1
|
Lam C. Mathematical and In Silico Analysis of Synthetic Inhibitory Circuits That Program Self-Organizing Multicellular Structures. ACS Synth Biol 2024; 13:1925-1940. [PMID: 38781040 DOI: 10.1021/acssynbio.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Bottom-up approaches are becoming increasingly popular for studying multicellular self-organization and development. In contrast to the classic top-down approach, where parts of the organization/developmental process are broken to understand the process, the goal is to build the process to understand it. For example, synthetic circuits have been built to understand how cell-cell communication and differential adhesion can drive multicellular development. The majority of current bottom-up efforts focus on using activatory circuits to engineer and understand development, but efforts with inhibitory circuits have been minimal. Yet, inhibitory circuits are ubiquitous and vital to native developmental processes. Thus, inhibitory circuits are a crucial yet poorly studied facet of bottom-up multicellular development. To demonstrate the potential of inhibitory circuits for building and developing multicellular structures, several synthetic inhibitory circuits that combine engineered cell-cell communication and differential adhesion were designed, and then examined for synthetic development capability using a previously validated in silico framework. These designed inhibitory circuits can build a variety of patterned, self-organized structures and even morphological oscillations. These results support that inhibitory circuits can be powerful tools for building, studying, and understanding developmental processes.
Collapse
Affiliation(s)
- Calvin Lam
- Independent Investigator, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
2
|
An H, Yu X, Liu Y, Fang L, Shu M, Zhai Q, Chen J. Downregulation of transcription 1 hinders the replication of Dabie bandavirus by promoting the expression of TLR7, TLR8, and TLR9 signaling pathway. Ticks Tick Borne Dis 2024; 15:102307. [PMID: 38194758 DOI: 10.1016/j.ttbdis.2023.102307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS, with a case fatality rate of up to 30 %. The innate immune system plays a crucial role in the defense against SFTSV; however, the impact of viral propagation of STFSV on the innate immune system remains unclear. Although proteomics analysis revealed that the expression of the downregulator of transcription 1 (DR1) increased after SFTSV infection, the specific change trend and the functional role of DR1 during viral infection remain unelucidated. In this study, we demonstrate that DR1 was highly expressed in response to SFTSV infection in HEK 293T cells using qRT-PCR and Western blot analysis. Furthermore, viral replication significantly increased the expression of various TLRs, especially TLR9. Our data indicated that DR1 positively regulated the expression of TLRs in HEK 293T cells, DR1 overexpression highly increased the expression of numerous TLRs, whereas RNAi-mediated DR1 silencing decreased TLR expression. Additionally, the myeloid differentiation primary response gene 88 (MyD88)-dependent or TIR-domain-containing adaptor inducing interferon-β (TRIF)-dependent signaling pathways were highly up- and downregulated by the overexpression and silencing of DR1, respectively. Finally, we report that DR1 stimulates the expression of TLR7, TLR8, and TLR9, thereby upregulating the TRIF-dependent and MyD88-dependent signaling pathways during the SFTSV infection, attenuating viral replication, and enhancing the production of type I interferon and various inflammatory factors, including IL-1β, IL-6, and IL-8. These results imply that DR1 defends against SFTSV replication by inducing the expression of TLR7, TLR8, and TLR9. Collectively, our findings revealed a novel role and mechanism of DR1 in mediating antiviral responses and innate immunity.
Collapse
Affiliation(s)
- Hao An
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Xiaoli Yu
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Lei Fang
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Ming Shu
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Qingfeng Zhai
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Junhao Chen
- School of Public Health, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
3
|
DelRosso N, Tycko J, Suzuki P, Andrews C, Aradhana, Mukund A, Liongson I, Ludwig C, Spees K, Fordyce P, Bassik MC, Bintu L. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature 2023; 616:365-372. [PMID: 37020022 PMCID: PMC10484233 DOI: 10.1038/s41586-023-05906-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Human gene expression is regulated by more than 2,000 transcription factors and chromatin regulators1,2. Effector domains within these proteins can activate or repress transcription. However, for many of these regulators we do not know what type of effector domains they contain, their location in the protein, their activation and repression strengths, and the sequences that are necessary for their functions. Here, we systematically measure the effector activity of more than 100,000 protein fragments tiling across most chromatin regulators and transcription factors in human cells (2,047 proteins). By testing the effect they have when recruited at reporter genes, we annotate 374 activation domains and 715 repression domains, roughly 80% of which are new and have not been previously annotated3-5. Rational mutagenesis and deletion scans across all the effector domains reveal aromatic and/or leucine residues interspersed with acidic, proline, serine and/or glutamine residues are necessary for activation domain activity. Furthermore, most repression domain sequences contain sites for small ubiquitin-like modifier (SUMO)ylation, short interaction motifs for recruiting corepressors or are structured binding domains for recruiting other repressive proteins. We discover bifunctional domains that can both activate and repress, some of which dynamically split a cell population into high- and low-expression subpopulations. Our systematic annotation and characterization of effector domains provide a rich resource for understanding the function of human transcription factors and chromatin regulators, engineering compact tools for controlling gene expression and refining predictive models of effector domain function.
Collapse
Affiliation(s)
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Peter Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Cecelia Andrews
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Adi Mukund
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Ivan Liongson
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Connor Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Role of the TATA-box binding protein (TBP) and associated family members in transcription regulation. Gene X 2022; 833:146581. [PMID: 35597524 DOI: 10.1016/j.gene.2022.146581] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The assembly of transcription complexes on eukaryotic promoters involves a series of steps, including chromatin remodeling, recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme, and additional basal transcription factors. This review describes the transcriptional regulation by TBP and its corresponding homologs that constitute the TBP family and their interactions with promoter DNA. The C-terminal core domain of TBP is highly conserved and contains two structural repeats that fold into a saddle-like structure, essential for the interaction with the TATA-box on DNA. Based on the TBP C-terminal core domain similarity, three TBP-related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2. TBP is autoregulated, and once bound to DNA, repressors such as Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the active TBP/DNA complex into inactive, negatively regulating TBP. TFIIA antagonizes the TBP repressors but may be effective only in conjunction with the RNA polymerase II holoenzyme recruitment to the promoter by promoter-bound activators. TRF1 has been discovered inDrosophila melanogasterandAnophelesbut found absent in vertebrates and yeast. TBPL1 cannot bind to the TATA-box; instead, TBPL1 prefers binding to TATA-less promoters. However, TBPL1 shows a stronger association with TFIIA than TBP. The TCT core promoter element is present in most ribosomal protein genes inDrosophilaand humans, and TBPL1 is required for the transcription of these genes. TBP directly participates in the DNA repair mechanism, and TBPL1 mediates cell cycle arrest and apoptosis. TBPL2 is closely related to its TBP paralog, showing 95% sequence similarity with the TBP core domain. Like TBP, TBPL2 also binds to the TATA-box and shows interactions with TFIIA, TFIIB, and other basal transcription factors. Despite these advances, much remains to be explored in this family of transcription factors.
Collapse
|
5
|
Baudin F, Murciano B, Fung HKH, Fromm SA, Mattei S, Mahamid J, Müller CW. Mechanism of RNA polymerase I selection by transcription factor UAF. SCIENCE ADVANCES 2022; 8:eabn5725. [PMID: 35442737 PMCID: PMC9020658 DOI: 10.1126/sciadv.abn5725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Preribosomal RNA is selectively transcribed by RNA polymerase (Pol) I in eukaryotes. The yeast transcription factor upstream activating factor (UAF) represses Pol II transcription and mediates Pol I preinitiation complex (PIC) formation at the 35S ribosomal RNA gene. To visualize the molecular intermediates toward PIC formation, we determined the structure of UAF in complex with native promoter DNA and transcription factor TATA-box-binding protein (TBP). We found that UAF recognizes DNA using a hexameric histone-like scaffold with markedly different interactions compared with the nucleosome and the histone-fold-rich transcription factor IID (TFIID). In parallel, UAF positions TBP for Core Factor binding, which leads to Pol I recruitment, while sequestering it from DNA and Pol II/III-specific transcription factors. Our work thus reveals the structural basis of RNA Pol selection by a transcription factor.
