosciences and Technology Graduate Program, Harvard Medical School and Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
12
|
Elgoyhen AB. The α9α10 acetylcholine receptor: a non-neuronal nicotinic receptor. Pharmacol Res 2023; 190:106735. [PMID: 36931539 DOI: 10.1016/j.phrs.2023.106735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Within the superfamily of pentameric ligand-gated ion channels, cholinergic nicotinic receptors (nAChRs) were classically identified to mediate synaptic transmission in the nervous system and the neuromuscular junction. The α9 and α10 nAChR subunits were the last ones to be identified. Surprisingly, they do not fall into the dichotomic neuronal/muscle classification of nAChRs. They assemble into heteropentamers with a well-established function as canonical ion channels in inner ear hair cells, where they mediate central nervous system control of auditory and vestibular sensory processing. The present review includes expression, pharmacological, structure-function, molecular evolution and pathophysiological studies, that define receptors composed from α9 and α10 subunits as distant and distinct members within the nAChR family. Thus, although α9 and α10 were initially included within the neuronal subdivision of nAChR subunits, they form a distinct clade within the phylogeny of nAChRs. Following the classification of nAChR subunits based on their main synaptic site of action, α9 and α10 should receive a name in their own right.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
13
|
Loh YM, Su MP, Ellis DA, Andrés M. The auditory efferent system in mosquitoes. Front Cell Dev Biol 2023; 11:1123738. [PMID: 36923250 PMCID: PMC10009176 DOI: 10.3389/fcell.2023.1123738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Whilst acoustic communication forms an integral component of the mating behavior of many insect species, it is particularly crucial for disease-transmitting mosquitoes; swarming males rely on hearing the faint sounds of flying females for courtship initiation. That males can hear females within the din of a swarm is testament to their fabulous auditory systems. Mosquito hearing is highly frequency-selective, remarkably sensitive and, most strikingly, supported by an elaborate system of auditory efferent neurons that modulate the auditory function - the only documented example amongst insects. Peripheral release of octopamine, serotonin and GABA appears to differentially modulate hearing across major disease-carrying mosquito species, with receptors from other neurotransmitter families also identified in their ears. Because mosquito mating relies on hearing the flight tones of mating partners, the auditory efferent system offers new potential targets for mosquito control. It also represents a unique insect model for studying auditory efferent networks. Here we review current knowledge of the mosquito auditory efferent system, briefly compare it with its counterparts in other species and highlight future research directions to unravel its contribution to mosquito auditory perception.
Collapse
Affiliation(s)
- YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - David A. Ellis
- UCL Ear Institute, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Marta Andrés
- UCL Ear Institute, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
14
|
Carlton AJ, Jeng J, Grandi FC, De Faveri F, Ceriani F, De Tomasi L, Underhill A, Johnson SL, Legan KP, Kros CJ, Richardson GP, Mustapha M, Marcotti W. A critical period of prehearing spontaneous Ca 2+ spiking is required for hair-bundle maintenance in inner hair cells. EMBO J 2023; 42:e112118. [PMID: 36594367 PMCID: PMC9929643 DOI: 10.15252/embj.2022112118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a "critical time period" during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function.
Collapse
Affiliation(s)
| | - Jing‐Yi Jeng
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | | | | | | | | | - Stuart L Johnson
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Kevin P Legan
- School of Life SciencesUniversity of Sussex, FalmerBrightonUK
| | - Corné J Kros
- School of Life SciencesUniversity of Sussex, FalmerBrightonUK
| | | | - Mirna Mustapha
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Walter Marcotti
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
15
|
Lipovsek M, Elgoyhen AB. The evolutionary tuning of hearing. Trends Neurosci 2023; 46:110-123. [PMID: 36621369 DOI: 10.1016/j.tins.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
After the transition to life on land, tympanic middle ears emerged separately in different groups of tetrapods, facilitating the efficient detection of airborne sounds and paving the way for high frequency sensitivity. The processes that brought about high-frequency hearing in mammals are tightly linked to the accumulation of coding sequence changes in inner ear genes; many of which were selected during evolution. These include proteins involved in hair bundle morphology, mechanotransduction and high endolymphatic potential, somatic electromotility for sound amplification, ribbon synapses for high-fidelity transmission of sound stimuli, and efferent synapses for the modulation of sound amplification. Here, we review the molecular evolutionary processes behind auditory functional innovation. Overall, the evidence to date supports the hypothesis that changes in inner ear proteins were central to the fine tuning of mammalian hearing.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, UK.
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Kersbergen CJ, Babola TA, Rock J, Bergles DE. Developmental spontaneous activity promotes formation of sensory domains, frequency tuning and proper gain in central auditory circuits. Cell Rep 2022; 41:111649. [PMID: 36384119 PMCID: PMC9730452 DOI: 10.1016/j.celrep.2022.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/24/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Neurons that process sensory information exhibit bursts of electrical activity during development, providing early training to circuits that will later encode similar features of the external world. In the mammalian auditory system, this intrinsically generated activity emerges from the cochlea prior to hearing onset, but its role in maturation of auditory circuitry remains poorly understood. We show that selective suppression of cochlear supporting cell spontaneous activity disrupts patterned burst firing of central auditory neurons without affecting cell survival or acoustic thresholds. However, neurons in the inferior colliculus of these mice exhibit enhanced acoustic sensitivity and broader frequency tuning, resulting in wider isofrequency laminae. Despite this enhanced neural responsiveness, total tone-responsive regions in the auditory cortex are substantially smaller. Thus, disruption of pre-hearing cochlear activity causes profound changes in neural encoding of sound, with important implications for restoration of hearing in individuals who experience reduced activity during this critical developmental period.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Travis A Babola
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | | | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Grierson KE, Hickman TT, Liberman MC. Dopaminergic and cholinergic innervation in the mouse cochlea after noise-induced or age-related synaptopathy. Hear Res 2022; 422:108533. [PMID: 35671600 PMCID: PMC11195664 DOI: 10.1016/j.heares.2022.108533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Cochlear synaptopathy, the loss of or damage to connections between auditory-nerve fibers (ANFs) and inner hair cells (IHCs), is a prominent pathology in noise-induced and age-related hearing loss. Here, we investigated if degeneration of the olivocochlear (OC) efferent innervation is also a major aspect of the synaptopathic ear, by quantifying the volume and spatial organization of its cholinergic and dopaminergic components, using antibodies to vesicular acetylcholine transporter (VAT) and tyrosine hydroxylase (TH), respectively. CBA/CaJ male mice were examined 1 day to 8 months after a synaptopathic noise exposure, and compared to unexposed age-matched controls and unexposed aged mice at 24-28 months. In normal ears, cholinergic lateral (L)OC terminals were denser in the apical half of the cochlea and on the modiolar side of the inner hair cells (IHCs), where ANFs of low-spontaneous rate are typically found, while dopaminergic terminals were more common in the basal third of the cochlea and, re the IHC axes, were offset towards the habenula with respect to cholinergic terminals. The noise had only small and transient effects on the density of LOC innervation, its spatial organization around the IHC axes, or the extent to which TH and VAT signal were colocalized. The synaptopathic noise also had relatively small and transient effects on cholinergic innervation density in the outer hair cell (OHC) area, which normally peaks in the 16 kHz region and falls monotonically towards higher and lower frequencies. In contrast, in the aged ears, there was massive degeneration of OHC efferents, especially in the apical half of the cochlea, where there was also significant loss of OHCs. In the IHC area, there was significant loss of cholinergic terminals in both apical and basal regions and of dopaminergic innervation in the basal half. Furthermore, the cholinergic terminals in the aged ears spread from their normal clustering near the IHC basolateral pole, where the ANF synapses are found, to positions up and down the IHC somata and regions of the neuropil closer to the habenula. This apparent migration was most striking in the apex, where the hair cell pathology was greatest, and may be a harbinger of impending hair cell death.
