1
|
Kim M, Naik SD, Kim SW, Joung M, Yum YA, Aswar VR, Jeong LS. Design, synthesis, and biological evaluation of 5'-deoxy (N)-methanocarbanucleoside derivatives as A 3 adenosine receptor ligands. Bioorg Med Chem Lett 2025; 120:130134. [PMID: 39947351 DOI: 10.1016/j.bmcl.2025.130134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Based on the potent and selective antagonism exhibited by truncated North (N)-methanocarba adenosine analogs, we synthesized a series of 5'-deoxy (N)-methanocarba nucleosides to explore their structure-activity relationships (SAR). The stereoselective synthesis of the North cyclopropyl-fused alcohol was achieved from d-ribose using ring-closing metathesis, oxidative rearrangement, and cyclopropanation as key steps. Mitsunobu reactions were employed to condense nucleobases with glycosyl donors, followed by N6 functionalization with various amines. Despite their innovative design, all synthesized analogs exhibited lower binding affinity compared to the 4'-thio series and fully truncated (N)-methanocarba adenosine. Docking studies revealed that the 4'-methyl group of the rigid North conformational sugar introduces steric clashes, which likely contribute to the reduced affinity. These findings underscore the critical role of sugar conformation and steric effects in receptor interactions, providing valuable insights for the development of potent and selective A3AR ligands.
Collapse
Affiliation(s)
- Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Siddhi D Naik
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; Government College of Arts Science and Commerce, Khandola, Marcela, Goa 403107, India
| | - Seung Woo Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Misuk Joung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Yun A Yum
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Vikas R Aswar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
2
|
He J, Zhu Y, Tian Z, Liu M, Gao A, Fu W, Lu F, Sun Y, Guo Y, Pan R, Ji Y, Chen J, Lu H, Lin J, Liang X, Kim C, Zhou C, Jiao H. ZBP1 senses spliceosome stress through Z-RNA:DNA hybrid recognition. Mol Cell 2025:S1097-2765(25)00307-7. [PMID: 40267921 DOI: 10.1016/j.molcel.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/24/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Z-DNA-binding protein 1 (ZBP1; also known as DAI or DLM-1) regulates cell death and inflammation by sensing left-handed double-helical nucleic acids, including Z-RNA and Z-DNA. However, the physiological conditions that generate Z-form nucleic acids (Z-NAs) and activate ZBP1-dependent signaling pathways remain largely elusive. In this study, we developed a probe, Zα-mFc, that specifically detected both Z-DNA and Z-RNA. Utilizing this probe, we discovered that inhibiting spliceosome causes nuclear accumulation of Z-RNA:DNA hybrids, which are sensed by ZBP1 via its Zα domains, triggering apoptosis and necroptosis in mammalian cells. Furthermore, we solved crystal structures of the human or mouse Zα1 domain complexed with a 6-bp RNA:DNA hybrid, revealing that the RNA:DNA hybrid adopts a left-handed conformation. Our findings demonstrate that the spliceosome acts as a checkpoint preventing accumulation of Z-RNA:DNA hybrids, which potentially function as endogenous ligands activating ZBP1-dependent cell death pathways.
Collapse
Affiliation(s)
- Jianfeng He
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yongyi Zhu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zichao Tian
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Mengqin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Anmin Gao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wangmi Fu
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fei Lu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yutong Sun
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yajun Guo
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rongqing Pan
- Research Unit of Cellular Stress of Chinese Academy of Medical Sciences, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuchen Ji
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Huasong Lu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Juan Lin
- Research Unit of Cellular Stress of Chinese Academy of Medical Sciences, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xingguo Liang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China.
| | - Chun Kim
- Department of Medicinal and Life Sciences, Hanyang University (ERICA Campus), Ansan 15588, Republic of Korea.
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Huipeng Jiao
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
3
|
Gutfreund C, Betz K, Abramov M, Coosemans F, Holliger P, Herdewijn P, Marx A. Structural insights into a DNA polymerase reading the xeno nucleic acid HNA. Nucleic Acids Res 2025; 53:gkae1156. [PMID: 39673482 PMCID: PMC11724289 DOI: 10.1093/nar/gkae1156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024] Open
Abstract
Xeno nucleic acids (XNAs) are unnatural analogues of the natural nucleic acids in which the canonical ribose or deoxyribose rings are replaced with alternative sugars, congener structures or even open-ring configurations. The expanding repertoire of XNAs holds significant promise for diverse applications in molecular biology as well as diagnostics and therapeutics. Key advantages of XNAs over natural nucleic acids include their enhanced biostability, superior target affinity and (in some cases) catalytic activity. Natural systems generally lack the mechanisms to transcribe, reverse transcribe or replicate XNAs. This limitation has been overcome through the directed evolution of nucleic acid-modifying enzymes, especially polymerases (pols) and reverse transcriptases (RTs). Despite these advances, the mechanisms by which synthetic RT enzymes read these artificial genetic polymers remain largely unexplored, primarily due to a scarcity of structural information. This study unveils first structural insights into an evolved thermostable DNA pol interacting with the XNA 1,5-anhydrohexitol nucleic acid (HNA), revealing unprecedented HNA nucleotide conformations within a ternary complex with the enzyme. These findings not only deepen our understanding of HNA to DNA reverse transcription but also set the stage for future advancements of this and similar enzymes through deliberate design.
Collapse
Affiliation(s)
- Cédric Gutfreund
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karin Betz
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Mikhail Abramov
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
- Department of Medicinal Chemistry, KU Leuven, Herestraat 49 BOX 1030, 3000 Leuven, Belgium
| | - Frédérick Coosemans
- Department of Medicinal Chemistry, KU Leuven, Herestraat 49 BOX 1030, 3000 Leuven, Belgium
| | - Phillipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Piet Herdewijn
- Department of Medicinal Chemistry, KU Leuven, Herestraat 49 BOX 1030, 3000 Leuven, Belgium
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
4
|
Mejdrová I, Węgrzyn E, Carell T. Step-by-Step Towards Biological Homochirality - from Prebiotic Randomness To Perfect Asymmetry. Chem Asian J 2025; 20:e202401074. [PMID: 39400505 DOI: 10.1002/asia.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The history of life's formation and the origin of its stereochemistry are nearly as multifaceted as the life itself. In this review, we focus on analyzing the step-by-step path leading to what we can define as "life" in parallel to what we know about the emergence of enantiomeric imbalance and subsequent transition to full homochirality. We start at the level of assembly of the building blocks of life from inorganic molecules and build up to the polymerization and formation of nucleic acids and peptides. We report and analyze different theories at various stages of this development and try to elucidate the most plausible theory.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
5
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Kim M, Hyun YE, Kang SY, Kim SW, Park JH, Joung M, Jeong LS. Synthesis and biological evaluation of sugar-modified truncated carbanucleosides as A 2A and A 3 adenosine receptor ligands to explore conformational effect to the receptors. Bioorg Med Chem 2024; 115:117986. [PMID: 39504593 DOI: 10.1016/j.bmc.2024.117986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
This study investigated the impact of conformation on the binding affinity of carbanucleosides to A2A and A3 adenosine receptors (ARs). A series of nucleosides, including saturated, unsaturated, North (N)-methano, and South (S)-methanocarbanucleosides was prepared, and their binding affinities to A2AAR and A3AR were assessed. Biological evaluations revealed that all synthesized (S)-methanocarbanucleosides had negligible binding to both receptors, and most (N)-methanocarbanucleosides exhibited high binding affinities. Molecular docking analysis showed that the (N)-methanocarbanucleoside 6a exhibited favorable interactions and minimal steric clashes in both A2AAR and A3AR. Conversely, the (S)-methanocarbanucleoside 7a appears to encounter significant steric clashes, which impeded its binding to A2AAR. Furthermore, when adopting the South conformation 7a was unable to bind to A3AR. Expanding upon the (N)-methanocarba moiety, various C8-aromatic groups were introduced to convert A2AAR agonists into antagonists and these modified compounds also exhibited strong binding affinity. These results suggest that the North conformation is favored by both A2AAR and A3AR, and that (N)-methanocarbanucleosides can serve as versatile structural moieties for dual targeting of A2AAR and A3AR. These findings offer promising avenues for the development of dual ligands for therapeutic applications in obesity and immunotherapy.