Collapse
Affiliation(s)
- Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Brice Murciano
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Herman K. H. Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simon A. Fromm
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
6
|
Dreos R, Sloutskin A, Malachi N, Ideses D, Bucher P, Juven-Gershon T. Computational identification and experimental characterization of preferred downstream positions in human core promoters. PLoS Comput Biol 2021; 17:e1009256. [PMID: 34383743 PMCID: PMC8384218 DOI: 10.1371/journal.pcbi.1009256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 08/24/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Metazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters. Transcription of genes by the RNA polymerase II enzyme initiates at a genomic region termed the core promoter. The core promoter is a regulatory region that may contain diverse short DNA sequence motifs/elements that confer specific properties to it. Interestingly, core promoter motifs can be located both upstream and downstream of the transcription start site. Variable compositions of core promoter elements were identified. The initiator (Inr) motif and the downstream core promoter element (DPE) is a combination of elements that has been identified and extensively characterized in fruit flies. Although a few Inr+DPE -containing human promoters were identified, the presence of transcriptionally important downstream core promoter positions within human promoters has been a matter of controversy in the literature. Here, using a newly-designed motif discovery strategy, we discovered preferred downstream positions in human promoters that resemble fruit fly DPE. Clustering of the corresponding sequence motifs in eight additional species indicated that such promoters could be common to multicellular non-plant organisms. Importantly, functional characterization of the newly discovered preferred downstream positions supports the existence of Inr+DPE-containing promoters in human genes.
Collapse
Affiliation(s)
- René Dreos
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nati Malachi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Philipp Bucher
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
- * E-mail: (PB); (TJG)
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail: (PB); (TJG)
| |
Collapse
|
7
|
Chen W, Zheng Q, Li J, Liu Y, Xu L, Zhang Q, Luo Z. DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1708-1727. [PMID: 33835602 DOI: 10.1111/tpj.15266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Proanthocyanidins (PAs) are phenolic secondary metabolites that contribute to the protection of plant and human health. Persimmon (Diospyros kaki Thunb.) can accumulate abundant PAs in fruit, which cause a strong sensation of astringency. Proanthocyanidins can be classified into soluble and insoluble PAs; the former cause astringency but the latter do not. Soluble PAs can be converted into insoluble PAs upon interacting with acetaldehydes. We demonstrate here that DkMYB14, which regulates the accumulation of PA in persimmon fruit flesh, is a bifunctional transcription factor that acts as a repressor in PA biosynthesis but becomes an activator when involved in acetaldehyde biosynthesis. Interestingly, both functions contribute to the elimination of astringency by decreasing PA biosynthesis and promoting its insolubilization. We show that the amino acid Gly39 in the R2 domain and the ethylene response factor-associated amphiphilic repression-like motif in the C-terminal of DkMYB14 are essential for the regulation of both PA and acetaldehyde synthesis. The repressive function of DkMYB14 was lost after the mutation of either motif, and all activities of DkMYB14 were eliminated following the mutation of both motifs. Our results demonstrate that DkMYB14 functions as both a transcriptional activator and a repressor, directly repressing biosynthesis of PA and promoting its insolubilization, resulting in non-astringency in persimmon.
Collapse
Affiliation(s)
- Wenxing Chen
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qingyou Zheng
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinwang Li
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ying Liu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liqing Xu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
8
|
Zotova L, Shamambaeva N, Lethola K, Alharthi B, Vavilova V, Smolenskaya SE, Goncharov NP, Kurishbayev A, Jatayev S, Gupta NK, Gupta S, Schramm C, Anderson PA, Jenkins CLD, Soole KL, Shavrukov Y. TaDrAp1 and TaDrAp2, Partner Genes of a Transcription Repressor, Coordinate Plant Development and Drought Tolerance in Spelt and Bread Wheat. Int J Mol Sci 2020; 21:E8296. [PMID: 33167455 PMCID: PMC7663959 DOI: 10.3390/ijms21218296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Down-regulator associated protein, DrAp1, acts as a negative cofactor (NC2α) in a transcription repressor complex together with another subunit, down-regulator Dr1 (NC2β). In binding to promotors and regulating the initiation of transcription of various genes, DrAp1 plays a key role in plant transition to flowering and ultimately in seed production. TaDrAp1 and TaDrAp2 genes were identified, and their expression and genetic polymorphism were studied using bioinformatics, qPCR analyses, a 40K Single nucleotide polymorphism (SNP) microarray, and Amplifluor-like SNP genotyping in cultivars of bread wheat (Triticum aestivum L.) and breeding lines developed from a cross between spelt (T. spelta L.) and bread wheat. TaDrAp1 was highly expressed under non-stressed conditions, and at flowering, TaDrAp1 expression was negatively correlated with yield capacity. TaDrAp2 showed a consistently low level of mRNA production. Drought caused changes in the expression of both TaDrAp1 and TaDrAp2 genes in opposite directions, effectively increasing expression in lower yielding cultivars. The microarray 40K SNP assay and Amplifluor-like SNP marker, revealed clear scores and allele discriminations for TaDrAp1 and TaDrAp2 and TaRht-B1 genes. Alleles of two particular homeologs, TaDrAp1-B4 and TaDrAp2-B1, co-segregated with grain yield in nine selected breeding lines. This indicated an important regulatory role for both TaDrAp1 and TaDrAp2 genes in plant growth, ontogenesis, and drought tolerance in bread and spelt wheat.
Collapse
Affiliation(s)
- Lyudmila Zotova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Nasgul Shamambaeva
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Katso Lethola
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Badr Alharthi
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Valeriya Vavilova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (V.V.); (S.E.S.); (N.P.G.)
| | - Svetlana E. Smolenskaya
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (V.V.); (S.E.S.); (N.P.G.)
| | - Nikolay P. Goncharov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (V.V.); (S.E.S.); (N.P.G.)
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Narendra K. Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303329, Rajasthan, India; (N.K.G.); (S.G.)
| | - Sunita Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303329, Rajasthan, India; (N.K.G.); (S.G.)
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Peter A. Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| |
Collapse
|
9
|
Cui G, Dong Q, Duan J, Zhang C, Liu X, He Q. NC2 complex is a key factor for the activation of catalase-3 transcription by regulating H2A.Z deposition. Nucleic Acids Res 2020; 48:8332-8348. [PMID: 32633757 PMCID: PMC7470962 DOI: 10.1093/nar/gkaa552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Negative cofactor 2 (NC2), including two subunits NC2α and NC2β, is a conserved positive/negative regulator of class II gene transcription in eukaryotes. It is known that NC2 functions by regulating the assembly of the transcription preinitiation complex. However, the exact role of NC2 in transcriptional regulation is still unclear. Here, we reveal that, in Neurospora crassa, NC2 activates catalase-3 (cat-3) gene transcription in the form of heterodimer mediated by histone fold (HF) domains of two subunits. Deletion of HF domain in either of two subunits disrupts the NC2α–NC2β interaction and the binding of intact NC2 heterodimer to cat-3 locus. Loss of NC2 dramatically increases histone variant H2A.Z deposition at cat-3 locus. Further studies show that NC2 recruits chromatin remodeling complex INO80C to remove H2A.Z from the nucleosomes around cat-3 locus, resulting in transcriptional activation of cat-3. Besides HF domains of two subunits, interestingly, C-terminal repression domain of NC2β is required not only for NC2 binding to cat-3 locus, but also for the recruitment of INO80C to cat-3 locus and removal of H2A.Z from the nucleosomes. Collectively, our findings reveal a novel mechanism of NC2 in transcription activation through recruiting INO80C to remove H2A.Z from special H2A.Z-containing nucleosomes.
Collapse
Affiliation(s)
- Guofei Cui
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Dong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chengcheng Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Identification of the human DPR core promoter element using machine learning. Nature 2020; 585:459-463. [PMID: 32908305 PMCID: PMC7501168 DOI: 10.1038/s41586-020-2689-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/16/2020] [Indexed: 01/31/2023]
Abstract
The RNA polymerase II (Pol II) core promoter is the strategic site of convergence of the signals that lead to transcription initiation1-5, but the downstream core promoter in humans has been difficult to decipher1-3. Here, we analyze the human Pol II core promoter and use machine learning to generate predictive models for the downstream core promoter region (DPR) and the TATA box. We developed a method termed HARPE (high-throughput analysis of randomized promoter elements) to create hundreds of thousands of DPR (or TATA box) variants that are each of known transcriptional strength. We then analyzed the HARPE data by support vector regression (SVR) to provide comprehensive models for the sequence motifs, and found that the SVR-based approach is more effective than a consensus-based method for predicting transcriptional activity. These studies revealed that the DPR is a functionally important core promoter element that is widely used in human promoters. Importantly, there appears to be a duality between the DPR and TATA box, as many promoters contain one or the other element. More broadly, these findings show that functional DNA motifs can be identified by machine learning analysis of a comprehensive set of sequence variants.