Collapse
Affiliation(s)
- Kiera E Grierson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA; Hearing Research Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, AUS
| | - Tyler T Hickman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA.
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
18
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
19
|
Zhang Q, Kindt KS. Using Light-Sheet Microscopy to Study Spontaneous Activity in the Developing Lateral-Line System. Front Cell Dev Biol 2022; 10:819612. [PMID: 35592245 PMCID: PMC9112283 DOI: 10.3389/fcell.2022.819612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hair cells are the sensory receptors in the auditory and vestibular systems of all vertebrates, and in the lateral-line system of aquatic vertebrates. The purpose of this work is to explore the zebrafish lateral-line system as a model to study and understand spontaneous activity in vivo. Our work applies genetically encoded calcium indicators along with light-sheet fluorescence microscopy to visualize spontaneous calcium activity in the developing lateral-line system. Consistent with our previous work, we show that spontaneous calcium activity is present in developing lateral-line hair cells. We now show that supporting cells that surround hair cells, and cholinergic efferent terminals that directly contact hair cells are also spontaneously active. Using two-color functional imaging we demonstrate that spontaneous activity in hair cells does not correlate with activity in either supporting cells or cholinergic terminals. We find that during lateral-line development, hair cells autonomously generate spontaneous events. Using localized calcium indicators, we show that within hair cells, spontaneous calcium activity occurs in two distinct domains—the mechanosensory bundle and the presynapse. Further, spontaneous activity in the mechanosensory bundle ultimately drives spontaneous calcium influx at the presynapse. Comprehensively, our results indicate that in developing lateral-line hair cells, autonomously generated spontaneous activity originates with spontaneous mechanosensory events.
Collapse
|
20
|
Michalski N, Petit C. Central auditory deficits associated with genetic forms of peripheral deafness. Hum Genet 2022; 141:335-345. [PMID: 34435241 PMCID: PMC9034985 DOI: 10.1007/s00439-021-02339-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023]
Abstract
Since the 1990s, the study of inherited hearing disorders, mostly those detected at birth, in the prelingual period or in young adults, has led to the identification of their causal genes. The genes responsible for more than 140 isolated (non-syndromic) and about 400 syndromic forms of deafness have already been discovered. Studies of mouse models of these monogenic forms of deafness have provided considerable insight into the molecular mechanisms of hearing, particularly those involved in the development and/or physiology of the auditory sensory organ, the cochlea. In parallel, studies of these models have also made it possible to decipher the pathophysiological mechanisms underlying hearing impairment. This has led a number of laboratories to investigate the potential of gene therapy for curing these forms of deafness. Proof-of-concept has now been obtained for the treatment of several forms of deafness in mouse models, paving the way for clinical trials of cochlear gene therapy in patients in the near future. Nevertheless, peripheral deafness may also be associated with central auditory dysfunctions and may extend well beyond the auditory system itself, as a consequence of alterations to the encoded sensory inputs or involvement of the causal deafness genes in the development and/or functioning of central auditory circuits. Investigating the diversity, causes and underlying mechanisms of these central dysfunctions, the ways in which they could impede the expected benefits of hearing restoration by peripheral gene therapy, and determining how these problems could be remedied is becoming a research field in its own right. Here, we provide an overview of the current knowledge about the central deficits associated with genetic forms of deafness.
Collapse
Affiliation(s)
- Nicolas Michalski
- Institut de l'Audition, Institut Pasteur, INSERM, 75012, Paris, France.
| | - Christine Petit
- Institut de l'Audition, Institut Pasteur, INSERM, 75012, Paris, France.
