1
|
Huang X, Sun X, Wang Q, Zhang J, Wen H, Chen WJ, Zhu S. Structural insights into the diverse actions of magnesium on NMDA receptors. Neuron 2025; 113:1006-1018.e4. [PMID: 40010346 DOI: 10.1016/j.neuron.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025]
Abstract
Magnesium (Mg2+) is a key regulatory ion of N-methyl-ᴅ-aspartate (NMDA) receptors, including conferring them to function as coincidence detectors for excitatory synaptic transmission. However, the structural basis underlying the Mg2+ action on NMDA receptors remains unclear. Here, we report the cryo-EM structures of GluN1-N2B receptors and identify three distinct Mg2+-binding pockets. Specifically, site Ⅰ is located at the selectivity filter where an asparagine ring forms coordination bonds with Mg2+ and is responsible for the voltage-dependent block. Sites Ⅱ and Ⅲ are located at the N-terminal domain (NTD) of the GluN2B subunit and involved in the allosteric potentiation and inhibition, respectively. Site Ⅱ consists of three acidic residues, and the combination of three mutations abolishes the GluN2B-specific Mg2+ potentiation, while site Ⅲ overlaps with the Zn2+ pocket, and mutations here significantly reduce the inhibition. Our study enhances the understanding of multifaceted roles of Mg2+ in NMDA receptors and synaptic plasticity.
Collapse
Affiliation(s)
- Xuejing Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaole Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jilin Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Han Wen
- DP Technology, Beijing 100089, China; AI for Science Institute, Beijing 100085, China; State Key Laboratory of Medical Proteomics, Beijing 102206, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Shujia Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Judák L, Dobos G, Ócsai K, Báthory E, Szebik H, Tarján B, Maák P, Szadai Z, Takács I, Chiovini B, Lőrincz T, Szepesi Á, Roska B, Szalay G, Rózsa B. Moculus: an immersive virtual reality system for mice incorporating stereo vision. Nat Methods 2025; 22:386-398. [PMID: 39668210 PMCID: PMC11810792 DOI: 10.1038/s41592-024-02554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/29/2024] [Indexed: 12/14/2024]
Abstract
Due to technical roadblocks, it is unclear how visual circuits represent multiple features or how behaviorally relevant representations are selected for long-term memory. Here we developed Moculus, a head-mounted virtual reality platform for mice that covers the entire visual field, and allows binocular depth perception and full visual immersion. This controllable environment, with three-dimensional (3D) corridors and 3D objects, in combination with 3D acousto-optical imaging, affords rapid visual learning and the uncovering of circuit substrates in one measurement session. Both the control and reinforcement-associated visual cue coding neuronal assemblies are transiently expanded by reinforcement feedback to near-saturation levels. This increases computational capability and allows competition among assemblies that encode behaviorally relevant information. The coding assemblies form partially orthogonal and overlapping clusters centered around hub cells with higher and earlier ramp-like responses, as well as locally increased functional connectivity.
Collapse
Grants
- ERC 682426 (VISONby3DSTIM), 2018-1.3.1-VKE-00032, 2018-1.1.2-KFI-00097, PM/20453-15/2020, 712821-NEURAM, 2020-1.1.5-GYORSÍTÓSÁV-2021-00004, GINOP-1.2.15-21-2021-00061. 2020-2.1.1-ED-2021-00190, 2020-2.1.1-ED-2022-00208, 2022-1.1.1-KK- 2022-00005, 2022-2.1.1-NL-2022-00012, 2021-1.1.4-GYORSÍTÓSÁV-2022-00064, NUMBER 871277 — AMPLITUDE, GINOP_PLUSZ-2.1.1-21-2022-00143,NKFIH/143650
Collapse
Affiliation(s)
- Linda Judák
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Gergely Dobos
- Bay Zoltán Nonprofit for Applied Research, Budapest, Hungary
| | - Katalin Ócsai
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
- Department of Algebra and Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Eszter Báthory
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Huba Szebik
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Balázs Tarján
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| | - Pál Maák
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Szadai
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - István Takács
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Chiovini
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Tibor Lőrincz
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Áron Szepesi
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Botond Roska
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Gergely Szalay
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary.
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary.
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| |
Collapse
|
3
|
Tian L, Xiao J, Yu T. A robust statistical approach for finding informative spatially associated pathways. Brief Bioinform 2024; 25:bbae543. [PMID: 39451157 PMCID: PMC11503753 DOI: 10.1093/bib/bbae543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Spatial transcriptomics offers deep insights into cellular functional localization and communication by mapping gene expression to spatial locations. Traditional approaches that focus on selecting spatially variable genes often overlook the complexity of biological pathways and the interactions among genes. Here, we introduce a novel framework that shifts the focus towards directly identifying functional pathways associated with spatial variability by adapting the Brownian distance covariance test in an innovative manner to explore the heterogeneity of biological functions over space. Unlike most other methods, this statistical testing approach is free of gene selection and parameter selection and allows nonlinear and complex dependencies. It allows for a deeper understanding of how cells coordinate their activities across different spatial domains through biological pathways. By analyzing real human and mouse datasets, the method found significant pathways that were associated with spatial variation, as well as different pathway patterns among inner- and edge-cancer regions. This innovative framework offers a new perspective on analyzing spatial transcriptomic data, contributing to our understanding of tissue architecture and disease pathology. The implementation is publicly available at https://github.com/tianlq-prog/STpathway.
Collapse
Affiliation(s)
- Leqi Tian
- School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P.R. China
- Shenzhen Research Institute of Big Data, Shenzhen, Guangdong 518172, P.R. China
| | - Jiashun Xiao
- Shenzhen Research Institute of Big Data, Shenzhen, Guangdong 518172, P.R. China
| | - Tianwei Yu
- School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P.R. China
- Shenzhen Research Institute of Big Data, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
4
|
Bendis PC, Zimmerman S, Onisiforou A, Zanos P, Georgiou P. The impact of estradiol on serotonin, glutamate, and dopamine systems. Front Neurosci 2024; 18:1348551. [PMID: 38586193 PMCID: PMC10998471 DOI: 10.3389/fnins.2024.1348551] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.
Collapse
Affiliation(s)
- Peyton Christine Bendis
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Sydney Zimmerman
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
Aboouf MA, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int J Mol Sci 2023; 24:10179. [PMID: 37373327 DOI: 10.3390/ijms241210179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
6
|
Lu CH, Chang HT, Hsu LF, Lee MH, Cheng J, Wu DC, Lin WY. In Silico and In Vitro Screening of Serine Racemase Agonist and In Vivo Efficacy on Alzheimer's Disease Drosophila melanogaster. Pharmaceuticals (Basel) 2023; 16:280. [PMID: 37259423 PMCID: PMC9962741 DOI: 10.3390/ph16020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/07/2025] Open
Abstract
The NMDA receptor hypofunction has been implicated in schizophrenia, memory impairment, and Alzheimer's disease. Modulating the abundance of D-serine, a co-agonist of the NMDA receptor, is a strategy to treat symptoms of the NMDA receptor hypofunction. In contrast to D-amino acid oxidase (DAAO) inhibitors, which aim at decreasing the loss of D-serine, this study tried to identify serine racemase (SRR) agonists, which boost the conversion of L-serine to D-serine. We used holo and apo structures of human SRR for the molecular docking against the National Cancer Institute (NCI) and ZINC compound databases and validated their efficacy by in vitro SRR activity assay. We identified NSC294149 (2-amino-3-(3-nitroimidazo[1,2-a]pyridin-2-yl)sulfanylpropanoic acid) as a potential SRR agonist and confirmed its amelioration of the hazard ratio of survival of the AD model of fruit fly (Drosophila melanogaster). These results suggest that the SRR agonist could be a drug design target against the NMDA receptor hypofunction symptoms.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Hao-Teng Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City 613, Chiayi County, Taiwan
- Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613, Chiayi County, Taiwan
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City 613, Chiayi County, Taiwan
| | - Ming-Hsueh Lee
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City 613, Chiayi County, Taiwan
| | - Jack Cheng
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Dong Chuan Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Brain Diseases Research Center, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
7
|
Thiele M, Berner R, Tass PA, Schöll E, Yanchuk S. Asymmetric adaptivity induces recurrent synchronization in complex networks. CHAOS (WOODBURY, N.Y.) 2023; 33:023123. [PMID: 36859232 DOI: 10.1063/5.0128102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Rhythmic activities that alternate between coherent and incoherent phases are ubiquitous in chemical, ecological, climate, or neural systems. Despite their importance, general mechanisms for their emergence are little understood. In order to fill this gap, we present a framework for describing the emergence of recurrent synchronization in complex networks with adaptive interactions. This phenomenon is manifested at the macroscopic level by temporal episodes of coherent and incoherent dynamics that alternate recurrently. At the same time, the dynamics of the individual nodes do not change qualitatively. We identify asymmetric adaptation rules and temporal separation between the adaptation and the dynamics of individual nodes as key features for the emergence of recurrent synchronization. Our results suggest that asymmetric adaptation might be a fundamental ingredient for recurrent synchronization phenomena as seen in pattern generators, e.g., in neuronal systems.