Collapse
|
11
|
The RNA Polymerase II Core Promoter in Drosophila. Genetics 2019; 212:13-24. [PMID: 31053615 DOI: 10.1534/genetics.119.302021] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
Transcription by RNA polymerase II initiates at the core promoter, which is sometimes referred to as the "gateway to transcription." Here, we describe the properties of the RNA polymerase II core promoter in Drosophila The core promoter is at a strategic position in the expression of genes, as it is the site of convergence of the signals that lead to transcriptional activation. Importantly, core promoters are diverse in terms of their structure and function. They are composed of various combinations of sequence motifs such as the TATA box, initiator (Inr), and downstream core promoter element (DPE). Different types of core promoters are transcribed via distinct mechanisms. Moreover, some transcriptional enhancers exhibit specificity for particular types of core promoters. These findings indicate that the core promoter is a central component of the transcriptional apparatus that regulates gene expression.
Collapse
|
12
|
Green DA, Kronforst MR. Monarch butterflies use an environmentally sensitive, internal timer to control overwintering dynamics. Mol Ecol 2019; 28:3642-3655. [PMID: 31338928 PMCID: PMC6834359 DOI: 10.1111/mec.15178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023]
Abstract
The monarch butterfly (Danaus plexippus) complements its iconic migration with diapause, a hormonally controlled developmental programme that contributes to winter survival at overwintering sites. Although timing is a critical adaptive feature of diapause, how environmental cues are integrated with genetically-determined physiological mechanisms to time diapause development, particularly termination, is not well understood. In a design that subjected western North American monarchs to different environmental chamber conditions over time, we modularized constituent components of an environmentally-controlled, internal diapause termination timer. Using comparative transcriptomics, we identified molecular controllers of these specific diapause termination components. Calcium signalling mediated environmental sensitivity of the diapause timer, and we speculate that it is a key integrator of environmental condition (cold temperature) with downstream hormonal control of diapause. Juvenile hormone (JH) signalling changed spontaneously in diapause-inducing conditions, capacitating response to future environmental condition. Although JH is a major target of the internal timer, it is not itself the timer. Epigenetic mechanisms are implicated to be the proximate timing mechanism. Ecdysteroid, JH, and insulin/insulin-like peptide signalling are major targets of the diapause programme used to control response to permissive environmental conditions. Understanding the environmental and physiological mechanisms of diapause termination sheds light on fundamental properties of biological timing, and also helps inform expectations for how monarch populations may respond to future climate change.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolution University of Chicago. Chicago, IL 60637 USA
- Current Address: Department of Ecology and Evolutionary Biology University of Michigan. Ann Arbor, MI 48109 USA
| | - Marcus R. Kronforst
- Department of Ecology and Evolution University of Chicago. Chicago, IL 60637 USA
| |
Collapse
|
13
|
Zotova L, Kurishbayev A, Jatayev S, Goncharov NP, Shamambayeva N, Kashapov A, Nuralov A, Otemissova A, Sereda S, Shvidchenko V, Lopato S, Schramm C, Jenkins C, Soole K, Langridge P, Shavrukov Y. The General Transcription Repressor TaDr1 Is Co-expressed With TaVrn1 and TaFT1 in Bread Wheat Under Drought. Front Genet 2019; 10:63. [PMID: 30800144 PMCID: PMC6375888 DOI: 10.3389/fgene.2019.00063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
The general transcription repressor, TaDr1 gene, was identified during screening of a wheat SNP database using the Amplifluor-like SNP marker KATU-W62. Together with two genes described earlier, TaDr1A and TaDr1B, they represent a set of three homeologous genes in the wheat genome. Under drought, the total expression profiles of all three genes varied between different bread wheat cultivars. Plants of four high-yielding cultivars exposed to drought showed a 2.0-2.4-fold increase in TaDr1 expression compared to controls. Less strong, but significant 1.3-1.8-fold up-regulation of the TaDr1 transcript levels was observed in four low-yielding cultivars. TaVrn1 and TaFT1, which controls the transition to flowering, revealed similar profiles of expression as TaDr1. Expression levels of all three genes were in good correlation with grain yields of evaluated cultivars growing in the field under water-limited conditions. The results could indicate the involvement of all three genes in the same regulatory pathway, where the general transcription repressor TaDr1 may control expression of TaVrn1 and TaFT1 and, consequently, flowering time. The strength of these genes expression can lead to phenological changes that affect plant productivity and hence explain differences in the adaptation of the examined wheat cultivars to the dry environment of Northern and Central Kazakhstan. The Amplifluor-like SNP marker KATU-W62 used in this work can be applied to the identification of wheat cultivars differing in alleles at the TaDr1 locus and in screening hybrids.
Collapse
Affiliation(s)
- Lyudmila Zotova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Nikolay P. Goncharov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nazgul Shamambayeva
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Azamat Kashapov
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Arystan Nuralov
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Ainur Otemissova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Sergey Sereda
- A.F.Khristenko Karaganda Agricultural Experimental Station, Karaganda, Kazakhstan
| | - Vladimir Shvidchenko
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Sergiy Lopato
- Biological Sciences, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Carly Schramm
- Biological Sciences, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin Jenkins
- Biological Sciences, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen Soole
- Biological Sciences, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- Wheat Initiative, Julius Kühn-Institut, Berlin, Germany
| | - Yuri Shavrukov
- Biological Sciences, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
14
|
Gross T, Broholm S, Becker A. CRABS CLAW Acts as a Bifunctional Transcription Factor in Flower Development. FRONTIERS IN PLANT SCIENCE 2018; 9:835. [PMID: 29973943 PMCID: PMC6019494 DOI: 10.3389/fpls.2018.00835] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/29/2018] [Indexed: 05/06/2023]
Abstract
One of the crucial steps in the life cycle of angiosperms is the development of carpels. They are the most complex plant organs, harbor the seeds, and, after fertilization, develop into fruits and are thus an important ecological and economic trait. CRABS CLAW (CRC), a YABBY protein and putative transcription factor, is one of the major carpel developmental regulators in A. thaliana that includes a C2C2 zinc finger and a domain with similarities to an HMG box. CRC is involved in the regulation of processes such as carpel fusion and growth, floral meristem termination, and nectary formation. While its genetic interactions with other carpel development regulators are well described, its biochemical properties and molecular way of action remain unclear. We combined Bimolecular Fluorescence Complementation, Yeast Two-Hybrid, and Yeast One-Hybrid analyzes to shed light on the molecular biology of CRC. Our results showed that CRC dimerizes, also with other YABBY proteins, via the YABBY domain, and that its DNA binding is mainly cooperative and is mediated by the YABBY domain. Further, we identified that CRC is involved in floral meristem termination via transcriptional repression while it acts as a transcriptional activator in nectary development and carpel fusion and growth control. This work increases our understanding on how YABBY transcription factors interact with other proteins and how they regulate their targets.
Collapse
Affiliation(s)
- Thomas Gross
- Department of Biology, Institute of Botany, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Thomas Gross,
| | - Suvi Broholm
- Biosciences and Environment Research Unit, Academy of Finland, Helsinki, Finland
| | - Annette Becker
- Department of Biology, Institute of Botany, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
15
|
Abstract
This review by Vo ngoc et al. expands the view of the RNA polymerase II core promoter, which is comprised of classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter.
Collapse
Affiliation(s)
- Long Vo Ngoc
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Yuan-Liang Wang
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
16
|
Khan SJ, Abidi SNF, Skinner A, Tian Y, Smith-Bolton RK. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling. PLoS Genet 2017; 13:e1006937. [PMID: 28753614 PMCID: PMC5550008 DOI: 10.1371/journal.pgen.1006937] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/09/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth. Regenerating tissue must initiate the signaling that drives regenerative growth, and then sustain that signaling long enough for regeneration to complete. Drosophila imaginal discs, the epithelial structures in the larva that will form the adult animal during metamorphosis, have been an important model system for tissue repair and regeneration for over 60 years. Here we show that damage-induced JNK signaling leads to the upregulation of a gene called moladietz, which encodes a co-factor for an enzyme, NADPH dual oxidase (Duox), that generates reactive oxygen species (ROS), a key tissue-damage signal. High expression of moladietz induces continuous production of ROS in the regenerating tissue. The sustained production of ROS then continues to activate JNK signaling throughout the course of regeneration, ensuring maximal tissue regrowth.
