1
|
Grove JCR, Knight ZA. The neurobiology of thirst and salt appetite. Neuron 2024; 112:3999-4016. [PMID: 39610247 DOI: 10.1016/j.neuron.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
The first act of life was the capture of water within a cell membrane,1 and maintaining fluid homeostasis is critical for the survival of most organisms. In this review, we discuss the neural mechanisms that drive animals to seek out and consume water and salt. We discuss the cellular and molecular mechanisms for sensing imbalances in blood osmolality, volume, and sodium content; how this information is integrated in the brain to produce thirst and salt appetite; and how these motivational drives are rapidly quenched by the ingestion of water and salt. We also highlight some of the gaps in our current understanding of the fluid homeostasis system, including the molecular identity of the key sensors that detect many fluid imbalances, as well as the mechanisms that control drinking in the absence of physiologic deficit, such as during meals.
Collapse
Affiliation(s)
- James C R Grove
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
3
|
Triebel H, Castrop H. The renin angiotensin aldosterone system. Pflugers Arch 2024; 476:705-713. [PMID: 38233636 PMCID: PMC11033231 DOI: 10.1007/s00424-024-02908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
In this review, we will cover (i) the proteolytic cascade of the RAAS, (ii) its regulation by multiple feedback-controlled parameters, and (iii) the major effects of the RAAS. For the effects of the RAAS, we focus on the role of the RAAS in the regulation of volume homeostasis and vascular tone, as major determinants of arterial blood pressure.
Collapse
Affiliation(s)
- Hannah Triebel
- Institute of Physiology, University of Regensburg, Universitätsstr. 31, 93040, Regensburg, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Universitätsstr. 31, 93040, Regensburg, Germany.
| |
Collapse
|
4
|
Ito S. Once in a Lifetime~Dream, Passion, Challenge, and Respect for Peers~. Endocr J 2024; 71:637-642. [PMID: 39010162 DOI: 10.1507/endocrj.ej20231011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Affiliation(s)
- Sadayoshi Ito
- Honorary Member, The Japan Endocrine Society
- Professor Emeritus, Tohoku University, Miyagi, Japan
- Special Manager, Katta General Hospital, Miyagi, Japan
| |
Collapse
|
5
|
Yalçin SS, Erdal İ, Oğuz B, Duzova A. Association of urine phthalate metabolites, bisphenol A levels and serum electrolytes with 24-h blood pressure profile in adolescents. BMC Nephrol 2022; 23:141. [PMID: 35410150 PMCID: PMC9004182 DOI: 10.1186/s12882-022-02774-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Among the possible causes of hypertension in adolescence, electrolyte imbalances and environmental pollutants are drawing increasing attention. We aimed to examine the relationship between bisphenol A (BPA), phthalate metabolites, and serum electrolytes and blood pressure. METHODS Eighty-six participants aged 12-15 years were included in the study. Body mass index (BMI), office blood pressure and 24-h ambulatory blood pressure measurements (ABPM), and carotid intima-media thickness were determined. Blood samples were taken for hemogram, renal function tests, and serum electrolytes. Free- and total-BPA and phthalate metabolites were analyzed from urine samples. RESULTS Of the participants, 34 were evaluated as normal blood pressure profile, 33 as white-coat hypertension (WCHT), and 19 as ABPM-hypertension. Adolescents in ABPM- hypertension groups had higher BMI-standard deviation score (SDS), leucocyte, platelet count; but lower serum chloride, compared to the normal blood pressure profile group. The percentage of adolescents with detectable urinary mono-benzyl phthalate (MBzP) was higher in ABPM-hypertension (42.1%) and WCHT groups (33.3%), compared to the normal blood pressure profile group (5.9%, p = 0.004). Associations between MBzP and ABPM- hypertension and WCHT were remained after confounding factor adjustment. Adolescents with detectable MBzP levels had also higher "albumin-corrected calcium" and lower serum phosphate and "albumin-corrected calcium x phosphate product" compared to others. Adolescents with detectable urinary MBzP levels had higher blood pressure profiles in some 24-h (mean arterial pressure-SDS, systolic blood pressure-SDS), daytime (systolic blood pressure-SDS), and night-time (mean arterial pressure-SDS, systolic blood pressure-SDS, and diastolic blood pressure-SDS) measurements, compared to others. WCHT was found to be associated negatively with monomethyl phthalate and the sum of dibutyl phthalate metabolites and ABPM-HT with MCPP. There was no significant association between blood pressure profiles and free- and total-BPA status. CONCLUSION MBzP was associated with adverse blood pressure profiles in adolescence. Additive follow-up studies are necessary for cause-effect relations.
Collapse
Affiliation(s)
- Siddika Songül Yalçin
- Unit of Social Pediatrics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - İzzet Erdal
- Unit of Social Pediatrics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Berna Oğuz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Duzova
- Unit of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Broeker KAE, Fuchs MAA, Schrankl J, Lehrmann C, Schley G, Todorov VT, Hugo C, Wagner C, Kurtz A. Prolyl-4-hydroxylases 2 and 3 control erythropoietin production in renin-expressing cells of mouse kidneys. J Physiol 2021; 600:671-694. [PMID: 34863041 DOI: 10.1113/jp282615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Activation of the hypoxia-signalling pathway induced by deletion of the ubiquitin-ligase von Hippel-Lindau protein causes an endocrine shift of renin-producing cells to erythropoietin (EPO)-expressing cells. However, the underlying mechanisms have not yet been investigated. Since oxygen-regulated stability of hypoxia-inducible transcription factors relevant for EPO expression is dependent on the activity of prolyl-4-hydroxylases (PHD) 2 and 3, this study aimed to determine the relevance of different PHD isoforms for the EPO expression in renin-producing cells in vivo. For this purpose, mice with inducible renin cell-specific deletions of different PHD isoforms were analysed. Our study shows that there are two subgroups of renal renin-expressing cells, juxtaglomerular renin+ cells and platelet-derived growth factor receptor-β+ interstitial renin+ cells. These interstitial renin+ cells belong to the cell pool of native EPO-producing cells and are able to express EPO and renin in parallel. In contrast, co-deletion of PHD2 and PHD3, but not PHD2 deletion alone, induces EPO expression in juxtaglomerular and hyperplastic renin+ cells and downregulates renin expression. A strong basal PHD3 expression in juxtaglomerular renin+ cells seems to prevent the hypoxia-inducible transcription factor-2-dependent phenotype shift into EPO cells. In summary, PHDs seem important for the stabilization of the juxtaglomerular renin cell phenotype. Moreover, these findings reveal tubulointerstitial cells as a novel site of renal renin expression and suggest a high endocrine plasticity of these cells. Our data concerning the distinct expression patterns and functions of PHD2 and PHD3 provide new insights into the regulation of renin-producing cells and highlight the need for selective PHD inhibitors. KEY POINTS: Renal renin-expressing cells can be clearly distinguished into two subgroups, the typical juxtaglomerular renin-producing cells and interstitial renin+ cells. Interstitial renin+ cells belong to the cell pool of native erythropoietin (EPO)-producing cells, show a fast EPO response to acute hypoxia-inducible factor-2 (HIF-2) stabilization and are able to express EPO and renin in parallel. Only co-deletion of the prolyl-4-hydroxylases (PHD) 2 and 3, but not PHD2 deletion alone, induces EPO expression in juxtaglomerular renin+ cells. Chronic HIF-2 stabilization in juxtaglomerular renin-expressing cells leads to their phenotypic shift into EPO-producing cells. A strong basal PHD3 expression in juxtaglomerular renin+ cells seems to prevent a HIF-2-dependent phenotype shift into EPO cells suggesting PHD3 fulfils a stabilizer function for the juxtaglomerular renin cell phenotype.