Collapse
Affiliation(s)
- Max Thiele
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Rico Berner
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, California 94305, USA
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Serhiy Yanchuk
- Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
| |
Collapse
|
8
|
Engler-Chiurazzi EB, Russell AE, Povroznik JM, McDonald KO, Porter KN, Wang DS, Hammock J, Billig BK, Felton CC, Yilmaz A, Schreurs BG, O'Callaghan JD, Zwezdaryk KJ, Simpkins JW. Intermittent systemic exposure to lipopolysaccharide-induced inflammation disrupts hippocampal long-term potentiation and impairs cognition in aging male mice. Brain Behav Immun 2023; 108:279-291. [PMID: 36549577 PMCID: PMC10019559 DOI: 10.1016/j.bbi.2022.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related cognitive decline, a common component of the brain aging process, is associated with significant impairment in daily functioning and quality of life among geriatric adults. While the complexity of mechanisms underlying cognitive aging are still being elucidated, microbial exposure and the multifactorial inflammatory cascades associated with systemic infections are emerging as potential drivers of neurological senescence. The negative cognitive and neurobiological consequences of a single pathogen-associated inflammatory experience, such as that modeled through treatment with lipopolysaccharide (LPS), are well documented. Yet, the brain aging impacts of repeated, intermittent inflammatory challenges are less well studied. To extend the emerging literature assessing the impact of infection burden on cognitive function among normally aging mice, here, we repeatedly exposed adult mice to intermittent LPS challenges during the aging period. Male 10-month-old C57BL6 mice were systemically administered escalating doses of LPS once every two weeks for 2.5 months. We evaluated cognitive consequences using the non-spatial step-through inhibitory avoidance task, and both spatial working and reference memory versions of the Morris water maze. We also probed several potential mechanisms, including cortical and hippocampal cytokine/chemokine gene expression, as well as hippocampal neuronal function via extracellular field potential recordings. Though there was limited evidence for an ongoing inflammatory state in cortex and hippocampus, we observed impaired learning and memory and a disruption of hippocampal long-term potentiation. These data suggest that a history of intermittent exposure to LPS-induced inflammation is associated with subtle but significantly impaired cognition among normally aging mice. The broader impact of these findings may have important implications for standard of care involving infections in aging individuals or populations at-risk for dementia.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA; Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| | - A E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA; Magee Women's Research Institute, Allied Member, Pittsburgh, PA 15213, USA
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - K O McDonald
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - K N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - D S Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J Hammock
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - B K Billig
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - C C Felton
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - A Yilmaz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - B G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J D O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - K J Zwezdaryk
- Department of Microbiology and Immunology, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
9
|
Zaitsev АV, Amakhin DV, Dyomina AV, Zakharova MV, Ergina JL, Postnikova TY, Diespirov GP, Magazanik LG. Synaptic Dysfunction in Epilepsy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302103008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Abstract
Dystonia is by far the most intrusive and invalidating extrapyramidal side effect of potent classical antipsychotic drugs. Antipsychotic drug-induced dystonia is classified in both acute and tardive forms. The incidence of drug-induced dystonia is associated with the affinity to inhibitory dopamine D2 receptors. Particularly acute dystonia can be treated with anticholinergic drugs, but the tardive form may also respond to such antimuscarinic treatment, which contrasts their effects in tardive dyskinesia. Combining knowledge of the pathophysiology of primary focal dystonia with the anatomical and pharmacological organization of the extrapyramidal system may shed some light on the mechanism of antipsychotic drug-induced dystonia. A suitable hypothesis is derived from the understanding that focal dystonia may be due to a faulty processing of somatosensory input, so leading to inappropriate execution of well-trained motor programmes. Neuroplastic alterations of the sensitivity of extrapyramidal medium-sized spiny projection neurons to stimulation, which are induced by the training of specific complex movements, lead to the sophisticated execution of these motor plans. The sudden and non-selective disinhibition of indirect pathway medium-sized spiny projection neurons by blocking dopamine D2 receptors may distort this process. Shutting down the widespread influence of tonically active giant cholinergic interneurons on all medium-sized spiny projection neurons by blocking muscarinic receptors may result in a reduction of the influence of extrapyramidal cortical-striatal-thalamic-cortical regulation. Furthermore, striatal cholinergic interneurons have an important role to play in integrating cerebellar input with the output of cerebral cortex, and are also targeted by dopaminergic nigrostriatal fibres affecting dopamine D2 receptors.
Collapse
Affiliation(s)
- Anton JM Loonen
- Groningen Research Institute of Pharmacy, Pharmacotherapy, -Epidemiology and -Economics, University of Groningen, Groningen, The Netherlands
- Geestelijke GezondheidsZorg Westelijk Noord-Brabant (GGZ WNB), Mental Health Hospital, Halsteren, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
11
|
No Effect of Anodal tDCS on Verbal Episodic Memory Performance and Neurotransmitter Levels in Young and Elderly Participants. Neural Plast 2020; 2020:8896791. [PMID: 33029128 PMCID: PMC7528151 DOI: 10.1155/2020/8896791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 01/05/2023] Open
Abstract
Healthy ageing is accompanied by cognitive decline that affects episodic memory processes in particular. Studies showed that anodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) may counteract this cognitive deterioration by increasing excitability and inducing neuroplasticity in the targeted cortical region. While stimulation gains are more consistent in initial low performers, relying solely on behavioural measures to predict treatment benefits does not suffice for a reliable implementation of this method as a therapeutic option. Hence, an exploration of the underlying neurophysiological mechanisms regarding the differential stimulation effect is warranted. Glutamatergic metabolites (Glx) and γ-aminobutyric acid (GABA) are involved in learning and memory processes and can be influenced with tDCS; wherefore, they present themselves as potential biomarkers for tDCS-induced behavioural gains, which are affiliated with neuroplasticity processes. In the present randomized, double-blind, sham-controlled, crossover study, 33 healthy young and 22 elderly participants received anodal tDCS to their left DLPFC during the encoding phase of a verbal episodic memory task. Using MEGA-PRESS edited magnetic resonance spectroscopy (MRS), Glx and GABA levels were measured in the left DLPFC before and after the stimulation period. Further, we tested whether baseline performance and neurotransmitter levels predicted subsequent gains. No beneficial group effects of tDCS emerged in either verbal retrieval performances or neurotransmitter concentrations. Moreover, baseline performance levels did not predict stimulation-induced cognitive gains, nor did Glx or GABA levels. Nevertheless, exploratory analyses suggested a predictive value of the Glx : GABA ratio, with lower ratios at baseline indicating greater tDCS-related gains in delayed recall performance. This highlights the importance of further studies investigating neurophysiological mechanisms underlying previously observed stimulation-induced cognitive benefits and their respective interindividual heterogeneity.