| |
Collapse
|
21
|
Sadeghi SG, Géléoc GSG. Editorial: Commonalities and Differences in Vestibular and Auditory Pathways. Front Neurosci 2022; 16:876798. [PMID: 35401079 PMCID: PMC8984178 DOI: 10.3389/fnins.2022.876798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soroush G. Sadeghi
- Center for Hearing and Deafness, Department of Communicative Disorders and Science, University at Buffalo, Buffalo, NY, United States
- *Correspondence: Soroush G. Sadeghi
| | - Gwenaëlle S. G. Géléoc
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Gwenaëlle S. G. Géléoc
| |
Collapse
|
22
|
Lorente-Cánovas B, Eckrich S, Lewis MA, Johnson SL, Marcotti W, Steel KP. Grxcr1 regulates hair bundle morphogenesis and is required for normal mechanoelectrical transduction in mouse cochlear hair cells. PLoS One 2022; 17:e0261530. [PMID: 35235570 PMCID: PMC8890737 DOI: 10.1371/journal.pone.0261530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
Tasmanian devil (tde) mice are deaf and exhibit circling behaviour. Sensory hair cells of mutants show disorganised hair bundles with abnormally thin stereocilia. The origin of this mutation is the insertion of a transgene which disrupts expression of the Grxcr1 (glutaredoxin cysteine rich 1) gene. We report here that Grxcr1 exons and transcript sequences are not affected by the transgene insertion in tde homozygous (tde/tde) mice. Furthermore, 5'RACE PCR experiments showed the presence of two different transcripts of the Grxcr1 gene, expressed in both tde/tde and in wild-type controls. However, quantitative analysis of Grxcr1 transcripts revealed a significantly decreased mRNA level in tde/tde mice. The key stereociliary proteins ESPN, MYO7A, EPS8 and PTPRQ were distributed in hair bundles of homozygous tde mutants in a similar pattern compared with control mice. We found that the abnormal morphology of the stereociliary bundle was associated with a reduction in the size and Ca2+-sensitivity of the mechanoelectrical transducer (MET) current. We propose that GRXCR1 is key for the normal growth of the stereociliary bundle prior to the onset of hearing, and in its absence hair cells are unable to mature into fully functional sensory receptors.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephanie Eckrich
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
23
|
Elgoyhen AB. The α9α10 nicotinic acetylcholine receptor: a compelling drug target for hearing loss? Expert Opin Ther Targets 2022; 26:291-302. [PMID: 35225139 PMCID: PMC9007918 DOI: 10.1080/14728222.2022.2047931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hearing loss is a major health problem, impacting education, communication, interpersonal relationships, and mental health. Drugs that prevent or restore hearing are lacking and hence novel drug targets are sought. There is the possibility of targeting the α9α10 nicotinic acetylcholine receptor (nAChR) in the prevention of noise-induced, hidden hearing loss and presbycusis. This receptor mediates synaptic transmission between medial olivocochlear efferent fibers and cochlear outer hair cells. This target is key since enhanced olivocochlear activity prevents noise-induced hearing loss and delays presbycusis. AREAS COVERED The work examines the α9α10 nicotinic acetylcholine receptor (nAChR), its role in noise-induced, hidden hearing loss and presbycusis and the possibility of targeting. Data has been searched in Pubmed, the World Report on Hearing from the World Health Organization and the Global Burden of Disease Study 2019. EXPERT OPINION The design of positive allosteric modulators of α9α10 nAChRs is proposed because of the advantage of reinforcing the medial olivocochlear (MOC)-hair cell endogenous neurotransmission without directly stimulating the target receptors, therefore avoiding receptor desensitization and reduced efficacy. The time is right for the discovery and development of α9α10 nAChRs targeting agents and high throughput screening assays will support this.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
Maul A, Huebner AK, Strenzke N, Moser T, Rübsamen R, Jovanovic S, Hübner CA. The Cl--channel TMEM16A is involved in the generation of cochlear Ca2+ waves and promotes the refinement of auditory brainstem networks in mice. eLife 2022; 11:72251. [PMID: 35129434 PMCID: PMC8871368 DOI: 10.7554/elife.72251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/06/2022] [Indexed: 11/17/2022] Open
Abstract
Before hearing onset (postnatal day 12 in mice), inner hair cells (IHCs) spontaneously fire action potentials, thereby driving pre-sensory activity in the ascending auditory pathway. The rate of IHC action potential bursts is modulated by inner supporting cells (ISCs) of Kölliker’s organ through the activity of the Ca2+-activated Cl--channel TMEM16A (ANO1). Here, we show that conditional deletion of Ano1 (Tmem16a) in mice disrupts Ca2+ waves within Kölliker’s organ, reduces the burst-firing activity and the frequency selectivity of auditory brainstem neurons in the medial nucleus of the trapezoid body (MNTB), and also impairs the functional refinement of MNTB projections to the lateral superior olive. These results reveal the importance of the activity of Kölliker’s organ for the refinement of central auditory connectivity. In addition, our study suggests the involvement of TMEM16A in the propagation of Ca2+ waves, which may also apply to other tissues expressing TMEM16A.
Collapse
Affiliation(s)
- Alena Maul
- Neuroscience Department, Max Delbrück Center for Molecular Medicine
| | | | - Nicola Strenzke
- Institute for Auditory Neuroscience, Department of Otolaryngology, University of Göttingen
| | - Tobias Moser
- Institute for Auditory Neuroscience, Department of Otolaryngology, University of Göttingen
| | - Rudolf Rübsamen
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig
| | - Saša Jovanovic
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig
| | | |
Collapse
|
25
|
Levic S. SK Current, Expressed During the Development and Regeneration of Chick Hair Cells, Contributes to the Patterning of Spontaneous Action Potentials. Front Cell Neurosci 2022; 15:766264. [PMID: 35069114 PMCID: PMC8770932 DOI: 10.3389/fncel.2021.766264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Chick hair cells display calcium (Ca2+)-sensitive spontaneous action potentials during development and regeneration. The role of this activity is unclear but thought to be involved in establishing proper synaptic connections and tonotopic maps, both of which are instrumental to normal hearing. Using an electrophysiological approach, this work investigated the functional expression of Ca2+-sensitive potassium [IK(Ca)] currents and their role in spontaneous electrical activity in the developing and regenerating hair cells (HCs) in the chick basilar papilla. The main IK(Ca) in developing and regenerating chick HCs is an SK current, based on its sensitivity to apamin. Analysis of the functional expression of SK current showed that most dramatic changes occurred between E8 and E16. Specifically, there is a developmental downregulation of the SK current after E16. The SK current gating was very sensitive to the availability of intracellular Ca2+ but showed very little sensitivity to T-type voltage-gated Ca2+ channels, which are one of the hallmarks of developing and regenerating hair cells. Additionally, apamin reduced the frequency of spontaneous electrical activity in HCs, suggesting that SK current participates in patterning the spontaneous electrical activity of HCs.