Collapse
Affiliation(s)
- Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Yeon Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Woo Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Hoon Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Misuk Joung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
7
|
Walker-Gibbons R, Zhu X, Behjatian A, Bennett TJD, Krishnan M. Sensing the structural and conformational properties of single-stranded nucleic acids using electrometry and molecular simulations. Sci Rep 2024; 14:20582. [PMID: 39232063 PMCID: PMC11375218 DOI: 10.1038/s41598-024-70641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Inferring the 3D structure and conformation of disordered biomolecules, e.g., single stranded nucleic acids (ssNAs), remains challenging due to their conformational heterogeneity in solution. Here, we use escape-time electrometry (ETe) to measure with sub elementary-charge precision the effective electrical charge in solution of short to medium chain length ssNAs in the range of 5-60 bases. We compare measurements of molecular effective charge with theoretically calculated values for simulated molecular conformations obtained from Molecular Dynamics simulations using a variety of forcefield descriptions. We demonstrate that the measured effective charge captures subtle differences in molecular structure in various nucleic acid homopolymers of identical length, and also that the experimental measurements can find agreement with computed values derived from coarse-grained molecular structure descriptions such as oxDNA, as well next generation ssNA force fields. We further show that comparing the measured effective charge with calculations for a rigid, charged rod-the simplest model of a nucleic acid-yields estimates of molecular structural dimensions such as linear charge spacings that capture molecular structural trends observed using high resolution structural analysis methods such as X-ray scattering. By sensitively probing the effective charge of a molecule, electrometry provides a powerful dimension supporting inferences of molecular structural and conformational properties, as well as the validation of biomolecular structural models. The overall approach holds promise for a high throughput, microscopy-based biomolecular analytical approach offering rapid screening and inference of molecular 3D conformation, and operating at the single molecule level in solution.
Collapse
Affiliation(s)
- Rowan Walker-Gibbons
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Xin Zhu
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Ali Behjatian
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Timothy J D Bennett
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
- The Kavli Institute for Nanoscience Discovery, Sherrington Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
8
|
Rafiepour P, Sina S, Amoli ZA, Shekarforoush SS, Farajzadeh E, Mortazavi SMJ. A mechanistic simulation of induced DNA damage in a bacterial cell by X- and gamma rays: a parameter study. Phys Eng Sci Med 2024; 47:1015-1035. [PMID: 38652348 DOI: 10.1007/s13246-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Mechanistic Monte Carlo simulations calculating DNA damage caused by ionizing radiation are highly dependent on the simulation parameters. In the present study, using the Geant4-DNA toolkit, the impact of different parameters on DNA damage induced in a bacterial cell by X- and gamma-ray irradiation was investigated. Three geometry configurations, including the simple (without DNA details), the random (a random multiplication of identical DNA segments), and the fractal (a regular replication of DNA segments using fractal Hilbert curves), were simulated. Also, three physics constructors implemented in Geant4-DNA, i.e., G4EmDNAPhysics_option2, G4EmDNAPhysics_option4, and G4EmDNAPhysics_option6, with two energy thresholds of 17.5 eV and 5-37.5 eV were compared for direct DNA damage calculations. Finally, a previously developed mathematical model of cell repair called MEDRAS (Mechanistic DNA Repair and Survival) was employed to compare the impact of physics constructors on the cell survival curve. The simple geometry leads to undesirable results compared to the random and fractal ones, highlighting the importance of simulating complex DNA structures in mechanistic simulation studies. Under the same conditions, the DNA damage calculated in the fractal geometry was more consistent with the experimental data. All physics constructors can be used alternatively with the fractal geometry, provided that an energy threshold of 17.5 eV is considered for recording direct DNA damage. All physics constructors represent a similar behavior in generating cell survival curves, although the slopes of the curves are different. Since the inverse of the slope of a bacterial cell survival curve (i.e., the D10-value) is highly sensitive to the simulation parameters, it is not logical to determine an optimal set of parameters for calculating the D10-value by Monte Carlo simulation.
Collapse
Affiliation(s)
- Payman Rafiepour
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Sedigheh Sina
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
- Radiation research center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
| | - Zahra Alizadeh Amoli
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ebrahim Farajzadeh
- Secondary Standard Dosimetry Laboratory (SSDL), Pars Isotope Co, Karaj, Iran
| | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Wang D, Liao Y, Zeng H, Gu C, Wang X, Zhu S, Guo X, Zhang J, Zheng Z, Yan J, Zhang F, Hou L, Gu Z, Sun B. Manipulating Radiation-Sensitive Z-DNA Conformation for Enhanced Radiotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313991. [PMID: 38692575 DOI: 10.1002/adma.202313991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Indexed: 05/03/2024]
Abstract
DNA double-strand breaks (DSBs) yield highly determines radiotherapy efficacy. However, improving the inherent radiosensitivity of tumor DNA to promote radiation-induced DSBs remains a challenge. Using theoretical and experimental models, the underexplored impact of Z-DNA conformations on radiosensitivity, yielding higher DSBs than other DNA conformations, is discovered. Thereout, a radiosensitization strategy focused on inducing Z-DNA conformation, utilizing CBL@HfO2 nanocapsules loaded with a Z-DNA inducer CBL0137, is proposed. A hollow mesoporous HfO2 (HM-HfO2) acts as a delivery and an energy depositor to promote Z-DNA breakage. The nanocapsule permits the smart DSBs accelerator that triggers its radiosensitization with irradiation stimulation. Impressively, the CBL@HfO2 facilitates the B-Z DNA conformational transition, augmenting DSBs about threefold stronger than irradiation alone, generating significant tumor suppression with a 30% cure rate. The approach enables DSBs augmentation by improving the inherent radiosensitivity of DNA. As such, it opens up an era of Z-DNA conformation manipulation in radiotherapy.
Collapse
Affiliation(s)
- Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zeng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xihong Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ziye Zheng
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Junfang Yan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lingmi Hou
- Academician (Expert) Workstation, Breast Cancer Biotarget Laboratory, Medical Imaging Key Laboratory of Sichuan Province, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoyun Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Dore MD, Rafique MG, Yang TP, Zorman M, Platnich CM, Xu P, Trinh T, Rizzuto FJ, Cosa G, Li J, Guarné A, Sleiman HF. Heat-activated growth of metastable and length-defined DNA fibers expands traditional polymer assembly. Nat Commun 2024; 15:4384. [PMID: 38782917 PMCID: PMC11116425 DOI: 10.1038/s41467-024-48722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Biopolymers such as nucleic acids and proteins exhibit dynamic backbone folding, wherein site-specific intramolecular interactions determine overall structure. Proteins then hierarchically assemble into supramolecular polymers such as microtubules, that are robust yet dynamic, constantly growing or shortening to adjust to cellular needs. The combination of dynamic, energy-driven folding and growth with structural stiffness and length control is difficult to achieve in synthetic polymer self-assembly. Here we show that highly charged, monodisperse DNA-oligomers assemble via seeded growth into length-controlled supramolecular fibers during heating; when the temperature is lowered, these metastable fibers slowly disassemble. Furthermore, the specific molecular structures of oligomers that promote fiber formation contradict the typical theory of block copolymer self-assembly. Efficient curling and packing of the oligomers - or 'curlamers' - determine morphology, rather than hydrophobic to hydrophilic ratio. Addition of a small molecule stabilises the DNA fibers, enabling temporal control of polymer lifetime and underscoring their potential use in nucleic-acid delivery, stimuli-responsive biomaterials, and soft robotics.
Collapse
Affiliation(s)
- Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | | | - Tianxiao Peter Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Marlo Zorman
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Casey M Platnich
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Pengfei Xu
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Tuan Trinh
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Felix J Rizzuto
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47906, USA
| | - Alba Guarné
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada.
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada.
| |
Collapse
|
11
|
Węgrzyn E, Mejdrová I, Müller FM, Nainytė M, Escobar L, Carell T. RNA-Templated Peptide Bond Formation Promotes L-Homochirality. Angew Chem Int Ed Engl 2024; 63:e202319235. [PMID: 38407532 DOI: 10.1002/anie.202319235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The world in which we live is homochiral. The ribose units that form the backbone of DNA and RNA are all D-configured and the encoded amino acids that comprise the proteins of all living species feature an all-L-configuration at the α-carbon atoms. The homochirality of α-amino acids is essential for folding of the peptides into well-defined and functional 3D structures and the homochirality of D-ribose is crucial for helix formation and base-pairing. The question of why nature uses only encoded L-α-amino acids is not understood. Herein, we show that an RNA-peptide world, in which peptides grow on RNAs constructed from D-ribose, leads to the self-selection of homo-L-peptides, which provides a possible explanation for the homo-D-ribose and homo-L-amino acid combination seen in nature.