Collapse
|
12
|
Frequency cluster formation and slow oscillations in neural populations with plasticity. PLoS One 2019; 14:e0225094. [PMID: 31725782 PMCID: PMC6855470 DOI: 10.1371/journal.pone.0225094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022] Open
Abstract
We report the phenomenon of frequency clustering in a network of Hodgkin-Huxley neurons with spike timing-dependent plasticity. The clustering leads to a splitting of a neural population into a few groups synchronized at different frequencies. In this regime, the amplitude of the mean field undergoes low-frequency modulations, which may contribute to the mechanism of the emergence of slow oscillations of neural activity observed in spectral power of local field potentials or electroencephalographic signals at high frequencies. In addition to numerical simulations of such multi-clusters, we investigate the mechanisms of the observed phenomena using the simplest case of two clusters. In particular, we propose a phenomenological model which describes the dynamics of two clusters taking into account the adaptation of coupling weights. We also determine the set of plasticity functions (update rules), which lead to multi-clustering.
Collapse
|
13
|
Tripchlorolide May Improve Spatial Cognition Dysfunction and Synaptic Plasticity after Chronic Cerebral Hypoperfusion. Neural Plast 2019; 2019:2158285. [PMID: 30923551 PMCID: PMC6409048 DOI: 10.1155/2019/2158285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/10/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a common pathophysiological mechanism that underlies cognitive decline and degenerative processes in dementia and other neurodegenerative diseases. Low cerebral blood flow (CBF) during CCH leads to disturbances in the homeostasis of hemodynamics and energy metabolism, which in turn results in oxidative stress, astroglia overactivation, and synaptic protein downregulation. These events contribute to synaptic plasticity and cognitive dysfunction after CCH. Tripchlorolide (TRC) is an herbal compound with potent neuroprotective effects. The potential of TRC to improve CCH-induced cognitive impairment has not yet been determined. In the current study, we employed behavioral techniques, electrophysiology, Western blotting, immunofluorescence, and Golgi staining to investigate the effect of TRC on spatial learning and memory impairment and on synaptic plasticity changes in rats after CCH. Our findings showed that TRC could rescue CCH-induced spatial learning and memory dysfunction and improve long-term potentiation (LTP) disorders. We also found that TRC could prevent CCH-induced reductions in N-methyl-D-aspartic acid receptor 2B, synapsin I, and postsynaptic density protein 95 levels. Moreover, TRC upregulated cAMP-response element binding protein, which is an important transcription factor for synaptic proteins. TRC also prevented the reduction in dendritic spine density that is caused by CCH. However, sham rats treated with TRC did not show any improvement in cognition. Because CCH causes disturbances in brain energy homeostasis, TRC therapy may resolve this instability by correcting a variety of cognitive-related signaling pathways. However, for the normal brain, TRC treatment led to neither disturbance nor improvement in neural plasticity. Additionally, this treatment neither impaired nor further improved cognition. In conclusion, we found that TRC can improve spatial learning and memory, enhance synaptic plasticity, upregulate the expression of some synaptic proteins, and increase the density of dendritic spines. Our findings suggest that TRC may be beneficial in the treatment of cognitive impairment induced by CCH.
Collapse
|
14
|
Xing X, Wu CF. Inter-relationships among physical dimensions, distal-proximal rank orders, and basal GCaMP fluorescence levels in Ca 2+ imaging of functionally distinct synaptic boutons at Drosophila neuromuscular junctions. J Neurogenet 2018; 32:195-208. [PMID: 30322321 DOI: 10.1080/01677063.2018.1504043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GCaMP imaging is widely employed for investigating neuronal Ca2+ dynamics. The Drosophila larval neuromuscular junction (NMJ) consists of three distinct types of motor terminals (type Ib, Is and II). We investigated whether variability in synaptic bouton sizes and GCaMP expression levels confound interpretations of GCaMP readouts, in inferring the intrinsic Ca2+ handling properties among these functionally distinct synapses. Analysis of large data sets accumulated over years established the wide ranges of bouton sizes and GCaMP baseline fluorescence, with large overlaps among synaptic categories. We showed that bouton size and GCaMP baseline fluorescence were not confounding factors in determining the characteristic frequency responses among type Ib, Is and II synapses. More importantly, the drastic phenotypes that hyperexcitability mutations manifest preferentially in particular synaptic categories, were not obscured by bouton heterogeneity in physical size and GCaMP expression level. Our data enabled an extensive analysis of the distal-proximal gradient of GCaMP responses upon genetic and pharmacological manipulations. The results illustrate the conditions that disrupt or enhance the distal-proximal gradients. For example, stimulus frequencies just above the threshold level produced the steepest gradient in low Ca2+ (0.1 mM) saline, while supra-threshold stimulation flattened the gradient. Moreover, membrane hyperexcitability mutations (eag1 Sh120 and parabss1) and mitochondrial inhibition by dinitrophenol (DNP) disrupted the gradient. However, a novel distal-proximal gradient of decay kinetics appeared after long-term DNP incubation. We performed focal recording to assess the failure rates in transmission at low Ca2+ levels, which yielded indications of a mild distal-proximal gradient in release probability.
Collapse
Affiliation(s)
- Xiaomin Xing
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Chun-Fang Wu
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
15
|
Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci 2018; 91:122-130. [PMID: 30004015 DOI: 10.1016/j.mcn.2018.07.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent plasticity of synaptic structure and function plays an essential role in neuronal development and in cognitive functions including learning and memory. The formation, maintenance and modulation of dendritic spines are mainly controlled by the dynamics of actin filaments (F-actin) through interaction with various actin-binding proteins (ABPs) and postsynaptic signaling messengers. Induction of long-term potentiation (LTP) triggers a cascade of events involving Ca2+ signaling, intracellular pathways such as cAMP and cGMP, and regulation of ABPs such as CaMKII, Cofilin, Aip1, Arp2/3, α-actinin, Profilin and Drebrin. We review here how these ABPs modulate the rate of assembly, disassembly, stabilization and bundling of F-actin during LTP induction. We highlight the crucial role that CaMKII exerts in both functional and structural plasticity by directly coupling Ca2+ signaling with F-actin dynamics through the β subunit. Moreover, we show how cAMP and cGMP second messengers regulate postsynaptic structural potentiation. Brain disorders such as Alzheimer's disease, schizophrenia or autism, are associated with alterations in the regulation of F-actin dynamics by these ABPs and signaling messengers. Thus, a better understanding of the molecular mechanisms controlling actin cytoskeleton can provide cues for the treatment of these disorders.
Collapse
Affiliation(s)
- Jelena Borovac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
16
|
Weissenberger F, Gauy MM, Lengler J, Meier F, Steger A. Voltage dependence of synaptic plasticity is essential for rate based learning with short stimuli. Sci Rep 2018; 8:4609. [PMID: 29545553 PMCID: PMC5854671 DOI: 10.1038/s41598-018-22781-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/28/2018] [Indexed: 11/09/2022] Open
Abstract
In computational neuroscience, synaptic plasticity rules are often formulated in terms of firing rates. The predominant description of in vivo neuronal activity, however, is the instantaneous rate (or spiking probability). In this article we resolve this discrepancy by showing that fluctuations of the membrane potential carry enough information to permit a precise estimate of the instantaneous rate in balanced networks. As a consequence, we find that rate based plasticity rules are not restricted to neuronal activity that is stable for hundreds of milliseconds to seconds, but can be carried over to situations in which it changes every few milliseconds. We illustrate this, by showing that a voltage-dependent realization of the classical BCM rule achieves input selectivity, even if stimulus duration is reduced to a few milliseconds each.