Collapse
Affiliation(s)
- Snezana Levic
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
26
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
27
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Plazas PV, Elgoyhen AB. The Cholinergic Lateral Line Efferent Synapse: Structural, Functional and Molecular Similarities With Those of the Cochlea. Front Cell Neurosci 2021; 15:765083. [PMID: 34712122 PMCID: PMC8545859 DOI: 10.3389/fncel.2021.765083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Vertebrate hair cell (HC) systems are innervated by efferent fibers that modulate their response to external stimuli. In mammals, the best studied efferent-HC synapse, the cholinergic medial olivocochlear (MOC) efferent system, makes direct synaptic contacts with HCs. The net effect of MOC activity is to hyperpolarize HCs through the activation of α9α10 nicotinic cholinergic receptors (nAChRs) and the subsequent activation of Ca2+-dependent SK2 potassium channels. A serious obstacle in research on many mammalian sensory systems in their native context is that their constituent neurons are difficult to access even in newborn animals, hampering circuit observation, mapping, or controlled manipulation. By contrast, fishes and amphibians have a superficial and accessible mechanosensory system, the lateral line (LL), which circumvents many of these problems. LL responsiveness is modulated by efferent neurons which aid to distinguish between external and self-generated stimuli. One component of the LL efferent system is cholinergic and its activation inhibits LL afferent activity, similar to what has been described for MOC efferents. The zebrafish (Danio rerio) has emerged as a powerful model system for studying human hearing and balance disorders, since LL HC are structurally and functionally analogous to cochlear HCs, but are optically and pharmacologically accessible within an intact specimen. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of HC biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired HC dysfunction. With the rise of the zebrafish LL as a model in which to study auditory system function and disease, there has been an increased interest in studying its efferent system and evaluate the similarity between mammalian and piscine efferent synapses. Advances derived from studies in zebrafish include understanding the effect of the LL efferent system on HC and afferent activity, and revealing that an α9-containing nAChR, functionally coupled to SK channels, operates at the LL efferent synapse. In this review, we discuss the tools and findings of these recent investigations into zebrafish efferent-HC synapse, their commonalities with the mammalian counterpart and discuss several emerging areas for future studies.
Collapse
Affiliation(s)
- Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
29
|
Rabbitt RD, Holman HA. ATP and ACh Evoked Calcium Transients in the Neonatal Mouse Cochlear and Vestibular Sensory Epithelia. Front Neurosci 2021; 15:710076. [PMID: 34566562 PMCID: PMC8455828 DOI: 10.3389/fnins.2021.710076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
Hair cells in the mammalian inner ear sensory epithelia are surrounded by supporting cells which are essential for function of cochlear and vestibular systems. In mice, support cells exhibit spontaneous intracellular Ca2+ transients in both auditory and vestibular organs during the first postnatal week before the onset of hearing. We recorded long lasting (>200 ms) Ca2+ transients in cochlear and vestibular support cells in neonatal mice using the genetic calcium indicator GCaMP5. Both cochlear and vestibular support cells exhibited spontaneous intracellular Ca2+ transients (GCaMP5 ΔF/F), in some cases propagating as waves from the apical (endolymph facing) to the basolateral surface with a speed of ∼25 μm per second, consistent with inositol trisphosphate dependent calcium induced calcium release (CICR). Acetylcholine evoked Ca2+ transients were observed in both inner border cells in the cochlea and vestibular support cells, with a larger change in GCaMP5 fluorescence in the vestibular support cells. Adenosine triphosphate evoked robust Ca2+ transients predominantly in the cochlear support cells that included Hensen’s cells, Deiters’ cells, inner hair cells, inner phalangeal cells and inner border cells. A Ca2+ event initiated in one inner border cells propagated in some instances longitudinally to neighboring inner border cells with an intercellular speed of ∼2 μm per second, and decayed after propagating along ∼3 cells. Similar intercellular propagation was not observed in the radial direction from inner border cell to inner sulcus cells, and was not observed between adjacent vestibular support cells.
Collapse
Affiliation(s)
- Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Graduate Program in Neuroscience, University of Utah, Salt Lake City, UT, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT, United States
| | - Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
30
|
Fisher F, Zhang Y, Vincent PFY, Gajewiak J, Gordon TJ, Glowatzki E, Fuchs PA, McIntosh JM. Cy3-RgIA-5727 Labels and Inhibits α9-Containing nAChRs of Cochlear Hair Cells. Front Cell Neurosci 2021; 15:697560. [PMID: 34385908 PMCID: PMC8354143 DOI: 10.3389/fncel.2021.697560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 01/29/2023] Open
Abstract
Efferent cholinergic neurons inhibit sensory hair cells of the vertebrate inner ear through the combined action of calcium-permeable α9α10-containing nicotinic acetylcholine receptors (nAChRs) and associated calcium-dependent potassium channels. The venom of cone snails is a rich repository of bioactive peptides, many with channel blocking activities. The conopeptide analog, RgIA-5474, is a specific and potent antagonist of α9α10-containing nAChRs. We added an alkyl functional group to the N-terminus of the RgIA-5474, to enable click chemistry addition of the fluorescent cyanine dye, Cy3. The resulting peptide, Cy3-RgIA-5727, potently blocked mouse α9α10 nAChRs expressed in Xenopus oocytes (IC50 23 pM), with 290-fold less activity on α7 nAChRs and 40,000-fold less activity on all other tested nAChR subtypes. The tight binding of Cy3-RgIA-5727 provided robust visualization of hair cell nAChRs juxtaposed to cholinergic efferent terminals in excised, unfixed cochlear tissue from mice. Presumptive postsynaptic sites on outer hair cells (OHCs) were labeled, but absent from inner hair cells (IHCs) and from OHCs in cochlear tissue from α9-null mice and in cochlear tissue pre-incubated with non-Cy3-conjugated RgIA-5474. In cochlear tissue from younger (postnatal day 10) mice, Cy3-RgIA-5727 also labeled IHCs, corresponding to transient efferent innervation at that age. Cy3 puncta in Kölliker's organ remained in the α9-null tissue. Pre-exposure with non-Cy3-conjugated RgIA-5474 or bovine serum albumin reduced this non-specific labeling to variable extents in different preparations. Cy3-RgIA-5727 and RgIA-5474 blocked the native hair cell nAChRs, within the constraints of application to the excised cochlear tissue. Cy3-RgIA-5727 or RgIA-5474 block of efferent synaptic currents in young IHCs was not relieved after 50 min washing, so effectively irreversible.