Collapse
Affiliation(s)
- Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Felix M Müller
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Milda Nainytė
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Luis Escobar
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
12
|
Gagna CE, Yodice AN, D'Amico J, Elkoulily L, Gill SM, DeOcampo FG, Rabbani M, Kaur J, Shah A, Ahmad Z, Lambert MW, Clark Lambert W. Novel B-DNA dermatophyte assay for demonstration of canonical DNA in dermatophytes: Histopathologic characterization by artificial intelligence. Clin Dermatol 2024; 42:233-258. [PMID: 38185195 DOI: 10.1016/j.clindermatol.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We describe a novel assay and artificial intelligence-driven histopathologic approach identifying dermatophytes in human skin tissue sections (ie, B-DNA dermatophyte assay) and demonstrate, for the first time, the presence of dermatophytes in tissue using immunohistochemistry to detect canonical right-handed double-stranded (ds) B-DNA. Immunohistochemistry was performed using anti-ds-B-DNA monoclonal antibodies with formalin-fixed paraffin-embedded tissues to determine the presence of dermatophytes. The B-DNA assay resulted in a more accurate identification of dermatophytes, nuclear morphology, dimensions, and gene expression of dermatophytes (ie, optical density values) than periodic acid-Schiff (PAS), Grocott methenamine silver (GMS), or hematoxylin and eosin (H&E) stains. The novel assay guided by artificial intelligence allowed for efficient identification of different types of dermatophytes (eg, hyphae, microconidia, macroconidia, and arthroconidia). Using the B-DNA dermatophyte assay as a clinical tool for diagnosing dermatophytes is an alternative to PAS, GMS, and H&E as a fast and inexpensive way to accurately detect dermatophytosis and reduce the number of false negatives. Our assay resulted in superior identification, sensitivity, life cycle stages, and morphology compared to H&E, PAS, and GMS stains. This method detects a specific structural marker (ie, ds-B-DNA), which can assist with diagnosis of dermatophytes. It represents a significant advantage over methods currently in use.
Collapse
Affiliation(s)
- Claude E Gagna
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA; Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA; Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA; Department of Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.
| | - Anthony N Yodice
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Juliana D'Amico
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Lina Elkoulily
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Shaheryar M Gill
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Francis G DeOcampo
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Maryam Rabbani
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Jai Kaur
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Aangi Shah
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Zainab Ahmad
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA; Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - W Clark Lambert
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA; Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA; Department of Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
13
|
Mak CH. Hydration Waters Make Up for the Missing Third Hydrogen Bond in the A·T Base Pair. ACS PHYSICAL CHEMISTRY AU 2024; 4:180-190. [PMID: 38560756 PMCID: PMC10979491 DOI: 10.1021/acsphyschemau.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 04/04/2024]
Abstract
Base pairing complementarity is central to DNA function. G·C and A·T pair specificity is thought to originate from the different number of hydrogen bonds the pairs make. Quantifying how many hydrogen bonds exist can be difficult because water molecules in the surrounding can make up for or disrupt direct hydrogen bonds, and the hydration structures around A·T and G·C pairs on duplex DNA are distinct. Large-scale computer simulations have been used here to create a detailed map for the hydration structure on A·T and G·C base pairs in water. The contributions of specific hydration waters to the free energy of each of the hydrogen bonds in the A·T and G·C pairs were computed. Using the equilibrium fractions of hydrated versus unhydrated states from the hydration profiles, the impact of specific bound waters on each hydrogen bond can be uniquely quantified using a thermodynamic construction. The findings suggest that hydration water in the minor groove of an A·T pair can provide up to about 2 kcal/mol of free energy advantage, effectively making up for the missing third hydrogen bond in the A·T pair compared to G·C, rendering the intrinsic thermodynamic stability of the A·T pair almost synonymous with G·C.
Collapse
Affiliation(s)
- Chi H. Mak
- Departments of Chemistry
and Quantitative and Computational Biology, and Center of Applied
Mathematical Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Kowalski K. Synthesis and chemical transformations of glycol nucleic acid (GNA) nucleosides. Bioorg Chem 2023; 141:106921. [PMID: 37871392 DOI: 10.1016/j.bioorg.2023.106921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Xeno nucleic acids (XNA) are an increasingly important class of hypermodified nucleic acids with great potential in bioorganic chemistry and synthetic biology. Glycol nucleic acid (GNA) is constructed from a three-carbon 1,2-propanediol (propylene glycol) backbone attached to a nucleobase entity, representing the simplest known XNA. This review is intended to present GNA nucleosides from a synthetic chemistry perspective-a perspective that serves as a starting point for biological studies. Therefore this account focuses on synthetic methods for GNA nucleoside synthesis, as well as their postsynthetic chemical transformations. The properties and biological activity of GNA constituents are also highlighted. A literature survey shows four major approaches toward GNA nucleoside scaffold synthesis. These approaches pertain to glycidol ring-opening, Mitsunobu, SN2, and dihydroxylation reactions. The general arsenal of reactions used in GNA chemistry is versatile and encompasses the Sonogashira reaction, Michael addition, silyl-Hilbert-Johnson reaction, halogenation, alkylation, cyclization, Rh-catalyzed N-allylation, Sharpless catalytic dihydroxylation, and Yb(OTf)3-catalyzed etherification. Additionally, various phosphorylation reactions have enabled the synthesis of diverse types of GNA nucleotides, dinucleoside phosphates, phosphordiamidites, and oligos. Furthermore, recent advances in GNA chemistry have resulted in the synthesis of previously unknown redox-active (ferrocenyl) and luminescent (pyrenyl and phenanthrenyl) GNA nucleosides, which are also covered in this review.
Collapse
Affiliation(s)
- Konrad Kowalski
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, PL-91403 Lodz, Poland.
| |
Collapse
|
15
|
Lei HJ, Wei XR, Li LX, Sun WJ, Chen HX, Li D, Xie L. Evaluation of the toxicity of clozapine on the freshwater diatom Navicula sp. using the FTIR spectroscopy. CHEMOSPHERE 2023; 337:139301. [PMID: 37379982 DOI: 10.1016/j.chemosphere.2023.139301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Clozapine is an often prescribed neuroactive pharmaceutical and frequently detected in the aquatic environments. However, its toxicity on low trophic level species (i.e., diatoms) and associated mechanisms are seldom reported. In this study, the toxicity of clozapine on a widely distributed freshwater diatom Navicula sp. was evaluated using the FTIR spectroscopy along with biochemical analyses. The diatoms were exposed to various concentrations of clozapine (0, 0.01, 0.05, 0.10, 0.50, 1.00, 2.00, 5.00 mg/L) for 96 h. The results revealed that clozapine reached up to 392.8 μg/g in the cell wall and 550.4 μg/g within the cells at 5.00 mg/L, suggesting that clozapine could be adsorbed extracellularly and accumulated intracellularly in diatoms. In addition, hormetic effects were displayed on the growth and photosynthetic pigments (chlorophyll a and carotenoid) of Navicula sp., with a promotive effect at concentrations less than 1.00 mg/L while an inhibited effect at concentrations over 2 mg/L. Clozapine induced oxidative stress in Navicula sp., accompanied by decreased levels of total antioxidant capacity (T-AOC) (>0.05 mg/L), in which, the activity of superoxide dismutase (SOD) (at 5.00 mg/L) was increased whereas the activity of catalase (CAT) (>0.05 mg/L) was decreased. Furthermore, FTIR spectroscopic analysis showed that exposure to clozapine resulted in accumulation of lipid peroxidation products, increased sparse β-sheet structures, and altered DNA structures in Navicula sp. This study can facilitate the ecological risk assessment of clozapine in the aquatic ecosystems.
Collapse
Affiliation(s)
- Hao-Jun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xin-Rong Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Li-Xia Li
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology and Mineral Resources, Jinan, 250014, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, 250014, China
| | - Wei-Jun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Hong-Xing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Connolley L, Schnabel L, Thanbichler M, Murray SM. Partition complex structure can arise from sliding and bridging of ParB dimers. Nat Commun 2023; 14:4567. [PMID: 37516778 PMCID: PMC10387095 DOI: 10.1038/s41467-023-40320-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
In many bacteria, chromosome segregation requires the association of ParB to the parS-containing centromeric region to form the partition complex. However, the structure and formation of this complex have been unclear. Recently, studies have revealed that CTP binding enables ParB dimers to slide along DNA and condense the centromeric region through the formation of DNA bridges. Using semi-flexible polymer simulations, we demonstrate that these properties can explain partition complex formation. Transient ParB bridges organize DNA into globular states or hairpins and helical structures, depending on bridge lifetime, while separate simulations show that ParB sliding reproduces the multi-peaked binding profile observed in Caulobacter crescentus. Combining sliding and bridging into a unified model, we find that short-lived ParB bridges do not impede sliding and can reproduce both the binding profile and condensation of the nucleoprotein complex. Overall, our model elucidates the mechanism of partition complex formation and predicts its fine structure.