Collapse
Affiliation(s)
| | | | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Claudia Lehrmann
- Institute of Physiology II, University of Regensburg, Regensburg, Germany
| | - Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Vladimir T Todorov
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Dysregulation of the renin-angiotensin system in septic shock: Mechanistic insights and application of angiotensin II in clinical management. Pharmacol Res 2021; 174:105916. [PMID: 34597810 DOI: 10.1016/j.phrs.2021.105916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022]
Abstract
Synergistic physiologic mechanisms involving the renin-angiotensin system (RAS), the sympathetic nervous system, and the arginine-vasopressin system play an integral role in blood pressure homeostasis. A subset of patients with sepsis experience septic shock with attendant circulatory, cellular, and metabolic abnormalities. Septic shock is associated with increased mortality because of an inadequacy to maintain mean arterial blood pressure (MAP) despite volume resuscitation and the use of vasopressors. Vasodilatory shock raises the dose of vasopressors required to maintain a MAP of > 65 mm Hg. The diminished response to endogenous angiotensin II in sepsis-induced vasoplegia may be related to the aberrant RAS activation that stimulates a proinflammatory beneficial antibacterial response, increasing the secretion of proinflammatory cytokines that downregulate AT-1 receptors expression. Moreover, excessive systemic upregulation of nitric oxide synthase, stimulation of prostaglandin synthesis, and activation of ATP-sensitive potassium channels followed by reduced vascular entry of calcium ions are putative mechanisms in the reduced responsiveness to vasopressors. However, intravenous angiotensin II in catecholamine-resistant septic shock patients showed substantial evidence of raising the MAP to target hemodynamic levels, thus allowing time to treat underlying conditions. Nevertheless, evidence of catecholamine-sparing effect by adding angiotensin II, aimed at increasing the therapeutic index of vasopressor therapy, does not show an attenuation of end-organ damage. The use of angiotensin II in septic shock has not been evaluated in patients who are not catecholamine resistant. This, in conjunction with an evolving definition of catecholamine resistance, provides an opportunity for further evaluation of exogenous angiotensin II in septic shock.
Collapse
|
8
|
Castrop H. Assessment of NKCC2 phosphorylation in mice. Acta Physiol (Oxf) 2021; 233:e13716. [PMID: 34233095 DOI: 10.1111/apha.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hayo Castrop
- Institute of Physiology University of Regensburg Regensburg Germany
| |
Collapse
|
9
|
Peng W, Xie Y, Liu K, Qi H, Liu Z, Xia J, Cao H, Guo C, Sun Y, Liu X, Li B, Wen F, Zhang F, Zhang L. Discrepant acute effect of saline loading on blood pressure, urinary sodium and potassium according to salt intake level: EpiSS study. J Clin Hypertens (Greenwich) 2020; 23:289-300. [PMID: 33220161 PMCID: PMC8029760 DOI: 10.1111/jch.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022]
Abstract
Acute dietary salt intake may cause an elevation in blood pressure (BP). The study aimed to assess the acute effect of saline loading on BP in subjects with different levels of salt intake. This study is based on the baseline survey of systemic epidemiology of salt sensitivity study. The sodium excretion in the 24-hour urine was calculated for estimating the level of salt intake. Subjects were performed an acute oral saline loading test (1 L), and data of 2019 participants were included for analyses. Multivariate linear regression and stratified analyses were performed to identify associations between 24-hour urinary sodium (24hUNa) with BP changes. Due to saline loading, systolic BP (SBP), pulse pressure, and urinary sodium concentration were significantly increased, while diastolic BP, heart rate, and urinary potassium concentration were significantly decreased. The SBP increments were more significant in subjects with lower salt intake, normotensives, elders, males, smokers, and drinkers. There was a significant linear negative dose-response association between SBP increment with 24hUNa (β = -0.901, 95% CI: -1.253, -0.548), especially in lower salt intake individuals (β = -1.297, 95% CI: -2.338, -0.205) and hypertensive patients (β = -1.502, 95% CI: -2.037, -0.967). After excluding patients who received antidiabetic or antihypertensive medicines, the effects of negative associations weakened but remained significantly. In conclusion, acute salt loading leads to an increment in SBP, and the increased SBP was negatively related with 24hUNa. This study indicated avoiding acute salt loading was important for escaping acute BP changes, especially in lower salt intake populations.
Collapse
Affiliation(s)
- Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Han Qi
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, The Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, China
| | - Zheng Liu
- Science Department, Peking University People's Hospital, Beijing, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Shigemura N, Takai S, Hirose F, Yoshida R, Sanematsu K, Ninomiya Y. Expression of Renin-Angiotensin System Components in the Taste Organ of Mice. Nutrients 2019; 11:nu11092251. [PMID: 31546789 PMCID: PMC6770651 DOI: 10.3390/nu11092251] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/20/2022] Open
Abstract
The systemic renin-angiotensin system (RAS) is an important regulator of body fluid and sodium homeostasis. Angiotensin II (AngII) is a key active product of the RAS. We previously revealed that circulating AngII suppresses amiloride-sensitive salt taste responses and enhances the responses to sweet compounds via the AngII type 1 receptor (AT1) expressed in taste cells. However, the molecular mechanisms underlying the modulation of taste function by AngII remain uncharacterized. Here we examined the expression of three RAS components, namely renin, angiotensinogen, and angiotensin-converting enzyme-1 (ACE1), in mouse taste tissues. We found that all three RAS components were present in the taste buds of fungiform and circumvallate papillae and co-expressed with αENaC (epithelial sodium channel α-subunit, a salt taste receptor) or T1R3 (taste receptor type 1 member 3, a sweet taste receptor component). Water-deprived mice exhibited significantly increased levels of renin expression in taste cells (p < 0.05). These results indicate the existence of a local RAS in the taste organ and suggest that taste function may be regulated by both locally-produced and circulating AngII. Such integrated modulation of peripheral taste sensitivity by AngII may play an important role in sodium/calorie homeostasis.
Collapse
Affiliation(s)
- Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Division of Sensory Physiology, Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Fumie Hirose
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | - Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan.
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Division of Sensory Physiology, Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Division of Sensory Physiology, Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan.
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Abstract
The Angiotensin II for the Treatment of Vasodilatory Shock (ATHOS-3) trial demonstrated the vasopressor effects and catecholamine-sparing properties of angiotensin II. As a result, the Food and Drug Administration has approved angiotensin II for the treatment of vasodilatory shock. This review details the goals of treatment of vasodilatory shock in addition to the history, current use, and recent research regarding the use of angiotensin II. An illustrative case of the use of angiotensin II is also incorporated for understanding the clinical utility of the drug.