Collapse
Affiliation(s)
- Felix Weissenberger
- Institute of Theoretical Computer Science, Department of Computer Science, ETHZ, 8092, Zürich, Switzerland.
| | - Marcelo Matheus Gauy
- Institute of Theoretical Computer Science, Department of Computer Science, ETHZ, 8092, Zürich, Switzerland
| | - Johannes Lengler
- Institute of Theoretical Computer Science, Department of Computer Science, ETHZ, 8092, Zürich, Switzerland
| | - Florian Meier
- Institute of Theoretical Computer Science, Department of Computer Science, ETHZ, 8092, Zürich, Switzerland
| | - Angelika Steger
- Institute of Theoretical Computer Science, Department of Computer Science, ETHZ, 8092, Zürich, Switzerland
| |
Collapse
|
17
|
Fanselow MS. Associations and Memories: The Role of NMDA Receptors and Long-Term Potentiation. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/1467-8721.ep10768969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Fung TK, Law CS, Leung LS. Associative spike timing-dependent potentiation of the basal dendritic excitatory synapses in the hippocampus in vivo. J Neurophysiol 2016; 115:3264-74. [PMID: 27052581 DOI: 10.1152/jn.00188.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
Spike timing-dependent plasticity in the hippocampus has rarely been studied in vivo. Using extracellular potential and current source density analysis in urethane-anesthetized adult rats, we studied synaptic plasticity at the basal dendritic excitatory synapse in CA1 after excitation-spike (ES) pairing; E was a weak basal dendritic excitation evoked by stratum oriens stimulation, and S was a population spike evoked by stratum radiatum apical dendritic excitation. We hypothesize that positive ES pairing-generating synaptic excitation before a spike-results in long-term potentiation (LTP) while negative ES pairing results in long-term depression (LTD). Pairing (50 pairs at 5 Hz) at ES intervals of -10 to 0 ms resulted in significant input-specific LTP of the basal dendritic excitatory sink, lasting 60-120 min. Pairing at +10- to +20-ms ES intervals, or unpaired 5-Hz stimulation, did not induce significant basal dendritic or apical dendritic LTP or LTD. No basal dendritic LTD was found after stimulation of stratum oriens with 200 pairs of high-intensity pulses at 25-ms interval. Pairing-induced LTP was abolished by pretreatment with an N-methyl-d-aspartate receptor antagonist, 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), which also reduced spike bursting during 5-Hz pairing. Pairing at 0.5 Hz did not induce spike bursts or basal dendritic LTP. In conclusion, ES pairing at 5 Hz resulted in input-specific basal dendritic LTP at ES intervals of -10 ms to 0 ms but no LTD at ES intervals of -20 to +20 ms. Associative LTP likely occurred because of theta-rhythmic coincidence of subthreshold excitation with a backpropagated spike burst, which are conditions that can occur naturally in the hippocampus.
Collapse
Affiliation(s)
- Thomas K Fung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Clayton S Law
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - L Stan Leung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Moisset X, de Andrade D, Bouhassira D. From pulses to pain relief: an update on the mechanisms of rTMS-induced analgesic effects. Eur J Pain 2015; 20:689-700. [DOI: 10.1002/ejp.811] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Affiliation(s)
- X. Moisset
- Inserm U-987; Centre d'Evaluation et de Traitement de la Douleur; CHU Ambroise Paré; Assistance Publique Hôpitaux de Paris; Boulogne Billancourt France
- Clermont Université; Université d'Auvergne; Neuro-Dol; Inserm U-1107; Clermont-Ferrand France
- Service de Neurologie; CHU Gabriel Montpied; Clermont Université; Université d'Auvergne; Clermont-Ferrand France
| | - D.C. de Andrade
- Department of Neurology; Pain Center; University of São Paulo; Brazil
- Transcranial Magnetic Stimulation Laboratory; Instituto de Psiquiatria; University of São Paulo; Brazil
- Instituto do Câncer Octavio Frias de Oliveira; University of São Paulo; Brazil
| | - D. Bouhassira
- Inserm U-987; Centre d'Evaluation et de Traitement de la Douleur; CHU Ambroise Paré; Assistance Publique Hôpitaux de Paris; Boulogne Billancourt France
- Université Versailles-Saint-Quentin; Versailles France
| |
Collapse
|
20
|
Groves NJ, McGrath JJ, Burne THJ. Vitamin D as a neurosteroid affecting the developing and adult brain. Annu Rev Nutr 2015; 34:117-41. [PMID: 25033060 DOI: 10.1146/annurev-nutr-071813-105557] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamin D deficiency is prevalent throughout the world, and growing evidence supports a requirement for optimal vitamin D levels for the healthy developing and adult brain. Vitamin D has important roles in proliferation and differentiation, calcium signaling within the brain, and neurotrophic and neuroprotective actions; it may also alter neurotransmission and synaptic plasticity. Recent experimental studies highlight the impact that vitamin D deficiency has on brain function in health and disease. In addition, results from recent animal studies suggest that vitamin D deficiency during adulthood may exacerbate underlying brain disorders and/or worsen recovery from brain stressors. An increasing number of epidemiological studies indicate that vitamin D deficiency is associated with a wide range of neuropsychiatric disorders and neurodegenerative diseases. Vitamin D supplementation is readily available and affordable, and this review highlights the need for further research.
Collapse
Affiliation(s)
- Natalie J Groves
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia;
| | | | | |
Collapse
|
21
|
Migliore M, De Simone G, Migliore R. Effect of the initial synaptic state on the probability to induce long-term potentiation and depression. Biophys J 2015; 108:1038-46. [PMID: 25762316 PMCID: PMC4375721 DOI: 10.1016/j.bpj.2014.12.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 12/28/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are the two major forms of long-lasting synaptic plasticity in the mammalian neurons, and are directly related to higher brain functions such as learning and memory. Experimentally, they are characterized by a change in the strength of a synaptic connection induced by repetitive and properly patterned stimulation protocols. Although many important details of the molecular events leading to LTP and LTD are known, experimenters often report problems in using standard induction protocols to obtain consistent results, especially for LTD in vivo. We hypothesize that a possible source of confusion in interpreting the results, from any given experiment on synaptic plasticity, can be the intrinsic limitation of the experimental techniques, which cannot take into account the actual state and peak conductance of the synapses before the conditioning protocol. In this article, we investigate the possibility that the same experimental protocol may result in different consequences (e.g., LTD instead of LTP), according to the initial conditions of the stimulated synapses, and can generate confusing results. Using biophysical models of synaptic plasticity and hippocampal CA1 pyramidal neurons, we study how, why, and to what extent the phenomena observed at the soma after induction of LTP/LTD reflects the actual (local) synaptic state. The model and the results suggest a physiologically plausible explanation for why LTD induction is experimentally difficult to obtain. They also suggest experimentally testable predictions on the stimulation protocols that may be more effective.
Collapse
Affiliation(s)
- Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy.
| | - Giada De Simone
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
22
|
Pedapati EV, Gilbert DL, Horn PS, Huddleston DA, Laue CS, Shahana N, Wu SW. Effect of 30 Hz theta burst transcranial magnetic stimulation on the primary motor cortex in children and adolescents. Front Hum Neurosci 2015; 9:91. [PMID: 25762919 PMCID: PMC4340218 DOI: 10.3389/fnhum.2015.00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/04/2015] [Indexed: 01/01/2023] Open
Abstract
Fourteen healthy children (13.8 ± 2.2 years, range 10–16; M:F = 5:9) received 30 Hz intermittent theta burst transcranial magnetic stimulation (iTBS) with a stimulation intensity of 70% of resting motor threshold (RMT) with a total of 300 (iTBS300) pulses. All volunteers were free of neurologic, psychiatric and serious medical illnesses, not taking any neuropsychiatric medications, and did not have any contraindications to transcranial magnetic stimulation. Changes in the mean amplitudes of motor-evoked potentials from baseline following iTBS were expressed as a ratio and assessed from 1 to 10 min (BLOCK1) and 1–30 min (BLOCK2) using repeated-measures analysis of variance. All 14 subjects completed iTBS300 over the dominant primary motor cortex (M1) without any clinically reported adverse events. ITBS300 produced significant M1 facilitation [F(5, 65) = 3.165, p = 0.01] at BLOCK1 and trend level M1 facilitation at BLOCK2 [F(10, 129) = 1.69, p = 0.089]. Although iTBS300 (stimulation duration of 92 s at 70% RMT) delivered over M1 in typically developed children was well-tolerated and produced on average significant facilitatory changes in cortical excitability, the post-iTBS300 neurophysiologic response was variable in our small sample. ITBS300-induced changes may represent a potential neuroplastic biomarker in healthy children and those with neuro-genetic or neuro-psychiatric disorders. However, a larger sample size is needed to address safety and concerns of response variability.