Collapse
Affiliation(s)
- Fernando Fisher
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - Yuanyuan Zhang
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Philippe F. Y. Vincent
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joanna Gajewiak
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - Thomas J. Gordon
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul Albert Fuchs
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - J. Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah School Medicine, Salt Lake City, UT, United States
| |
Collapse
|
31
|
Martini FJ, Guillamón-Vivancos T, Moreno-Juan V, Valdeolmillos M, López-Bendito G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 2021; 109:2519-2534. [PMID: 34293296 DOI: 10.1016/j.neuron.2021.06.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022]
Abstract
Developing sensory circuits exhibit different patterns of spontaneous activity, patterns that are related to the construction and refinement of functional networks. During the development of different sensory modalities, spontaneous activity originates in the immature peripheral sensory structures and in the higher-order central structures, such as the thalamus and cortex. Certainly, the perinatal thalamus exhibits spontaneous calcium waves, a pattern of activity that is fundamental for the formation of sensory maps and for circuit plasticity. Here, we review our current understanding of the maturation of early (including embryonic) patterns of spontaneous activity and their influence on the assembly of thalamic and cortical sensory networks. Overall, the data currently available suggest similarities between the developmental trajectory of brain activity in experimental models and humans, which in the future may help to improve the early diagnosis of developmental disorders.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
32
|
Sininger YS, Condon CG, Gimenez LA, Shuffrey LC, Myers MM, Elliott AJ, Thai T, Nugent JD, Pini N, Sania A, Odendaal HJ, Angal J, Tobacco D, Hoffman HJ, Simmons DD, Fifer WP. Prenatal Exposure to Tobacco and Alcohol Alters Development of the Neonatal Auditory System. Dev Neurosci 2021; 43:358-375. [PMID: 34348289 DOI: 10.1159/000518130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022] Open
Abstract
Prenatal exposures to alcohol (PAE) and tobacco (PTE) are known to produce adverse neonatal and childhood outcomes including damage to the developing auditory system. Knowledge of the timing, extent, and combinations of these exposures on effects on the developing system is limited. As part of the physiological measurements from the Safe Passage Study, Auditory Brainstem Responses (ABRs) and Transient Otoacoustic Emissions (TEOAEs) were acquired on infants at birth and one-month of age. Research sites were in South Africa and the Northern Plains of the U.S. Prenatal information on alcohol and tobacco exposure was gathered prospectively on mother/infant dyads. Cluster analysis was used to characterize three levels of PAE and three levels of PTE. Repeated-measures ANOVAs were conducted for newborn and one-month-old infants for ABR peak latencies and amplitudes and TEOAE levels and signal-to-noise ratios. Analyses controlled for hours of life at test, gestational age at birth, sex, site, and other exposure. Significant main effects of PTE included reduced newborn ABR latencies from both ears. PTE also resulted in a significant reduction of ABR peak amplitudes elicited in infants at 1-month of age. PAE led to a reduction of TEOAE amplitude for 1-month-old infants but only in the left ear. Results indicate that PAE and PTE lead to early disruption of peripheral, brainstem, and cortical development and neuronal pathways of the auditory system, including the olivocochlear pathway.
Collapse
Affiliation(s)
- Yvonne S Sininger
- Department of Head & Neck Surgery, University of California, Los Angeles, California, USA
- C&Y Consultants, Santa Fe, New Mexico, USA
| | - Carmen G Condon
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Lissete A Gimenez
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Lauren C Shuffrey
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael M Myers
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Amy J Elliott
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, South Dakota, USA
| | - Tracy Thai
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - James D Nugent
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Nicolò Pini
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Ayesha Sania
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Hein J Odendaal
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Jyoti Angal
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, South Dakota, USA
| | - Deborah Tobacco
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, South Dakota, USA
| | - Howard J Hoffman
- Epidemiology and Statistics Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - William P Fifer
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
33
|
Nakazawa S, Iwasato T. Spatial organization and transitions of spontaneous neuronal activities in the developing sensory cortex. Dev Growth Differ 2021; 63:323-339. [PMID: 34166527 DOI: 10.1111/dgd.12739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The sensory cortex underlies our ability to perceive and interact with the external world. Sensory perceptions are controlled by specialized neuronal circuits established through fine-tuning, which relies largely on neuronal activity during the development. Spontaneous neuronal activity is an essential driving force of neuronal circuit refinement. At early developmental stages, sensory cortices display spontaneous activities originating from the periphery and characterized by correlated firing arranged spatially according to the modality. The firing patterns are reorganized over time and become sparse, which is typical for the mature brain. This review focuses mainly on rodent sensory cortices. First, the features of the spontaneous activities during early postnatal stages are described. Then, the developmental changes in the spatial organization of the spontaneous activities and the transition mechanisms involved are discussed. The identification of the principles controlling the spatial organization of spontaneous activities in the developing sensory cortex is essential to understand the self-organization process of neuronal circuits.
Collapse
Affiliation(s)
- Shingo Nakazawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan.,Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| |
Collapse
|
34
|
Na G, Kwak SH, Jang SH, Noh HE, Kim J, Yang S, Jung J. Supplementary Effect of Choline Alfoscerate on Speech Recognition in Patients With Age-Related Hearing Loss: A Prospective Study in 34 Patients (57 Ears). Front Aging Neurosci 2021; 13:684519. [PMID: 34149400 PMCID: PMC8211767 DOI: 10.3389/fnagi.2021.684519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
To investigate the effect of choline alfoscerate (CA) on hearing amplification in patients with age related hearing loss, we performed a prospective case-control observational study from March 2016 to September 2020. We assessed patients with bilateral word recognition score (WRS) <50% using monosyllabic words. The patients were 65-85 years old, without any history of dementia, Alzheimer's disease, parkinsonism, or depression. After enrollment, all patients started using hearing aids (HA). The CA group received a daily dose of 800 mg CA for 11 months. We performed between-group comparisons of audiological data, including pure tone audiometry, WRS, HA fitting data obtained using real-ear measurement (REM), and the Abbreviated Profile of Hearing Aid benefit scores after treatment. After CA administration, the WRS improved significantly in the CA group (4.2 ± 8.3%), but deteriorated in the control group (-0.6 ± 8.1%, p = 0.035). However, there was no significant between-group difference in the change in pure tone thresholds and aided speech intelligibility index calculated from REM. These findings suggest that the difference in WRS was relevant to central speech understanding rather than peripheral audibility. Therefore, administering oral CA could effectively enrich listening comprehension in older HA users.