Collapse
Affiliation(s)
- Brett J Wakefield
- Department of General Anesthesiology, Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Anesthesiology, Division of Critical Care Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA
| | - Laurence W Busse
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Emory St. Joseph's Hospital, 5665 Peachtree Dunwoody Road, Atlanta, GA 30342, USA
| | - Ashish K Khanna
- Department of General Anesthesiology, Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Center for Critical Care, Department of Outcomes Research, Cleveland Clinic, 9500 Euclid Avenue - G58, Cleveland, OH 44195, USA; Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
12
|
Cangiotti AM, Lorenzi T, Zingaretti MC, Fabri M, Morroni M. Polarized Ends of Human Macula Densa Cells: Ultrastructural Investigation and Morphofunctional Correlations. Anat Rec (Hoboken) 2018; 301:922-931. [PMID: 29266784 DOI: 10.1002/ar.23759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/28/2017] [Accepted: 10/04/2017] [Indexed: 11/07/2022]
Abstract
The morphology of the kidney macula densa (MD) has extensively been investigated in animals, whereas human studies are scanty. We studied the fine structure of human MD cells focusing on their apical and basal ends and correlating structure and function. The MD region was examined by transmission electron microscopy in six renal biopsies from patients with kidney disease. Ultrastructural analysis of MD cells was performed on serial sections. MD cells show two polarized ends. The apical portion is characterized by a single, immotile cilium associated with microvilli; apically, cells are joined by adhering junctions. In the basal portion, the cytoplasm contains small, dense granules and numerous, irregular cytoplasmic projections extending to the adjacent extraglomerular mesangium. The projections often contain small, dense granules. A reticulated basement membrane around MD cells separates them from the extraglomerular mesangium. Although the fact that tissue specimens came from patients with kidney disease mandates extreme caution, ultrastructural examination confirmed that MD cells have sensory features due to the presence of the primary cilium, that they are connected by apical adhering junctions forming a barrier that separates the tubular flow from the interstitium, and that they present numerous basal interdigitations surrounded by a reticulated basement membrane. Conceivably, the latter two features are related to the functional activity of the MD. The small, dense granules in the basal cytoplasm and in cytoplasmic projections are likely related to the paracrine function of MD cells. Anat Rec, 301:922-931, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela Maria Cangiotti
- Electron Microscopy Unit, United Hospitals, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Maria Cristina Zingaretti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy.,Electron Microscopy Unit, United Hospitals, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Mara Fabri
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, via Tronto 10/a, Torrette, Ancona, 60020, Italy.,Electron Microscopy Unit, United Hospitals, via Tronto 10/a, Torrette, Ancona, 60020, Italy
| |
Collapse
|
13
|
Buckley C, Nelson RJ, Mullins LJ, Sharp MGF, Fleming S, Kenyon CJ, Semprini S, Steppan D, Peti-Peterdi J, Kurtz A, Christian H, Mullins JJ. Phenotypic dissection of the mouse Ren1d knockout by complementation with human renin. J Biol Chem 2017; 293:1151-1162. [PMID: 29123029 PMCID: PMC5787795 DOI: 10.1074/jbc.ra117.000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/03/2017] [Indexed: 11/08/2022] Open
Abstract
Normal renin synthesis and secretion is important for the maintenance of juxtaglomerular apparatus architecture. Mice lacking a functional Ren1d gene are devoid of renal juxtaglomerular cell granules and exhibit an altered macula densa morphology. Due to the species-specificity of renin activity, transgenic mice are ideal models for experimentally investigating and manipulating expression patterns of the human renin gene in a native cellular environment without confounding renin–angiotensin system interactions. A 55-kb transgene encompassing the human renin locus was crossed onto the mouse Ren1d-null background, restoring granulation in juxtaglomerular cells. Correct processing of human renin in dense core granules was confirmed by immunogold labeling. After stimulation of the renin–angiotensin system, juxtaglomerular cells contained rhomboid protogranules with paracrystalline contents, dilated rough endoplasmic reticulum, and electron-lucent granular structures. However, complementation of Ren1d−/− mice with human renin was unable to rescue the abnormality seen in macula densa structure. The juxtaglomerular apparatus was still able to respond to tubuloglomerular feedback in isolated perfused juxtaglomerular apparatus preparations, although minor differences in glomerular tuft contractility and macula densa cell calcium handling were observed. This study reveals that the human renin protein is able to complement the mouse Ren1d−/− non-granulated defect and suggests that granulopoiesis requires a structural motif that is conserved between the mouse Ren1d and human renin proteins. It also suggests that the altered macula densa phenotype is related to the activity of the renin-1d enzyme in a local juxtaglomerular renin–angiotensin system.
Collapse
Affiliation(s)
- Charlotte Buckley
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom,
| | - Robert J Nelson
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Linda J Mullins
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Matthew G F Sharp
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Stewart Fleming
- the University of Dundee, Ninewells Hospital Medical School, Dundee DD1 9SY, Scotland
| | - Christopher J Kenyon
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sabrina Semprini
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Dominik Steppan
- the Physiologisches Institut der Universität Regensburg, Regensburg D-93053, Germany
| | - Janos Peti-Peterdi
- the Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and
| | - Armin Kurtz
- the Physiologisches Institut der Universität Regensburg, Regensburg D-93053, Germany
| | - Helen Christian
- the Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - John J Mullins
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom,
| |
Collapse
|
14
|
Grill A, Schießl IM, Gess B, Fremter K, Hammer A, Castrop H. Salt-losing nephropathy in mice with a null mutation of the Clcnk2 gene. Acta Physiol (Oxf) 2016; 218:198-211. [PMID: 27421685 DOI: 10.1111/apha.12755] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
AIM The basolateral chloride channel ClC-Kb facilitates Cl reabsorption in the distal nephron of the human kidney. Functional mutations in CLCNKB are associated with Bartter's syndrome type 3, a hereditary salt-losing nephropathy. To address the function of ClC-K2 in vivo, we generated ClC-K2-deficient mice. METHODS ClC-K2-deficient mice were generated using TALEN technology. RESULTS ClC-K2-deficient mice were viable and born in a Mendelian ratio. ClC-K2-/- mice showed no gross anatomical abnormalities, but they were growth retarded. The 24-h urine volume was increased in ClC-K2-/- mice (4.4 ± 0.6 compared with 0.9 ± 0.2 mL per 24 h in wild-type littermates; P = 0.001). Accordingly, ambient urine osmolarity was markedly reduced (590 ± 39 vs. 2216 ± 132 mosmol L-1 in wild types; P < 0.0001). During water restriction (24 h), urinary osmolarity increased to 1633 ± 153 and 3769 ± 129 mosmol L-1 in ClC-K2-/- and wild-type mice (n = 12; P < 0.0001), accompanied by a loss of body weight of 12 ± 0.4 and 8 ± 0.2% respectively (P < 0.0001). ClC-K2-/- mice showed an increased renal sodium excretion and compromised salt conservation during a salt-restricted diet. The salt-losing phenotype of ClC-K2-/- mice was associated with a reduced plasma volume, hypotension, a slightly reduced glomerular filtration rate, an increased renal prostaglandin E2 generation and a massively stimulated renin-angiotensin system. Clckb-/- mice showed a reduced sensitivity to furosemide and were completely resistant to thiazides. CONCLUSION Loss of ClC-K2 compromises TAL function and abolishes salt reabsorption in the distal convoluted tubule. Our data suggest that ClC-K2 is crucial for renal salt reabsorption and concentrating ability. ClC-K2-deficient mice in most aspects mimic patients with Bartter's syndrome type 3.