Collapse
Affiliation(s)
- Ernest V Pedapati
- Division of Neurology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - David A Huddleston
- Division of Neurology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Cameron S Laue
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Nasrin Shahana
- Division of Neurology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| |
Collapse
|
23
|
Affiliation(s)
- Daniel E. Jacome
- Departments of Medicine Palmetto General Hospital South Miami Hospital and Department of Neurology University of Miami School of Medicine Miami, Florida
| |
Collapse
|
24
|
Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, Hermiller MS, Voss JL. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 2014; 345:1054-7. [PMID: 25170153 DOI: 10.1126/science.1252900] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The influential notion that the hippocampus supports associative memory by interacting with functionally distinct and distributed brain regions has not been directly tested in humans. We therefore used targeted noninvasive electromagnetic stimulation to modulate human cortical-hippocampal networks and tested effects of this manipulation on memory. Multiple-session stimulation increased functional connectivity among distributed cortical-hippocampal network regions and concomitantly improved associative memory performance. These alterations involved localized long-term plasticity because increases were highly selective to the targeted brain regions, and enhancements of connectivity and associative memory persisted for ~24 hours after stimulation. Targeted cortical-hippocampal networks can thus be enhanced noninvasively, demonstrating their role in associative memory.
Collapse
Affiliation(s)
- Jane X Wang
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lynn M Rogers
- The Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Evan Z Gross
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anthony J Ryals
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mehmet E Dokucu
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly L Brandstatt
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Molly S Hermiller
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joel L Voss
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
25
|
Takano T, He W, Han X, Wang F, Xu Q, Wang X, Oberheim Bush NA, Cruz N, Dienel GA, Nedergaard M. Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices. Glia 2013; 62:78-95. [PMID: 24272704 DOI: 10.1002/glia.22588] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 01/31/2023]
Abstract
A flurry of studies over the past decade has shown that astrocytes play a more active role in neural function than previously recognized. Hippocampal slices prepared from young rodent pups have served as a popular model for studying the pathways by which astrocytes participate in synaptic transmission. It is, however, not known how well astrocytes tolerate traumatic injury and hypoxia, which are unavoidable when preparing acute slices. We here showed that astrocytes exhibit striking changes in expression of several receptors and structural proteins, including re-expression of the developmental marker nestin within 90 min following preparation of live vibratome slices. Moreover, immunoelectron microscopy showed a 2.7-fold loss of astrocytic processes in acute hippocampal slices prepared from glial fibrillary acidic protein-green fluorescent protein reporter mice. A sharp decrease in the number of mitochondria was also noted in acute slices, concurrently with an increase in mitochondrial size. Glycogen content decreased 3-fold upon slice preparation and did not recover despite stable recordings of field excitatory postsynaptic current. Analysis of Ca(2+) signaling showed that astrocytic responses to purine receptor and mGluR5 agonists differed in slice versus in vivo. These observations suggest that the functional properties and the fine structure of astrocytes in slices may be reflective of early stages of reactive gliosis and should be confirmed in vivo when possible.
Collapse
Affiliation(s)
- Takahiro Takano
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Truini A, Garcia-Larrea L, Cruccu G. Reappraising neuropathic pain in humans--how symptoms help disclose mechanisms. Nat Rev Neurol 2013; 9:572-82. [PMID: 24018479 DOI: 10.1038/nrneurol.2013.180] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuropathic pain--that is, pain arising directly from a lesion or disease that affects the somatosensory system--is a common clinical problem, and typically causes patients intense distress. Patients with neuropathic pain have sensory abnormalities on clinical examination and experience pain of diverse types, some spontaneous and others provoked. Spontaneous pain typically manifests as ongoing burning pain or paroxysmal electric shock-like sensations. Provoked pain includes pain induced by various stimuli or even gentle brushing (dynamic mechanical allodynia). Recent clinical and neurophysiological studies suggest that the various pain types arise through distinct pathophysiological mechanisms. Ongoing burning pain primarily reflects spontaneous hyperactivity in nociceptive-fibre pathways, originating from 'irritable' nociceptors, regenerating nerve sprouts or denervated central neurons. Paroxysmal sensations can be caused by several mechanisms; for example, electric shock-like sensations probably arise from high-frequency bursts generated in demyelinated non-nociceptive Aβ fibres. Most human and animal findings suggest that brush-evoked allodynia originates from Aβ fibres projecting onto previously sensitized nociceptive neurons in the dorsal horn, with additional contributions from plastic changes in the brainstem and thalamus. Here, we propose that the emerging mechanism-based approach to the study of neuropathic pain might aid the tailoring of therapy to the individual patient, and could be useful for drug development.
Collapse
Affiliation(s)
- Andrea Truini
- Department of Neurology and Psychiatry, Sapienza University, Viale Università 30, 00185 Rome, Italy
| | | | | |
Collapse
|
27
|
Young DL, Poon CS. A Hebbian feedback covariance learning paradigm for self-tuning optimal control. ACTA ACUST UNITED AC 2012; 31:173-86. [PMID: 18244780 DOI: 10.1109/3477.915341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We propose a novel adaptive optimal control paradigm inspired by Hebbian covariance synaptic adaptation, a preeminent model of learning and memory as well as other malleable functions in the brain. The adaptation is driven by the spontaneous fluctuations in the system input and output, the covariance of which provides useful information about the changes in the system behavior. The control structure represents a novel form of associative reinforcement learning in which the reinforcement signal is implicitly given by the covariance of the input-output (I/O) signals. Theoretical foundations for the paradigm are derived using Lyapunov theory and are verified by means of computer simulations. The learning algorithm is applicable to a general class of nonlinear adaptive control problems. This on-line direct adaptive control method benefits from a computationally straightforward design, proof of convergence, no need for complete system identification, robustness to noise and uncertainties, and the ability to optimize a general performance criterion in terms of system states and control signals. These attractive properties of Hebbian feedback covariance learning control lend themselves to future investigations into the computational functions of synaptic plasticity in biological neurons.
Collapse
Affiliation(s)
- D L Young
- Div. of Health Sci. & Technol., MIT, Cambridge, MA
| | | |
Collapse
|
28
|
From modulated Hebbian plasticity to simple behavior learning through noise and weight saturation. Neural Netw 2012; 34:28-41. [DOI: 10.1016/j.neunet.2012.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 06/08/2012] [Accepted: 06/17/2012] [Indexed: 11/21/2022]
|
29
|
Abstract
OBJECTIVE Women are more affected than men by many chronic pain conditions, suggesting the effect of sex-related mechanisms in their occurrence. The role of gonadal hormones has been studied but with contrasting results depending on the pain syndrome, reproductive status, and hormone considered. The aim of the present study was to evaluate the pain changes related to the menopausal transition period. METHODS In this observational study, postmenopausal women were asked to evaluate the presence of pain in their life during the premenopausal and postmenopausal periods and its modification with menopause. RESULTS One hundred one women were enrolled and completed questionnaires on their sociodemographic status, pain characteristics, and evolution. The most common pain syndromes were headache (38%), osteoarticular pain (31%), and cervical/lumbar pain (21%). Pain was present before menopause in 66 women, ceased with menopause in 17, and started after menopause in 18. Data were used for cluster analysis, which allowed the division of participants into four groups. In the first, all women experienced headaches that disappeared or improved with menopause. The second group included osteoarticular pain; the pain improved in half of these women and remained stable in the other half. The third group had cervical/lumbar pain, which disappeared or improved with menopause in all. The fourth group presented different kinds of moderate pain, which worsened in all. CONCLUSIONS The present study provides preliminary data suggesting that menopause can affect pain depending on the painful condition experienced by the woman. This underlines the different interactions of menopause-related events with body structures involved in pain.
