1
|
Wang ML, Lin XJ, Mo BX, Kong WW. Plant Artificial Chromosomes: Construction and Transformation. ACS Synth Biol 2024; 13:15-24. [PMID: 38163256 DOI: 10.1021/acssynbio.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
With the decline of cultivated land and increase of the population in recent years, an agricultural revolution is urgently needed to produce more food to improve the living standards of humans. As one of the foundations of synthetic biology, artificial chromosomes hold great potential for advancing crop improvement. They offer opportunities to increase crop yield and quality, while enhancing crop resistance to disease. The progress made in plant artificial chromosome technology enables selective modification of existing chromosomes or the synthesis of new ones to improve crops and study gene function. However, current artificial chromosome technologies still face limitations, particularly in the synthesis of repeat sequences and the transformation of large DNA fragments. In this review, we will introduce the structure of plant centromeres, the construction of plant artificial chromosomes, and possible methods for transforming large fragments into plant cells.
Collapse
Affiliation(s)
- Ming L Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiao J Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bei X Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wen W Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Nerkar G, Devarumath S, Purankar M, Kumar A, Valarmathi R, Devarumath R, Appunu C. Advances in Crop Breeding Through Precision Genome Editing. Front Genet 2022; 13:880195. [PMID: 35910205 PMCID: PMC9329802 DOI: 10.3389/fgene.2022.880195] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The global climate change and unfavourable abiotic and biotic factors are limiting agricultural productivity and therefore intensifying the challenges for crop scientists to meet the rising demand for global food supply. The introduction of applied genetics to agriculture through plant breeding facilitated the development of hybrid varieties with improved crop productivity. However, the development of new varieties with the existing gene pools poses a challenge for crop breeders. Genetic engineering holds the potential to broaden genetic diversity by the introduction of new genes into crops. But the random insertion of foreign DNA into the plant's nuclear genome often leads to transgene silencing. Recent advances in the field of plant breeding include the development of a new breeding technique called genome editing. Genome editing technologies have emerged as powerful tools to precisely modify the crop genomes at specific sites in the genome, which has been the longstanding goal of plant breeders. The precise modification of the target genome, the absence of foreign DNA in the genome-edited plants, and the faster and cheaper method of genome modification are the remarkable features of the genome-editing technology that have resulted in its widespread application in crop breeding in less than a decade. This review focuses on the advances in crop breeding through precision genome editing. This review includes: an overview of the different breeding approaches for crop improvement; genome editing tools and their mechanism of action and application of the most widely used genome editing technology, CRISPR/Cas9, for crop improvement especially for agronomic traits such as disease resistance, abiotic stress tolerance, herbicide tolerance, yield and quality improvement, reduction of anti-nutrients, and improved shelf life; and an update on the regulatory approval of the genome-edited crops. This review also throws a light on development of high-yielding climate-resilient crops through precision genome editing.
Collapse
Affiliation(s)
- Gauri Nerkar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - Suman Devarumath
- Vidya Pratishthan's College of Agricultural Biotechnology, Baramati, India
| | - Madhavi Purankar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - Atul Kumar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - R Valarmathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Rachayya Devarumath
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - C Appunu
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|
3
|
Garland S, Curry HA. Turning promise into practice: Crop biotechnology for increasing genetic diversity and climate resilience. PLoS Biol 2022; 20:e3001716. [PMID: 35881573 PMCID: PMC9321377 DOI: 10.1371/journal.pbio.3001716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As climate change increasingly threatens agricultural production, expanding genetic diversity in crops is an important strategy for climate resilience in many agricultural contexts. In this Essay, we explore the potential of crop biotechnology to contribute to this diversification, especially in industrialized systems, by using historical perspectives to frame the current dialogue surrounding recent innovations in gene editing. We unearth comments about the possibility of enhancing crop diversity made by ambitious scientists in the early days of recombinant DNA and follow the implementation of this technology, which has not generated the diversification some anticipated. We then turn to recent claims about the promise of gene editing tools with respect to this same goal. We encourage researchers and other stakeholders to engage in activities beyond the laboratory if they hope to see what is technologically possible translated into practice at this critical point in agricultural transformation.