Collapse
Affiliation(s)
- A. Grill
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - I. M. Schießl
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - B. Gess
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - K. Fremter
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - A. Hammer
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - H. Castrop
- Institute of Physiology; University of Regensburg; Regensburg Germany
| |
Collapse
|
15
|
Mutig K, Borowski T, Boldt C, Borschewski A, Paliege A, Popova E, Bader M, Bachmann S. Demonstration of the functional impact of vasopressin signaling in the thick ascending limb by a targeted transgenic rat approach. Am J Physiol Renal Physiol 2016; 311:F411-23. [PMID: 27306979 DOI: 10.1152/ajprenal.00126.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
The antidiuretic hormone vasopressin (AVP) regulates renal salt and water reabsorption along the distal nephron and collecting duct system. These effects are mediated by vasopressin 2 receptors (V2R) and release of intracellular Gs-mediated cAMP to activate epithelial transport proteins. Inactivating mutations in the V2R gene lead to the X-linked form of nephrogenic diabetes insipidus (NDI), which has chiefly been related with impaired aquaporin 2-mediated water reabsorption in the collecting ducts. Previous work also suggested the AVP-V2R-mediated activation of Na(+)-K(+)-2Cl(-)-cotransporters (NKCC2) along the thick ascending limb (TAL) in the context of urine concentration, but its individual contribution to NDI or, more generally, to overall renal function was unclear. We hypothesized that V2R-mediated effects in TAL essentially determine its reabsorptive function. To test this, we reevaluated V2R expression. Basolateral membranes of medullary and cortical TAL were clearly stained, whereas cells of the macula densa were unreactive. A dominant-negative, NDI-causing truncated V2R mutant (Ni3-Glu242stop) was then introduced into the rat genome under control of the Tamm-Horsfall protein promoter to cause a tissue-specific AVP-signaling defect exclusively in TAL. Resulting Ni3-V2R transgenic rats revealed decreased basolateral but increased intracellular V2R signal in TAL epithelia, suggesting impaired trafficking of the receptor. Rats displayed significant baseline polyuria, failure to concentrate the urine in response to water deprivation, and hypercalciuria. NKCC2 abundance, phosphorylation, and surface expression were markedly decreased. In summary, these data indicate that suppression of AVP-V2R signaling in TAL causes major impairment in renal fluid and electrolyte handling. Our results may have clinical implications.
Collapse
Affiliation(s)
- Kerim Mutig
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Tordis Borowski
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Christin Boldt
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Aljona Borschewski
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Alexander Paliege
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| | - Elena Popova
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité Universitätsmedizin, Berlin, Germany; and
| |
Collapse
|
16
|
Fellner RC, Moss NG, Goy MF. Dietary salt regulates uroguanylin expression and signaling activity in the kidney, but not in the intestine. Physiol Rep 2016; 4:4/9/e12782. [PMID: 27185905 PMCID: PMC4873633 DOI: 10.14814/phy2.12782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/29/2016] [Indexed: 12/28/2022] Open
Abstract
The peptide uroguanylin (Ugn) is expressed at significant levels only in intestine and kidney, and is stored in both tissues primarily (perhaps exclusively) as intact prouroguanylin (proUgn). Intravascular infusion of either Ugn or proUgn evokes well-characterized natriuretic responses in rodents. Furthermore, Ugn knockout mice display hypertension and salt handling deficits, indicating that the Na(+) excretory mechanisms triggered when the peptides are infused into anesthetized animals are likely to operate under normal physiological conditions, and contribute to electrolyte homeostasis in conscious animals. Here, we provide strong corroborative evidence for this hypothesis, by demonstrating that UU gnV (the rate of urinary Ugn excretion) approximately doubled in conscious, unrestrained rats consuming a high-salt diet, and decreased by ~15% after salt restriction. These changes in UU gnV were not associated with altered plasma proUgn levels (shown here to be an accurate index of intestinal proUgn secretion). Furthermore, enteric Ugn mRNA levels were unaffected by salt intake, whereas renal Ugn mRNA levels increased sharply during periods of increased dietary salt consumption. Together, these data suggest that diet-evoked Ugn signals originate within the kidney, rather than the intestine, thus strengthening a growing body of evidence against a widely cited hypothesis that Ugn serves as the mediator of an entero-renal natriuretic signaling axis, while underscoring a likely intrarenal natriuretic role for the peptide. The data further suggest that intrarenal Ugn signaling is preferentially engaged when salt intake is elevated, and plays only a minor role when salt intake is restricted.
Collapse
Affiliation(s)
- Robert C Fellner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas G Moss
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael F Goy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Transepithelial salt transport in the thick ascending limb of Henle's loop (TAL) crucially depends on the activity of the Na/K/2Cl cotransporter NKCC2. The pharmacologic blockade of NKCC2 leads to pronounced natriuresis and diuresis, which indicate key roles for NKCC2 in renal salt retrieval. The inadequate regulation of NKCC2 and the loss of NKCC2 function are associated with the disruption of salt and water homoeostasis. This review provides a specific overview of our current knowledge with respect to the regulation of NKCC2 by differential splicing and phosphorylation. RECENT FINDINGS Several mechanisms have evolved to adapt NKCC2 transport to reabsorptive needs. These mechanisms include the regulation of NKCC2 gene expression, the differential splicing of the NKCC2 pre-mRNA, the membrane trafficking, and the modulation of the specific transport activity. Substantial progress has been made over the past few years in deciphering the function of kinases in the regulatory network controlling NKCC2 activity and in elucidating the underlying mechanism and the functional consequences of the regulated differential splicing of the NKCC2 pre-mRNA. SUMMARY NKCC2 differential splicing and phosphorylation are critically involved in the modulation of the thick ascending limb of Henle's loop reabsorptive capacity and, consequently, in salt homoeostasis, volume regulation, and blood pressure control.
Collapse
|
18
|
Association of serum chloride level with mortality and cardiovascular events in chronic kidney disease: the CKD-ROUTE study. Clin Exp Nephrol 2016; 21:104-111. [DOI: 10.1007/s10157-016-1261-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
19
|
Schnermann J. Concurrent activation of multiple vasoactive signaling pathways in vasoconstriction caused by tubuloglomerular feedback: a quantitative assessment. Annu Rev Physiol 2015; 77:301-22. [PMID: 25668021 DOI: 10.1146/annurev-physiol-021014-071829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubuloglomerular feedback (TGF) describes the negative relationship between (a) NaCl concentration at the macula densa and (b) glomerular filtration rate or glomerular capillary pressure. TGF-induced vasoconstriction of the afferent arteriole results from the enhanced effect of several vasoconstrictors with an effect size sequence of adenosine = 20-HETE > angiotensin II > thromboxane = superoxide > renal nerves > ATP. TGF-mediated vasoconstriction is limited by the simultaneous release of several vasodilators with an effect size sequence of nitric oxide > carbon monoxide = kinins > adenosine. The sum of the constrictor effects exceeds that of the dilator effects by the magnitude of the TGF response. The validity of the additive model used in this analysis can be tested by determining the effect of combined inhibition of some or all agents contributing to TGF. Multiple independent contributors to TGF are consistent with the variability of TGF and of the factors contributing to TGF resetting.
Collapse
Affiliation(s)
- Jurgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
20
|
Wang L, Shen C, Liu H, Wang S, Chen X, Roman RJ, Juncos LA, Lu Y, Wei J, Zhang J, Yip KP, Liu R. Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa. Am J Physiol Regul Integr Comp Physiol 2015; 309:R757-66. [PMID: 26269519 PMCID: PMC4666931 DOI: 10.1152/ajpregu.00173.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/05/2015] [Indexed: 02/04/2023]
Abstract
The present study tested whether primary cilia on macula densa serve as a flow sensor to enhance nitric oxide synthase 1 (NOS1) activity and inhibit tubuloglomerular feedback (TGF). Isolated perfused macula densa was loaded with calcein red and 4,5-diaminofluorescein diacetate to monitor cell volume and nitric oxide (NO) generation. An increase in tubular flow rate from 0 to 40 nl/min enhanced NO production by 40.0 ± 1.2%. The flow-induced NO generation was blocked by an inhibitor of NOS1 but not by inhibition of the Na/K/2Cl cotransporter or the removal of electrolytes from the perfusate. NO generation increased from 174.8 ± 21 to 276.1 ± 24 units/min in cultured MMDD1 cells when shear stress was increased from 0.5 to 5.0 dynes/cm(2). The shear stress-induced NO generation was abolished in MMDD1 cells in which the cilia were disrupted using a siRNA to ift88. Increasing the NaCl concentration of the tubular perfusate from 10 to 80 mM NaCl in the isolated perfused juxtaglomerular preparation reduced the diameter of the afferent arteriole by 3.8 ± 0.1 μm. This response was significantly blunted to 2.5 ± 0.2 μm when dextran was added to the perfusate to increase the viscosity and shear stress. Inhibition of NOS1 blocked the effect of dextran on TGF response. In vitro, the effects of raising perfusate viscosity with dextran on tubular hydraulic pressure were minimized by reducing the outflow resistance to avoid stretching of tubular cells. These results suggest that shear stress stimulates primary cilia on the macula densa to enhance NO generation and inhibit TGF responsiveness.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Chunyu Shen
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Forensic Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Haifeng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Xinshan Chen
- Department of Forensic Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Richard J Roman
- Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Luis A Juncos
- Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Yan Lu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida;
| |
Collapse
|
21
|
Ito S. In Vitro Study of the Juxtaglomerular Apparatus and Its Implications in the Chronic Kidney Disease. Hypertension 2015; 65:970-5. [DOI: 10.1161/hypertensionaha.114.04365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Sadayoshi Ito
- From the Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Abstract
Long overlooked as the virtual compartment and then strictly characterized through descriptive morphologic analysis, the renal interstitium has finally been associated with function. With identification of interstitial renin- and erythropoietin-producing cells, the most prominent endocrine functions of the kidney have now been attributed to the renal interstitium. This article reviews the functional role of renal interstitium.