Collapse
Affiliation(s)
- Sumbul Jawed Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Andrea Skinner
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Yuan Tian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rachel K. Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zhu S, Wang J, Cai M, Zhang H, Wu F, Xu Y, Li C, Cheng Z, Zhang X, Guo X, Sheng P, Wu M, Wang J, Lei C, Wang J, Zhao Z, Wu C, Wang H, Wan J. The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:553-568. [PMID: 28043949 PMCID: PMC6055584 DOI: 10.1093/jxb/erw468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heading date is an important agronomic trait related to crop yield. Many genes related to heading date have already been identified in rice (Oryza sativa), and a complicated, preliminary regulatory genetic network has also already been established, but the protein regulatory network is poorly understood. We have identified a novel heading date regulator, Heme Activator Protein like 1 (OsHAPL1), which inhibits flowering under long-day conditions. OsHAPL1 is a nuclear-localized protein that is highly expressed in leaves in a rhythmic manner. OsHAPL1 can physically interact with Days To Heading on chromosome 8 (DTH8), which physically interacts with Heading date 1 (Hd1) both in vitro and in vivo. OsHAPL1 forms a complex with DTH8 and Hd1 in Escherichia coli. OsHAPL1, DTH8, and Hd1 physically interact with the HAP complex, and also with general transcription factors in yeast (Saccharomyces cerevisiae). Further studies showed that OsHAPL1 represses the expression of the florigen genes and FLOWERING LOCUS T 1 (RFT1) and Hd3a through Early heading date 1 (Ehd1). We propose that OsHAPL1 functions as a transcriptional regulator and, together with DTH8, Hd1, the HAP complex, and general transcription factors, regulates the expression of target genes and then affects heading date by influencing the expression of Hd3a and RFT1 through Ehd1.
Collapse
Affiliation(s)
- Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mingming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
- Correspondence:
| |
Collapse
|
18
|
Zabidi MA, Stark A. Regulatory Enhancer-Core-Promoter Communication via Transcription Factors and Cofactors. Trends Genet 2016; 32:801-814. [PMID: 27816209 DOI: 10.1016/j.tig.2016.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 01/20/2023]
Abstract
Gene expression is regulated by genomic enhancers that recruit transcription factors and cofactors to activate transcription from target core promoters. Over the past years, thousands of enhancers and core promoters in animal genomes have been annotated, and we have learned much about the domain structure in which regulatory genomes are organized in animals. Enhancer-core-promoter targeting occurs at several levels, including regulatory domains, DNA accessibility, and sequence-encoded core-promoter specificities that are likely mediated by different regulatory proteins. We review here current knowledge about enhancer-core-promoter targeting, regulatory communication between enhancers and core promoters, and the protein factors involved. We conclude with an outlook on open questions that we find particularly interesting and that will likely lead to additional insights in the upcoming years.
Collapse
Affiliation(s)
- Muhammad A Zabidi
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
| |
Collapse
|
19
|
Nardone V, Chaves-Sanjuan A, Nardini M. Structural determinants for NF-Y/DNA interaction at the CCAAT box. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:571-580. [PMID: 27677949 DOI: 10.1016/j.bbagrm.2016.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
The recently determined crystal structures of the sequence-specific transcription factor NF-Y have illuminated the structural mechanism underlying transcription at the CCAAT box. NF-Y is a trimeric protein complex composed by the NF-YA, NF-YB, and NF-YC subunits. NF-YB and NF-YC contain a histone-like domain and assemble on a head-to-tail fashion to form a dimer, which provides the structural scaffold for the DNA sugar-phosphate backbone binding (mimicking the nucleosome H2A/H2B-DNA assembly) and for the interaction with NF-YA. The NF-YA subunit hosts two structurally extended α-helices; one is involved in NF-YB/NF-YC binding and the other inserts deeply into the DNA minor groove, providing exquisite sequence-specificity for recognition and binding of the CCAAT box. The analysis of these structural data is expected to serve as a powerful guide for future experiments aimed at understanding the role of post-translational modification at NF-Y regulation sites and to unravel the three-dimensional architecture of higher order complexes formed between NF-Y and other transcription factors that act synergistically for transcription activation. Moreover, these structures represent an excellent starting point to challenge the formation of a stable hybrid nucleosome between NF-Y and core histone proteins, and to rationalize the fine molecular details associated with the wide combinatorial association of plant NF-Y subunits. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Valentina Nardone
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Antonio Chaves-Sanjuan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
20
|
Niewiadomska-Cimicka A, Krzyżosiak A, Ye T, Podleśny-Drabiniok A, Dembélé D, Dollé P, Krężel W. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2016; 54:3859-3878. [PMID: 27405468 DOI: 10.1007/s12035-016-0010-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e-5), cAMP (p = 4.5e-4), and calcium signaling (p = 3.4e-3). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Agnieszka Krzyżosiak
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH, Cambridge, UK
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anna Podleśny-Drabiniok
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Doulaye Dembélé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France. .,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
21
|
Macías F, López MC, Thomas MC. The Trypanosomatid Pr77-hallmark contains a downstream core promoter element essential for transcription activity of the Trypanosoma cruzi L1Tc retrotransposon. BMC Genomics 2016; 17:105. [PMID: 26861854 PMCID: PMC4748587 DOI: 10.1186/s12864-016-2427-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/01/2016] [Indexed: 01/11/2023] Open
Abstract
Background Trypanosomatid genomes are highly colonized by non-LTR retroelements that make up to 5 % of the nuclear genome. These elements are mainly accumulated in the strand switch regions (SSRs) where polycistronic transcription is initiated and have a 77 nt-long sequence - Pr77 - at their 5′ ends. L1Tc is the best represented retrotransposon in the Trypanosoma cruzi genome and is a potentially functional autonomous element that encodes its own retrotransposition machinery. The Pr77 of the T. cruzi L1Tc element activates gene transcription via RNA polymerase II, generating abundant, unspliced transcripts which are translated. Results The present manuscript describes the identification of a downstream core promoter element (DPE) in the L1Tc Pr77 sequence. Just four nucleotides long (CGTG), it covers in Pr77 positions +25 to +28 of the described L1Tc transcription start site. The Pr77-DPE motif is conserved in terms of sequence composition and position in the Pr77 of most trypanosomatid non-LTR retrotransposons, independent of the coding or non-coding capacity of these retroelements. Transcription assays in T. cruzi stable transfectants with vector containing point mutations at 17 locations of the Pr77 nucleotide sequence evidence that the DPE motif is essential for the promoter function of Pr77. Furthermore, the obtained data show that other nucleotides also contributed to the promoter function of Pr77. In addition, the presented results indicate that parasite nuclear proteins specifically bind to different regions of the Pr77 sequence although the strongest binding is to the DPE motif. Moreover, it is shown that the DPE sense single-stranded sequence is being required in DNA-protein recognition of nuclear factors. Conclusions The Pr77 sequence present in most of non-LTR retrotransposons of trypanosomatids contains a downstream core promoter element (DPE) which is conserved in terms of nucleotide composition and location. The Pr77-DPE motif is essential for the transcriptional activity of Pr77 although other nucleotides are also involved. DPE has a high affinity binding for nuclear proteins in T. cruzi. The wide retroelement-mediated distribution of Pr77 suggests that it may represent an important tool for regulating gene expression in trypanosomatids. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2427-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco Macías
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento S/N, 18016, Granada, Spain.
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento S/N, 18016, Granada, Spain.
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento S/N, 18016, Granada, Spain.
| |
Collapse
|
22
|
Zehavi Y, Sloutskin A, Kuznetsov O, Juven-Gershon T. The core promoter composition establishes a new dimension in developmental gene networks. Nucleus 2015; 5:298-303. [PMID: 25482118 DOI: 10.4161/nucl.29838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II, which initiates transcription at the core promoter. The dorsal-ventral gene regulatory network (GRN) includes multiple genes that are activated by different nuclear concentrations of the Dorsal transcription factor along the dorsal-ventral axis. Downstream core promoter element (DPE)-containing genes are conserved and highly prevalent among Dorsal target genes. Moreover, the DPE motif is functional in multiple Dorsal target genes, as mutation of the DPE results in the loss of transcriptional activity. Furthermore, analysis of hybrid enhancer-promoter constructs reveals that the core promoter composition plays a pivotal role in the transcriptional output. Importantly, we provide in vivo evidence that expression driven by the homeotic Antennapedia P2 promoter during Drosophila embryogenesis is dependent on the DPE. Taken together, we propose that transcriptional regulation results from the interplay between enhancers and core promoter composition, thus establishing a novel dimension in developmental GRNs.