Collapse
Affiliation(s)
- Sarah Garland
- The Earth Institute, Columbia University, New York, New York, United States of America
| | - Helen Anne Curry
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F. Nanotechnology Strategies for Plant Genetic Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106945. [PMID: 34699644 DOI: 10.1002/adma.202106945] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Plant genetic engineering is essential for improving crop yield, quality, and resistance to abiotic/biotic stresses for sustainable agriculture. Agrobacterium-, biolistic bombardment-, electroporation-, and poly(ethylene glycol) (PEG)-mediated genetic-transformation systems are extensively used in plant genetic engineering. However, these systems have limitations, including species dependency, destruction of plant tissues, low transformation efficiency, and high cost. Recently, nanotechnology-based gene-delivery methods have been developed for plant genetic transformation. This nanostrategy shows excellent transformation efficiency, good biocompatibility, adequate protection of exogenous nucleic acids, and the potential for plant regeneration. However, the nanomaterial-mediated gene-delivery system in plants is still in its infancy, and there are many challenges for its broad applications. Herein, the conventional genetic transformation techniques used in plants are briefly discussed. After that, the progress in the development of nanomaterial-based gene-delivery systems is considered. CRISPR-Cas-mediated genome editing and its combined applications with plant nanotechnology are also discussed. The conceptual innovations, methods, and practical applications of nanomaterial-mediated genetic transformation summarized herein will be beneficial for promoting plant genetic engineering in modern agriculture.
Collapse
Affiliation(s)
- Yong Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xiaojun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, P. R. China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
5
|
Demir I, Besson A, Guiraud P, Formosa-Dague C. Towards a better understanding of microalgae natural flocculation mechanisms to enhance flotation harvesting efficiency. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1009-1024. [PMID: 33055392 DOI: 10.2166/wst.2020.177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In microalgae harvesting, flocculation is usually a compulsory preliminary step to further separation by sedimentation or flotation. For some microalgae species, and under certain growth conditions, flocculation can occur naturally. Natural flocculation presents many advantages as it does not require the addition of any flocculants to the culture medium and shows high efficiency rate. But because natural flocculation is so specific to the species and conditions, and thanks to the knowledge accumulated over the last years on flocculation mechanisms, researchers have developed strategies to induce this natural harvesting. In this review, we first decipher at the molecular scale the underlying mechanisms of natural flocculation and illustrate them by selected studies from the literature. Then we describe the developed strategies to induce natural flocculation that include the use of biopolymers, chemically modified or not, or involve mixed species cultures. But all these strategies need the addition of external compounds or microorganism which can present some issues. Thus alternative directions to completely eliminate the need for an external molecule, through genetic engineering of microalgae strains, are presented and discussed in the third part of this review.
Collapse
Affiliation(s)
- Irem Demir
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France and TBI-INSA de Toulouse, 135 avenue de Rangeuil 31077 Toulouse Cedex 4, France E-mail:
| | - Alexandre Besson
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France and TBI-INSA de Toulouse, 135 avenue de Rangeuil 31077 Toulouse Cedex 4, France E-mail:
| | - Pascal Guiraud
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France and TBI-INSA de Toulouse, 135 avenue de Rangeuil 31077 Toulouse Cedex 4, France E-mail:
| | - Cécile Formosa-Dague
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France and TBI-INSA de Toulouse, 135 avenue de Rangeuil 31077 Toulouse Cedex 4, France E-mail:
| |
Collapse
|
6
|
Meng X, Zhao X, Ding X, Li Y, Cao G, Chu Z, Su X, Liu Y, Chen X, Guo J, Cai Z, Ding X. Integrated Functional Omics Analysis of Flavonoid-Related Metabolism in AtMYB12 Transcript Factor Overexpressed Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6776-6787. [PMID: 32396374 DOI: 10.1021/acs.jafc.0c01894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genetic engineering (GE) technology is widely used in plant modification. However, the results of modification may not exactly meet the expectations. Herein, we propose a new multi-omics method for GE plant evaluation based on the optimized use of the metID algorithm. Using this method, we found that flavonoid accumulation was at the expense of the great sacrifice of l-phenylalanine in GE tomatoes for the first time. Meanwhile, the ceramide series of sphingolipid is synthesized de novo from l-serine, and ceramides are the primary source of vesicles coated with flavonoids and secreted from the endoplasmic reticulum. Therefore, the accumulation of the ceramide series of sphingolipid changed the cell component of intracellular organelles. Furthermore, the improvement of the method allows us to identify more metabolites related to dysregulated pathways.