Collapse
Affiliation(s)
- Gina Na
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Sang Hyun Kwak
- Department of Otorhinolaryngology, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hyun Jang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jungghi Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - SeungJoon Yang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
Jennings SG. The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review. J Neurophysiol 2021; 125:2279-2308. [PMID: 33909513 PMCID: PMC8285664 DOI: 10.1152/jn.00672.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 02/01/2023] Open
Abstract
This review addresses the putative role of the medial olivocochlear (MOC) reflex in psychophysical masking and intensity resolution in humans. A framework for interpreting psychophysical results in terms of the expected influence of the MOC reflex is introduced. This framework is used to review the effects of a precursor or contralateral acoustic stimulation on 1) simultaneous masking of brief tones, 2) behavioral estimates of cochlear gain and frequency resolution in forward masking, 3) the buildup and decay of forward masking, and 4) measures of intensity resolution. Support, or lack thereof, for a role of the MOC reflex in psychophysical perception is discussed in terms of studies on estimates of MOC strength from otoacoustic emissions and the effects of resection of the olivocochlear bundle in patients with vestibular neurectomy. Novel, innovative approaches are needed to resolve the dissatisfying conclusion that current results are unable to definitively confirm or refute the role of the MOC reflex in masking and intensity resolution.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
36
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
37
|
Wang Y, Sanghvi M, Gribizis A, Zhang Y, Song L, Morley B, Barson DG, Santos-Sacchi J, Navaratnam D, Crair M. Efferent feedback controls bilateral auditory spontaneous activity. Nat Commun 2021; 12:2449. [PMID: 33907194 PMCID: PMC8079389 DOI: 10.1038/s41467-021-22796-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
In the developing auditory system, spontaneous activity generated in the cochleae propagates into the central nervous system to promote circuit formation. The effects of peripheral firing patterns on spontaneous activity in the central auditory system are not well understood. Here, we describe wide-spread bilateral coupling of spontaneous activity that coincides with the period of transient efferent modulation of inner hair cells from the brainstem medial olivocochlear system. Knocking out α9/α10 nicotinic acetylcholine receptors, a requisite part of the efferent pathway, profoundly reduces bilateral correlations. Pharmacological and chemogenetic experiments confirm that the efferent system is necessary for normal bilateral coupling. Moreover, auditory sensitivity at hearing onset is reduced in the absence of pre-hearing efferent modulation. Together, these results demonstrate how afferent and efferent pathways collectively shape spontaneous activity patterns and reveal the important role of efferents in coordinating bilateral spontaneous activity and the emergence of functional responses during the prehearing period.
Collapse
Affiliation(s)
- Yixiang Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Maya Sanghvi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Yueyi Zhang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Barbara Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel G Barson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph Santos-Sacchi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhasakumar Navaratnam
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
38
|
Di Guilmi MN, Rodríguez-Contreras A. Characterization of Developmental Changes in Spontaneous Electrical Activity of Medial Superior Olivary Neurons Before Hearing Onset With a Combination of Injectable and Volatile Anesthesia. Front Neurosci 2021; 15:654479. [PMID: 33935637 PMCID: PMC8081840 DOI: 10.3389/fnins.2021.654479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
In this work the impact of two widely used anesthetics on the electrical activity of auditory brainstem neurons was studied during postnatal development. Spontaneous electrical activity in neonate rats of either sex was analyzed through a ventral craniotomy in mechanically ventilated pups to carry out patch clamp and multi-electrode electrophysiology recordings in the medial region of the superior olivary complex (SOC) between birth (postnatal day 0, P0) and P12. Recordings were obtained in pups anesthetized with the injectable mix of ketamine/xylazine (K/X mix), with the volatile anesthetic isoflurane (ISO), or in pups anesthetized with K/X mix that were also exposed to ISO. The results of patch clamp recordings demonstrate for the first time that olivary and periolivary neurons in the medial region of the SOC fire bursts of action potentials. The results of multielectrode recordings suggest that the firing pattern of single units recorded in K/X mix is similar to that recorded in ISO anesthetized rat pups. Taken together, the results of this study provide a framework to use injectable and volatile anesthetics for future studies to obtain functional information on the activity of medial superior olivary neurons in vivo.
Collapse
Affiliation(s)
- Mariano Nicolás Di Guilmi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Adrián Rodríguez-Contreras
- Department of Biology, Center for Discovery and Innovation, City College, Institute for Ultrafast Spectroscopy and Lasers, City University of New York, New York, NY, United States
| |
Collapse
|
39
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
40
|
Sex difference in the efferent inner hair cell synapses of the aging murine cochlea. Hear Res 2021; 404:108215. [PMID: 33677192 DOI: 10.1016/j.heares.2021.108215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/20/2022]
Abstract
Efferent innervation of the inner hair cells changes over time. At an early age in mice, inner hair cells receive efferent feedback, which helps fine-tune tonotopic maps in the brainstem. In adulthood, inner hair cell efferent innervation wanes but increases again in older animals. It is not clear, however, whether age-related inner hair cell efferents increase along the entire range of the cochlear frequencies, or if this increase is restricted to a particular frequency-region, and whether this phenomenon occurs in both sexes. Age-related hearing loss, presbycusis, affects men and women differently. In mice, this difference is also strain specific. In aging black six mice, the auditory brainstem response thresholds increase in females earlier than in males. Here, we study age-related increase of the inner hair cell efferent innervation throughout the cochlea before hearing onset, in one month old and in ten months old and older male and female black six mice. We collected confocal images of immunostained inner hair cell efferents and quantified the labeled terminals in the entire cochlea using a machine learning algorithm. The overall number of the inner hair cell efferents in both sexes did not change significantly between age-groups. The distribution of the inner hair cell efferent innervation did not differ across frequencies in the cochlea. However, in females, inner hair cells received on average up to four times more efferent innervation than in males per each of the frequency regions tested. Sex differences were also found in the oldest age-group tested (≥ 10 months) where on average inner hair cells received six times more efferents in females than in males of matching age. Our findings emphasize the importance of including both sexes in sensorineural hearing loss research.