Collapse
Affiliation(s)
- Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany; and
| | - Raghu Kalluri
- Department of Cancer Biology and the Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2015; 4:1201-28. [PMID: 24944035 DOI: 10.1002/cphy.c130040] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts.
Collapse
Affiliation(s)
- Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | |
Collapse
|
25
|
The hidden hand of chloride in hypertension. Pflugers Arch 2015; 467:595-603. [PMID: 25619794 PMCID: PMC4325190 DOI: 10.1007/s00424-015-1690-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/10/2023]
Abstract
Among the environmental factors that affect blood pressure, dietary sodium chloride has been studied the most, and there is general consensus that increased sodium chloride intake increases blood pressure. There is accruing evidence that chloride may have a role in blood pressure regulation which may perhaps be even more important than that of Na+. Though more than 85 % of Na+ is consumed as sodium chloride, there is evidence that Na+ and Cl− concentrations do not go necessarily hand in hand since they may originate from different sources. Hence, elucidating the role of Cl− as an independent player in blood pressure regulation will have clinical and public health implications in addition to advancing our understanding of electrolyte-mediated blood pressure regulation. In this review, we describe the evidence that support an independent role for Cl− on hypertension and cardiovascular health.
Collapse
|
26
|
Schweda F. Salt feedback on the renin-angiotensin-aldosterone system. Pflugers Arch 2014; 467:565-76. [DOI: 10.1007/s00424-014-1668-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
|
27
|
Castrop H, Schießl IM. Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 2014; 307:F991-F1002. [PMID: 25186299 DOI: 10.1152/ajprenal.00432.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Na-K-2Cl cotransporter (NKCC2; BSC1) is located in the apical membrane of the epithelial cells of the thick ascending limb of the loop of Henle (TAL). NKCC2 facilitates ∼20–25% of the reuptake of the total filtered NaCl load. NKCC2 is therefore one of the transport proteins with the highest overall reabsorptive capacity in the kidney. Consequently, even subtle changes in NKCC2 transport activity considerably alter the renal reabsorptive capacity for NaCl and eventually lead to perturbations of the salt and water homoeostasis. In addition to facilitating the bulk reabsorption of NaCl in the TAL, NKCC2 transport activity in the macula densa cells of the TAL constitutes the initial step of the tubular-vascular communication within the juxtaglomerular apparatus (JGA); this communications allows the TAL to modulate the preglomerular resistance of the afferent arteriole and the renin secretion from the granular cells of the JGA. This review provides an overview of our current knowledge with respect to the general functions of NKCC2, the modulation of its transport activity by different regulatory mechanisms, and new developments in the pathophysiology of NKCC2-dependent renal NaCl transport.
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Ina Maria Schießl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Ito S. [111th Scientific Meeting of the Japanese Society of Internal Medicine Presidential Lecture; Evolution and diseases]. ACTA ACUST UNITED AC 2014; 103:2029-39. [PMID: 27522751 DOI: 10.2169/naika.103.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Kurt B, Karger C, Wagner C, Kurtz A. Control of renin secretion from kidneys with renin cell hyperplasia. Am J Physiol Renal Physiol 2014; 306:F327-32. [PMID: 24285498 DOI: 10.1152/ajprenal.00536.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In states of loss-of-function mutations of the renin-angiotensin-aldosterone system, kidneys develop a strong hyperplasia of renin-producing cells. Those additional renin cells are located outside the classic juxtaglomerular areas, mainly in the walls of preglomerular vessels and most prominently in multilayers surrounding afferent arterioles. Since the functional behavior of those ectopic renin cells is yet unknown, we aimed to characterize the control of renin secretion from kidneys with renin cell hyperplasia. As a model, we used kidneys from mice lacking aldosterone synthase (AS⁻/⁻ mice), which displayed 10-fold elevations of renin mRNA and plasma renin concentrations. On the absolute level, renin secretion from isolated AS⁻/⁻ kidneys was more than 10-fold increased over wild-type kidneys. On the relative level, the stimulation of renin secretion by the β-adrenergic activator isoproterenol or by lowering of the concentration of extracellular Ca²⁺ was very similar between the two genotypes. In addition, the inhibitory effects of ANG II and of perfusion pressure were similar between the two genotypes. Deletion of connexin40 blunted the pressure dependency of renin secretion and the stimulatory effect of low extracellular Ca²⁺ on renin secretion in the same manner in kidneys of AS⁻/⁻ mice as in wild-type mice. Our findings suggest a high degree of functional similarity between renin cells originating during development and located at different positions in the adult kidney. They also suggest a high similarity in the expression of membrane proteins relevant for the control of renin secretion, such as β₁-adrenergic receptors, ANG II type 1 receptors, and connexin40.
Collapse
Affiliation(s)
- Birgül Kurt
- Physiologisches Institut, Universität Regensburg, Universitätsstrasse 31, Regensburg D-93053, Germany.
| | | | | | | |
Collapse
|
30
|
Abstract
Combined cardiac and renal dysfunction has gained considerable attention. Hypotheses about its pathogenesis have been formulated, albeit based on a relatively small body of experimental studies, and a clinical classification system has been proposed. Cardiorenal syndrome, as presently defined, comprises a heterogeneous group of acute and chronic clinical conditions, in which the failure of one organ (heart or kidney) initiates or aggravates failure of the other. This conceptual framework, however, has two major drawbacks: the first is that, despite worldwide interest, universally accepted definitions of cardiorenal syndrome are lacking and characterization of heart and kidney failure is not uniform. This lack of consistency hampers experimental studies on mechanisms of the disease. The second is that, although progress has been made in developing hypotheses for the pathogenesis of cardiorenal syndrome, these initiatives are at an impasse. No hierarchy has been identified in the myriad of haemodynamic and non-haemodynamic factors mediating cardiorenal syndrome. This Review discusses current understanding of cardiorenal syndrome and provides a roadmap for further studies in this field. Ultimately, discussion of the definition and characterization issues and of the lack of organization among pathogenetic factors is hoped to contribute to further advancement of this complex field.