Collapse
Affiliation(s)
- Xuanlin Meng
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Xingchen Zhao
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Xiangyu Ding
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
| | - Yang Li
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
| | - Guodong Cao
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Zhaohui Chu
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
| | - Xiuli Su
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Yuanchen Liu
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250014, People's Republic of China
| | - Jinggong Guo
- Center for Multi-Omics Research, State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Xinhua Ding
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
| |
Collapse
|
7
|
Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F, Mallory-Smith CA, Stelly DM, Stewart CN. Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit? ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:165-188. [PMID: 31150590 DOI: 10.1146/annurev-phyto-080417-045954] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetically engineered crops have been grown for more than 20 years, resulting in widespread albeit variable benefits for farmers and consumers. We review current, likely, and potential genetic engineering (GE) applications for the development of disease-resistant crop cultivars. Gene editing, gene drives, and synthetic biology offer novel opportunities to control viral, bacterial, and fungal pathogens, parasitic weeds, and insect vectors of plant pathogens. We conclude that there will be no shortage of GE applications totackle disease resistance and other farmer and consumer priorities for agricultural crops. Beyond reviewing scientific prospects for genetically engineered crops, we address the social institutional forces that are commonly overlooked by biological scientists. Intellectual property regimes, technology regulatory frameworks, the balance of funding between public- and private-sector research, and advocacy by concerned civil society groups interact to define who uses which GE technologies, on which crops, and for the benefit of whom. Ensuring equitable access to the benefits of genetically engineered crops requires affirmative policies, targeted investments, and excellent science.
Collapse
Affiliation(s)
- Kevin V Pixley
- International Maize and Wheat Improvement Center (CIMMYT), 56237 Texcoco, Mexico;
| | - Jose B Falck-Zepeda
- International Food Policy Research Institute (IFPRI), Washington, DC 20005-3915, USA
| | - Ken E Giller
- Plant Production Systems Group, Wageningen University & Research (WUR), 6700 AK Wageningen, The Netherlands
| | - Leland L Glenna
- Department of Agricultural Economics, Sociology, and Education, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fred Gould
- Genetic Engineering and Society Center and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
8
|
Goold HD, Wright P, Hailstones D. Emerging Opportunities for Synthetic Biology in Agriculture. Genes (Basel) 2018; 9:E341. [PMID: 29986428 PMCID: PMC6071285 DOI: 10.3390/genes9070341] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Rapid expansion in the emerging field of synthetic biology has to date mainly focused on the microbial sciences and human health. However, the zeitgeist is that synthetic biology will also shortly deliver major outcomes for agriculture. The primary industries of agriculture, fisheries and forestry, face significant and global challenges; addressing them will be assisted by the sector’s strong history of early adoption of transformative innovation, such as the genetic technologies that underlie synthetic biology. The implementation of synthetic biology within agriculture may, however, be hampered given the industry is dominated by higher plants and mammals, where large and often polyploid genomes and the lack of adequate tools challenge the ability to deliver outcomes in the short term. However, synthetic biology is a rapidly growing field, new techniques in genome design and synthesis, and more efficient molecular tools such as CRISPR/Cas9 may harbor opportunities more broadly than the development of new cultivars and breeds. In particular, the ability to use synthetic biology to engineer biosensors, synthetic speciation, microbial metabolic engineering, mammalian multiplexed CRISPR, novel anti microbials, and projects such as Yeast 2.0 all have significant potential to deliver transformative changes to agriculture in the short, medium and longer term. Specifically, synthetic biology promises to deliver benefits that increase productivity and sustainability across primary industries, underpinning the industry’s prosperity in the face of global challenges.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| | - Philip Wright
- New South Wales Department of Primary Industries, Locked Bag 21, 161 Kite St, Orange, NSW 2800, Australia.