Collapse
Affiliation(s)
- Yonathan Zehavi
- a The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan, Israel
| | | | | | | |
Collapse
|
23
|
Wang J, Zhao S, Zhou Y, Wei Y, Deng W. Establishment and Validation of a Non-Radioactive Method for In Vitro Transcription Assay Using Primer Extension and Quantitative Real Time PCR. PLoS One 2015; 10:e0135317. [PMID: 26252791 PMCID: PMC4529316 DOI: 10.1371/journal.pone.0135317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023] Open
Abstract
Primer extension-dependent in vitro transcription assay is one of the most important approaches in the research field of gene transcription. However, conventional in vitro transcription assays incorporates radioactive isotopes that cause environmental and health concerns and restricts its scope of application. Here we report a novel non-radioactive method for in vitro transcription analysis by combining primer extension with quantitative real time PCR (qPCR). We show that the DNA template within the transcription system can be effectively eliminated to a very low level by our specially designed approach, and that the primers uniquely designed for primer extension and qPCR can specifically recognize the RNA transcripts. Quantitative PCR data demonstrate that the novel method has successfully been applied to in vitro transcription analyses using the adenovirus E4 and major late promoters. Furthermore, we show that the TFIIB recognition element inhibits transcription of TATA-less promoters using both conventional and nonradioactive in vitro transcription assays. Our method will benefit the laboratories that need to perform in vitro transcription but either lack of or choose to avoid radioactive facilities.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Huangjiahu Campus, Wuhan, 430065, Hubei, China
| | - Shasha Zhao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Huangjiahu Campus, Wuhan, 430065, Hubei, China
| | - Ying Zhou
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Huangjiahu Campus, Wuhan, 430065, Hubei, China
| | - Yun Wei
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Huangjiahu Campus, Wuhan, 430065, Hubei, China
| | - Wensheng Deng
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Huangjiahu Campus, Wuhan, 430065, Hubei, China
- * E-mail:
| |
Collapse
|
24
|
Abstract
Transcriptional regulation is pivotal for development and differentiation of organisms. Transcription of eukaryotic protein-coding genes by RNA polymerase II (Pol II) initiates at the core promoter. Core promoters, which encompass the transcription start site, may contain functional core promoter elements, such as the TATA box, initiator, TCT and downstream core promoter element. TRF2 (TATA-box-binding protein-related factor 2) does not bind TATA box-containing promoters. Rather, it is recruited to core promoters via sequences other than the TATA box. We review the recent findings implicating TRF2 as a basal transcription factor in the regulation of diverse biological processes and specialized transcriptional programs.
Collapse
Key Words
- BREd, downstream TFIIB recognition element
- BREu, upstream TFIIB recognition element
- ChIP, Chromatin immunoprecipitation
- DPE
- DPE, downstream core promoter element
- Inr, initiator
- MTE, motif ten element
- PIC, preinitiation complex
- Pol II, RNA polymerase II
- RNA Pol II transcription
- TAF, TBP-associated factor
- TBP, TATA-box binding protein
- TBP-related factors
- TCT
- TFIIA (transcription factor, RNA polymerase II A)
- TFIIB (transcription factor, RNA polymerase II B)
- TFIID (transcription factor, RNA polymerase II D)
- TRF, TATA-box-binding protein-related factor
- TRF2
- TSS, transcription start site
- core promoter elements/motifs
- embryonic development
- histone gene cluster
- ribosomal protein genes
- spermiogenesis
Collapse
Affiliation(s)
- Yonathan Zehavi
- a The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University , Ramat Gan , 5290002 , Israel
| | | | | | | |
Collapse
|
25
|
A host susceptibility gene, DR1, facilitates influenza A virus replication by suppressing host innate immunity and enhancing viral RNA replication. J Virol 2015; 89:3671-82. [PMID: 25589657 DOI: 10.1128/jvi.03610-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) depends on cellular factors to complete its replication cycle; thus, investigation of the factors utilized by IAV may facilitate antiviral drug development. To this end, a cellular transcriptional repressor, DR1, was identified from a genome-wide RNA interference (RNAi) screen. Knockdown (KD) of DR1 resulted in reductions of viral RNA and protein production, demonstrating that DR1 acts as a positive host factor in IAV replication. Genome-wide transcriptomic analysis showed that there was a strong induction of interferon-stimulated gene (ISG) expression after prolonged DR1 KD. We found that beta interferon (IFN-β) was induced by DR1 KD, thereby activating the JAK-STAT pathway to turn on ISG expression, which led to a strong inhibition of IAV replication. This result suggests that DR1 in normal cells suppresses IFN induction, probably to prevent undesired cytokine production, but that this suppression may create a milieu that favors IAV replication once cells are infected. Furthermore, biochemical assays of viral RNA replication showed that DR1 KD suppressed viral RNA replication. We also showed that DR1 associated with all three subunits of the viral RNA-dependent RNA polymerase (RdRp) complex, indicating that DR1 may interact with individual components of the viral RdRp complex to enhance viral RNA replication. Thus, DR1 may be considered a novel host susceptibility gene for IAV replication via a dual mechanism, not only suppressing the host defense to indirectly favor IAV replication but also directly facilitating viral RNA replication. IMPORTANCE Investigations of virus-host interactions involved in influenza A virus (IAV) replication are important for understanding viral pathogenesis and host defenses, which may manipulate influenza virus infection or prevent the emergence of drug resistance caused by a high error rate during viral RNA replication. For this purpose, a cellular transcriptional repressor, DR1, was identified from a genome-wide RNAi screen as a positive regulator in IAV replication. In the current studies, we showed that DR1 suppressed the gene expression of a large set of host innate immunity genes, which indirectly facilitated IAV replication in the event of IAV infection. Besides this scenario, DR1 also directly enhanced the viral RdRp activity, likely through associating with individual components of the viral RdRp complex. Thus, DR1 represents a novel host susceptibility gene for IAV replication via multiple functions, not only suppressing the host defense but also enhancing viral RNA replication. DR1 may be a potential target for drug development against influenza virus infection.
Collapse
|
26
|
Abstract
Transcription of protein-coding genes is highly dependent on the RNA polymerase II core promoter. Core promoters, generally defined as the regions that direct transcription initiation, consist of functional core promoter motifs (such as the TATA-box, initiator [Inr], and downstream core promoter element [DPE]) that confer specific properties to the core promoter. The known basal transcription factors that support TATA-dependent transcription are insufficient for in vitro transcription of DPE-dependent promoters. In search of a transcription factor that supports DPE-dependent transcription, we used a biochemical complementation approach and identified the Drosophila TBP (TATA-box-binding protein)-related factor 2 (TRF2) as an enriched factor in the fractions that support DPE-dependent transcription. We demonstrate that the short TRF2 isoform preferentially activates DPE-dependent promoters. DNA microarray analysis reveals the enrichment of DPE promoters among short TRF2 up-regulated genes. Using primer extension analysis and reporter assays, we show the importance of the DPE in transcriptional regulation of TRF2 target genes. It was previously shown that, unlike TBP, TRF2 fails to bind DNA containing TATA-boxes. Using microfluidic affinity analysis, we discovered that short TRF2-bound DNA oligos are enriched for Inr and DPE motifs. Taken together, our findings highlight the role of short TRF2 as a preferential core promoter regulator.
Collapse
|
27
|
Zehavi Y, Kuznetsov O, Ovadia-Shochat A, Juven-Gershon T. Core promoter functions in the regulation of gene expression of Drosophila dorsal target genes. J Biol Chem 2014; 289:11993-12004. [PMID: 24634215 DOI: 10.1074/jbc.m114.550251] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes.