Collapse
|
30
|
|
31
|
Wang SH, Finnie PSB, Hardt O, Nader K. Dorsal hippocampus is necessary for novel learning but sufficient for subsequent similar learning. Hippocampus 2012; 22:2157-70. [PMID: 22593084 DOI: 10.1002/hipo.22036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 11/12/2022]
Abstract
Our current understanding of brain mechanisms involved in learning and memory has been derived largely from studies using experimentally naïve animals. However, it is becoming increasingly clear that not all identified mechanisms may generalize to subsequent learning. For example, N-methyl-D-aspartate glutamate (NMDA) receptors in the dorsal hippocampus are required for contextual fear conditioning in naïve animals but not in animals previously trained in a similar task. Here we investigated how animals learn contextual fear conditioning for a second time-a response which is not due to habituation or generalization. We found that dorsal hippocampus infusions of voltage-dependent calcium channel blockers or the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) agonist impaired the first, not the second contextual learning. Only manipulations of the entire hippocampus led to an impairment in second learning. Specifically, inactivation of either the dorsal or ventral hippocampus caused the remaining portion of the hippocampus to acquire and consolidate the second learning. Thus, dorsal hippocampus seems necessary for initial contextual fear conditioning, but either the dorsal or ventral hippocampus is sufficient for subsequent conditioning in a different context. Together, these findings suggest that prior training experiences can change how the hippocampus processes subsequent similar learning.
Collapse
Affiliation(s)
- Szu-Han Wang
- Department of Psychology, McGill University, Montreal, Canada H3A 1B1.
| | | | | | | |
Collapse
|
32
|
Salami M, Talaei SA, Davari S, Taghizadeh M. Hippocampal long term potentiation in rats under different regimens of vitamin D: an in vivo study. Neurosci Lett 2011; 509:56-9. [PMID: 22227619 DOI: 10.1016/j.neulet.2011.12.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/18/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
Evidence indicates that vitamin D involves in development of brain as well as its function. This study assesses occurrence of long term potentiation (LTP), as an experimental form of synaptic plasticity, in adult rats under the normal regimen (CON), and the regimens without vitamin D (CON-D) or with a supplement of 1,25(OH)2D3 (CON+D). Stimulating the Schaffer collaterals pre- and post-tetanus excitatory postsynaptic potentials (EPSPs) were recorded in the CA1 area of hippocampus in anesthetized animals. Amplitude change of the EPSPs was considered for comparisons. Our results indicated that the basic EPSPs were similar in the three groups. Tetanization elicited a considerable LTP in both the CON and CON+D rats but a moderate potentiation in the CON-D group. We concluded that optimal level of vitamin D is required for induction of LTP.
Collapse
Affiliation(s)
- Mahmoud Salami
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | | | | | | |
Collapse
|
33
|
Scavone JL, Asan E, Van Bockstaele EJ. Unraveling glutamate-opioid receptor interactions using high-resolution electron microscopy: implications for addiction-related processes. Exp Neurol 2011; 229:207-13. [PMID: 21459090 PMCID: PMC3274957 DOI: 10.1016/j.expneurol.2011.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/11/2011] [Accepted: 03/21/2011] [Indexed: 11/24/2022]
Abstract
Adaptive responses in glutamate and opioid receptor systems in limbic circuits are emerging as a critical component of the neural plasticity induced by chronic use of abused substances. The present commentary reviews findings from neuroanatomical studies, with superior spatial resolution, that support a cellular basis for prominent interactions of glutamate and opioid receptor systems in preclinical models of drug addiction. The review begins by highlighting the advantages of high-resolution electron microscopic immunohistochemistry for unraveling receptor interactions at the synapse. With an emphasis on a recent publication describing the anatomical relationship between the μ-opioid receptor (MOR) and the AMPA-GluR2 subunit (Beckerman, M. A., and Glass, M. J., 2011. Ultrastructural relationship between the AMPA-GluR2 receptor subunit and the mu-opioid receptor in the mouse central nucleus of the amygdala. Exp Neurol), we review the anatomical evidence for opioid-induced neural plasticity of glutamate receptors in selected brain circuits that are key integrative substrates in the brain's motivational system. The findings stress the importance of glutamate-opioid interactions as important neural mediators of adaptations to chronic use of abused drugs, particularly within the amygdaloid complex.
Collapse
Affiliation(s)
- Jillian L Scavone
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
34
|
Behnisch T, Yuanxiang P, Bethge P, Parvez S, Chen Y, Yu J, Karpova A, Frey JU, Mikhaylova M, Kreutz MR. Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression. PLoS One 2011; 6:e17276. [PMID: 21364755 PMCID: PMC3041791 DOI: 10.1371/journal.pone.0017276] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/28/2011] [Indexed: 12/22/2022] Open
Abstract
Background In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, there is a surprising paucity of data showing the nuclear import of such proteins in cellular models of learning and memory. Only recently it was found that the transcription factor cyclic AMP response element binding protein 2 (CREB2) transits to the nucleus during long-term depression (LTD), but not during long-term potentiation (LTP) of synaptic transmission in hippocampal primary neurons. Jacob is another messenger that couples NMDA-receptor-activity to nuclear gene expression. We therefore aimed to study whether Jacob accumulates in the nucleus in physiological relevant models of activity-dependent synaptic plasticity. Methodology/Principal Findings We have analyzed the dynamics of Jacob's nuclear import following induction of NMDA-receptor dependent LTP or LTD at Schaffer collateral-CA1 synapses in rat hippocampal slices. Using time-lapse imaging of neurons expressing a Jacob-Green-Fluorescent-Protein we found that Jacob rapidly translocates from dendrites to the nucleus already during the tetanization period of LTP, but not after induction of LTD. Immunocytochemical stainings confirmed the nuclear accumulation of endogenous Jacob in comparison to apical dendrites after induction of LTP but not LTD. Complementary findings were obtained after induction of NMDA-receptor dependent chemical LTP and LTD in hippocampal primary neurons. However, in accordance with previous studies, high concentrations of NMDA and glycine as well as specific activation of extrasynaptic NMDA-receptors resembling pathological conditions induce an even more profound increase of nuclear Jacob levels. Conclusions/Significance Taken together, these findings suggest that the two major forms of NMDA-receptor dependent synaptic plasticity, LTP and LTD, elicit the transition of different synapto-nuclear messengers albeit in both cases importin-mediated retrograde transport and NMDA-receptor activation is required.
Collapse
Affiliation(s)
- Thomas Behnisch
- Institutes of Brain Science, Fudan University, Shanghai, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Iannella NL, Launey T, Tanaka S. Spike timing-dependent plasticity as the origin of the formation of clustered synaptic efficacy engrams. Front Comput Neurosci 2010; 4. [PMID: 20725522 PMCID: PMC2914531 DOI: 10.3389/fncom.2010.00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/14/2010] [Indexed: 12/03/2022] Open
Abstract
Synapse location, dendritic active properties and synaptic plasticity are all known to play some role in shaping the different input streams impinging onto a neuron. It remains unclear however, how the magnitude and spatial distribution of synaptic efficacies emerge from this interplay. Here, we investigate this interplay using a biophysically detailed neuron model of a reconstructed layer 2/3 pyramidal cell and spike timing-dependent plasticity (STDP). Specifically, we focus on the issue of how the efficacy of synapses contributed by different input streams are spatially represented in dendrites after STDP learning. We construct a simple feed forward network where a detailed model neuron receives synaptic inputs independently from multiple yet equally sized groups of afferent fibers with correlated activity, mimicking the spike activity from different neuronal populations encoding, for example, different sensory modalities. Interestingly, ensuing STDP learning, we observe that for all afferent groups, STDP leads to synaptic efficacies arranged into spatially segregated clusters effectively partitioning the dendritic tree. These segregated clusters possess a characteristic global organization in space, where they form a tessellation in which each group dominates mutually exclusive regions of the dendrite. Put simply, the dendritic imprint from different input streams left after STDP learning effectively forms what we term a “dendritic efficacy mosaic.” Furthermore, we show how variations of the inputs and STDP rule affect such an organization. Our model suggests that STDP may be an important mechanism for creating a clustered plasticity engram, which shapes how different input streams are spatially represented in dendrite.