| | - Deborah Hailstones
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| |
Collapse
|
9
|
Willig CJ, Duan K, Zhang ZJ. Transcriptome Profiling of Plant Genes in Response to Agrobacterium tumefaciens-Mediated Transformation. Curr Top Microbiol Immunol 2018; 418:319-348. [PMID: 30062593 DOI: 10.1007/82_2018_115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease. During infection of the host plant, Agrobacterium transfers T-DNA from its Ti plasmid into the host cell, which can then be integrated into the host genome. This unique genetic transformation capability has been employed as the dominant technology for producing genetically modified plants for both basic research and biotechnological applications. Agrobacterium has been well studied as a disease-causing agent. The Agrobacterium-mediated transformation process involves early attachment of the bacterium to the host's surface, followed by transfer of T-DNA and virulence proteins into the plant cell. Throughout this process, the host plants exhibit dynamic gene expression patterns at each infection stage or in response to Agrobacterium strains with varying pathogenic capabilities. Shifting host gene expression patterns throughout the transformation process have effects on transformation frequency, host morphology, and metabolism. Thus, gene expression profiling during the Agrobacterium infection process can be an important approach to help elucidate the interaction between Agrobacterium and plants. This review highlights recent findings on host plant differential gene expression patterns in response to A. tumefaciens or related elicitor molecules.
Collapse
Affiliation(s)
| | - Kaixuan Duan
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Zhanyuan J Zhang
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
10
|
Sinebo W, Maredia K. Innovative farmers and regulatory gatekeepers: Genetically modified crops regulation and adoption in developing countries. GM CROPS & FOOD 2017; 7:1-11. [PMID: 26954893 DOI: 10.1080/21645698.2016.1151989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The regulation of genetically modified (GM) crops is a topical issue in agriculture and environment over the past 2 decades. The objective of this paper is to recount regulatory and adoption practices in some developing countries that have successfully adopted GM crops so that aspiring countries may draw useful lessons and best practices for their biosafatey regulatory regimes. The first 11 mega-GM crops growing countries each with an area of more than one million hectares in 2014 were examined. Only five out of the 11 countries had smooth and orderly adoption of these crops as per the regulatory requirement of each country. In the remaining 6 countries (all developing countries), GM crops were either introduced across borders without official authorization, released prior to regulatory approval or unapproved seeds were sold along with the approved ones in violation to the existing regulations. Rapid expansion of transgenic crops over the past 2 decades in the developing world was a result of an intense desire by farmers to adopt these crops irrespective of regulatory roadblocks. Lack of workable biosafety regulatory system and political will to support GM crops encouraged unauthorized access to GM crop varieties. In certain cases, unregulated access in turn appeared to result in the adoption of substandard or spurious technology which undermined performance and productivity. An optimal interaction among the national agricultural innovation systems, biosafety regulatory bodies, biotech companies and high level policy makers is vital in making a workable regulated progress in the adoption of GM crops. Factoring forgone opportunities to farmers to benefit from GM crops arising from overregulation into biosafety risk analysis and decision making is suggested. Building functional biosafety regulatory systems that balances the needs of farmers to access and utilize the GM technology with the regulatory imperatives to ensure adequate safety to the environment and human health is recommended.