Collapse
Affiliation(s)
- Yonathan Zehavi
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Olga Kuznetsov
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Avital Ovadia-Shochat
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Tamar Juven-Gershon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
28
|
Major histocompatibility complex class I core promoter elements are not essential for transcription in vivo. Mol Cell Biol 2013; 33:4395-407. [PMID: 24019072 DOI: 10.1128/mcb.00553-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of core promoter elements in regulating transcription initiation is largely unknown for genes subject to complex regulation. Major histocompatibility complex class I genes are ubiquitously expressed and governed by tissue-specific and hormonal signals. Transcription initiates at multiple sites within the core promoter, which contains elements homologous to the canonical elements CCAAT, TATAA, Sp1 binding site (Sp1BS), and Initiator (Inr). To determine their functions, expression of class I transgenes with individually mutated elements was assessed. Surprisingly, all mutant promoters supported transcription. However, each mutated core promoter element had a distinct effect on expression: CAAT box mutations modulated constitutive expression in nonlymphoid tissues, whereas TATAA-like element mutations dysregulated transcription in lymphoid tissues. Inr mutations aberrantly elevated expression. Sp1BS element mutations resulted in variegated transgene expression. RNA polymerase II binding and histone H3K4me3 patterns correlated with transgene expression; H3K9me3 marks partially correlated. Whereas the wild-type, TATAA-like, and CAAT mutant promoters were activated by gamma interferon, the Sp1 and Inr mutants were repressed, implicating these elements in regulation of hormonal responses. These results lead to the surprising conclusion that no single element is required for promoter activity. Rather, each plays a distinct role in promoter activity, chromatin structure, tissue-specific expression, and extracellular signaling.
Collapse
|
29
|
Jiang Y, Peng D, Bai LP, Ma H, Chen LJ, Zhao MH, Xu ZJ, Guo ZF. Molecular switch for cold acclimation — anatomy of the cold-inducible promoter in plants. BIOCHEMISTRY (MOSCOW) 2013; 78:342-54. [DOI: 10.1134/s0006297913040032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Barrero MJ, Malik S. The RNA polymerase II transcriptional machinery and its epigenetic context. Subcell Biochem 2013; 61:237-259. [PMID: 23150254 DOI: 10.1007/978-94-007-4525-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase II (Pol II) is the main engine that drives transcription of protein-encoding genes in eukaryotes. Despite its intrinsic subunit complexity, Pol II is subject to a host of factors that regulate the multistep transcription process. Indeed, the hallmark of the transcription cycle is the dynamic association of Pol II with initiation, elongation and other factors. In addition, Pol II transcription is regulated by a series of cofactors (coactivators and corepressors). Among these, the Mediator has emerged as one of the key regulatory factors for Pol II. Transcription by Pol II takes place in the context of chromatin, which is subject to numerous epigenetic modifications. This chapter mainly summarizes the various biochemical mechanisms that determine formation and function of a Pol II preinitiation complex (PIC) and those that affect its progress along the gene body (elongation). It further examines the various epigenetic modifications that the Pol II machinery encounters, especially in certain developmental contexts, and highlights newer evidence pointing to a likely close interplay between this machinery and factors responsible for the chromatin modifications.
Collapse
Affiliation(s)
- Maria J Barrero
- Center for Regenerative Medicine, Dr Aiguader 88, Barcelona, Spain,
| | | |
Collapse
|
31
|
Martinez E. Core promoter-selective coregulators of transcription by RNA polymerase II. Transcription 2012; 3:295-9. [PMID: 23117823 DOI: 10.4161/trns.21846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The core promoter of eukaryotic genes is structurally and functionally diverse and contributes to the combinatorial control of gene-specific transcription. Recent findings identifying specific coactivators and architectural proteins as core promoter-specific basal cofactors for RNA polymerase II suggest possible mechanisms for the core promoter selectivity of certain regulators and enhancers.
Collapse
Affiliation(s)
- Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA.
| |
Collapse
|
32
|
O'Keefe DD, Thomas SR, Bolin K, Griggs E, Edgar BA, Buttitta LA. Combinatorial control of temporal gene expression in the Drosophila wing by enhancers and core promoters. BMC Genomics 2012; 13:498. [PMID: 22992320 PMCID: PMC3641971 DOI: 10.1186/1471-2164-13-498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022] Open
Abstract
Background The transformation of a developing epithelium into an adult structure is a complex process, which often involves coordinated changes in cell proliferation, metabolism, adhesion, and shape. To identify genetic mechanisms that control epithelial differentiation, we analyzed the temporal patterns of gene expression during metamorphosis of the Drosophila wing. Results We found that a striking number of genes, approximately 50% of the Drosophila transcriptome, exhibited changes in expression during a time course of wing development. While cis-acting enhancer sequences clearly correlated with these changes, a stronger correlation was discovered between core-promoter types and the dynamic patterns of gene expression within this differentiating tissue. In support of the hypothesis that core-promoter type influences the dynamics of expression, expression levels of several TATA-box binding protein associated factors (TAFs) and other core promoter-associated components changed during this developmental time course, and a testes-specific TAF (tTAF) played a critical role in timing cellular differentiation within the wing. Conclusions Our results suggest that the combinatorial control of gene expression via cis-acting enhancer sequences and core-promoter types, determine the complex changes in gene expression that drive morphogenesis and terminal differentiation of the Drosophila wing epithelium.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
33
|
Xu M, Sharma P, Pan S, Malik S, Roeder RG, Martinez E. Core promoter-selective function of HMGA1 and Mediator in Initiator-dependent transcription. Genes Dev 2012; 25:2513-24. [PMID: 22156211 DOI: 10.1101/gad.177360.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The factors and mechanisms underlying the differential activity and regulation of eukaryotic RNA polymerase II on different types of core promoters have remained elusive. Here we show that the architectural factor HMGA1 and the Mediator coregulator complex cooperate to enhance basal transcription from core promoters containing both a TATA box and an Initiator (INR) element but not from "TATA-only" core promoters. INR-dependent activation by HMGA1 and Mediator requires the TATA-binding protein (TBP)-associated factors (TAFs) within the TFIID complex and counteracts negative regulators of TBP/TATA-dependent transcription such as NC2 and Topoisomerase I. HMGA1 interacts with TFIID and Mediator and is required for the synergy of TATA and INR elements in mammalian cells. Accordingly, natural HMGA1-activated genes in embryonic stem cells tend to have both TATA and INR elements in a synergistic configuration. Our results suggest a core promoter-specific regulation of Mediator and the basal transcription machinery by HMGA1.
Collapse
Affiliation(s)
- Muyu Xu
- Department of Biochemistry, University of California at Riverside, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kadonaga JT. Perspectives on the RNA polymerase II core promoter. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:40-51. [PMID: 23801666 DOI: 10.1002/wdev.21] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RNA polymerase II core promoter is sometimes referred to as the gateway to transcription. The core promoter is generally defined to be the stretch of DNA that directs the initiation of transcription. This simple description belies a complex multidimensional regulatory element, as there is considerable diversity in core promoter structure and function. Core promoters can be viewed at the levels of DNA sequences, transcription factors, and biological networks. Key DNA sequences are known as core promoter elements, which include the TATA box, initiator (Inr), polypyrimidine initiator (TCT), TFIIB recognition element (BRE), motif ten element (MTE), and downstream core promoter element (DPE) motifs. There are no universal core promoter elements that are present in all promoters. Different types of core promoters are transcribed by different sets of transcription factors and exhibit distinct properties, such as specific interactions with transcriptional enhancers, that are determined by the presence or absence of particular core promoter motifs. Moreover, some core promoter elements have been found to be associated with specific biological networks. For instance, the TCT motif is dedicated to the transcription of ribosomal protein genes in Drosophila and humans. In addition, nearly all of the Drosophila Hox genes have a DPE motif in their core promoters. The complexity of the core promoter is further seen in the relation among transcription initiation patterns, the stability or lability of transcriptional states, and the organization of the chromatin structure in the promoter region. Hence, the current data indicate that the core promoter is a critical component in the regulation of gene activity.