Collapse
|
36
|
Okamoto K, Bosch M, Hayashi Y. The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda) 2010; 24:357-66. [PMID: 19996366 DOI: 10.1152/physiol.00029.2009] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and actin are two crucial molecules involved in long-term potentiation (LTP). In addition to its signaling function, CaMKII plays a structural role via direct interaction with actin filaments, thus coupling functional and structural plasticity in dendritic spines. The status of F-actin, regulated by CaMKII, determines the postsynaptic protein binding capacity and thus may act as a synaptic tag that consolidates LTP.
Collapse
Affiliation(s)
- Kenichi Okamoto
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
37
|
Yuan Q. Theta bursts in the olfactory nerve paired with beta-adrenoceptor activation induce calcium elevation in mitral cells: a mechanism for odor preference learning in the neonate rat. Learn Mem 2009; 16:676-81. [PMID: 19858361 DOI: 10.1101/lm.1569309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Odor preference learning in the neonate rat follows pairing of odor input and noradrenergic activation of beta-adrenoceptors. Odor learning is hypothesized to be supported by enhanced mitral cell activation. Here a mechanism for enhanced mitral cell signaling is described. Theta bursts in the olfactory nerve (ON) produce long-term potentiation (LTP) of glomerular excitatory postsynaptic potentials (EPSPs) and of excitatory postsynaptic currents (EPSCs) in the periglomerular (PG) and external tufted (ET) cells. Theta bursts paired with beta-adrenoceptor activation significantly elevate mitral cell (MC) calcium. Juxtaglomerular inhibitory network depression by beta-adrenoceptor activation appears to increase calcium in MCs in response to theta burst stimulation.
Collapse
Affiliation(s)
- Qi Yuan
- University of California at San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
38
|
Synapse plasticity in motor, sensory, and limbo-prefrontal cortex areas as measured by degrading axon terminals in an environment model of gerbils (Meriones unguiculatus). Neural Plast 2009; 2009:281561. [PMID: 19809517 PMCID: PMC2754524 DOI: 10.1155/2009/281561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/26/2009] [Indexed: 11/17/2022] Open
Abstract
Still little is known about naturally occurring synaptogenesis in the adult neocortex and related impacts of epigenetic influences. We therefore investigated (pre)synaptic plasticity in various cortices of adult rodents, visualized by secondary lysosome accumulations (LA) in remodeling axon terminals. Twenty-two male gerbils from either enriched (ER) or impoverished rearing (IR) were used for quantification of silver-stained LA. ER-animals showed rather low LA densities in most primary fields, whereas barrel and secondary/associative cortices exhibited higher densities and layer-specific differences. In IR-animals, these differences were evened out or even inverted. Basic plastic capacities might be linked with remodeling of local intrinsic circuits in the context of cortical map adaptation in both IR- and ER-animals. Frequently described disturbances due to IR in multiple corticocortical and extracortical afferent systems, including the mesocortical dopamine projection, might have led to maladaptations in the plastic capacities of prefronto-limbic areas, as indicated by different LA densities in IR- compared with ER-animals.
Collapse
|
39
|
Yamin G. NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. J Neurosci Res 2009; 87:1729-36. [PMID: 19170166 DOI: 10.1002/jnr.21998] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease in the elderly population, is characterized by the hippocampal deposition of fibrils formed by amyloid beta-protein (A beta), a 40- to 42-amino-acid peptide. The folding of A beta into neurotoxic oligomeric, protofibrillar, and fibrillar assemblies is believed to mediate the key pathologic event in AD. The hippocampus is especially susceptible in AD and early degenerative symptoms include significant deficits in the performance of hippocampal-dependent cognitive abilities such as spatial learning and memory. Transgenic mouse models of AD that express C-terminal segments or mutant variants of amyloid precursor protein, the protein from which A beta is derived, exhibit age-dependent spatial memory impairment and attenuated long-term potentiation (LTP) in the hippocampal CA1 and dentate gyrus (DG) regions. Recent experimental evidence suggests that A beta disturbs N-methyl-D-aspartic acid (NMDA) receptor-dependent LTP induction in the CA1 and DG both in vivo and in vitro. Furthermore, these studies suggest that A beta specifically interferes with several major signaling pathways downstream of the NMDA receptor, including the Ca(2+)-dependent protein phosphatase calcineurin, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), protein phosphatase 1, and cAMP response element-binding protein (CREB). The influence of A beta on each of these downstream effectors of NMDA is reviewed in this article. Additionally, other mechanisms of LTP modulation, such as A beta attenuation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents, are briefly discussed.
Collapse
Affiliation(s)
- Ghiam Yamin
- Medical Scientist Training Program (MSTP), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
40
|
Richards PM, Persinger MA, Koren SA. Modification of Semantic Memory in Normal Subjects by Application Across the Temporal Lobes of a Weak (1 Microt) Magnetic Field Structure that Promotes Long-Term Potentiation in Hippocampal Slices. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379609009830] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Insights into a molecular switch that gates sensory neuron synapses during habituation in Aplysia. Neurobiol Learn Mem 2009; 92:155-65. [PMID: 19345275 DOI: 10.1016/j.nlm.2009.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 03/15/2009] [Accepted: 03/16/2009] [Indexed: 11/20/2022]
Abstract
This review focuses on synaptic depression at sensory neuron-to-motor neuron synapses in the defensive withdrawal circuit of Aplysia as a model system for analysis of molecular mechanisms of sensory gating and habituation. We address the following topics: 1. Of various possible mechanisms that might underlie depression at these sensory neuron-to-motor neuron synapses in Aplysia, historically the most widely-accepted explanation has been depletion of the readily releasable pool of vesicles. Depletion is also believed to account for synaptic depression at long interstimulus intervals in a variety of other systems. 2. Multiple lines of evidence now indicate that vesicle depletion is not an important contributing mechanism to synaptic depression at Aplysia sensory neuron-to-motor neuron synapses. More generally, it appears that vesicle depletion does not contribute substantially to depression that occurs with those stimulus patterns that are typically used in studying behavioral habituation. 3. Recent evidence suggests that at these sensory neuron-to-motor neuron synapses in Aplysia, synaptic depression is mediated by an activity-dependent, but release-independent, switching of individual release sites to a silent state. This switching off of release sites is initiated by Ca2+ influx during individual action potentials. We discuss signaling proteins that may be regulated by Ca2+ during the silencing of release sites that underlies synaptic depression. 4. Bursts of 2-4 action potentials in presynaptic sensory neurons in Aplysia prevent the switching off of release sites via a mechanism called "burst-dependent protection" from synaptic depression. 5. This molecular switch may explain the sensory gating that allows animals to discriminate which stimuli are innocuous and appropriate to ignore and which stimuli are more important and should continue to elicit responses.
Collapse
|
42
|
Farhadinasab A, Shahidi S, Najafi A, Komaki A. Role of naloxone as an exogenous opioid receptor antagonist in spatial learning and memory of female rats during the estrous cycle. Brain Res 2009; 1257:65-74. [DOI: 10.1016/j.brainres.2008.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 12/12/2008] [Accepted: 12/13/2008] [Indexed: 01/10/2023]
|
43
|
Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E. Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res 2009; 1256:69-75. [DOI: 10.1016/j.brainres.2008.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/05/2008] [Accepted: 12/14/2008] [Indexed: 10/21/2022]
|
44
|
Kunjilwar KK, Fishman HM, Englot DJ, O'Neil RG, Walters ET. Long-lasting hyperexcitability induced by depolarization in the absence of detectable Ca2+ signals. J Neurophysiol 2009; 101:1351-60. [PMID: 19144743 DOI: 10.1152/jn.91012.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Learning and memory depend on neuronal alterations induced by electrical activity. Most examples of activity-dependent plasticity, as well as adaptive responses to neuronal injury, have been linked explicitly or implicitly to induction by Ca(2+) signals produced by depolarization. Indeed, transient Ca(2+) signals are commonly assumed to be the only effective transducers of depolarization into adaptive neuronal responses. Nevertheless, Ca(2+)-independent depolarization-induced signals might also trigger plastic changes. Establishing the existence of such signals is a challenge because procedures that eliminate Ca(2+) transients also impair neuronal viability and tolerance to cellular stress. We have taken advantage of nociceptive sensory neurons in the marine snail Aplysia, which exhibit unusual tolerance to extreme reduction of extracellular and intracellular free Ca(2+) levels. The axons of these neurons exhibit a depolarization-induced memory-like hyperexcitability that lasts a day or longer and depends on local protein synthesis for induction. Here we show that transient localized depolarization of these axons in an excised nerve-ganglion preparation or in dissociated cell culture can induce short- and intermediate-term axonal hyperexcitability as well as long-term protein synthesis-dependent hyperexcitability under conditions in which Ca(2+) entry is prevented (by bathing in nominally Ca(2+) -free solutions containing EGTA) and detectable Ca(2+) transients are eliminated (by adding BAPTA-AM). Disruption of Ca(2+) release from intracellular stores by pretreatment with thapsigargin also failed to affect induction of axonal hyperexcitability. These findings suggest that unrecognized Ca(2+)-independent signals exist that can transduce intense depolarization into adaptive cellular responses during neuronal injury, prolonged high-frequency activity, or other sustained depolarizing events.