Collapse
|
31
|
Damkjær M, Isaksson GL, Stubbe J, Jensen BL, Assersen K, Bie P. Renal renin secretion as regulator of body fluid homeostasis. Pflugers Arch 2012; 465:153-65. [PMID: 23096366 DOI: 10.1007/s00424-012-1171-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/06/2012] [Accepted: 10/07/2012] [Indexed: 01/01/2023]
Abstract
The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium intake, but the specific pathways involved and the relations between them are not well defined. In animals, renin secretion is a log-linear function of sodium intake. Close associations exist between sodium intake, total body sodium, extracellular fluid volume, and blood volume. Plasma volume increases by about 1.5 mL/mmol increase in daily sodium intake. Several lines of evidence indicate that central blood volume may vary substantially without measurable changes in arterial blood pressure. At least five intertwining feedback loops of renin regulation are identifiable based on controlled variables (blood volume, arterial blood pressure), efferent pathways to the kidney (nervous, humoral), and pathways operating via the macula densa. Taken together, the available evidence favors the notion that under physiological conditions (1) volume-mediated regulation of renin secretion is the primary regulator, (2) macula densa mediated mechanisms play a substantial role as co-mediator although the controlled variables are not well defined so far, and (3) regulation via arterial blood pressure is the exception rather than the rule. Improved quantitative analyses based on in vivo and in silico models are warranted.
Collapse
Affiliation(s)
- Mads Damkjær
- Department of Paediatrics, Kolding Hospital, Kolding, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch 2012; 465:25-37. [DOI: 10.1007/s00424-012-1126-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/02/2012] [Accepted: 06/06/2012] [Indexed: 01/06/2023]
|
33
|
Arimura E, Horiuchi M, Kawaguchi H, Miyoshi N, Aoyama K, Takeuchi T. Low-protein diet improves blood and urinary glucose levels and renal manifestations of diabetes in C57BLKS-db/db mice. Eur J Nutr 2012; 52:813-24. [PMID: 22692501 DOI: 10.1007/s00394-012-0387-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/22/2012] [Indexed: 12/17/2022]
Abstract
PURPOSE Dietary protein content is related clinically to the development of diabetic nephropathy. Here, we investigated how dietary protein content (12-24 % energy) within the range used by humans affected renal manifestations including the expressions of genes involved in the renin-angiotensin (RA) system in control and diabetic mice. Moreover, we examined the effects of dietary protein content on HbA1c and urinary glucose. METHODS Control (CT) and leptin receptor-deficient obese (db) mice, 5 weeks old, were fed the diets below. Under ad libitum conditions, mice were fed 12, 18, and 24 % energy from protein (L-, M-, and H-diets) for 8 weeks. Under pair-feeding conditions, db mice were supplied H-diet (db-Hp) to the equivalent energy to that consumed by db-L mice. Renal manifestations and values related to glucose and insulin were examined biochemically and pathologically. RESULTS Under ad libitum conditions, db mice consumed food and water dose dependently of the dietary protein content, although they were consumed similarly by CT mice. CT-L mice showed lower urinary albumin and kidney weight, in association with lower mRNA levels of angiotensinogen and renin, than CT-H mice. Under pair-feeding conditions, db-L mice showed a lower ratio of kidney/body weight, HbA1(C), and urinary glucose, and a higher β-cell distribution rate in the pancreas than db-Hp mice. CONCLUSIONS Low-protein intake in the range used by humans may relieve renal manifestations through the suppressed expression of genes in the renal RA system of CT mice. On the other hand, in db mice, low-protein intake improved hyperglycemia and the renal manifestations of diabetes.
Collapse
Affiliation(s)
- Emi Arimura
- Department of Life and Environmental Science, Kagoshima Prefectural College, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Schnermann J, Briggs JP. Tubular control of renin synthesis and secretion. Pflugers Arch 2012; 465:39-51. [PMID: 22665048 DOI: 10.1007/s00424-012-1115-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/11/2023]
Abstract
The intratubular composition of fluid at the tubulovascular contact site of the juxtaglomerular apparatus serves as regulatory input for secretion and synthesis of renin. Experimental evidence, mostly from in vitro perfused preparations, indicates an inverse relation between luminal NaCl concentration and renin secretion. The cellular transduction mechanism is initiated by concentration-dependent NaCl uptake through the Na-K-2Cl cotransporter (NKCC2) with activation of NKCC2 causing inhibition and deactivation of NKCC2 causing stimulation of renin release. Changes in NKCC2 activity are coupled to alterations in the generation of paracrine factors that interact with granular cells. Among these factors, generation of PGE2 in a COX-2-dependent fashion appears to play a dominant role in the stimulatory arm of tubular control of renin release. [NaCl] is a determinant of local PG release over an appropriate concentration range, and blockade of COX-2 activity interferes with the NaCl dependency of renin secretion. The complex array of local paracrine controls also includes nNOS-mediated synthesis of nitric oxide, with NO playing the role of a modifier of the intracellular signaling pathway. A role of adenosine may be particularly important when [NaCl] is increased, and at least some of the available evidence is consistent with an important suppressive effect of adenosine at higher salt concentrations.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Rm 4D50, NIDDK, NIH, 10 Center Drive MSC 1370, Bethesda, MD 20892, USA.
| | | |
Collapse
|
35
|
Volpe M, Battistoni A, Chin D, Rubattu S, Tocci G. Renin as a biomarker of cardiovascular disease in clinical practice. Nutr Metab Cardiovasc Dis 2012; 22:312-317. [PMID: 22402063 DOI: 10.1016/j.numecd.2011.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/01/2011] [Accepted: 12/12/2011] [Indexed: 01/25/2023]
Abstract
The search for novel circulating blood biomarkers as predictors of cardiovascular (CV) risk and prognosis is a continuing field of interest in clinical medicine. Biomarkers from several pathophysiological pathways, including markers of organ damage, of inflammation, of the atherosclerotic process and of the coagulation pathway, have been investigated in the last decades. A particular interest has been raised for neurohormonal factors. The role of the activation of the sympathetic system and the renin-angiotensin-aldosterone system (RAAS) in the development of CV diseases has been extensively explored. Renin is the first limiting step of the RAAS and its role as a biomarker to improve CV risk stratification still remains a topic of debate. Several studies have shown that elevated plasma renin activity is associated with increased morbidity and mortality in patients with CV disease. The aim of this paper is to critically evaluate the evidence on the role of renin as a biomarker of CV risk and prognosis. With the new advances of pharmacological treatment acting on the RAAS, the effect of elevated levels of renin on the prognosis of these patients becomes even more intriguing.
Collapse
Affiliation(s)
- M Volpe
- Cardiology Department, Department of Clinical and Molecular Medicine, 2nd School of Medicine, University of Rome Sapienza, S Andrea Hospital, Rome, Italy.