Collapse
Affiliation(s)
- Woldeyesus Sinebo
- a NEPAD Agency African Biosafety Network of Expertise, Kampala Node, UNCST , Ntinda , Kampala , Uganda
| | - Karim Maredia
- b College of Agriculture and Natural Resources, Michigan State University , East Lansing , MI , USA
| |
Collapse
|
11
|
HENEEN WAHEEBK. Molecular biology and plant breeding. Hereditas 2008. [DOI: 10.1111/j.1601-5223.1985.tb00756.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci U S A 1987; 84:8463-7. [PMID: 2446324 PMCID: PMC299564 DOI: 10.1073/pnas.84.23.8463] [Citation(s) in RCA: 209] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Scrape loading and sonication loading are two recently described methods of introducing macromolecules into living cells. We have tested the efficacy of these methods for transfection of mammalian cells with exogenous DNA, using selection systems based either on resistance to the drug G418 (Geneticin) or on acquisition of the ability to utilize the salvage pathway of pyrimidine biosynthesis. These loading methods can be employed to generate cell lines that express the gene product of the transfected DNA molecules both transiently and stably. Optimal transfection is observed when the DNA is added to cells in physiological saline lacking divalent cations and containing K+ in place of Na+. DNA molecules 7.1 to 30 kilobases long have been introduced by the scrape loading procedure. In addition, the scrape loading procedure has been employed for cotransfection and subsequent expression of nonselectable genes encoded on DNA molecules added in a mixture with DNA molecules whose expression is selected. Cell lines expressing oncogenes or proteins that are important for regulation of cell growth and division have been obtained by this procedure. The scrape loading procedure is also useful for studies of the cellular changes that occur upon expression of an exogenous gene. As many as 80% of cells scrape loaded with the plasmid pC6, which encodes the simian virus 40 large tumor antigen, contained this protein in the nucleus between 1 and 5 days after transfection. Thus, scrape loading and sonication loading are simple, economical, and reproducible methods for introduction of DNA molecules into adherent and nonadherent cells, and these methods may be useful in the future for experimentation at both fundamental and applied levels.
Collapse
Affiliation(s)
- M Fechheimer
- Department of Zoology, University of Georgia, Athens 30602
| | | | | | | | | | | |
Collapse
|
13
|
Andrews RE, Faust RM, Wabiko H, Raymond KC, Bulla LA. The biotechnology of Bacillus thuringiensis. Crit Rev Biotechnol 1987; 6:163-232. [PMID: 3333741 DOI: 10.3109/07388558709113596] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One of the challenges in the application of biotechnology to pest control is the identification of agents found in nature which can be used effectively. Biotechnology offers the potential of developing pesticides based on such agents which will provide environmentally sound and economically feasible insect control alternatives. Such an agent, the insect pathogen Bacillus thuringiensis, is the subject of intense investigations in several laboratories. Insecticides which use the entomocidal properties of B. thuringiensis are currently produced and sold worldwide; new products are currently in the development stage. Herein, the biology and genetics of B. thuringiensis and the problems associated with current products are critically reviewed with respect to biotechnology. Moreover, the economic and regulatory implications of technologically advanced products are evaluated.
Collapse
Affiliation(s)
- R E Andrews
- Department of Microbiology, Iowa State University, Ames
| | | | | | | | | |
Collapse
|
14
|
Halvorson HO. Genetic engineering. A new biotechnology. CELL BIOPHYSICS 1986; 9:171-87. [PMID: 2436792 DOI: 10.1007/bf02797380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
McConnell DJ. Methods and achievements of genetic engineering: Prospects in agriculture. A review. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0301-6226(86)90022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Hickok LG, Schwarz OJ. An in vitro whole plant selection system: paraquat tolerant mutants in the fern Ceratopteris. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1986; 72:302-6. [PMID: 24247935 DOI: 10.1007/bf00288565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/1985] [Accepted: 12/15/1985] [Indexed: 05/08/2023]
Abstract
A whole plant selection system using the haploid gametophyte generation of the fern Ceratopteris richardii has been developed to select for mutations that confer resistance or tolerance to various selection pressures. The expression of the mutations can be analyzed and characterized in both the haploid gametophyte and diploid sporophyte generations. Genetic analyses are facilitated by the fern's rapid life cycle and the ease of manipulating the gametophyte generation. Selection for tolerance to the herbicide paraquat has yielded two mutants which have an increased tolerance to the herbicide in both the gametophyte and sporophyte generations. Both mutants exhibit single nuclear gene inheritance patterns and appear to be closely linked or allelic.