Collapse
Affiliation(s)
- Kumud K Kunjilwar
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | | | |
Collapse
|
45
|
Methods for evaluation of positive allosteric modulators of glutamate AMPA receptors. Methods Mol Biol 2008. [PMID: 18827986 DOI: 10.1007/978-1-59745-529-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Hypofunctioning of glutamate synaptic transmission in the central nervous system (CNS) has been proposed as a factor that may contribute to cognitive deficits associated with various neurological and psychiatric disorders. Positive allosteric modulation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) subtype of glutamate receptors has been proposed as a novel therapeutic approach, because these receptors mediate the majority of rapid excitatory neurotransmission and are intimately involved in long-term changes in synaptic plasticity thought to underlie mnemonic processing. By definition, positive allosteric modulators do not affect AMPA receptor activity alone but can markedly enhance ion flux through the ion channel pore in the presence of bound agonist. Despite this commonality, positive allosteric modulators can be segregated on the basis of the preferential effects on AMPA receptor subunits, their alternatively spliced variants and/or their biophysical mechanism of action. This chapter provides a detailed description of the methodologies used to evaluate the potency/efficacy and biophysical mechanism of action of positive allosteric modulators of AMPA receptors.
Collapse
|
46
|
Shahidi S, Komaki A, Mahmoodi M, Lashgari R. The role of GABAergic transmission in the dentate gyrus on acquisition, consolidation and retrieval of an inhibitory avoidance learning and memory task in the rat. Brain Res 2008; 1204:87-93. [DOI: 10.1016/j.brainres.2008.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/30/2008] [Accepted: 02/03/2008] [Indexed: 11/15/2022]
|
47
|
Reyes-Irisarri E, Pérez-Torres S, Miró X, Martínez E, Puigdomènech P, Palacios JM, Mengod G. Differential distribution of PDE4B splice variant mRNAs in rat brain and the effects of systemic administration of LPS in their expression. Synapse 2008; 62:74-9. [PMID: 17960764 DOI: 10.1002/syn.20459] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phosphodiesterases (PDE) control intracellular cyclic adenosine monophosphate (cAMP) levels, which appear to play an important role in the regulation of inflammation. PDE4B is especially important in this process. Using in situ hybridization histochemistry we first mapped the expression sites of the four PDE4B splicing forms in rat brain. Using the systemic administration of the bacterial endotoxin lipopolysaccharide (LPS) as an inflammation model in rats, we found an increase in PDEB2 mRNA expression in choroid plexus. The differential expression of PDE4B spliced forms and the differential regulation of PDE4B2 in an inflammatory model further supports an involvement of this splicing variant in the inflammatory response.
Collapse
Affiliation(s)
- Elisabet Reyes-Irisarri
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Malgaroli A, Malinow R, Schulman H, Tsien RW. Persistent signalling and changes in presynaptic function in long-term potentiation. CIBA FOUNDATION SYMPOSIUM 2007; 164:176-91; discussion 192-6. [PMID: 1327679 DOI: 10.1002/9780470514207.ch12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long-term potentiation (LTP) is an example of a persistent change in synaptic function in the mammalian brain, thought to be essential for learning and memory. At the synapse between hippocampal CA3 and CA1 neurons LTP is induced by a Ca2+ influx through glutamate receptors of the NMDA (N-methyl-D-aspartate) type (see Collingridge et al 1992, this volume). How does a rise in [Ca2+]i lead to enhancement of synaptic function? We have tested the popular hypothesis that Ca2+ acts via a Ca(2+)-dependent protein kinase. We found that long-lasting synaptic enhancement was prevented by prior intracellular injection of potent and selective inhibitory peptide blockers of either protein kinase C (PKC) or Ca2+/calmodulin-dependent protein kinase II (CaMKII), such as PKC(19-31) or CaMKII(273-302), but not by control peptides. Evidently, activity of both PKC and CaMKII is somehow necessary for the postsynaptic induction of LTP. To determine if these kinases are also involved in the expression of LTP, we impaled cells with microelectrodes containing protein kinase inhibitors after LTP had already been induced. Strikingly, established LTP was not suppressed by a combination of PKC and CaMKII blocking peptides, or by intracellular postsynaptic H-7. However, established LTP remained sensitive to bath application of H-7. Thus, the persistent signal may be a persistent kinase, but if so, the kinase cannot be accessed within the postsynaptic cell. Evidence for a presynaptic locus of expression comes from our studies of quantal synaptic transmission under whole-cell voltage clamp. We find changes in synaptic variability expected to result from enhanced presynaptic transmitter release, but little or no increase in quantal size. Furthermore, miniature synaptic currents in hippocampal cultures are increased in frequency but not amplitude as a result of a glutamate-driven postsynaptic induction. The combination of postsynaptic induction and presynaptic expression necessitates a retrograde signal from the postsynaptic cell to the presynaptic terminal.
Collapse
Affiliation(s)
- A Malgaroli
- Department of Molecular and Cellular Physiology, Stanford University Medical Center, CA 94305-5425
| | | | | | | |
Collapse
|
49
|
Napadow V, Liu J, Li M, Kettner N, Ryan A, Kwong KK, Hui KKS, Audette JF. Somatosensory cortical plasticity in carpal tunnel syndrome treated by acupuncture. Hum Brain Mapp 2007; 28:159-71. [PMID: 16761270 PMCID: PMC6871379 DOI: 10.1002/hbm.20261] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 02/06/2006] [Indexed: 11/08/2022] Open
Abstract
Carpal tunnel syndrome (CTS) is a common entrapment neuropathy of the median nerve characterized by paresthesias and pain in the first through fourth digits. We hypothesize that aberrant afferent input from CTS will lead to maladaptive cortical plasticity, which may be corrected by appropriate therapy. Functional MRI (fMRI) scanning and clinical testing was performed on CTS patients at baseline and after 5 weeks of acupuncture treatment. As a control, healthy adults were also tested 5 weeks apart. During fMRI, sensory stimulation was performed for median nerve innervated digit 2 (D2) and digit 3 (D3), and ulnar nerve innervated digit 5 (D5). Surface-based and region of interest (ROI)-based analyses demonstrated that while the extent of fMRI activity in contralateral Brodmann Area 1 (BA 1) and BA 4 was increased in CTS compared to healthy adults, after acupuncture there was a significant decrease in contralateral BA 1 (P < 0.005) and BA 4 (P < 0.05) activity during D3 sensory stimulation. Healthy adults demonstrated no significant test-retest differences for any digit tested. While D3/D2 separation was contracted or blurred in CTS patients compared to healthy adults, the D2 SI representation shifted laterally after acupuncture treatment, leading to increased D3/D2 separation. Increasing D3/D2 separation correlated with decreasing paresthesias in CTS patients (P < 0.05). As CTS-induced paresthesias constitute diffuse, synchronized, multidigit symptomatology, our results for maladaptive change and correction are consistent with Hebbian plasticity mechanisms. Acupuncture, a somatosensory conditioning stimulus, shows promise in inducing beneficial cortical plasticity manifested by more focused digital representations.
Collapse
Affiliation(s)
- Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|