Collapse
Affiliation(s)
- Lara Connolley
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Lucas Schnabel
- Department of Biology, University of Marburg, 35043, Marburg, Germany
| | - Martin Thanbichler
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043, Marburg, Germany
- Department of Biology, University of Marburg, 35043, Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
17
|
Luo X, Zhang J, Gao Y, Pan W, Yang Y, Li X, Chen L, Wang C, Wang Y. Emerging roles of i-motif in gene expression and disease treatment. Front Pharmacol 2023; 14:1136251. [PMID: 37021044 PMCID: PMC10067743 DOI: 10.3389/fphar.2023.1136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
As non-canonical nucleic acid secondary structures consisting of cytosine-rich nucleic acids, i-motifs can form under certain conditions. Several i-motif sequences have been identified in the human genome and play important roles in biological regulatory functions. Due to their physicochemical properties, these i-motif structures have attracted attention and are new targets for drug development. Herein, we reviewed the characteristics and mechanisms of i-motifs located in gene promoters (including c-myc, Bcl-2, VEGF, and telomeres), summarized various small molecule ligands that interact with them, and the possible binding modes between ligands and i-motifs, and described their effects on gene expression. Furthermore, we discussed diseases closely associated with i-motifs. Among these, cancer is closely associated with i-motifs since i-motifs can form in some regions of most oncogenes. Finally, we introduced recent advances in the applications of i-motifs in multiple areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang Wang
- *Correspondence: Chang Wang, ; Yuqing Wang,
| | | |
Collapse
|
18
|
Krall JB, Nichols PJ, Henen MA, Vicens Q, Vögeli B. Structure and Formation of Z-DNA and Z-RNA. Molecules 2023; 28:843. [PMID: 36677900 PMCID: PMC9867160 DOI: 10.3390/molecules28020843] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Despite structural differences between the right-handed conformations of A-RNA and B-DNA, both nucleic acids adopt very similar, left-handed Z-conformations. In contrast to their structural similarities and sequence preferences, RNA and DNA exhibit differences in their ability to adopt the Z-conformation regarding their hydration shells, the chemical modifications that promote the Z-conformation, and the structure of junctions connecting them to right-handed segments. In this review, we highlight the structural and chemical properties of both Z-DNA and Z-RNA and delve into the potential factors that contribute to both their similarities and differences. While Z-DNA has been extensively studied, there is a gap of knowledge when it comes to Z-RNA. Where such information is lacking, we try and extend the principles of Z-DNA stability and formation to Z-RNA, considering the inherent differences of the nucleic acids.
Collapse
Affiliation(s)
- Jeffrey B. Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Lee DH, Bae WH, Ha H, Park EG, Lee YJ, Kim WR, Kim HS. Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes. Mol Cells 2022; 45:522-530. [PMID: 35950452 PMCID: PMC9385571 DOI: 10.14348/molcells.2022.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46231, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
20
|
Thermodynamic analysis of Zα domain-nucleic acid interactions. Biochem J 2022; 479:1727-1741. [PMID: 35969150 DOI: 10.1042/bcj20220200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
DNA/RNA molecules adopting the left-handed conformation (Z-form) have been attributed with immunogenic properties. However, their biological role and importance has been a topic of debate for many years. The discovery of Z-DNA/RNA binding domains (Zα domains) in varied proteins that are involved in the innate immune response, such as the interferon inducible form of the RNA editing enzyme ADAR1 (p150), Z-DNA binding protein 1 (ZBP1), the fish kinase PKZ and the poxvirus inhibitor of interferon response E3L, indicates important roles of Z-DNA/RNA in immunity and self/non-self-discrimination. Such Zα domain-containing proteins recognise left-handed Z-DNA/RNA in a conformation-specific manner. Recent studies have implicated these domains in virus recognition. Given these important emerging roles for the Zα domains, it is pivotal to understand the mechanism of recognition of the Z-DNA/Z-RNA by these domains. To this end, we assessed the binding thermodynamics of Zα domain from ORF112 and ADAR1 on T(CG)3 and T(CG)6 oligonucleotides which have high propensity to adopt the Z-conformation. Our study highlights important differences in the mode of oligonucleotide binding by the two Zα domains originating from different proteins. Site-directed mutagenesis was employed together with isothermal titration calorimetry to tease apart finer details of the binding thermodynamics. Our work advances the understanding on binding thermodynamics of Zα domains to their cognate nucleic acid substrates and paves the ground for future efforts to gain a complete appreciation of this process.
Collapse
|
21
|
Bespalova M, Behjatian A, Karedla N, Walker-Gibbons R, Krishnan M. Opto-Electrostatic Determination of Nucleic Acid Double-Helix Dimensions and the Structure of the Molecule–Solvent Interface. Macromolecules 2022; 55:6200-6210. [PMID: 35910310 PMCID: PMC9330769 DOI: 10.1021/acs.macromol.2c00657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A DNA molecule is
highly electrically charged in solution. The
electrical potential at the molecular surface is known to vary strongly
with the local geometry of the double helix and plays a pivotal role
in DNA–protein interactions. Further out from the molecular
surface, the electrical field propagating into the surrounding electrolyte
bears fingerprints of the three-dimensional arrangement of the charged
atoms in the molecule. However, precise extraction of the structural
information encoded in the electrostatic “far field”
has remained experimentally challenging. Here, we report an optical
microscopy-based approach that detects the field distribution surrounding
a charged molecule in solution, revealing geometric features such
as the radius and the average rise per basepair of the double helix
with up to sub-Angstrom precision, comparable with traditional molecular
structure determination techniques like X-ray crystallography and
nuclear magnetic resonance. Moreover, measurement of the helical radius
furnishes an unprecedented view of both hydration and the arrangement
of cations at the molecule–solvent interface. We demonstrate
that a probe in the electrostatic far field delivers structural and
chemical information on macromolecules, opening up a new dimension
in the study of charged molecules and interfaces in solution.
Collapse
Affiliation(s)
- Maria Bespalova
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Ali Behjatian
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Narain Karedla
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Rowan Walker-Gibbons
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
22
|
Grzechowiak M, Ruszkowska A, Sliwiak J, Urbanowicz A, Jaskolski M, Ruszkowski M. New aspects of DNA recognition by group II WRKY transcription factor revealed by structural and functional study of AtWRKY18 DNA binding domain. Int J Biol Macromol 2022; 213:589-601. [PMID: 35660042 DOI: 10.1016/j.ijbiomac.2022.05.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 01/28/2023]
Abstract
WRKY transcription factors (TFs) constitute one of the largest families of plant TFs. Based on the organization of domains and motifs, WRKY TFs are divided into three Groups (I-III). The WRKY subgroup IIa includes three representatives in A. thaliana, AtWRKY18, AtWRKY40, and AtWRKY60, that participate in biotic and abiotic stress responses. Here we present crystal structures of the DNA binding domain (DBD) of AtWRKY18 alone and in the complex with a DNA duplex containing the WRKY-recognition sequence, W-box. Subgroup IIa WRKY TFs are known to form homo and heterodimers. Our data suggest that the dimerization interface of the full-length AtWRKY18 involves contacts between the DBD subunits. DNA binding experiments and structural analysis point out novel aspects of DNA recognition by WRKY TFs. In particular, AtWRKY18-DBD preferentially binds an overlapping tandem of W-boxes accompanied by a quasi-W-box motif. The binding of DNA deforms the B-type double helix, which suggests that the DNA fragment must be prone to form a specific structure. This can explain why despite the short W-box consensus, WRKY TFs can precisely control gene expression. Finally, this first experimental structure of a Group II WRKY TF allowed us to compare Group I-III representatives.