Collapse
Affiliation(s)
- L G Hickok
- Department of Botany, The University of Tennessee, 37996, Knoxville, TN, USA
| | | |
Collapse
|
17
|
Simmonds DH, Setterfield G. Aberrant microtubule organization can result in genetic abnormalities in protoplast cultures of Vicia hajastana Grossh. PLANTA 1986; 167:460-468. [PMID: 24240361 DOI: 10.1007/bf00391221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/1985] [Accepted: 01/09/1986] [Indexed: 06/02/2023]
Abstract
Protoplast cultures of Vicia hajastana have a high division frequency. However, 20-40% of the microcolonies fail to develop beyond the 20-30-cell stage. Aneuploids and polyploids were found in early divisions and persisted in older cultures. The resulting protoplast-derived suspension culture differed karyologically from the original culture. Karyokinesis and cytokinesis were studied using simultaneous staining of microtubules (MT) by immunofluorescence, DNA by Hoechst 33258 (2-[2-(4-hydroxyphenyl)-6-benzimidazoyl]-6-[1-methyl-4-piperazyl]benzimidazole) and cell walls by Calcofluor. Freshly prepared protoplasts showed mitoses and high frequencies of binucleate cells, which probably resulted mainly from failure of cytokinesis. In early divisions, many mitoses showed metaphase chromosomes with kinetochore MT but lacking polar MT. These aberrant mitoses probably accounted for an increase in hyperploid cells observed in protoplast cultures. Multipolar spindles, which gave rise to hypoploid cells, were also seen in the early divisions. Telophase abnormalities included dislocated phragmoplasts and incomplete formation of cross walls. Many divisions resulted in daughter nuclei of unequal size. Unequal segregation of chromosomes was detected by cytofluorimetric measurements of telophase nuclei stained with Hoechst. After 5 d of culture, 91% of the divisions with incomplete cross walls also contained different-size nuclei; conversely, 78% of the divisions with fully formed cross walls contained nuclei of equal size. The malfunctioning of spindles and phragmoplasts in the same cells indicates a functional interdependence of the different MT configurations in mitosis. During the first 24 h of culture, a high frequency of abnormalities was found in spindles, cross-wall formation and chromosome segregation; this was reduced substantially in the cells undergoing first division by 48 h. The data indicate that it may be possible to manipulate the frequency of abnormalities by controlling the onset of the first division in protoplast cultures.
Collapse
Affiliation(s)
- D H Simmonds
- Biology Department, Carleton University, K1A 5B6, Ottawa, Ont, Canada
| | | |
Collapse
|
18
|
Jones D. Chelonus sp.: suppression of host ecdysteroids and developmentally stationary pseudoparasitized prepupae. Exp Parasitol 1986; 61:10-7. [PMID: 3943585 DOI: 10.1016/0014-4894(86)90129-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When eggs of the caterpillar Trichoplusia ni are stung by Chelonus sp. (near C. curvimaculatus) (Braconidae), the developing host larvae precociously spin a cocoon but then remain developmentally stationary in the prepupal stage. The latter event happens even in hosts which were stung and precociously spin cocoons but which, upon dissection, contain no obvious parasite. Injection of radiolabeled ecdysone into either pseudoparasitized or allatectomized larvae demonstrates suppressed rates of conversion of ecdysone to 20-hydroxyecdysone when compared with controls. The data indicate that the occurrence of developmentally stationary pseudoparasitized prepupae is due to less production of ecdysteroid and less conversion of ecdysone to 20-hydroxyecdysone, both probably as a result of suppressed juvenile hormone titer.
Collapse
|
19
|
Gresshoff PM, Delves AC. Plant Genetic Approaches to Symbiotic Nodulation and Nitrogen Fixation in Legumes. A GENETIC APPROACH TO PLANT BIOCHEMISTRY 1986. [DOI: 10.1007/978-3-7091-6989-6_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
SOYFER VALERYN. Trends in the Application of Molecular and Cell Biology to Current and Future Agronomy. Ann N Y Acad Sci 1985. [DOI: 10.1111/j.1749-6632.1985.tb30023.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Abstract
The food processing industry is the oldest and largest industry using biotechnological processes. Further development of food products and processes based on biotechnology depends upon the improvement of existing processes, such as fermentation, immobilized biocatalyst technology, and production of additives and processing aids, as well as the development of new opportunities for food biotechnology. Improvements are needed in the characterization, safety, and quality control of food materials, in processing methods, in waste conversion and utilization processes, and in currently used food microorganism and tissue culture systems. Also needed are fundamental studies of the structure-function relationship of food materials and of the cell physiology and biochemistry of raw materials.