| | | | | | | | | |
Collapse
|
36
|
Cui Y, Huang Q, Auman JT, Knight B, Jin X, Blanchard KT, Chou J, Jayadev S, Paules RS. Genomic-derived markers for early detection of calcineurin inhibitor immunosuppressant-mediated nephrotoxicity. Toxicol Sci 2011; 124:23-34. [PMID: 21865292 DOI: 10.1093/toxsci/kfr217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calcineurin inhibitor (CI) therapy has been associated with chronic nephrotoxicity, which limits its long-term utility for suppression of allograft rejection. In order to understand the mechanisms of the toxicity, we analyzed gene expression changes that underlie the development of CI immunosuppressant-mediated nephrotoxicity in male Sprague-Dawley rats dosed daily with cyclosporine (CsA; 2.5 or 25 mg/kg/day), FK506 (0.6 or 6 mg/kg/day), or rapamycin (1 or 10 mg/kg/day) for 1, 7, 14, or 28 days. A significant increase in blood urea nitrogen was observed in animals treated with CsA (high) or FK506 (high) for 14 and 28 days. Histopathological examination revealed tubular basophilia and mineralization in animals given CsA (high) or FK506 (low and high). We identified a group of genes whose expression in rat kidney is correlated with CI-induced kidney injury. Among these genes are two genes, Slc12a3 and kidney-specific Wnk1 (KS-Wnk1), that are known to be involved in sodium transport in the distal nephrons and could potentially be involved in the mechanism of CI-induced nephrotoxicity. The downregulation of NCC (the Na-Cl cotransporter coded by Slc12a3) in rat kidney following CI treatment was confirmed by immunohistochemical staining, and the downregulation of KS-Wnk1 was confirmed by quantitative real-time-polymerase chain reaction (qRT-PCR). We hypothesize that decreased expression of Slc12a3 and KS-Wnk1 could alter the sodium chloride reabsorption in the distal tubules and contribute to the prolonged activation of the renin-angiotensin system, a demonstrated contributor to the development of CI-induced nephrotoxicity in both animal models and clinical settings. Therefore, if validated as biomarkers in humans, SLC12A3 and KS-WNK1 could potentially be useful in the early detection and reduction of CI-related nephrotoxicity in immunosuppressed transplant patients when monitoring the health of kidney xenographs in clinical practice.
Collapse
Affiliation(s)
- Yuxia Cui
- Environmental Stress and Cancer Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
In the adult organism, systemically circulating renin almost exclusively originates from the juxtaglomerular cells in the afferent arterioles of the kidneys. These cells share similarities with pericytes and myofibro-blasts. They store renin in a vesicular network and granules and release it in a regulated fashion. The release mode of renin is not understood; in particular, the involvement of SNARE proteins is unknown. Renin release is acutely increased via the cAMP signaling pathway, which is triggered mainly by catecholamines and other G(s)-coupled agonists, and is inhibited by calcium-related pathways that are commonly activated by vasoconstrictors. Renin release from juxtaglomerular cells is directly modulated in an inverse fashion by the blood pressure inside the afferent arterioles and by the chloride content in the tubule fluid at the macula densa segment of the distal tubule. Renin release is stimulated by nitric oxide and by prostanoids released by neighboring endothelial and macula densa cells. Steady-state renin concentrations in the plasma are determined essentially by the number of renin-producing cells in the afferent arterioles, which changes in parallel with challenges to the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Armin Kurtz
- Physiologisches Institut der Universität, Regensburg, Germany.
| |
Collapse
|
38
|
Laragh JH, Sealey JE. Renin–Angiotensin–Aldosterone System and the Renal Regulation of Sodium, Potassium, and Blood Pressure Homeostasis. Compr Physiol 2011. [DOI: 10.1002/cphy.cp080231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Effect of low sodium intake and β-blockade on renin synthesis and secretion in mice with unilateral ureteral ligation. Hypertens Res 2010; 33:1258-63. [PMID: 20882029 DOI: 10.1038/hr.2010.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously reported that sodium depletion increased renin secretion from the normal kidney in mice. We postulated that the combined procedures of sodium depletion and β-adrenoceptor blockade would affect the activity of the renin-angiotensin system. To test this hypothesis, we investigated the interaction of low sodium intake (LSI) and propranolol (PRO) on renin synthesis and secretion. To prevent the influence of tubule flow on renin secretion, mice with a left hydronephrotic kidney were used. LSI increased plasma renin concentration (PRC) 5.6-fold in the right renal vein (P<0.01). There was no net increase of PRC in the left renal vein. Tissue renin concentration (TRC) was elevated 3.6-fold and 1.3-fold in the right and left kidneys (P<0.01), respectively. After administration of PRO, PRC decreased by 34% in the right renal vein and 47% in the aorta (P<0.05); TRC was reduced by 37.5% in the right and 29.3% in the hydronephrotic kidneys (P<0.05). The combination of LSI and PRO increased PRC 3.4-fold and 1.8-fold in the right (P<0.01) and left renal veins (P<0.05), respectively. TRC increased 3.4-fold in the right (P<0.01) but only 61% in the left kidneys (P<0.05). The pattern in change of renin mRNA levels was similar to TRC but the absolute amount was smaller. There were correlations between PRC and renin mRNA, and between TRC and renin mRNA in both kidneys (P<0.001). Thus, LSI increased renin synthesis in both kidneys. However, there was no apparent renin secretion in the hydronephrotic kidney. PRO treatment suppressed renin synthesis and renin secretion, irrespective of hydronephrosis and LSI. The macula densa is critical for renin secretion under all of the circumstances studied.
Collapse
|
40
|
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of Kidney Renin. Physiol Rev 2010; 90:607-73. [PMID: 20393195 DOI: 10.1152/physrev.00011.2009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protease renin is the key enzyme of the renin-angiotensin-aldosterone cascade, which is relevant under both physiological and pathophysiological settings. The kidney is the only organ capable of releasing enzymatically active renin. Although the characteristic juxtaglomerular position is the best known site of renin generation, renin-producing cells in the kidney can vary in number and localization. (Pro)renin gene transcription in these cells is controlled by a number of transcription factors, among which CREB is the best characterized. Pro-renin is stored in vesicles, activated to renin, and then released upon demand. The release of renin is under the control of the cAMP (stimulatory) and Ca2+(inhibitory) signaling pathways. Meanwhile, a great number of intrarenally generated or systemically acting factors have been identified that control the renin secretion directly at the level of renin-producing cells, by activating either of the signaling pathways mentioned above. The broad spectrum of biological actions of (pro)renin is mediated by receptors for (pro)renin, angiotensin II and angiotensin-( 1 – 7 ).
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Klaus Höcherl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Vladimir Todorov
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Fu Y, Zhang R, Lu D, Liu H, Chandrashekar K, Juncos LA, Liu R. NOX2 is the primary source of angiotensin II-induced superoxide in the macula densa. Am J Physiol Regul Integr Comp Physiol 2010; 298:R707-12. [PMID: 20053956 DOI: 10.1152/ajpregu.00762.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Macula densa (MD)-mediated regulation of renal hemodynamics via tubuloglomerular feedback is regulated by interactions between factors such as superoxide (O(2)(-)) and angiotensin II (ANG II). We have reported that NaCl-induced O(2)(-) in the MD is produced by the NOX2 isoform of NADPH oxidase (NOX); however, the source of ANG II-induced O(2)(-) in MD is unknown. Thus we determined the pathways by which ANG II increased O(2)(-) in the MD by measuring O(2)(-) in ANG II-treated MMDD1 cells, a MD-like cell line. ANG II caused MMDD1 O(2)(-) levels to increase by more than twofold (P < 0.01). This increase was blocked by losartan (AT(1) receptor blocker) but not PD-123319 (AT(2) receptor antagonist). Apocynin (a NOX inhibitor) decreased O(2)(-) by 86% (P < 0.01), whereas oxypurinol (a xanthine oxidase inhibitor) and NS-398 (a cyclooxygenase-2 inhibitor) had no significant effect. The NOX-dependent increase in O(2)(-) was due to the NOX2 isoform; a short interfering (si)RNA against NOX2 blunted ANG II-induced increases in O(2)(-), whereas the NOX4/siRNA did not. Finally, we found that inhibiting the Rac1 subunit of NOX blunted ANG II-induced O(2)(-) production in NOX4/siRNA-treated cells but did not further decrease it in NOX2/siRNA-treated cells. Our results indicate that ANG II stimulates O(2)(-) production in the MD primarily via AT(1)-dependent activation of NOX2. Rac1 is required for the full activation of NOX2. This pathway may be an important component of ANG II enhancement of tubuloglomerular feedback.