Collapse
Affiliation(s)
- Marta Grzechowiak
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Agnieszka Ruszkowska
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Joanna Sliwiak
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Anna Urbanowicz
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Mariusz Jaskolski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland; Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan 61-614, Poland
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.
| |
Collapse
|
23
|
Transformation characteristics of A-DNA in salt solution revealed through molecular dynamics simulations. Biophys Chem 2022; 288:106845. [DOI: 10.1016/j.bpc.2022.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
|
24
|
Wang F, Li P, Chu HC, Lo PK. Nucleic Acids and Their Analogues for Biomedical Applications. BIOSENSORS 2022; 12:93. [PMID: 35200353 PMCID: PMC8869748 DOI: 10.3390/bios12020093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 05/07/2023]
Abstract
Nucleic acids are emerging as powerful and functional biomaterials due to their molecular recognition ability, programmability, and ease of synthesis and chemical modification. Various types of nucleic acids have been used as gene regulation tools or therapeutic agents for the treatment of human diseases with genetic disorders. Nucleic acids can also be used to develop sensing platforms for detecting ions, small molecules, proteins, and cells. Their performance can be improved through integration with other organic or inorganic nanomaterials. To further enhance their biological properties, various chemically modified nucleic acid analogues can be generated by modifying their phosphodiester backbone, sugar moiety, nucleobase, or combined sites. Alternatively, using nucleic acids as building blocks for self-assembly of highly ordered nanostructures would enhance their biological stability and cellular uptake efficiency. In this review, we will focus on the development and biomedical applications of structural and functional natural nucleic acids, as well as the chemically modified nucleic acid analogues over the past ten years. The recent progress in the development of functional nanomaterials based on self-assembled DNA-based platforms for gene regulation, biosensing, drug delivery, and therapy will also be presented. We will then summarize with a discussion on the advanced development of nucleic acid research, highlight some of the challenges faced and propose suggestions for further improvement.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Hoi Ching Chu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
25
|
Abstract
Many structures in nature look symmetric, but this is not completely accurate, because absolute symmetry is close to death. Chirality (handedness) is one form of living asymmetry. Chirality has been extensively investigated at different levels. Many rules were coined in attempts made for many decades to have control over the selection of handedness that seems to easily occur in nature. It is certain that if good control is realized on chirality, the roads will be ultimately open towards numerous developments in pharmaceutical, technological, and industrial applications. This tutorial review presents a report on chirality from single molecules to supramolecular assemblies. The realized functions are still in their infancy and have been scarcely converted into actual applications. This review provides an overview for starters in the chirality field of research on concepts, common methodologies, and outstanding accomplishments. It starts with an introductory section on the definitions and classifications of chirality at the different levels of molecular complexity, followed by highlighting the importance of chirality in biological systems and the different means of realizing chirality and its inversion in solid and solution-based systems at molecular and supramolecular levels. Chirality-relevant important findings and (bio-)technological applications are also reported accordingly.
Collapse
|
26
|
Fingerhut BP. The mutual interactions of RNA, counterions and water - quantifying the electrostatics at the phosphate-water interface. Chem Commun (Camb) 2021; 57:12880-12897. [PMID: 34816825 PMCID: PMC8640580 DOI: 10.1039/d1cc05367a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
The structure and dynamics of polyanionic biomolecules, like RNA, are decisively determined by their electric interactions with the water molecules and the counterions in the environment. The solvation dynamics of the biomolecules involves a subtle balance of non-covalent and many-body interactions with structural fluctuations due to thermal motion occurring in a femto- to subnanosecond time range. This complex fluctuating many particle scenario is crucial in defining the properties of biological interfaces with far reaching significance for the folding of RNA structures and for facilitating RNA-protein interactions. Given the inherent complexity, suited model systems, carefully calibrated and benchmarked by experiments, are required to quantify the relevant interactions of RNA with the aqueous environment. In this feature article we summarize our recent progress in the understanding of the electrostatics at the biological interface of double stranded RNA (dsRNA) and transfer RNA (tRNA). Dimethyl phosphate (DMP) is introduced as a viable and rigorously accessible model system allowing the interaction strength with water molecules and counterions, their relevant fluctuation timescales and the spatial reach of interactions to be established. We find strong (up to ≈90 MV cm-1) interfacial electric fields with fluctuations extending up to ≈20 THz and demonstrate how the asymmetric stretching vibration νAS(PO2)- of the polarizable phosphate group can serve as the most sensitive probe for interfacial interactions, establishing a rigorous link between simulations and experiment. The approach allows for the direct interfacial observation of interactions of biologically relevant Mg2+ counterions with phosphate groups in contact pair geometries via the rise of a new absorption band imposed by exchange repulsion interactions at short interatomic distances. The systematic extension to RNA provides microscopic insights into the changes of the hydration structure that accompany the temperature induced melting of the dsRNA double helix and quantify the ionic interactions in the folded tRNA. The results show that pairs of negatively charged phosphate groups and Mg2+ ions represent a key structural feature of RNA embedded in water. They highlight the importance of binding motifs made of contact pairs in the electrostatic stabilization of RNA structures that have a strong impact on the surface potential and enable the fine tuning of the local electrostatic properties which are expected to be relevant for mediating the interactions between biomolecules.
Collapse
|
27
|
Zhang YS, Wang ZQ, Chuang WC, Jiang SA, Mo TS, Lin JD, Lee CR. Programmable Engineering of Sunlight-Fueled, Full-Wavelength-Tunable, and Chirality-Invertible Helical Superstructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55550-55558. [PMID: 34761914 DOI: 10.1021/acsami.1c16655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamic control of motion at the molecular level is a core issue in promoting the bottom-up programmable modulation of sophisticated self-organized superstructures. Self-assembled artificial nanoarchitectures through subtle noncovalent interactions are indispensable for diverse applications. Here, the active solar renewable energy is used to harness cholesteric liquid crystal (CLC) superstructure devices via delicate control of the dynamic equilibrium between the concentrations of molecular motor molecules with opposite handedness. Thus, the spectral position and handedness of a photonic superstructure can be tuned continuously, bidirectionally, and reversibly within the entire working spectrum (from near-ultraviolet to the thermal infrared region, over 2 μm). With these unique horizons, three advanced photoresponsive chiroptical devices, namely, a mirrorless laser, an optical vortex generator, and an encrypted contactless photorewritable board, are successfully demonstrated. The sunlight-fueled chirality inversion prompts facile switching of functionalities, such as free-space optical communication, stereoscopic display technology, and spin-to-orbital angular momentum conversion. Motor-based chiroptic devices with dynamic and versatility controllability, fast response, ecofriendly characteristics, stability, and high efficiency have potential to replace the traditional elements with static functions. The inexhaustible natural power provides a promising means for outdoor-use optics and nanophotonics.
Collapse
Affiliation(s)
- Yan-Song Zhang
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| | - Zhi-Qun Wang
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| | - Wei-Cheng Chuang
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| | - Shun-An Jiang
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| | - Ting-Shan Mo
- Department of Materials Engineering, Kun Shan University of Technology, Tainan 710303, Taiwan
| | - Jia-De Lin
- Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien 974301, Taiwan
| | - Chia-Rong Lee
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
28
|
Mahalingam V, Harursampath D. Effect of the Base-Pair Sequence on B-DNA Thermal Conductivity. J Phys Chem B 2021; 125:10652-10656. [PMID: 34533965 DOI: 10.1021/acs.jpcb.1c04318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermal conductivity of double-stranded (ds) B-DNA was systematically investigated using classical molecular dynamics (MD) simulations. The effect of changing the base pair (bp) on the thermal conductivity of dsDNA needed investigation at a molecular level. Hence, four sequences, viz., poly(A), poly(G), poly(CG), and poly(AT), were initially analyzed in this work. First, the length of these sequences was varied from 4 to 40 bp at 300 K, and the respective thermal conductivity (κ) was computed. Second, the temperature-dependent thermal conductivities between 100 and 400 K were obtained in 50 K steps at 28 bp length. The Müller-Plathe reverse nonequilibrium molecular dynamics (RNEMD) was employed to set a thermal gradient and obtain all thermal conductivities in this work. Moreover, mixed sequences using AT and CG sequences, namely, A(CG)nT (n = 3-7), ACGC(AT)mGCGT (m = 0-5), and ACGC(AT)nAGCGT (n = 1-4), were investigated based on the hypothesis that these sequences could be better thermoelectrics. One-dimensional lattices are said to have diverging thermal conductivities at longer lengths, which violate the Fourier law. These follow the power law, where κ ∝ Lβ. At longer lengths, the exponent β needs to satisfy the condition β > 1/3 for divergent thermal conductivity. We find no such significant Fourier law violation through divergence of thermal conductivities at 80 bp lengths or 40 bp lengths. Also, in the case of the second study, the presence of short (m ≤ 2) encapsulated AT sequences within CG sequences shows an increasing trend. These results are important for engineering DNA-based thermal devices.
Collapse
Affiliation(s)
- Vignesh Mahalingam
- Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | |
Collapse
|
29
|
Park G, Kang B, Park SV, Lee D, Oh SS. A unified computational view of DNA duplex, triplex, quadruplex and their donor-acceptor interactions. Nucleic Acids Res 2021; 49:4919-4933. [PMID: 33893806 PMCID: PMC8136788 DOI: 10.1093/nar/gkab285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
DNA can assume various structures as a result of interactions at atomic and molecular levels (e.g., hydrogen bonds, π–π stacking interactions, and electrostatic potentials), so understanding of the consequences of these interactions could guide development of ways to produce elaborate programmable DNA for applications in bio- and nanotechnology. We conducted advanced ab initio calculations to investigate nucleobase model structures by componentizing their donor-acceptor interactions. By unifying computational conditions, we compared the independent interactions of DNA duplexes, triplexes, and quadruplexes, which led us to evaluate a stability trend among Watson–Crick and Hoogsteen base pairing, stacking, and even ion binding. For a realistic solution-like environment, the influence of water molecules was carefully considered, and the potassium-ion preference of G-quadruplex was first analyzed at an ab initio level by considering both base-base and ion-water interactions. We devised new structure factors including hydrogen bond length, glycosidic vector angle, and twist angle, which were highly effective for comparison between computationally-predicted and experimentally-determined structures; we clarified the function of phosphate backbone during nucleobase ordering. The simulated tendency of net interaction energies agreed well with that of real world, and this agreement validates the potential of ab initio study to guide programming of complicated DNA constructs.