Collapse
Affiliation(s)
- James T Kadonaga
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
36
|
Ncb2 is involved in activated transcription of CDR1 in azole-resistant clinical isolates of Candida albicans. EUKARYOTIC CELL 2011; 10:1357-66. [PMID: 21856931 DOI: 10.1128/ec.05041-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We recently demonstrated that CDR1 overexpression in azole-resistant isolates of Candida albicans is due to its enhanced transcriptional activation and increased mRNA stability. In this study, we provide the first evidence of transcriptional regulation of CDR1 by Ncb2, the β subunit of NC2, a heterodimeric regulator of transcription. Conditional NCB2 null mutants displayed decreased susceptibility toward azole and an enhanced transcription of CDR1. Interestingly, Ncb2 associated with the CDR1 promoter under both repression and activation; however, an increase in recruitment was observed under both transient and constitutive activation states. By chromatin immunoprecipitation (ChIP) assay, we showed the preferential recruitment of Ncb2 to the core TATA region under activation (azole-resistant isolate), while under repression (azole-susceptible isolate) it was present at the TATA upstream region. Further, ChIP analysis revealed that Ncb2 binding was not restricted to the CDR1 gene; instead, it was observed on the promoters of genes coregulated with CDR1 by the transcription activator Tac1. The tac1Δ null mutants, which fail to show the drug-induced transient activation of CDR1, also showed no increase in Ncb2 recruitment at the promoter. Taken together, our results show that Ncb2, in conjunction with Tac1, is involved in the transcriptional activation of CDR1, opening up new therapeutic possibilities to combat multidrug resistance (MDR) in C. albicans.
Collapse
|
37
|
Akhtar W, Veenstra GJC. TBP-related factors: a paradigm of diversity in transcription initiation. Cell Biosci 2011; 1:23. [PMID: 21711503 PMCID: PMC3142196 DOI: 10.1186/2045-3701-1-23] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/27/2011] [Indexed: 01/24/2023] Open
Abstract
TATA binding protein (TBP) is a key component of the eukaryotic transcription initiation machinery. It functions in several complexes involved in core promoter recognition and assembly of the pre-initiation complex. Through gene duplication eukaryotes have expanded their repertoire of TATA binding proteins, leading to a variable composition of the transcription machinery. In vertebrates this repertoire consists of TBP, TBP-like factor (TLF, also known as TBPL1, TRF2) and TBP2 (also known as TBPL2, TRF3). All three factors are essential, with TLF and TBP2 playing important roles in development and differentiation, in particular gametogenesis and early embryonic development, whereas TBP dominates somatic cell transcription. TBP-related factors may compete for promoters when co-expressed, but also show preferential interactions with subsets of promoters. Initiation factor switching occurs on account of differential expression of these proteins in gametes, embryos and somatic cells. Paralogs of TFIIA and TAF subunits account for additional variation in the transcription initiation complex. This variation in core promoter recognition accommodates the expanded regulatory capacity and specificity required for germ cells and embryonic development in higher eukaryotes.
Collapse
Affiliation(s)
- Waseem Akhtar
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.
| | | |
Collapse
|
38
|
Guingab-Cagmat JD, Stevens SM, Ratliff MV, Zhang Z, Gold MS, Anagli J, Wang KKW, Kobeissy FH. Identification of tyrosine nitration in UCH-L1 and GAPDH. Electrophoresis 2011; 32:1692-705. [DOI: 10.1002/elps.201100133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Niewiadomska-Cimicka A, Schmidt M, Ożyhar A, Jones D, Jones G, Kochman M. Juvenile hormone binding protein core promoter is TATA-driven with a suppressory element. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:226-35. [DOI: 10.1016/j.bbagrm.2011.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/10/2011] [Accepted: 02/05/2011] [Indexed: 11/29/2022]
|
40
|
Role of helix-loop-helix proteins during differentiation of erythroid cells. Mol Cell Biol 2011; 31:1332-43. [PMID: 21282467 DOI: 10.1128/mcb.01186-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helix-loop-helix (HLH) proteins play a profound role in the process of development and cellular differentiation. Among the HLH proteins expressed in differentiating erythroid cells are the ubiquitous proteins Myc, USF1, USF2, and TFII-I, as well as the hematopoiesis-specific transcription factor Tal1/SCL. All of these HLH proteins exhibit distinct functions during the differentiation of erythroid cells. For example, Myc stimulates the proliferation of erythroid progenitor cells, while the USF proteins and Tal1 regulate genes that specify the differentiated phenotype. This minireview summarizes the known activities of Myc, USF, TFII-I, and Tal11/SCL and discusses how they may function sequentially, cooperatively, or antagonistically in regulating expression programs during the differentiation of erythroid cells.
Collapse
|
41
|
Green VA, Weinberg MS. Small RNA-induced transcriptional gene regulation in mammals mechanisms, therapeutic applications, and scope within the genome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:11-46. [PMID: 21846568 DOI: 10.1016/b978-0-12-415795-8.00005-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Argonaute-bound small RNAs, derived from RNA interference and related pathways, are well-known effectors of posttranscriptional gene silencing (PTGS). Yet, these complexes also play an important role in affecting gene expression at the transcriptional level, either by transcriptional gene silencing (TGS) or activation (TGA). Our current understanding of how small RNAs are able to both activate and suppress transcription is unclear. In this review, we briefly outline the biogenesis of small RNAs and explore the mechanisms behind the various phenomena attributed to AGO-bound small RNA-mediated transcriptional regulation. The therapeutic potential of TGS and TGA is examined, emphasizing the distinct advantages over PTGS approaches with examples of application to cancer and diseases associated with viruses, aberrant splicing, and dysregulated heterochromatin. Finally, the influence of promoter architecture on gene susceptibility to transcriptional regulation is discussed in the light of how this impacts the scope of small RNA-induced transcriptional regulation within the genome.
Collapse
Affiliation(s)
- Victoria A Green
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
42
|
Lee N, Iyer SS, Mu J, Weissman JD, Ohali A, Howcroft TK, Lewis BA, Singer DS. Three novel downstream promoter elements regulate MHC class I promoter activity in mammalian cells. PLoS One 2010; 5:e15278. [PMID: 21179443 PMCID: PMC3001478 DOI: 10.1371/journal.pone.0015278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/09/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MHC CLASS I TRANSCRIPTION IS REGULATED BY TWO DISTINCT TYPES OF REGULATORY PATHWAYS: 1) tissue-specific pathways that establish constitutive levels of expression within a given tissue and 2) dynamically modulated pathways that increase or decrease expression within that tissue in response to hormonal or cytokine mediated stimuli. These sets of pathways target distinct upstream regulatory elements, have distinct basal transcription factor requirements, and utilize discrete sets of transcription start sites within an extended core promoter. METHODOLOGY/PRINCIPAL FINDINGS We studied regulatory elements within the MHC class I promoter by cellular transfection and in vitro transcription assays in HeLa, HeLa/CIITA, and tsBN462 of various promoter constructs. We have identified three novel MHC class I regulatory elements (GLE, DPE-L1 and DPE-L2), located downstream of the major transcription start sites, that contribute to the regulation of both constitutive and activated MHC class I expression. These elements located at the 3' end of the core promoter preferentially regulate the multiple transcription start sites clustered at the 5' end of the core promoter. CONCLUSIONS/SIGNIFICANCE Three novel downstream elements (GLE, DPE-L1, DPE-L2), located between +1 and +32 bp, regulate both constitutive and activated MHC class I gene expression by selectively increasing usage of transcription start sites clustered at the 5' end of the core promoter upstream of +1 bp. Results indicate that the downstream elements preferentially regulate TAF1-dependent, relative to TAF1-independent, transcription.
Collapse
Affiliation(s)
- Namhoon Lee
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cellular, Molecular, Developmental Biology and Biophysics, NIH-Johns Hopkins University, Bethesda, Maryland, United States of America
| | - Shankar S. Iyer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jie Mu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jocelyn D. Weissman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anat Ohali
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - T. Kevin Howcroft
- Division of Cancer Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Brian A. Lewis
- Metabolism Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Dinah S. Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Metabolism Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
43
|
Parry TJ, Theisen JW, Hsu JY, Wang YL, Corcoran DL, Eustice M, Ohler U, Kadonaga JT. The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery. Genes Dev 2010; 24:2013-8. [PMID: 20801935 PMCID: PMC2939363 DOI: 10.1101/gad.1951110] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 07/30/2010] [Indexed: 12/26/2022]
Abstract
The TCT motif (polypyrimidine initiator) encompasses the transcription start site of nearly all ribosomal protein genes in Drosophila and mammals. The TCT motif is required for transcription of ribosomal protein gene promoters. The TCT element resembles the Inr (initiator), but is not recognized by TFIID and cannot function in lieu of an Inr. However, a single T-to-A substitution converts the TCT element into a functionally active Inr. Thus, the TCT motif is a novel transcriptional element that is distinct from the Inr. These findings reveal a specialized TCT-based transcription system that is directed toward the synthesis of ribosomal proteins.