Collapse
Affiliation(s)
- Yiling Fu
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Casellas D. Methods for imaging Renin-synthesizing, -storing, and -secreting cells. Int J Hypertens 2009; 2010:298747. [PMID: 20948562 PMCID: PMC2949082 DOI: 10.4061/2010/298747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/07/2009] [Accepted: 09/08/2009] [Indexed: 12/04/2022] Open
Abstract
Renin-producing cells have been the object of intense research efforts for the past fifty years within the field of hypertension. Two decades ago, research focused on the concept and characterization of the intrarenal renin-angiotensin system. Early morphological studies led to the concept of the juxtaglomerular apparatus, a minute organ that links tubulovascular structures and function at the single nephron level. The kidney, thus, appears as a highly "topological organ" in which anatomy and function are intimately linked. This point is reflected by a concurrent and constant development of functional and structural approaches. After summarizing our current knowledge about renin cells and their distribution along the renal vascular tree, particularly along glomerular afferent arterioles, we reviewed a variety of imaging techniques that permit a fine characterization of renin synthesis, storage, and release at the single-arteriolar, -cell, or -granule level. Powerful tools such as multiphoton microscopy and transgenesis bear the promises of future developments of the field.
Collapse
Affiliation(s)
- Daniel Casellas
- Groupe Rein et Hypertension (EA3127), Institut Universitaire de Recherche Clinique, 641 Avenue du Doyen Giraud, 34093 Montpellier Cédex 5, France
| |
Collapse
|
43
|
Bell PD, Komlosi P, Zhang ZR. ATP as a mediator of macula densa cell signalling. Purinergic Signal 2009; 5:461-71. [PMID: 19330465 PMCID: PMC2776136 DOI: 10.1007/s11302-009-9148-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022] Open
Abstract
Within each nephro-vascular unit, the tubule returns to the vicinity of its own glomerulus. At this site, there are specialised tubular cells, the macula densa cells, which sense changes in tubular fluid composition and transmit information to the glomerular arterioles resulting in alterations in glomerular filtration rate and blood flow. Work over the last few years has characterised the mechanisms that lead to the detection of changes in luminal sodium chloride and osmolality by the macula densa cells. These cells are true "sensor cells" since intracellular ion concentrations and membrane potential reflect the level of luminal sodium chloride concentration. An unresolved question has been the nature of the signalling molecule(s) released by the macula densa cells. Currently, there is evidence that macula densa cells produce nitric oxide via neuronal nitric oxide synthase (nNOS) and prostaglandin E(2) (PGE(2)) through cyclooxygenase 2 (COX 2)-microsomal prostaglandin E synthase (mPGES). However, both of these signalling molecules play a role in modulating or regulating the macula-tubuloglomerular feedback system. Direct macula densa signalling appears to involve the release of ATP across the basolateral membrane through a maxi-anion channel in response to an increase in luminal sodium chloride concentration. ATP that is released by macula densa cells may directly activate P2 receptors on adjacent mesangial cells and afferent arteriolar smooth muscle cells, or the ATP may be converted to adenosine. However, the critical step in signalling would appear to be the regulated release of ATP across the basolateral membrane of macula densa cells.
Collapse
Affiliation(s)
- P Darwin Bell
- Department of Medicine, Division of Nephrology, Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA,
| | | | | |
Collapse
|
44
|
Nevéus T, Läckgren G, Tuvemo T, Jerker H, Hjälmås K, Stenberg A. Enuresis - Background and Treatment. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/003655900750169257] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tryggve Nevéus
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Göran Läckgren
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Torsten Tuvemo
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Hetta Jerker
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Kelm Hjälmås
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Arne Stenberg
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| |
Collapse
|
45
|
Abstract
The renin-angiotensin system (RAS) is critically involved in the regulation of the salt and volume status of the body and blood pressure. The activity of the RAS is controlled by the protease renin, which is released from the renal juxtaglomerular epithelioid cells into the circulation. Renin release is regulated in negative feedback-loops by blood pressure, salt intake, and angiotensin II. Moreover, sympathetic nerves and renal autacoids such as prostaglandins and nitric oxide stimulate renin secretion. Despite numerous studies there remained substantial gaps in the understanding of the control of renin release at the organ or cellular level. Some of these gaps have been closed in the last years by means of gene-targeted mice and advanced imaging and electrophysiological methods. In our review, we discuss these recent advances together with the relevant previous literature on the regulation of renin release.
Collapse
|
46
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
|
48
|
Castrop H, Schnermann J. Isoforms of renal Na-K-2Cl cotransporter NKCC2: expression and functional significance. Am J Physiol Renal Physiol 2008; 295:F859-66. [PMID: 18495801 DOI: 10.1152/ajprenal.00106.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal Na-K-2Cl cotransporter (NKCC2, BSC1) is selectively expressed in the apical membrane of cells of the thick ascending limb of the loop of Henle (TAL) and macula densa. NKCC2-dependent salt transport constitutes the major apical entry pathway for transepithelial salt reabsorption in the TAL. Although NKCC2 is encoded by a single gene (Slc12a1), differential splicing of the NKCC2 pre-mRNA results in the formation of several alternate transcripts. Thus three full-length splice isoforms of NKCC2 differ in their variable exon 4, resulting in transcripts for NKCC2B, NKCC2A, and NKCC2F. In addition to full-length isoforms, variants with truncated COOH-terminal ends have been described. The various splice isoforms of NKCC2 differ in their localization along the TAL and in their transport characteristics. Data in the literature are reviewed to assess the principles of NKCC2 differential splicing, the localization of NKCC2 splice isoforms along the TAL in various species, and the functional characteristics of the splice isoforms. In addition, we discuss the functional significance of NKCC2 isoforms for TAL salt retrieval and for the specific salt sensor function of macula densa cells based on studies using isoform-specific NKCC2-knockout mice. We suggest that different NKCC2 splice variants cooperate in salt retrieval along the TAL and that the coexpression of two splice variants (NKCC2B and NKCC2A) in the macula densa cells facilitates efficient salt sensing over wide ranges of fluctuating salt concentrations.
Collapse
Affiliation(s)
- Hayo Castrop
- Physiologisches Institut der Universität Regensburg, Universitätsstr. 31, D-93040 Regensburg, Germany.
| | | |
Collapse
|
49
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
50
|
Abstract
The kidney displays highly efficient autoregulation so that under steady-state conditions renal blood flow (RBF) is independent of blood pressure over a wide range of pressure. Autoregulation occurs in the preglomerular microcirculation and is mediated by two, perhaps three, mechanisms. The faster myogenic mechanism and the slower tubuloglomerular feedback contribute both directly and interactively to autoregulation of RBF and of glomerular capillary pressure. Multiple experiments have been used to study autoregulation and can be considered as variants of two basic designs. The first measures RBF after multiple stepwise changes in renal perfusion pressure to assess how a biological condition or experimental maneuver affects the overall pressure-flow relationship. The second uses time-series analysis to better understand the operation of multiple controllers operating in parallel on the same vascular smooth muscle. There are conceptual and experimental limitations to all current experimental designs so that no one design adequately describes autoregulation. In particular, it is clear that the efficiency of autoregulation varies with time and that most current techniques do not adequately address this issue. Also, the time-varying and nonadditive interaction between the myogenic mechanism and tubuloglomerular feedback underscores the difficulty of dissecting their contributions to autoregulation. We consider the modulation of autoregulation by nitric oxide and use it to illustrate the necessity for multiple experimental designs, often applied iteratively.
Collapse
Affiliation(s)
- William A Cupples
- Centre for Biomedical Research and Dept. of Biology, Univ. of Victoria, PO Box 3020, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|