Collapse
Affiliation(s)
- Gyuri Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Soyeon V Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Donghwa Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
30
|
Mozo-Villarías A, Cedano J, Querol E. The importance of hydrophobic interactions in the structure of transcription systems. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:951-961. [PMID: 34131772 DOI: 10.1007/s00249-021-01557-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/01/2022]
Abstract
Hydrophobic forces play a crucial role in both the stability of B DNA and its interactions with proteins. In the present study, we postulate that the hydrophobic effect is an essential component in establishing specificity in the interaction transcription factor proteins with their consensus DNA sequence partners. The PDB coordinates of more than 50 transcription systems have been used to analyze the hydrophobic attraction of proteins towards their DNA consensus. This analysis includes computing the hydrophobic energy of the interacting molecules by means of their hydrophobic moments. Hydrophobic moments have successfully been used in previous studies involving self-assembly protein systems. In the present case, in spite of some variability, we found specificity in transcription factors when interacting with their respective consensus DNA sequences. By applying our model of biological membrane pattern for hydrophobic interactions, we postulate that hydrophobic forces constitute the necessary intermediate interaction between the unspecific electrostatic attraction for DNA phosphate groups and the very short-range interaction promoting hydrogen bonds. We conclude that hydrophobic interactions serve as the intermediate force guiding transcriptions factors towards the proper hydrogen bonds to their DNAs.
Collapse
Affiliation(s)
- Angel Mozo-Villarías
- Departament de Bioquímica i Biologia Molecular, Campus de Bellaterra, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Juan Cedano
- Departament de Bioquímica i Biologia Molecular, Campus de Bellaterra, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular, Campus de Bellaterra, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
31
|
Multiple deprotonation paths of the nucleophile 3'-OH in the DNA synthesis reaction. Proc Natl Acad Sci U S A 2021; 118:2103990118. [PMID: 34088846 DOI: 10.1073/pnas.2103990118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA synthesis by polymerases is essential for life. Deprotonation of the nucleophile 3'-OH is thought to be the obligatory first step in the DNA synthesis reaction. We have examined each entity surrounding the nucleophile 3'-OH in the reaction catalyzed by human DNA polymerase (Pol) η and delineated the deprotonation process by combining mutagenesis with steady-state kinetics, high-resolution structures of in crystallo reactions, and molecular dynamics simulations. The conserved S113 residue, which forms a hydrogen bond with the primer 3'-OH in the ground state, stabilizes the primer end in the active site. Mutation of S113 to alanine destabilizes primer binding and reduces the catalytic efficiency. Displacement of a water molecule that is hydrogen bonded to the 3'-OH using the 2'-OH of a ribonucleotide or 2'-F has little effect on catalysis. Moreover, combining the S113A mutation with 2'-F replacement, which removes two potential hydrogen acceptors of the 3'-OH, does not reduce the catalytic efficiency. We conclude that the proton can leave the O3' via alternative paths, supporting the hypothesis that binding of the third Mg2+ initiates the reaction by breaking the α-β phosphodiester bond of an incoming deoxyribonucleoside triphosphate (dNTP).
Collapse
|
32
|
Abstract
The thermal conductivity of B-form double-stranded DNA (dsDNA) of the Drew-Dickerson sequence d(CGCGAATTCGCG) is computed using classical molecular dynamics (MD) simulations. In contrast to previous studies, which focus on a simplified 1D model or a coarse-grained model of DNA to reduce simulation times, full atomistic simulations are employed to understand the thermal conduction in B-DNA. Thermal conductivities at different temperatures from 100 to 400 K are investigated using the Einstein-Green-Kubo equilibrium and Müller-Plathe non-equilibrium formalisms. The thermal conductivity of B-DNA at room temperature is found to be 1.5 W/m·K in equilibrium and 1.225 W/m·K in the non-equilibrium approach. In addition, the denaturation regime of B-DNA is obtained from the variation of thermal conductivity with temperature. It is in agreement with previous studies using the Peyrard-Bishop-Dauxois model at a temperature of around 350 K. The quantum heat capacity (Cvq) has given additional clues regarding the Debye and denaturation temperature of 12-bp B-DNA.
Collapse
Affiliation(s)
- Vignesh Mahalingam
- Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | |
Collapse
|
33
|
Brown SL, Kendrick S. The i-Motif as a Molecular Target: More Than a Complementary DNA Secondary Structure. Pharmaceuticals (Basel) 2021; 14:ph14020096. [PMID: 33513764 PMCID: PMC7911047 DOI: 10.3390/ph14020096] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
Stretches of cytosine-rich DNA are capable of adopting a dynamic secondary structure, the i-motif. When within promoter regions, the i-motif has the potential to act as a molecular switch for controlling gene expression. However, i-motif structures in genomic areas of repetitive nucleotide sequences may play a role in facilitating or hindering expansion of these DNA elements. Despite research on the i-motif trailing behind the complementary G-quadruplex structure, recent discoveries including the identification of a specific i-motif antibody are pushing this field forward. This perspective reviews initial and current work characterizing the i-motif and providing insight into the biological function of this DNA structure, with a focus on how the i-motif can serve as a molecular target for developing new therapeutic approaches to modulate gene expression and extension of repetitive DNA.
Collapse
|
34
|
Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment. Molecules 2020; 25:molecules25215006. [PMID: 33126767 PMCID: PMC7662579 DOI: 10.3390/molecules25215006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is an extremely complex disease, typically caused by mutations in cancer-critical genes. By delivering therapeutic nucleic acids (NAs) to patients, gene therapy offers the possibility to supplement, repair or silence such faulty genes or to stimulate their immune system to fight the disease. While the challenges of gene therapy for cancer are significant, the latter approach (a type of immunotherapy) starts showing promising results in early-stage clinical trials. One important advantage of NA-based cancer therapies over synthetic drugs and protein treatments is the prospect of a more universal approach to designing therapies. Designing NAs with different sequences, for different targets, can be achieved by using the same technologies. This versatility and scalability of NA drug design and production on demand open the way for more efficient, affordable and personalized cancer treatments in the future. However, the delivery of exogenous therapeutic NAs into the patients’ targeted cells is also challenging. Membrane-type lipids exhibiting permanent or transient cationic character have been shown to associate with NAs (anionic), forming nanosized lipid-NA complexes. These complexes form a wide variety of nanostructures, depending on the global formulation composition and properties of the lipids and NAs. Importantly, these different lipid-NA nanostructures interact with cells via different mechanisms and their therapeutic potential can be optimized to promising levels in vitro. The complexes are also highly customizable in terms of surface charge and functionalization to allow a wide range of targeting and smart-release properties. Most importantly, these synthetic particles offer possibilities for scaling-up and affordability for the population at large. Hence, the versatility and scalability of these particles seem ideal to accommodate the versatility that NA therapies offer. While in vivo efficiency of lipid-NA complexes is still poor in most cases, the advances achieved in the last three decades are significant and very recently a lipid-based gene therapy medicine was approved for the first time (for treatment of hereditary transthyretin amyloidosis). Although the path to achieve efficient NA-delivery in cancer therapy is still long and tenuous, these advances set a new hope for more treatments in the future. In this review, we attempt to cover the most important biophysical and physicochemical aspects of non-viral lipid-based gene therapy formulations, with a perspective on future cancer treatments in mind.
Collapse
|
35
|
Abstract
Nucleic acids hold great promise for bottom-up construction of nanostructures via programmable self-assembly. Especially, the emerging of advanced sequence design principles and the maturation of chemical synthesis of nucleic acids together have led to the rapid development of structural DNA/RNA nanotechnology. Diverse nucleic acids-based nano objects and patterns have been constructed with near-atomic resolutions and with controllable sizes and geometries. The monodispersed distribution of objects, the up-to-submillimeter scalability of patterns, and the excellent feasibility of carrying other materials with spatial and temporal resolutions have made DNA/RNA assemblies extremely unique in molecular engineering. In this review, we summarize recent advances in nucleic acids-based (mainly DNA-based) near-atomic fabrication by focusing on state-of-the-art design techniques, toolkits for DNA/RNA nanoengineering, and related applications in a range of areas.