Collapse
|
22
|
Jones D. Parasite regulation of host insect metamorphosis: a new form of regulation in pseudoparasitized larvae of Trichoplusia ni. J Comp Physiol B 1985; 155:583-90. [PMID: 3837029 DOI: 10.1007/bf00694448] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When eggs of Trichoplusia ni (lepidoptera) are stung by a parasitic wasp, Chelonus sp., the developing host larvae precociously initiate metamorphosis ten days later. Precocious initiation of metamorphosis occurs even in 'pseudoparasitized' stung hosts which contain no living parasites at the time of symptoms of host regulation by the parasite. In feeding, penultimate instar, pseudoparasitized hosts, the corpora allata activity, hemolymph juvenile hormone esterase activity, in vivo rates of juvenile hormone metabolism and changes in hemolymph protein composition all follow the pattern of the normal last instar. This and other evidence suggests the entire developmental pattern of the last larval instar is precociously expressed in penultimate instar, pseudoparasitized hosts. The cause of precocious expression of the developmental program leading to metamorphosis is a significant decrease in the critical size parameter that, in normal larvae, signals attainment of the last instar. The induction, in preultimate instar larvae, of the entire feeding stage developmental program leading to metamorphic commitment, using either biochemical, surgical or parasitic experimental probes, has not been previously reported. The results have important implications for the study of host-parasite endocrine interaction, of normal insect metamorphosis and even of human puberty.
Collapse
|
23
|
Douglas C, Halperin W, Gordon M, Nester E. Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. J Bacteriol 1985; 161:764-6. [PMID: 3968039 PMCID: PMC214948 DOI: 10.1128/jb.161.2.764-766.1985] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Agrobacterium tumefaciens was tested for its ability to attach to tissue culture cells of bamboo, a monocotyledonous plant. Phase-contrast microscopy and kinetic experiments with radiolabeled bacteria showed that attachment to bamboo cells was indistinguishable from attachment to cells of dicotyledonous plants. Bacterial mutants defective in attachment to dicotyledonous plants showed similar behavior with bamboo, and extensive washing of the bamboo cells had no effect on the number of bacteria which attached.
Collapse
|
24
|
|
25
|
Jones D. The endocrine basis for developmentally stationary prepupae in larvae ofTrichoplusia ni pseudoparasitized byChelonus insularis. J Comp Physiol B 1985. [DOI: 10.1007/bf00685218] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
|
27
|
Dean DH. Biochemical genetics of the bacterial insect-control agent Bacillus thuringiensis: basic principles and prospects for genetic engineering. Biotechnol Genet Eng Rev 1984; 2:341-63. [PMID: 6443645 DOI: 10.1080/02648725.1984.10647804] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Sandermann H, Scheel D, vdTrenck T. Use of plant cell cultures to study the metabolism of environmental chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 1984; 8:167-82. [PMID: 6325118 DOI: 10.1016/0147-6513(84)90059-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The metabolism of the following environmental chemicals has been studied in cell suspension cultures of wheat (Triticum aestivum L.) and soybean (Glycine max L.):2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), hexachlorobenzene, pentachlorophenol, diethylhexylphthalate , benzo [alpha] pyrene, and DDT. All chemicals tested, including the persistent ones, were partially metabolized. Polar conjugates predominated in all cases. A covalent incorporation into lignin could be demonstrated for 2,4-D and pentachlorophenol. A specific deposition in the cellular vacuole could be demonstrated for the beta-D-glucopyranoside conjugates derived from 2,4-D. A rapid assay procedure to evaluate the metabolism of a given 14C-labeled chemical in plant cell suspension cultures is described. This procedure requires about 1 week, and the reproducibility of the results obtained has been assessed.