Collapse
Affiliation(s)
- Trevor J. Parry
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Joshua W.M. Theisen
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Jer-Yuan Hsu
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Yuan-Liang Wang
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - David L. Corcoran
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Moriah Eustice
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Uwe Ohler
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27708, USA
- Department of Computer Science, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - James T. Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
44
|
Transcriptional regulation by small RNAs at sequences downstream from 3' gene termini. Nat Chem Biol 2010; 6:621-9. [PMID: 20581822 DOI: 10.1038/nchembio.400] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/25/2010] [Indexed: 01/06/2023]
Abstract
Transcriptome studies reveal many noncoding transcripts overlapping 3' gene termini. The function of these transcripts is unknown. Here we have characterized transcription at the progesterone receptor (PR) locus and identified noncoding transcripts that overlap the 3' end of the gene. Small RNAs complementary to sequences beyond the 3' terminus of PR mRNA modulated expression of PR, recruited argonaute 2 to a 3' noncoding transcript, altered occupancy of RNA polymerase II, induced chromatin changes at the PR promoter and affected responses to physiological stimuli. We found that the promoter and 3' terminal regions of the PR locus are in close proximity, providing a potential mechanism for RNA-mediated control of transcription over long genomic distances. These results extend the potential for small RNAs to regulate transcription to target sequences beyond the 3' termini of mRNA.
Collapse
|
45
|
Juven-Gershon T, Kadonaga JT. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 2010; 339:225-9. [PMID: 19682982 PMCID: PMC2830304 DOI: 10.1016/j.ydbio.2009.08.009] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/04/2009] [Indexed: 01/16/2023]
Abstract
The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional regulatory element. There are two main strategies for transcription initiation - focused and dispersed initiation. In focused initiation, transcription starts from a single nucleotide or within a cluster of several nucleotides, whereas in dispersed initiation, there are several weak transcription start sites over a broad region of about 50 to 100 nucleotides. Focused initiation is the predominant means of transcription in simpler organisms, whereas dispersed initiation is observed in approximately two-thirds of vertebrate genes. Regulated genes tend to have focused promoters, and constitutive genes typically have dispersed promoters. Hence, in vertebrates, focused promoters are used in a small but biologically important fraction of genes. The properties of focused core promoters are dependent upon the presence or absence of sequence motifs such as the TATA box and DPE. For example, Caudal, a key regulator of the homeotic gene network, preferentially activates transcription from DPE- versus TATA-dependent promoters. The basal transcription factors, which act in conjunction with the core promoter, are another important component in the regulation of gene expression. For instance, upon differentiation of myoblasts to myotubes, the cells undergo a switch from a TFIID-based transcription system to a TRF3-TAF3-based system. These findings suggest that the core promoter and basal transcription factors are important yet mostly unexplored components in the regulation of gene expression.
Collapse
Affiliation(s)
- Tamar Juven-Gershon
- Section of Molecular Biology, 0347, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | - James T. Kadonaga
- Section of Molecular Biology, 0347, University of California, San Diego, La Jolla, CA 92093-0347, USA
| |
Collapse
|
46
|
Kantidakis T, White RJ. Dr1 (NC2) is present at tRNA genes and represses their transcription in human cells. Nucleic Acids Res 2009; 38:1228-39. [PMID: 19965767 PMCID: PMC2831321 DOI: 10.1093/nar/gkp1102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dr1 (also known as NC2β) was identified as a repressor of RNA polymerase (pol) II transcription. It was subsequently shown to inhibit pol III transcription when expressed at high levels in vitro or in yeast cells. However, endogenous Dr1 was not detected at pol III-transcribed genes in growing yeast. In contrast, we demonstrate that endogenous Dr1 is present at pol III templates in human cells, as is its dimerization partner DRAP1 (also called NC2α). Expression of tRNA by pol III is selectively enhanced by RNAi-mediated depletion of endogenous human Dr1, but we found no evidence that DRAP1 influences pol III output in vivo. A stable association was detected between endogenous Dr1 and the pol III-specific transcription factor Brf1. This interaction may recruit Dr1 to pol III templates in vivo, as crosslinking to these sites increases following Brf1 induction. On the basis of these data, we conclude that the physiological functions of human Dr1 include regulation of pol III transcription.
Collapse
Affiliation(s)
- Theodoros Kantidakis
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | |
Collapse
|
47
|
Yuan AH, Hochschild A. Direct activator/co-activator interaction is essential for bacteriophage T4 middle gene expression. Mol Microbiol 2009; 74:1018-30. [PMID: 19843221 DOI: 10.1111/j.1365-2958.2009.06916.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacteriophage T4 AsiA protein is a bifunctional regulator that inhibits transcription from the major class of bacterial promoters and also serves as an essential co-activator of transcription from T4 middle promoters. AsiA binds the primary s factor in Escherichia coli, sigma(70), and modifies the promoter recognition properties of the sigma(70)-containing RNA polymerase(RNAP) holoenzyme. In its role as co-activator, AsiA directs RNAP to T4 middle promoters in the presence of the T4-encoded activator MotA. According to the current model for T4 middle promoter activation, AsiA plays an indirect role in stabilizing the activation complex by facilitating interaction between DNA-bound MotA and sigma(70). Here we show that AsiA also plays a direct role in T4 middle promoter activation by contacting the MotA activation domain. Furthermore,we show that interaction between AsiA and the beta-flap domain of RNAP is important for co-activation. Based on our findings, we propose a revised model for T4 middle promoter activation, with AsiA organizing the activation complex via three distinct protein-protein interactions.
Collapse
Affiliation(s)
- Andy H Yuan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., D1, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription. Proc Natl Acad Sci U S A 2009; 106:14265-70. [PMID: 19706510 DOI: 10.1073/pnas.0900162106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human PC4 and the yeast ortholog Sub1 have multiple functions in RNA polymerase II transcription. Genome-wide mapping revealed that Sub1 is present on Pol III-transcribed genes. Sub1 was found to interact with components of the Pol III transcription system and to stimulate the initiation and reinitiation steps in a system reconstituted with all recombinant factors. Sub1 was required for optimal Pol III gene transcription in exponentially growing cells.
Collapse
|
49
|
Sikorski TW, Buratowski S. The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 2009; 21:344-51. [PMID: 19411170 PMCID: PMC2692371 DOI: 10.1016/j.ceb.2009.03.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/26/2009] [Accepted: 03/29/2009] [Indexed: 01/19/2023]
Abstract
In vitro experiments led to a simple model in which basal transcription factors sequentially assembled with RNA Polymerase II to generate a preinitiation complex (PIC). Emerging evidence indicates that PIC composition is not universal, but promoter-dependent. Active promoters are occupied by a mixed population of complexes, including regulatory factors such as NC2, Mot1, Mediator, and TFIIS. Recent studies are expanding our understanding of the roles of these factors, demonstrating that their functions are both broader and more context dependent than previously realized.
Collapse
Affiliation(s)
- Timothy W Sikorski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | | |
Collapse
|
50
|
Cai Y, Laughon A. The Drosophila Smad cofactor Schnurri engages in redundant and synergistic interactions with multiple corepressors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:232-45. [PMID: 19437622 DOI: 10.1016/j.bbagrm.2009.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Drosophila a large zinc finger protein, Schnurri, functions as a Smad cofactor required for repression of brinker and other negative targets in response to signaling by the transforming growth factor beta ligand, Decapentaplegic. Schnurri binds to the silencer-bound Smads through a cluster of zinc fingers located near its carboxy-terminus and silences via a separate repression domain adjacent to this zinc-finger cluster. Here we show that this repression domain functions through interaction with two corepressors, dCtBP and dSin3A, and that either interaction is sufficient for repression. We also report that Schnurri contains additional repression domains that function through interaction with dCtBP, Groucho, dSin3A and SMRTER. By testing for the ability to rescue a shn RNAi phenotype we provide evidence that these diverse repression domains are both cooperative and partially redundant. In addition we find that Shn harbors a region capable of transcriptional activation, consistent with evidence that Schnurri can function as an activator as well as a repressor.
Collapse
Affiliation(s)
- Yi Cai
- Laboratory of Genetics, University of Wisconsin, 425G Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|