Collapse
Affiliation(s)
- Kai Xia
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qian Li
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hongzhou Gu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| |
Collapse
|
36
|
Cecconello A, Simmel FC. Controlling Chirality across Length Scales using DNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805419. [PMID: 30785662 DOI: 10.1002/smll.201805419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Nano-objects with chiral properties attract growing interest due to their relevance for a wide variety of technological applications. For example, chiral nano-objects may be used in characterization platforms that involve chiral molecular recognition of proteins or in the fabrication of nanomechanical devices such as screw-gears or nanoswimmers. Spatial ordering of emitters of circularly polarized light might greatly benefit from the utilization of chiral shapes. Tools developed in DNA nanotechnology now allow precise tailoring of the chiral properties of molecules and materials at various length scales. Among others, they have already been applied to control the handedness of helical shapes (configurational chirality) or the chiral positioning of different-sized nanoparticles at the vertices of tetrahedra (compositional chirality). This work covers some of the key advances and recent developments in the field of chiral DNA nanoarchitectures and discusses their future perspectives and potential applications.
Collapse
Affiliation(s)
- Alessandro Cecconello
- Physics Department, TU München, Am Coulombwall 4a/II - 85748 Garching b., München, Germany
| | - Friedrich C Simmel
- Physics Department, TU München, Am Coulombwall 4a/II - 85748 Garching b., München, Germany
| |
Collapse
|
37
|
Hamlow LA, Devereaux ZJ, Roy HA, Cunningham NA, Berden G, Oomens J, Rodgers MT. Impact of the 2'- and 3'-Sugar Hydroxyl Moieties on Gas-Phase Nucleoside Structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:832-845. [PMID: 30850972 DOI: 10.1007/s13361-019-02155-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Modified nucleosides have been an important target for pharmaceutical development for the treatment of cancer, herpes simplex virus, and the human immunodeficiency virus (HIV). Amongst these nucleoside analogues, those based on 2',3'-dideoxyribose sugars are quite common, particularly in anti-HIV applications. The gas-phase structures of several protonated 2',3'-dideoxyribose nucleosides are examined in this work and compared with those of the analogous protonated DNA, RNA, and arabinose nucleosides to elucidate the influence of the 2'- and combined 2',3'-hydroxyl groups on intrinsic structure. Infrared multiple photon dissociation (IRMPD) action spectra are collected for the protonated 2',3'-dideoxy forms of adenosine, guanosine, cytidine, thymidine and uridine, [ddAdo+H]+, [ddGuo+H]+, [ddCyd+H]+, [ddThd+H]+, and [ddUrd+H]+, in the IR fingerprint and hydrogen-stretching regions. Molecular mechanics conformational searching followed by electronic structure calculations generates low-energy conformers of the protonated 2',3'-dideoxynucleosides and corresponding predicted linear IR spectra to facilitate interpretation of the measured IRMPD action spectra. These experimental IRMPD spectra and theoretical calculations indicate that the absence of the 2'- and 3'-hydroxyls largely preserves the protonation preferences of the canonical forms. The spectra and calculated structures indicate a slight preference for C3'-endo sugar puckering. The presence of the 3'- and further 2'-hydroxyl increases the available intramolecular hydrogen-bonding opportunities and shifts the sugar puckering modes for all nucleosides but the guanosine analogues to a slight preference for C2'-endo over C3'-endo. Graphical Abstract.
Collapse
Affiliation(s)
- L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Zachary J Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
38
|
Spiropyran as a potential molecular diagnostic tool for double-stranded RNA detection. BMC Biomed Eng 2019; 1:6. [PMID: 32903305 PMCID: PMC7421392 DOI: 10.1186/s42490-019-0008-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Long double-stranded RNAs (dsRNAs) are duplex RNAs that can induce immune response when present in mammalian cells. These RNAs are historically associated with viral replication, but recent evidence suggests that human cells naturally encode endogenous dsRNAs that can regulate antiviral machineries in cellular contexts beyond immune response. Results In this study, we use photochromic organic compound spiropyran to profile and quantitate dsRNA expression. We show that the open form of spiropyran, merocyanine, can intercalate between RNA base pairs, which leads to protonation and alteration in the spectral property of the compound. By quantifying the spectral change, we can detect and quantify dsRNA expression level, both synthetic and cellular. We further demonstrate that spiropyrans can be used as a molecular diagnostic tool to profile endogenously expressed dsRNAs. Particularly, we show that spiropyrans can robustly detect elevated dsRNA levels when colorectal cancer cells are treated with 5-aza-2'-deoxycytidine, an FDA-approved DNA-demethylating agent used for chemotherapy, thus demonstrating the use of spiropyran for predicting responsiveness to the drug treatment. Conclusion As dsRNAs are signature of virus and accumulation of dsRNAs is implicated in various degenerative disease, our work establishes potential application of spiropyrans as a simple spectral tool to diagnose human disease based on dsRNA expression.
Collapse
|
39
|
Influence of 2′-fluoro modification on glycosidic bond stabilities and gas-phase ion structures of protonated pyrimidine nucleosides. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet 2018; 35:129-144. [PMID: 30527765 DOI: 10.1016/j.tig.2018.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
The role of non-duplex DNA, the guanine-quadruplex structure in particular, is becoming widely appreciated. Increasing evidence in the last decade implicates quadruplexes in important processes such as transcription and replication. Interestingly, more recent work suggests roles for quadruplexes, in association with quadruplex-interacting proteins, in epigenetics through both DNA and histone modifications. Here, we review the effect of the quadruplex structure on post-replication epigenetic memory and quadruplex-induced promoter DNA/histone modifications. Furthermore, we highlight the epigenetic state of the telomerase promoter where quadruplexes could play a key regulatory role. Finally, we discuss the possibility that DNA structures such as quadruplexes, within a largely duplex DNA background, could act as molecular anchors for locally induced epigenetic modifications.
Collapse
|
41
|
Kashida H, Kawai H, Maruyama R, Kokubo Y, Araki Y, Wada T, Asanuma H. Quantitative evaluation of energy migration between identical chromophores enabled by breaking symmetry. Commun Chem 2018. [DOI: 10.1038/s42004-018-0093-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
42
|
Vandavasi VG, Blakeley MP, Keen DA, Hu LR, Huang Z, Kovalevsky A. Temperature-Induced Replacement of Phosphate Proton with Metal Ion Captured in Neutron Structures of A-DNA. Structure 2018; 26:1645-1650.e3. [PMID: 30244969 PMCID: PMC6281803 DOI: 10.1016/j.str.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/02/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022]
Abstract
Nucleic acids can fold into well-defined 3D structures that help determine their function. Knowing precise nucleic acid structures can also be used for the design of nucleic acid-based therapeutics. However, locations of hydrogen atoms, which are key players of nucleic acid function, are normally not determined with X-ray crystallography. Accurate determination of hydrogen atom positions can provide indispensable information on protonation states, hydrogen bonding, and water architecture in nucleic acids. Here, we used neutron crystallography in combination with X-ray diffraction to obtain joint X-ray/neutron structures at both room and cryo temperatures of a self-complementary A-DNA oligonucleotide d[GTGG(CSe)CAC]2 containing 2'-SeCH3 modification on Cyt5 (CSe) at pH 5.6. We directly observed protonation of a backbone phosphate oxygen of Ade7 at room temperature. The proton is replaced with hydrated Mg2+ upon cooling the crystal to 100 K, indicating that metal binding is favored at low temperature, whereas proton binding is dominant at room temperature.