Collapse
|
29
|
Watts JW, King JM. A simple method for large-scale electrofusion and culture of plant protoplasts. Biosci Rep 1984; 4:335-42. [PMID: 6733258 DOI: 10.1007/bf01140497] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A simple method is described for the electrofusion of plant protoplasts. Protoplasts were aggregated in a radio-frequency field (10 V RMS, 0.5 MHz) for 15-30 s with an inter-electrode distance of 5 mm. They were then fused with a 300-V DC pulse. The protoplasts were able to divide after this treatment. A transferrable electrode permitted electrofusion of 1-ml volumes of culture in standard tissue-culture dishes in about 20 s.
Collapse
|
30
|
|
31
|
|
32
|
|
33
|
Sybenga J. Genetic manipulation in plant breeding: somatic versus generative. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1983; 66:179-201. [PMID: 24263916 DOI: 10.1007/bf00251141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/1983] [Indexed: 06/02/2023]
Abstract
A comparison is made between molecular/ in vitro/somatic and plant-level/generative approaches in the reconstruction of genotypes and reproductive systems. Although classical methods will remain the basis of plant breeding, a number of new somatic as well as generative genetic manipulation techniques are definitely applicable in several special situations. The first are technically more demanding, the latter are often conceptually more difficult, and both are laborious. Choice of approach is determined by the plant species, the stage of development of the techniques, the amount of background genetic information and the genetic diversity available, and the capacity of the institution involved. In the final stages of the program traditional selection and testing procedures remain indispensable. Whether any particular breeding program will profit from the incorporation of sophisticated genetic manipulation techniques must be carefully analysed. This discussion is intended to provide a basis for this analysis.
Collapse
Affiliation(s)
- J Sybenga
- Department of Genetics, Agricultural University, General Foulkesweg 53, NL-6703, BM Wageningen, The Netherlands
| |
Collapse
|
34
|
Abstract
Enormous genetic variability is accumulated by plant cells proliferating in culture. Additional variability can be induced in cultured cell populations by exposure to mutagens. This pool of genetic diversity can be examined for agronomically desirable traits at two levels of differentiation. Populations of plants regenerated from callus cultures can be screened by conventional methods. Alternatively, selective culture conditions favoring growth of specific mutant types can be applied at the cellular level. The several characteristics that have been introduced by these methods to date are a harbinger of future contributions to be made by cell culture to the genetic improvement of crops.
Collapse
|
35
|
Pasternak JJ, Gruber MY, Thompson JE, Glick BR. Development of DNA-mediated transformation systems for plants. Biotechnol Adv 1983; 1:1-15. [PMID: 14544242 DOI: 10.1016/0734-9750(83)90297-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic engineering of plants by DNA-mediated gene transfer requires that efficient transformation systems be developed. Considerable progress has been made in manipulating the Ti plasmid of Agrobacterium tumefaciens as a vehicle for delivery of foreign genes into protoplasts of dicotyle-donous plants. Part of the Ti plasmid, the T-DNA, can be incorporated into the genome of the host cell; the T-DNA can carry a foreign DNA sequence which co-integrates with it; under normal conditions, the tumorigenic-causing portion of the T-DNA can be inactivated so that transformed protoplasts can be regenerated and T-DNA with an inserted foreign gene can be stably maintained during regeneration, meiosis and gamete formation. A foreign gene has yet to be expressed in regenerated plants although a T-DNA gene for opine synthesis can function in regenerates. Developing a more ubiquitous transformation system for monocotyledons is further from fruition. Based on transformation systems for simple eukaryotic organisms, it is reasonable to expect that a DNA vector which is capable of amplifying a novel plant gene and which contains both a drug resistance marker to facilitate the selection of transformed plant protoplasts and a species-specific autonomously replicating sequence to ensure the stable maintenance of the input gene in the recipient cell can be constructed.
Collapse
Affiliation(s)
- J J Pasternak
- Biology Department, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|