Collapse
|
41
|
The mammalian efferent vestibular system utilizes cholinergic mechanisms to excite primary vestibular afferents. Sci Rep 2021; 11:1231. [PMID: 33441862 PMCID: PMC7806594 DOI: 10.1038/s41598-020-80367-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation of the mammalian efferent vestibular system (EVS) predominantly excites primary vestibular afferents along two distinct time scales. Although roles for acetylcholine (ACh) have been demonstrated in other vertebrates, synaptic mechanisms underlying mammalian EVS actions are not well-characterized. To determine if activation of ACh receptors account for efferent-mediated afferent excitation in mammals, we recorded afferent activity from the superior vestibular nerve of anesthetized C57BL/6 mice while stimulating EVS neurons in the brainstem, before and after administration of cholinergic antagonists. Using a normalized coefficient of variation (CV*), we broadly classified vestibular afferents as regularly- (CV* < 0.1) or irregularly-discharging (CV* > 0.1) and characterized their responses to midline or ipsilateral EVS stimulation. Afferent responses to efferent stimulation were predominantly excitatory, grew in amplitude with increasing CV*, and consisted of fast and slow components that could be identified by differences in rise time and post-stimulus duration. Both efferent-mediated excitatory components were larger in irregular afferents with ipsilateral EVS stimulation. Our pharmacological data show, for the first time in mammals, that muscarinic AChR antagonists block efferent-mediated slow excitation whereas the nicotinic AChR antagonist DHβE selectively blocks efferent-mediated fast excitation, while leaving the efferent-mediated slow component intact. These data confirm that mammalian EVS actions are predominantly cholinergic.
Collapse
|
42
|
Jeng JY, Carlton A, Johnson SL, Brown SDM, Holley MC, Bowl MR, Marcotti W. Biophysical and morphological changes in inner hair cells and their efferent innervation in the ageing mouse cochlea. J Physiol 2021; 599:269-287. [PMID: 33179774 PMCID: PMC7612127 DOI: 10.1113/jp280256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/01/2020] [Indexed: 09/18/2023] Open
Abstract
KEY POINTS Age-related hearing loss is a progressive hearing loss involving environmental and genetic factors, leading to a decrease in hearing sensitivity, threshold and speech discrimination. We compared age-related changes in inner hair cells (IHCs) between four mouse strains with different levels of progressive hearing loss. The surface area of apical coil IHCs (9-12 kHz cochlear region) decreases by about 30-40% with age. The number of BK channels progressively decreases with age in the IHCs from most mouse strains, but the basolateral membrane current profile remains unchanged. The mechanoelectrical transducer current is smaller in mice harbouring the hypomorphic Cdh23 allele Cdh23ahl (C57BL/6J; C57BL/6NTac), but not in Cdh23-repaired mice (C57BL/6NTacCdh23+ ), indicating that it could contribute to the different progression of hearing loss among mouse strains. The degree of efferent rewiring onto aged IHCs, most likely coming from the lateral olivocochlea fibres, was correlated with hearing loss in the different mouse strains. ABSTRACT Inner hair cells (IHCs) are the primary sensory receptors of the mammalian cochlea, transducing acoustic information into electrical signals that are relayed to the afferent neurons. Functional changes in IHCs are a potential cause of age-related hearing loss. Here, we have investigated the functional characteristics of IHCs from early-onset hearing loss mice harbouring the allele Cdh23ahl (C57BL/6J and C57BL/6NTac), from late-onset hearing loss mice (C3H/HeJ), and from mice corrected for the Cdh23ahl mutation (C57BL/6NTacCdh23+ ) with an intermediate hearing phenotype. There was no significant loss of IHCs in the 9-12 kHz cochlear region up to at least 15 months of age, but their surface area decreased progressively by 30-40% starting from ∼6 months of age. Although the size of the BK current decreased with age, IHCs retained a normal KCNQ4 current and resting membrane potential. These basolateral membrane changes were most severe for C57BL/6J and C57BL/6NTac, less so for C57BL/6NTacCdh23+ and minimal or absent in C3H/HeJ mice. We also found that lateral olivocochlear (LOC) efferent fibres re-form functional axon-somatic connections with aged IHCs, but this was seen only sporadically in C3H/HeJ mice. The efferent post-synaptic SK2 channels appear prior to the establishment of the efferent contacts, suggesting that IHCs may play a direct role in re-establishing the LOC-IHC synapses. Finally, we showed that the size of the mechanoelectrical transducer (MET) current from IHCs decreased significantly with age in mice harbouring the Cdh23ahl allele but not in C57BL/6NTacCdh23+ mice, indicating that the MET apparatus directly contributes to the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Adam Carlton
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Steve D. M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
43
|
Vyas P, Wood MB, Zhang Y, Goldring AC, Chakir FZ, Fuchs PA, Hiel H. Characterization of HA-tagged α9 and α10 nAChRs in the mouse cochlea. Sci Rep 2020; 10:21814. [PMID: 33311584 PMCID: PMC7733449 DOI: 10.1038/s41598-020-78380-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023] Open
Abstract
Neurons of the medial olivary complex inhibit cochlear hair cells through the activation of α9α10-containing nicotinic acetylcholine receptors (nAChRs). Efforts to study the localization of these proteins have been hampered by the absence of reliable antibodies. To overcome this obstacle, CRISPR-Cas9 gene editing was used to generate mice in which a hemagglutinin tag (HA) was attached to the C-terminus of either α9 or α10 proteins. Immunodetection of the HA tag on either subunit in the organ of Corti of adult mice revealed immunopuncta clustered at the synaptic pole of outer hair cells. These puncta were juxtaposed to immunolabeled presynaptic efferent terminals. HA immunopuncta also occurred in inner hair cells of pre-hearing (P7) but not in adult mice. These immunolabeling patterns were similar for both homozygous and heterozygous mice. All HA-tagged genotypes had auditory brainstem responses not significantly different from those of wild type littermates. The activation of efferent neurons in heterozygous mice evoked biphasic postsynaptic currents not significantly different from those of wild type hair cells. However, efferent synaptic responses were significantly smaller and less frequent in the homozygous mice. We show that HA-tagged nAChRs introduced in the mouse by a CRISPR knock-in are regulated and expressed like the native protein, and in the heterozygous condition mediate normal synaptic function. The animals thus generated have clear advantages for localization studies.