Collapse
Affiliation(s)
- Venu Gopal Vandavasi
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37922, USA
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, Grenoble 38000, France
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - Andrey Kovalevsky
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37922, USA.
| |
Collapse
|
43
|
Mokari M, Alamatsaz MH, Moeini H, Babaei-Brojeny AA, Taleei R. Track structure simulation of low energy electron damage to DNA using Geant4-DNA. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae02e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Novel isothiacalothrixin B analogues exhibit cytotoxic activity on human colon cancer cells in vitro by inducing irreversible DNA damage. PLoS One 2018; 13:e0202903. [PMID: 30188913 PMCID: PMC6126808 DOI: 10.1371/journal.pone.0202903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/11/2018] [Indexed: 01/23/2023] Open
Abstract
Preliminary cytotoxic analysis of sulphur containing isosteric analogues of calothrixin B identified the useful anti-tumour activity of thia/isothiacalothrixin B which necessitated it’s biological evaluation in colon and lung cancer cell lines. The isothia analogues induced cytotoxicity of HCT116 in a time-dependent manner and inhibited the clonogenic survival of HCT116 and NCI-H460 cells in a dose-dependent manner comparable to the standard anti-cancer drug camptothecin. Herein employing flow cytometry, we demonstrate that isothiacalothrixin B analogues inhibited proliferation of colon cancer cells by the arrest of cells in S and G2/M phases over a period of 48 hours at a concentration of 5 μM. Our results also suggest that the cytotoxicity of thia analogues of calothrixin B is partially mediated by induction of cellular DNA strand breaks. The UV-Vis spectroscopic studies with CT-DNA revealed groove binding for calothrixin B and its thia analogues wherein subsequent in silico molecular modelling studies indicated preferential binding to the AT-rich regions of minor groove of DNA. Furthermore, thiacalothrixin B caused transcriptional activation of p21waf1/cip1 promoter and upregulation of its protein levels independent of p53. The induction of DNA damage response pathway leads to apoptosis in isothiacalothrixin B but not in thiacalothrixin B treated cells. The isothia analogues SCAB 4 induced DNA strand breaks and cell cycle arrest even after treatment for a short period (i.e., 4 hours) and the cell cycle effects were irreversible. For the first time, this study provides detailed cellular effects on the potential use of isothiacalothrixin B analogues as cytotoxic agents.
Collapse
|
45
|
Mokari M, Alamatsaz MH, Moeini H, Taleei R. A simulation approach for determining the spectrum of DNA damage induced by protons. ACTA ACUST UNITED AC 2018; 63:175003. [DOI: 10.1088/1361-6560/aad7ee] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Progress in Circulating Tumor Cell Research Using Microfluidic Devices. MICROMACHINES 2018; 9:mi9070353. [PMID: 30424286 PMCID: PMC6082257 DOI: 10.3390/mi9070353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
Circulating tumor cells (CTCs) are a popular topic in cancer research because they can be obtained by liquid biopsy, a minimally invasive procedure with more sample accessibility than tissue biopsy, to monitor a patient’s condition. Over the past decades, CTC research has covered a wide variety of topics such as enumeration, profiling, and correlation between CTC number and patient overall survival. It is important to isolate and enrich CTCs before performing CTC analysis because CTCs in the blood stream are very rare (0–10 CTCs/mL of blood). Among the various approaches to separating CTCs, here, we review the research trends in the isolation and analysis of CTCs using microfluidics. Microfluidics provides many attractive advantages for CTC studies such as continuous sample processing to reduce target cell loss and easy integration of various functions into a chip, making “do-everything-on-a-chip” possible. However, tumor cells obtained from different sites within a tumor exhibit heterogenetic features. Thus, heterogeneous CTC profiling should be conducted at a single-cell level after isolation to guide the optimal therapeutic path. We describe the studies on single-CTC analysis based on microfluidic devices. Additionally, as a critical concern in CTC studies, we explain the use of CTCs in cancer research, despite their rarity and heterogeneity, compared with other currently emerging circulating biomarkers, including exosomes and cell-free DNA (cfDNA). Finally, the commercialization of products for CTC separation and analysis is discussed.
Collapse
|
47
|
Matter B, Seiler CL, Murphy K, Ming X, Zhao J, Lindgren B, Jones R, Tretyakova N. Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species. Free Radic Biol Med 2018; 121:180-189. [PMID: 29702150 PMCID: PMC6858621 DOI: 10.1016/j.freeradbiomed.2018.04.561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Reactive oxygen and nitrogen species generated during respiration, inflammation, and immune response can damage cellular DNA, contributing to aging, cancer, and neurodegeneration. The ability of oxidized DNA bases to interfere with DNA replication and transcription is strongly influenced by their chemical structures and locations within the genome. In the present work, we examined the influence of local DNA sequence context, DNA secondary structure, and oxidant identity on the efficiency and the chemistry of guanine oxidation in the context of the Kras protooncogene. A novel isotope labeling strategy developed in our laboratory was used to accurately map the formation of 2,2-diamino-4-[(2-deoxy-β-D-erythropentofuranosyl)amino]- 5(2 H)-oxazolone (Z), 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG), and 8-nitroguanine (8-NO2-G) lesions along DNA duplexes following photooxidation in the presence of riboflavin, treatment with nitrosoperoxycarbonate, and oxidation in the presence of hydroxyl radicals. Riboflavin-mediated photooxidation preferentially induced OG lesions at 5' guanines within GG repeats, while treatment with nitrosoperoxycarbonate targeted 3'-guanines within GG and AG dinucleotides. Little sequence selectivity was observed following hydroxyl radical-mediated oxidation. However, Z and 8-NO2-G adducts were overproduced at duplex ends, irrespective of oxidant identity. Overall, our results indicate that the patterns of Z, OG, and 8-NO2-G adduct formation in the genome are distinct and are influenced by oxidant identity and the secondary structure of DNA.
Collapse
Affiliation(s)
- Brock Matter
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Seiler
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristopher Murphy
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xun Ming
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianwei Zhao
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Bruce Lindgren
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roger Jones
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
48
|
Saha M, Nandy P, Chakraborty M, Das P, Das S. The importance of pK a in an analysis of the interaction of compounds with DNA. Biophys Chem 2018; 236:15-21. [PMID: 29525503 DOI: 10.1016/j.bpc.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/27/2018] [Accepted: 02/04/2018] [Indexed: 01/29/2023]
Abstract
pKa of a compound is crucial for determining the contributions of different forms of it towards overall binding with DNA. Hence it is important to use correct pKa values in DNA interaction studies. This study takes a look at the importance of pKa values to realize binding of compounds with DNA. Since pKa of a compound determined in the presence of DNA is quite different from that determined in its absence hence, presence of different forms of a compound during interaction with DNA is different from that realized if the determination of pKa is done in normal aqueous solution in absence of DNA. Hence, calculations determining contributions of different forms of a compound interacting with DNA are affected accordingly. Two simple analogues of anthracyclines, alizarin and purpurin, were used to investigate the influence DNA has on pKa values. Indeed, they were different in presence of DNA than when determined in normal aqueous solution. pKa1 for alizarin and purpurin determined in the absence and presence of calf thymus DNA were used in equations that determine contributions of two forms (neutral and anionic) towards overall binding with DNA. The study concludes that correct pKa values, determined correctly i.e. under appropriate conditions, must be used for DNA binding experiments to evaluate contributions of individual forms.
Collapse
Affiliation(s)
- Mouli Saha
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Promita Nandy
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | - Piyal Das
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Saurabh Das
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
49
|
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1050-1074. [PMID: 29719757 PMCID: PMC5905289 DOI: 10.3762/bjnano.9.98] [Citation(s) in RCA: 1162] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/09/2018] [Indexed: 05/07/2023]
Abstract
Nanomaterials (NMs) have gained prominence in technological advancements due to their tunable physical, chemical and biological properties with enhanced performance over their bulk counterparts. NMs are categorized depending on their size, composition, shape, and origin. The ability to predict the unique properties of NMs increases the value of each classification. Due to increased growth of production of NMs and their industrial applications, issues relating to toxicity are inevitable. The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment. The review presents an overview of the history and classifications of NMs and gives an overview of the various sources of NPs and NSMs, from natural to synthetic, and their toxic effects towards mammalian cells and tissue. Additionally, the types of toxic reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Curtin University, CDT250 Miri, Sarawak 98009, Malaysia
| | - Ahmed Barhoum
- Department of Materials and Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
- Chemistry Department, Faculty of Science, Helwan University, 11795 Helwan, Cairo, Egypt
| | - Yen S Chan
- Department of Chemical Engineering, Curtin University, CDT250 Miri, Sarawak 98009, Malaysia
| | - Alain Dufresne
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Michael K Danquah
- Department of Chemical Engineering, Curtin University, CDT250 Miri, Sarawak 98009, Malaysia
| |
Collapse
|
50
|
Miyata T, Shimada N, Maruyama A, Kawai K. Fluorescence Redox Blinking Adaptable to Structural Analysis of Nucleic Acids. Chemistry 2018; 24:6755-6761. [DOI: 10.1002/chem.201705668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Takafumi Miyata
- Department of Life Science and Technology; Tokyo Institute of Technology; 4259 B-57 Nagatsuta, Midori-ku, Yokohama Kanagawa 226-8501 Japan
| | - Naohiko Shimada
- Department of Life Science and Technology; Tokyo Institute of Technology; 4259 B-57 Nagatsuta, Midori-ku, Yokohama Kanagawa 226-8501 Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology; Tokyo Institute of Technology; 4259 B-57 Nagatsuta, Midori-ku, Yokohama Kanagawa 226-8501 Japan
| | - Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1, Ibaraki Osaka 567-0047 Japan
| |
Collapse
|