Collapse
Affiliation(s)
- Pankhuri Vyas
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 818, Baltimore, MD, 21205, USA
| | - Megan Beers Wood
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 818, Baltimore, MD, 21205, USA
| | - Yuanyuan Zhang
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 818, Baltimore, MD, 21205, USA.,Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Adam C Goldring
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 818, Baltimore, MD, 21205, USA.,Sutter Instrument Company, 1 Digital Drive, Novato, CA, 94949, USA
| | - Fatima-Zahra Chakir
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 818, Baltimore, MD, 21205, USA
| | - Paul Albert Fuchs
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 818, Baltimore, MD, 21205, USA
| | - Hakim Hiel
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 818, Baltimore, MD, 21205, USA.
| |
Collapse
|
44
|
Li X, Tae HS, Chu Y, Jiang T, Adams DJ, Yu R. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacol Ther 2020; 222:107792. [PMID: 33309557 DOI: 10.1016/j.pharmthera.2020.107792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Yanyan Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
45
|
Purinergic Signaling Controls Spontaneous Activity in the Auditory System throughout Early Development. J Neurosci 2020; 41:594-612. [PMID: 33303678 DOI: 10.1523/jneurosci.2178-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Spontaneous bursts of electrical activity in the developing auditory system arise within the cochlea before hearing onset and propagate through future sound-processing circuits of the brain to promote maturation of auditory neurons. Studies in isolated cochleae revealed that this intrinsically generated activity is initiated by ATP release from inner supporting cells (ISCs), resulting in activation of purinergic autoreceptors, K+ efflux, and subsequent depolarization of inner hair cells. However, it is unknown when this activity emerges or whether different mechanisms induce activity during distinct stages of development. Here we show that spontaneous electrical activity in mouse cochlea from both sexes emerges within ISCs during the late embryonic period, preceding the onset of spontaneous correlated activity in inner hair cells and spiral ganglion neurons, which begins at birth and follows a base to apex developmental gradient. At all developmental ages, pharmacological inhibition of P2Y1 purinergic receptors dramatically reduced spontaneous activity in these three cell types. Moreover, in vivo imaging within the inferior colliculus revealed that auditory neurons within future isofrequency zones exhibit coordinated neural activity at birth. The frequency of these discrete bursts increased progressively during the postnatal prehearing period yet remained dependent on P2RY1. Analysis of mice with disrupted cholinergic signaling in the cochlea indicate that this efferent input modulates, rather than initiates, spontaneous activity before hearing onset. Thus, the auditory system uses a consistent mechanism involving ATP release from ISCs and activation of P2RY1 autoreceptors to elicit coordinated excitation of neurons that will process similar frequencies of sound.SIGNIFICANCE STATEMENT In developing sensory systems, groups of neurons that will process information from similar sensory space exhibit highly correlated electrical activity that is critical for proper maturation and circuit refinement. Defining the period when this activity is present, the mechanisms responsible and the features of this activity are crucial for understanding how spontaneous activity influences circuit development. We show that, from birth to hearing onset, the auditory system relies on a consistent mechanism to elicit correlate firing of neurons that will process similar frequencies of sound. Targeted disruption of this activity will increase our understanding of how these early circuits mature and may provide insight into processes responsible for developmental disorders of the auditory system.
Collapse
|
46
|
|
47
|
Unraveling the Molecular Players at the Cholinergic Efferent Synapse of the Zebrafish Lateral Line. J Neurosci 2020; 41:47-60. [PMID: 33203744 DOI: 10.1523/jneurosci.1772-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and in situ hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, in vivo Ca2+ imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca2+ signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca2+-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels.SIGNIFICANCE STATEMENT The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca2+-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.
Collapse
|
48
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
49
|
Hair cell α9α10 nicotinic acetylcholine receptor functional expression regulated by ligand binding and deafness gene products. Proc Natl Acad Sci U S A 2020; 117:24534-24544. [PMID: 32929005 DOI: 10.1073/pnas.2013762117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Auditory hair cells receive olivocochlear efferent innervation, which refines tonotopic mapping, improves sound discrimination, and mitigates acoustic trauma. The olivocochlear synapse involves α9α10 nicotinic acetylcholine receptors (nAChRs), which assemble in hair cells only coincident with cholinergic innervation and do not express in recombinant mammalian cell lines. Here, genome-wide screening determined that assembly and surface expression of α9α10 require ligand binding. Ion channel function additionally demands an auxiliary subunit, which can be transmembrane inner ear (TMIE) or TMEM132e. Both of these single-pass transmembrane proteins are enriched in hair cells and underlie nonsyndromic human deafness. Inner hair cells from TMIE mutant mice show altered postsynaptic α9α10 function and retain α9α10-mediated transmission beyond the second postnatal week associated with abnormally persistent cholinergic innervation. Collectively, this study provides a mechanism to link cholinergic input with α9α10 assembly, identifies unexpected functions for human deafness genes TMIE/TMEM132e, and enables drug discovery for this elusive nAChR implicated in prevalent auditory disorders.
Collapse
|
50
|
Zhang Y, Glowatzki E, Roux I, Fuchs PA. Nicotine evoked efferent transmitter release onto immature cochlear inner hair cells. J Neurophysiol 2020; 124:1377-1387. [PMID: 32845208 DOI: 10.1152/jn.00097.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Olivocochlear neurons make temporary cholinergic synapses on inner hair cells of the rodent cochlea in the first 2 to 3 wk after birth. Repetitive stimulation of these efferent neurons causes facilitation of evoked release and increased spontaneous release that continues for seconds to minutes. Presynaptic nicotinic acetylcholine receptors (nAChRs) are known to modulate neurotransmitter release from brain neurons. The present study explores the hypothesis that presynaptic nAChRs help to increase spontaneous release from efferent terminals on cochlear hair cells. Direct application of nicotine (which does not activate the hair cells' α9α10-containing nAChRs) produces sustained efferent transmitter release, implicating presynaptic nAChRs in this response. The effect of nicotine was reduced by application of ryanodine that reduces release of calcium from intraterminal stores.NEW & NOTEWORTHY Sensory organs exhibit spontaneous activity before the onset of response to external stimuli. Such activity in the cochlea is subject to modulation by cholinergic efferent neurons that directly inhibit sensory hair cells (inner hair cells). Those efferent neurons are themselves subject to various modulatory mechanisms. One such mechanism is positive feedback by released acetylcholine onto presynaptic nicotinic acetylcholine receptors causing further release of acetylcholine.
Collapse
Affiliation(s)
- Y Zhang
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - E Glowatzki
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - I Roux
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland
| | - P A Fuchs
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|